1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2006-2013 Solarflare Communications Inc.
6  */
7 
8 #include <linux/bitops.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/seq_file.h>
14 #include <linux/crc32.h>
15 #include "net_driver.h"
16 #include "bitfield.h"
17 #include "efx.h"
18 #include "rx_common.h"
19 #include "nic.h"
20 #include "farch_regs.h"
21 #include "sriov.h"
22 #include "siena_sriov.h"
23 #include "io.h"
24 #include "workarounds.h"
25 
26 /* Falcon-architecture (SFC9000-family) support */
27 
28 /**************************************************************************
29  *
30  * Configurable values
31  *
32  **************************************************************************
33  */
34 
35 /* This is set to 16 for a good reason.  In summary, if larger than
36  * 16, the descriptor cache holds more than a default socket
37  * buffer's worth of packets (for UDP we can only have at most one
38  * socket buffer's worth outstanding).  This combined with the fact
39  * that we only get 1 TX event per descriptor cache means the NIC
40  * goes idle.
41  */
42 #define TX_DC_ENTRIES 16
43 #define TX_DC_ENTRIES_ORDER 1
44 
45 #define RX_DC_ENTRIES 64
46 #define RX_DC_ENTRIES_ORDER 3
47 
48 /* If EFX_MAX_INT_ERRORS internal errors occur within
49  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
50  * disable it.
51  */
52 #define EFX_INT_ERROR_EXPIRE 3600
53 #define EFX_MAX_INT_ERRORS 5
54 
55 /* Depth of RX flush request fifo */
56 #define EFX_RX_FLUSH_COUNT 4
57 
58 /* Driver generated events */
59 #define _EFX_CHANNEL_MAGIC_TEST		0x000101
60 #define _EFX_CHANNEL_MAGIC_FILL		0x000102
61 #define _EFX_CHANNEL_MAGIC_RX_DRAIN	0x000103
62 #define _EFX_CHANNEL_MAGIC_TX_DRAIN	0x000104
63 
64 #define _EFX_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data))
65 #define _EFX_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8)
66 
67 #define EFX_CHANNEL_MAGIC_TEST(_channel)				\
68 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
69 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue)				\
70 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,			\
71 			   efx_rx_queue_index(_rx_queue))
72 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\
73 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,			\
74 			   efx_rx_queue_index(_rx_queue))
75 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\
76 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,			\
77 			   (_tx_queue)->queue)
78 
79 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
80 
81 /**************************************************************************
82  *
83  * Hardware access
84  *
85  **************************************************************************/
86 
efx_write_buf_tbl(struct efx_nic * efx,efx_qword_t * value,unsigned int index)87 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
88 				     unsigned int index)
89 {
90 	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
91 			value, index);
92 }
93 
efx_masked_compare_oword(const efx_oword_t * a,const efx_oword_t * b,const efx_oword_t * mask)94 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
95 				     const efx_oword_t *mask)
96 {
97 	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
98 		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
99 }
100 
efx_farch_test_registers(struct efx_nic * efx,const struct efx_farch_register_test * regs,size_t n_regs)101 int efx_farch_test_registers(struct efx_nic *efx,
102 			     const struct efx_farch_register_test *regs,
103 			     size_t n_regs)
104 {
105 	unsigned address = 0;
106 	int i, j;
107 	efx_oword_t mask, imask, original, reg, buf;
108 
109 	for (i = 0; i < n_regs; ++i) {
110 		address = regs[i].address;
111 		mask = imask = regs[i].mask;
112 		EFX_INVERT_OWORD(imask);
113 
114 		efx_reado(efx, &original, address);
115 
116 		/* bit sweep on and off */
117 		for (j = 0; j < 128; j++) {
118 			if (!EFX_EXTRACT_OWORD32(mask, j, j))
119 				continue;
120 
121 			/* Test this testable bit can be set in isolation */
122 			EFX_AND_OWORD(reg, original, mask);
123 			EFX_SET_OWORD32(reg, j, j, 1);
124 
125 			efx_writeo(efx, &reg, address);
126 			efx_reado(efx, &buf, address);
127 
128 			if (efx_masked_compare_oword(&reg, &buf, &mask))
129 				goto fail;
130 
131 			/* Test this testable bit can be cleared in isolation */
132 			EFX_OR_OWORD(reg, original, mask);
133 			EFX_SET_OWORD32(reg, j, j, 0);
134 
135 			efx_writeo(efx, &reg, address);
136 			efx_reado(efx, &buf, address);
137 
138 			if (efx_masked_compare_oword(&reg, &buf, &mask))
139 				goto fail;
140 		}
141 
142 		efx_writeo(efx, &original, address);
143 	}
144 
145 	return 0;
146 
147 fail:
148 	netif_err(efx, hw, efx->net_dev,
149 		  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
150 		  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
151 		  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
152 	return -EIO;
153 }
154 
155 /**************************************************************************
156  *
157  * Special buffer handling
158  * Special buffers are used for event queues and the TX and RX
159  * descriptor rings.
160  *
161  *************************************************************************/
162 
163 /*
164  * Initialise a special buffer
165  *
166  * This will define a buffer (previously allocated via
167  * efx_alloc_special_buffer()) in the buffer table, allowing
168  * it to be used for event queues, descriptor rings etc.
169  */
170 static void
efx_init_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)171 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
172 {
173 	efx_qword_t buf_desc;
174 	unsigned int index;
175 	dma_addr_t dma_addr;
176 	int i;
177 
178 	EFX_WARN_ON_PARANOID(!buffer->buf.addr);
179 
180 	/* Write buffer descriptors to NIC */
181 	for (i = 0; i < buffer->entries; i++) {
182 		index = buffer->index + i;
183 		dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
184 		netif_dbg(efx, probe, efx->net_dev,
185 			  "mapping special buffer %d at %llx\n",
186 			  index, (unsigned long long)dma_addr);
187 		EFX_POPULATE_QWORD_3(buf_desc,
188 				     FRF_AZ_BUF_ADR_REGION, 0,
189 				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
190 				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
191 		efx_write_buf_tbl(efx, &buf_desc, index);
192 	}
193 }
194 
195 /* Unmaps a buffer and clears the buffer table entries */
196 static void
efx_fini_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)197 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
198 {
199 	efx_oword_t buf_tbl_upd;
200 	unsigned int start = buffer->index;
201 	unsigned int end = (buffer->index + buffer->entries - 1);
202 
203 	if (!buffer->entries)
204 		return;
205 
206 	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
207 		  buffer->index, buffer->index + buffer->entries - 1);
208 
209 	EFX_POPULATE_OWORD_4(buf_tbl_upd,
210 			     FRF_AZ_BUF_UPD_CMD, 0,
211 			     FRF_AZ_BUF_CLR_CMD, 1,
212 			     FRF_AZ_BUF_CLR_END_ID, end,
213 			     FRF_AZ_BUF_CLR_START_ID, start);
214 	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
215 }
216 
217 /*
218  * Allocate a new special buffer
219  *
220  * This allocates memory for a new buffer, clears it and allocates a
221  * new buffer ID range.  It does not write into the buffer table.
222  *
223  * This call will allocate 4KB buffers, since 8KB buffers can't be
224  * used for event queues and descriptor rings.
225  */
efx_alloc_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer,unsigned int len)226 static int efx_alloc_special_buffer(struct efx_nic *efx,
227 				    struct efx_special_buffer *buffer,
228 				    unsigned int len)
229 {
230 #ifdef CONFIG_SFC_SRIOV
231 	struct siena_nic_data *nic_data = efx->nic_data;
232 #endif
233 	len = ALIGN(len, EFX_BUF_SIZE);
234 
235 	if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
236 		return -ENOMEM;
237 	buffer->entries = len / EFX_BUF_SIZE;
238 	BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
239 
240 	/* Select new buffer ID */
241 	buffer->index = efx->next_buffer_table;
242 	efx->next_buffer_table += buffer->entries;
243 #ifdef CONFIG_SFC_SRIOV
244 	BUG_ON(efx_siena_sriov_enabled(efx) &&
245 	       nic_data->vf_buftbl_base < efx->next_buffer_table);
246 #endif
247 
248 	netif_dbg(efx, probe, efx->net_dev,
249 		  "allocating special buffers %d-%d at %llx+%x "
250 		  "(virt %p phys %llx)\n", buffer->index,
251 		  buffer->index + buffer->entries - 1,
252 		  (u64)buffer->buf.dma_addr, len,
253 		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
254 
255 	return 0;
256 }
257 
258 static void
efx_free_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)259 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
260 {
261 	if (!buffer->buf.addr)
262 		return;
263 
264 	netif_dbg(efx, hw, efx->net_dev,
265 		  "deallocating special buffers %d-%d at %llx+%x "
266 		  "(virt %p phys %llx)\n", buffer->index,
267 		  buffer->index + buffer->entries - 1,
268 		  (u64)buffer->buf.dma_addr, buffer->buf.len,
269 		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
270 
271 	efx_nic_free_buffer(efx, &buffer->buf);
272 	buffer->entries = 0;
273 }
274 
275 /**************************************************************************
276  *
277  * TX path
278  *
279  **************************************************************************/
280 
281 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
efx_farch_notify_tx_desc(struct efx_tx_queue * tx_queue)282 static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
283 {
284 	unsigned write_ptr;
285 	efx_dword_t reg;
286 
287 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
288 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
289 	efx_writed_page(tx_queue->efx, &reg,
290 			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
291 }
292 
293 /* Write pointer and first descriptor for TX descriptor ring */
efx_farch_push_tx_desc(struct efx_tx_queue * tx_queue,const efx_qword_t * txd)294 static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
295 					  const efx_qword_t *txd)
296 {
297 	unsigned write_ptr;
298 	efx_oword_t reg;
299 
300 	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
301 	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
302 
303 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
304 	EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
305 			     FRF_AZ_TX_DESC_WPTR, write_ptr);
306 	reg.qword[0] = *txd;
307 	efx_writeo_page(tx_queue->efx, &reg,
308 			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
309 }
310 
311 
312 /* For each entry inserted into the software descriptor ring, create a
313  * descriptor in the hardware TX descriptor ring (in host memory), and
314  * write a doorbell.
315  */
efx_farch_tx_write(struct efx_tx_queue * tx_queue)316 void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
317 {
318 	struct efx_tx_buffer *buffer;
319 	efx_qword_t *txd;
320 	unsigned write_ptr;
321 	unsigned old_write_count = tx_queue->write_count;
322 
323 	tx_queue->xmit_pending = false;
324 	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
325 		return;
326 
327 	do {
328 		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
329 		buffer = &tx_queue->buffer[write_ptr];
330 		txd = efx_tx_desc(tx_queue, write_ptr);
331 		++tx_queue->write_count;
332 
333 		EFX_WARN_ON_ONCE_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
334 
335 		/* Create TX descriptor ring entry */
336 		BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
337 		EFX_POPULATE_QWORD_4(*txd,
338 				     FSF_AZ_TX_KER_CONT,
339 				     buffer->flags & EFX_TX_BUF_CONT,
340 				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
341 				     FSF_AZ_TX_KER_BUF_REGION, 0,
342 				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
343 	} while (tx_queue->write_count != tx_queue->insert_count);
344 
345 	wmb(); /* Ensure descriptors are written before they are fetched */
346 
347 	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
348 		txd = efx_tx_desc(tx_queue,
349 				  old_write_count & tx_queue->ptr_mask);
350 		efx_farch_push_tx_desc(tx_queue, txd);
351 		++tx_queue->pushes;
352 	} else {
353 		efx_farch_notify_tx_desc(tx_queue);
354 	}
355 }
356 
efx_farch_tx_limit_len(struct efx_tx_queue * tx_queue,dma_addr_t dma_addr,unsigned int len)357 unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue,
358 				    dma_addr_t dma_addr, unsigned int len)
359 {
360 	/* Don't cross 4K boundaries with descriptors. */
361 	unsigned int limit = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
362 
363 	len = min(limit, len);
364 
365 	return len;
366 }
367 
368 
369 /* Allocate hardware resources for a TX queue */
efx_farch_tx_probe(struct efx_tx_queue * tx_queue)370 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
371 {
372 	struct efx_nic *efx = tx_queue->efx;
373 	unsigned entries;
374 
375 	tx_queue->type = ((tx_queue->label & 1) ? EFX_TXQ_TYPE_OUTER_CSUM : 0) |
376 			 ((tx_queue->label & 2) ? EFX_TXQ_TYPE_HIGHPRI : 0);
377 	entries = tx_queue->ptr_mask + 1;
378 	return efx_alloc_special_buffer(efx, &tx_queue->txd,
379 					entries * sizeof(efx_qword_t));
380 }
381 
efx_farch_tx_init(struct efx_tx_queue * tx_queue)382 void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
383 {
384 	int csum = tx_queue->type & EFX_TXQ_TYPE_OUTER_CSUM;
385 	struct efx_nic *efx = tx_queue->efx;
386 	efx_oword_t reg;
387 
388 	/* Pin TX descriptor ring */
389 	efx_init_special_buffer(efx, &tx_queue->txd);
390 
391 	/* Push TX descriptor ring to card */
392 	EFX_POPULATE_OWORD_10(reg,
393 			      FRF_AZ_TX_DESCQ_EN, 1,
394 			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
395 			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
396 			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
397 			      FRF_AZ_TX_DESCQ_EVQ_ID,
398 			      tx_queue->channel->channel,
399 			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
400 			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->label,
401 			      FRF_AZ_TX_DESCQ_SIZE,
402 			      __ffs(tx_queue->txd.entries),
403 			      FRF_AZ_TX_DESCQ_TYPE, 0,
404 			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
405 
406 	EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
407 	EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, !csum);
408 
409 	efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
410 			 tx_queue->queue);
411 
412 	EFX_POPULATE_OWORD_1(reg,
413 			     FRF_BZ_TX_PACE,
414 			     (tx_queue->type & EFX_TXQ_TYPE_HIGHPRI) ?
415 			     FFE_BZ_TX_PACE_OFF :
416 			     FFE_BZ_TX_PACE_RESERVED);
417 	efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL, tx_queue->queue);
418 
419 	tx_queue->tso_version = 1;
420 }
421 
efx_farch_flush_tx_queue(struct efx_tx_queue * tx_queue)422 static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
423 {
424 	struct efx_nic *efx = tx_queue->efx;
425 	efx_oword_t tx_flush_descq;
426 
427 	WARN_ON(atomic_read(&tx_queue->flush_outstanding));
428 	atomic_set(&tx_queue->flush_outstanding, 1);
429 
430 	EFX_POPULATE_OWORD_2(tx_flush_descq,
431 			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
432 			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
433 	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
434 }
435 
efx_farch_tx_fini(struct efx_tx_queue * tx_queue)436 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
437 {
438 	struct efx_nic *efx = tx_queue->efx;
439 	efx_oword_t tx_desc_ptr;
440 
441 	/* Remove TX descriptor ring from card */
442 	EFX_ZERO_OWORD(tx_desc_ptr);
443 	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
444 			 tx_queue->queue);
445 
446 	/* Unpin TX descriptor ring */
447 	efx_fini_special_buffer(efx, &tx_queue->txd);
448 }
449 
450 /* Free buffers backing TX queue */
efx_farch_tx_remove(struct efx_tx_queue * tx_queue)451 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
452 {
453 	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
454 }
455 
456 /**************************************************************************
457  *
458  * RX path
459  *
460  **************************************************************************/
461 
462 /* This creates an entry in the RX descriptor queue */
463 static inline void
efx_farch_build_rx_desc(struct efx_rx_queue * rx_queue,unsigned index)464 efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
465 {
466 	struct efx_rx_buffer *rx_buf;
467 	efx_qword_t *rxd;
468 
469 	rxd = efx_rx_desc(rx_queue, index);
470 	rx_buf = efx_rx_buffer(rx_queue, index);
471 	EFX_POPULATE_QWORD_3(*rxd,
472 			     FSF_AZ_RX_KER_BUF_SIZE,
473 			     rx_buf->len -
474 			     rx_queue->efx->type->rx_buffer_padding,
475 			     FSF_AZ_RX_KER_BUF_REGION, 0,
476 			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
477 }
478 
479 /* This writes to the RX_DESC_WPTR register for the specified receive
480  * descriptor ring.
481  */
efx_farch_rx_write(struct efx_rx_queue * rx_queue)482 void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
483 {
484 	struct efx_nic *efx = rx_queue->efx;
485 	efx_dword_t reg;
486 	unsigned write_ptr;
487 
488 	while (rx_queue->notified_count != rx_queue->added_count) {
489 		efx_farch_build_rx_desc(
490 			rx_queue,
491 			rx_queue->notified_count & rx_queue->ptr_mask);
492 		++rx_queue->notified_count;
493 	}
494 
495 	wmb();
496 	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
497 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
498 	efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
499 			efx_rx_queue_index(rx_queue));
500 }
501 
efx_farch_rx_probe(struct efx_rx_queue * rx_queue)502 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
503 {
504 	struct efx_nic *efx = rx_queue->efx;
505 	unsigned entries;
506 
507 	entries = rx_queue->ptr_mask + 1;
508 	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
509 					entries * sizeof(efx_qword_t));
510 }
511 
efx_farch_rx_init(struct efx_rx_queue * rx_queue)512 void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
513 {
514 	efx_oword_t rx_desc_ptr;
515 	struct efx_nic *efx = rx_queue->efx;
516 	bool jumbo_en;
517 
518 	/* For kernel-mode queues in Siena, the JUMBO flag enables scatter. */
519 	jumbo_en = efx->rx_scatter;
520 
521 	netif_dbg(efx, hw, efx->net_dev,
522 		  "RX queue %d ring in special buffers %d-%d\n",
523 		  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
524 		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
525 
526 	rx_queue->scatter_n = 0;
527 
528 	/* Pin RX descriptor ring */
529 	efx_init_special_buffer(efx, &rx_queue->rxd);
530 
531 	/* Push RX descriptor ring to card */
532 	EFX_POPULATE_OWORD_10(rx_desc_ptr,
533 			      FRF_AZ_RX_ISCSI_DDIG_EN, true,
534 			      FRF_AZ_RX_ISCSI_HDIG_EN, true,
535 			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
536 			      FRF_AZ_RX_DESCQ_EVQ_ID,
537 			      efx_rx_queue_channel(rx_queue)->channel,
538 			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
539 			      FRF_AZ_RX_DESCQ_LABEL,
540 			      efx_rx_queue_index(rx_queue),
541 			      FRF_AZ_RX_DESCQ_SIZE,
542 			      __ffs(rx_queue->rxd.entries),
543 			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
544 			      FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
545 			      FRF_AZ_RX_DESCQ_EN, 1);
546 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
547 			 efx_rx_queue_index(rx_queue));
548 }
549 
efx_farch_flush_rx_queue(struct efx_rx_queue * rx_queue)550 static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
551 {
552 	struct efx_nic *efx = rx_queue->efx;
553 	efx_oword_t rx_flush_descq;
554 
555 	EFX_POPULATE_OWORD_2(rx_flush_descq,
556 			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
557 			     FRF_AZ_RX_FLUSH_DESCQ,
558 			     efx_rx_queue_index(rx_queue));
559 	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
560 }
561 
efx_farch_rx_fini(struct efx_rx_queue * rx_queue)562 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
563 {
564 	efx_oword_t rx_desc_ptr;
565 	struct efx_nic *efx = rx_queue->efx;
566 
567 	/* Remove RX descriptor ring from card */
568 	EFX_ZERO_OWORD(rx_desc_ptr);
569 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
570 			 efx_rx_queue_index(rx_queue));
571 
572 	/* Unpin RX descriptor ring */
573 	efx_fini_special_buffer(efx, &rx_queue->rxd);
574 }
575 
576 /* Free buffers backing RX queue */
efx_farch_rx_remove(struct efx_rx_queue * rx_queue)577 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
578 {
579 	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
580 }
581 
582 /**************************************************************************
583  *
584  * Flush handling
585  *
586  **************************************************************************/
587 
588 /* efx_farch_flush_queues() must be woken up when all flushes are completed,
589  * or more RX flushes can be kicked off.
590  */
efx_farch_flush_wake(struct efx_nic * efx)591 static bool efx_farch_flush_wake(struct efx_nic *efx)
592 {
593 	/* Ensure that all updates are visible to efx_farch_flush_queues() */
594 	smp_mb();
595 
596 	return (atomic_read(&efx->active_queues) == 0 ||
597 		(atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
598 		 && atomic_read(&efx->rxq_flush_pending) > 0));
599 }
600 
efx_check_tx_flush_complete(struct efx_nic * efx)601 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
602 {
603 	bool i = true;
604 	efx_oword_t txd_ptr_tbl;
605 	struct efx_channel *channel;
606 	struct efx_tx_queue *tx_queue;
607 
608 	efx_for_each_channel(channel, efx) {
609 		efx_for_each_channel_tx_queue(tx_queue, channel) {
610 			efx_reado_table(efx, &txd_ptr_tbl,
611 					FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
612 			if (EFX_OWORD_FIELD(txd_ptr_tbl,
613 					    FRF_AZ_TX_DESCQ_FLUSH) ||
614 			    EFX_OWORD_FIELD(txd_ptr_tbl,
615 					    FRF_AZ_TX_DESCQ_EN)) {
616 				netif_dbg(efx, hw, efx->net_dev,
617 					  "flush did not complete on TXQ %d\n",
618 					  tx_queue->queue);
619 				i = false;
620 			} else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
621 						  1, 0)) {
622 				/* The flush is complete, but we didn't
623 				 * receive a flush completion event
624 				 */
625 				netif_dbg(efx, hw, efx->net_dev,
626 					  "flush complete on TXQ %d, so drain "
627 					  "the queue\n", tx_queue->queue);
628 				/* Don't need to increment active_queues as it
629 				 * has already been incremented for the queues
630 				 * which did not drain
631 				 */
632 				efx_farch_magic_event(channel,
633 						      EFX_CHANNEL_MAGIC_TX_DRAIN(
634 							      tx_queue));
635 			}
636 		}
637 	}
638 
639 	return i;
640 }
641 
642 /* Flush all the transmit queues, and continue flushing receive queues until
643  * they're all flushed. Wait for the DRAIN events to be received so that there
644  * are no more RX and TX events left on any channel. */
efx_farch_do_flush(struct efx_nic * efx)645 static int efx_farch_do_flush(struct efx_nic *efx)
646 {
647 	unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
648 	struct efx_channel *channel;
649 	struct efx_rx_queue *rx_queue;
650 	struct efx_tx_queue *tx_queue;
651 	int rc = 0;
652 
653 	efx_for_each_channel(channel, efx) {
654 		efx_for_each_channel_tx_queue(tx_queue, channel) {
655 			efx_farch_flush_tx_queue(tx_queue);
656 		}
657 		efx_for_each_channel_rx_queue(rx_queue, channel) {
658 			rx_queue->flush_pending = true;
659 			atomic_inc(&efx->rxq_flush_pending);
660 		}
661 	}
662 
663 	while (timeout && atomic_read(&efx->active_queues) > 0) {
664 		/* If SRIOV is enabled, then offload receive queue flushing to
665 		 * the firmware (though we will still have to poll for
666 		 * completion). If that fails, fall back to the old scheme.
667 		 */
668 		if (efx_siena_sriov_enabled(efx)) {
669 			rc = efx_mcdi_flush_rxqs(efx);
670 			if (!rc)
671 				goto wait;
672 		}
673 
674 		/* The hardware supports four concurrent rx flushes, each of
675 		 * which may need to be retried if there is an outstanding
676 		 * descriptor fetch
677 		 */
678 		efx_for_each_channel(channel, efx) {
679 			efx_for_each_channel_rx_queue(rx_queue, channel) {
680 				if (atomic_read(&efx->rxq_flush_outstanding) >=
681 				    EFX_RX_FLUSH_COUNT)
682 					break;
683 
684 				if (rx_queue->flush_pending) {
685 					rx_queue->flush_pending = false;
686 					atomic_dec(&efx->rxq_flush_pending);
687 					atomic_inc(&efx->rxq_flush_outstanding);
688 					efx_farch_flush_rx_queue(rx_queue);
689 				}
690 			}
691 		}
692 
693 	wait:
694 		timeout = wait_event_timeout(efx->flush_wq,
695 					     efx_farch_flush_wake(efx),
696 					     timeout);
697 	}
698 
699 	if (atomic_read(&efx->active_queues) &&
700 	    !efx_check_tx_flush_complete(efx)) {
701 		netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
702 			  "(rx %d+%d)\n", atomic_read(&efx->active_queues),
703 			  atomic_read(&efx->rxq_flush_outstanding),
704 			  atomic_read(&efx->rxq_flush_pending));
705 		rc = -ETIMEDOUT;
706 
707 		atomic_set(&efx->active_queues, 0);
708 		atomic_set(&efx->rxq_flush_pending, 0);
709 		atomic_set(&efx->rxq_flush_outstanding, 0);
710 	}
711 
712 	return rc;
713 }
714 
efx_farch_fini_dmaq(struct efx_nic * efx)715 int efx_farch_fini_dmaq(struct efx_nic *efx)
716 {
717 	struct efx_channel *channel;
718 	struct efx_tx_queue *tx_queue;
719 	struct efx_rx_queue *rx_queue;
720 	int rc = 0;
721 
722 	/* Do not attempt to write to the NIC during EEH recovery */
723 	if (efx->state != STATE_RECOVERY) {
724 		/* Only perform flush if DMA is enabled */
725 		if (efx->pci_dev->is_busmaster) {
726 			efx->type->prepare_flush(efx);
727 			rc = efx_farch_do_flush(efx);
728 			efx->type->finish_flush(efx);
729 		}
730 
731 		efx_for_each_channel(channel, efx) {
732 			efx_for_each_channel_rx_queue(rx_queue, channel)
733 				efx_farch_rx_fini(rx_queue);
734 			efx_for_each_channel_tx_queue(tx_queue, channel)
735 				efx_farch_tx_fini(tx_queue);
736 		}
737 	}
738 
739 	return rc;
740 }
741 
742 /* Reset queue and flush accounting after FLR
743  *
744  * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
745  * mastering was disabled), in which case we don't receive (RXQ) flush
746  * completion events.  This means that efx->rxq_flush_outstanding remained at 4
747  * after the FLR; also, efx->active_queues was non-zero (as no flush completion
748  * events were received, and we didn't go through efx_check_tx_flush_complete())
749  * If we don't fix this up, on the next call to efx_realloc_channels() we won't
750  * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
751  * for batched flush requests; and the efx->active_queues gets messed up because
752  * we keep incrementing for the newly initialised queues, but it never went to
753  * zero previously.  Then we get a timeout every time we try to restart the
754  * queues, as it doesn't go back to zero when we should be flushing the queues.
755  */
efx_farch_finish_flr(struct efx_nic * efx)756 void efx_farch_finish_flr(struct efx_nic *efx)
757 {
758 	atomic_set(&efx->rxq_flush_pending, 0);
759 	atomic_set(&efx->rxq_flush_outstanding, 0);
760 	atomic_set(&efx->active_queues, 0);
761 }
762 
763 
764 /**************************************************************************
765  *
766  * Event queue processing
767  * Event queues are processed by per-channel tasklets.
768  *
769  **************************************************************************/
770 
771 /* Update a channel's event queue's read pointer (RPTR) register
772  *
773  * This writes the EVQ_RPTR_REG register for the specified channel's
774  * event queue.
775  */
efx_farch_ev_read_ack(struct efx_channel * channel)776 void efx_farch_ev_read_ack(struct efx_channel *channel)
777 {
778 	efx_dword_t reg;
779 	struct efx_nic *efx = channel->efx;
780 
781 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
782 			     channel->eventq_read_ptr & channel->eventq_mask);
783 
784 	/* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
785 	 * of 4 bytes, but it is really 16 bytes just like later revisions.
786 	 */
787 	efx_writed(efx, &reg,
788 		   efx->type->evq_rptr_tbl_base +
789 		   FR_BZ_EVQ_RPTR_STEP * channel->channel);
790 }
791 
792 /* Use HW to insert a SW defined event */
efx_farch_generate_event(struct efx_nic * efx,unsigned int evq,efx_qword_t * event)793 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
794 			      efx_qword_t *event)
795 {
796 	efx_oword_t drv_ev_reg;
797 
798 	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
799 		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
800 	drv_ev_reg.u32[0] = event->u32[0];
801 	drv_ev_reg.u32[1] = event->u32[1];
802 	drv_ev_reg.u32[2] = 0;
803 	drv_ev_reg.u32[3] = 0;
804 	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
805 	efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
806 }
807 
efx_farch_magic_event(struct efx_channel * channel,u32 magic)808 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
809 {
810 	efx_qword_t event;
811 
812 	EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
813 			     FSE_AZ_EV_CODE_DRV_GEN_EV,
814 			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
815 	efx_farch_generate_event(channel->efx, channel->channel, &event);
816 }
817 
818 /* Handle a transmit completion event
819  *
820  * The NIC batches TX completion events; the message we receive is of
821  * the form "complete all TX events up to this index".
822  */
823 static void
efx_farch_handle_tx_event(struct efx_channel * channel,efx_qword_t * event)824 efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
825 {
826 	unsigned int tx_ev_desc_ptr;
827 	unsigned int tx_ev_q_label;
828 	struct efx_tx_queue *tx_queue;
829 	struct efx_nic *efx = channel->efx;
830 
831 	if (unlikely(READ_ONCE(efx->reset_pending)))
832 		return;
833 
834 	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
835 		/* Transmit completion */
836 		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
837 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
838 		tx_queue = channel->tx_queue +
839 				(tx_ev_q_label % EFX_MAX_TXQ_PER_CHANNEL);
840 		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
841 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
842 		/* Rewrite the FIFO write pointer */
843 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
844 		tx_queue = channel->tx_queue +
845 				(tx_ev_q_label % EFX_MAX_TXQ_PER_CHANNEL);
846 
847 		netif_tx_lock(efx->net_dev);
848 		efx_farch_notify_tx_desc(tx_queue);
849 		netif_tx_unlock(efx->net_dev);
850 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
851 		efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
852 	} else {
853 		netif_err(efx, tx_err, efx->net_dev,
854 			  "channel %d unexpected TX event "
855 			  EFX_QWORD_FMT"\n", channel->channel,
856 			  EFX_QWORD_VAL(*event));
857 	}
858 }
859 
860 /* Detect errors included in the rx_evt_pkt_ok bit. */
efx_farch_handle_rx_not_ok(struct efx_rx_queue * rx_queue,const efx_qword_t * event)861 static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
862 				      const efx_qword_t *event)
863 {
864 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
865 	struct efx_nic *efx = rx_queue->efx;
866 	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
867 	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
868 	bool rx_ev_frm_trunc, rx_ev_tobe_disc;
869 	bool rx_ev_other_err, rx_ev_pause_frm;
870 
871 	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
872 	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
873 						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
874 	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
875 						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
876 	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
877 						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
878 	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
879 	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
880 	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
881 
882 	/* Every error apart from tobe_disc and pause_frm */
883 	rx_ev_other_err = (rx_ev_tcp_udp_chksum_err |
884 			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
885 			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
886 
887 	/* Count errors that are not in MAC stats.  Ignore expected
888 	 * checksum errors during self-test. */
889 	if (rx_ev_frm_trunc)
890 		++channel->n_rx_frm_trunc;
891 	else if (rx_ev_tobe_disc)
892 		++channel->n_rx_tobe_disc;
893 	else if (!efx->loopback_selftest) {
894 		if (rx_ev_ip_hdr_chksum_err)
895 			++channel->n_rx_ip_hdr_chksum_err;
896 		else if (rx_ev_tcp_udp_chksum_err)
897 			++channel->n_rx_tcp_udp_chksum_err;
898 	}
899 
900 	/* TOBE_DISC is expected on unicast mismatches; don't print out an
901 	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
902 	 * to a FIFO overflow.
903 	 */
904 #ifdef DEBUG
905 	if (rx_ev_other_err && net_ratelimit()) {
906 		netif_dbg(efx, rx_err, efx->net_dev,
907 			  " RX queue %d unexpected RX event "
908 			  EFX_QWORD_FMT "%s%s%s%s%s%s%s\n",
909 			  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
910 			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
911 			  rx_ev_ip_hdr_chksum_err ?
912 			  " [IP_HDR_CHKSUM_ERR]" : "",
913 			  rx_ev_tcp_udp_chksum_err ?
914 			  " [TCP_UDP_CHKSUM_ERR]" : "",
915 			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
916 			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
917 			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
918 			  rx_ev_pause_frm ? " [PAUSE]" : "");
919 	}
920 #else
921 	(void) rx_ev_other_err;
922 #endif
923 
924 	if (efx->net_dev->features & NETIF_F_RXALL)
925 		/* don't discard frame for CRC error */
926 		rx_ev_eth_crc_err = false;
927 
928 	/* The frame must be discarded if any of these are true. */
929 	return (rx_ev_eth_crc_err | rx_ev_frm_trunc |
930 		rx_ev_tobe_disc | rx_ev_pause_frm) ?
931 		EFX_RX_PKT_DISCARD : 0;
932 }
933 
934 /* Handle receive events that are not in-order. Return true if this
935  * can be handled as a partial packet discard, false if it's more
936  * serious.
937  */
938 static bool
efx_farch_handle_rx_bad_index(struct efx_rx_queue * rx_queue,unsigned index)939 efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
940 {
941 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
942 	struct efx_nic *efx = rx_queue->efx;
943 	unsigned expected, dropped;
944 
945 	if (rx_queue->scatter_n &&
946 	    index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
947 		      rx_queue->ptr_mask)) {
948 		++channel->n_rx_nodesc_trunc;
949 		return true;
950 	}
951 
952 	expected = rx_queue->removed_count & rx_queue->ptr_mask;
953 	dropped = (index - expected) & rx_queue->ptr_mask;
954 	netif_info(efx, rx_err, efx->net_dev,
955 		   "dropped %d events (index=%d expected=%d)\n",
956 		   dropped, index, expected);
957 
958 	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
959 	return false;
960 }
961 
962 /* Handle a packet received event
963  *
964  * The NIC gives a "discard" flag if it's a unicast packet with the
965  * wrong destination address
966  * Also "is multicast" and "matches multicast filter" flags can be used to
967  * discard non-matching multicast packets.
968  */
969 static void
efx_farch_handle_rx_event(struct efx_channel * channel,const efx_qword_t * event)970 efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
971 {
972 	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
973 	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
974 	unsigned expected_ptr;
975 	bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
976 	u16 flags;
977 	struct efx_rx_queue *rx_queue;
978 	struct efx_nic *efx = channel->efx;
979 
980 	if (unlikely(READ_ONCE(efx->reset_pending)))
981 		return;
982 
983 	rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
984 	rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
985 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
986 		channel->channel);
987 
988 	rx_queue = efx_channel_get_rx_queue(channel);
989 
990 	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
991 	expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
992 			rx_queue->ptr_mask);
993 
994 	/* Check for partial drops and other errors */
995 	if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
996 	    unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
997 		if (rx_ev_desc_ptr != expected_ptr &&
998 		    !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
999 			return;
1000 
1001 		/* Discard all pending fragments */
1002 		if (rx_queue->scatter_n) {
1003 			efx_rx_packet(
1004 				rx_queue,
1005 				rx_queue->removed_count & rx_queue->ptr_mask,
1006 				rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1007 			rx_queue->removed_count += rx_queue->scatter_n;
1008 			rx_queue->scatter_n = 0;
1009 		}
1010 
1011 		/* Return if there is no new fragment */
1012 		if (rx_ev_desc_ptr != expected_ptr)
1013 			return;
1014 
1015 		/* Discard new fragment if not SOP */
1016 		if (!rx_ev_sop) {
1017 			efx_rx_packet(
1018 				rx_queue,
1019 				rx_queue->removed_count & rx_queue->ptr_mask,
1020 				1, 0, EFX_RX_PKT_DISCARD);
1021 			++rx_queue->removed_count;
1022 			return;
1023 		}
1024 	}
1025 
1026 	++rx_queue->scatter_n;
1027 	if (rx_ev_cont)
1028 		return;
1029 
1030 	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1031 	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1032 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1033 
1034 	if (likely(rx_ev_pkt_ok)) {
1035 		/* If packet is marked as OK then we can rely on the
1036 		 * hardware checksum and classification.
1037 		 */
1038 		flags = 0;
1039 		switch (rx_ev_hdr_type) {
1040 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1041 			flags |= EFX_RX_PKT_TCP;
1042 			fallthrough;
1043 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1044 			flags |= EFX_RX_PKT_CSUMMED;
1045 			fallthrough;
1046 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1047 		case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1048 			break;
1049 		}
1050 	} else {
1051 		flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1052 	}
1053 
1054 	/* Detect multicast packets that didn't match the filter */
1055 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1056 	if (rx_ev_mcast_pkt) {
1057 		unsigned int rx_ev_mcast_hash_match =
1058 			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1059 
1060 		if (unlikely(!rx_ev_mcast_hash_match)) {
1061 			++channel->n_rx_mcast_mismatch;
1062 			flags |= EFX_RX_PKT_DISCARD;
1063 		}
1064 	}
1065 
1066 	channel->irq_mod_score += 2;
1067 
1068 	/* Handle received packet */
1069 	efx_rx_packet(rx_queue,
1070 		      rx_queue->removed_count & rx_queue->ptr_mask,
1071 		      rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1072 	rx_queue->removed_count += rx_queue->scatter_n;
1073 	rx_queue->scatter_n = 0;
1074 }
1075 
1076 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1077  * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1078  * of all transmit completions.
1079  */
1080 static void
efx_farch_handle_tx_flush_done(struct efx_nic * efx,efx_qword_t * event)1081 efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1082 {
1083 	struct efx_tx_queue *tx_queue;
1084 	struct efx_channel *channel;
1085 	int qid;
1086 
1087 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1088 	if (qid < EFX_MAX_TXQ_PER_CHANNEL * (efx->n_tx_channels + efx->n_extra_tx_channels)) {
1089 		channel = efx_get_tx_channel(efx, qid / EFX_MAX_TXQ_PER_CHANNEL);
1090 		tx_queue = channel->tx_queue + (qid % EFX_MAX_TXQ_PER_CHANNEL);
1091 		if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0))
1092 			efx_farch_magic_event(tx_queue->channel,
1093 					      EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1094 	}
1095 }
1096 
1097 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1098  * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1099  * the RX queue back to the mask of RX queues in need of flushing.
1100  */
1101 static void
efx_farch_handle_rx_flush_done(struct efx_nic * efx,efx_qword_t * event)1102 efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1103 {
1104 	struct efx_channel *channel;
1105 	struct efx_rx_queue *rx_queue;
1106 	int qid;
1107 	bool failed;
1108 
1109 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1110 	failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1111 	if (qid >= efx->n_channels)
1112 		return;
1113 	channel = efx_get_channel(efx, qid);
1114 	if (!efx_channel_has_rx_queue(channel))
1115 		return;
1116 	rx_queue = efx_channel_get_rx_queue(channel);
1117 
1118 	if (failed) {
1119 		netif_info(efx, hw, efx->net_dev,
1120 			   "RXQ %d flush retry\n", qid);
1121 		rx_queue->flush_pending = true;
1122 		atomic_inc(&efx->rxq_flush_pending);
1123 	} else {
1124 		efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1125 				      EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1126 	}
1127 	atomic_dec(&efx->rxq_flush_outstanding);
1128 	if (efx_farch_flush_wake(efx))
1129 		wake_up(&efx->flush_wq);
1130 }
1131 
1132 static void
efx_farch_handle_drain_event(struct efx_channel * channel)1133 efx_farch_handle_drain_event(struct efx_channel *channel)
1134 {
1135 	struct efx_nic *efx = channel->efx;
1136 
1137 	WARN_ON(atomic_read(&efx->active_queues) == 0);
1138 	atomic_dec(&efx->active_queues);
1139 	if (efx_farch_flush_wake(efx))
1140 		wake_up(&efx->flush_wq);
1141 }
1142 
efx_farch_handle_generated_event(struct efx_channel * channel,efx_qword_t * event)1143 static void efx_farch_handle_generated_event(struct efx_channel *channel,
1144 					     efx_qword_t *event)
1145 {
1146 	struct efx_nic *efx = channel->efx;
1147 	struct efx_rx_queue *rx_queue =
1148 		efx_channel_has_rx_queue(channel) ?
1149 		efx_channel_get_rx_queue(channel) : NULL;
1150 	unsigned magic, code;
1151 
1152 	magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1153 	code = _EFX_CHANNEL_MAGIC_CODE(magic);
1154 
1155 	if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1156 		channel->event_test_cpu = raw_smp_processor_id();
1157 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1158 		/* The queue must be empty, so we won't receive any rx
1159 		 * events, so efx_process_channel() won't refill the
1160 		 * queue. Refill it here */
1161 		efx_fast_push_rx_descriptors(rx_queue, true);
1162 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1163 		efx_farch_handle_drain_event(channel);
1164 	} else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1165 		efx_farch_handle_drain_event(channel);
1166 	} else {
1167 		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1168 			  "generated event "EFX_QWORD_FMT"\n",
1169 			  channel->channel, EFX_QWORD_VAL(*event));
1170 	}
1171 }
1172 
1173 static void
efx_farch_handle_driver_event(struct efx_channel * channel,efx_qword_t * event)1174 efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1175 {
1176 	struct efx_nic *efx = channel->efx;
1177 	unsigned int ev_sub_code;
1178 	unsigned int ev_sub_data;
1179 
1180 	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1181 	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1182 
1183 	switch (ev_sub_code) {
1184 	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1185 		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1186 			   channel->channel, ev_sub_data);
1187 		efx_farch_handle_tx_flush_done(efx, event);
1188 #ifdef CONFIG_SFC_SRIOV
1189 		efx_siena_sriov_tx_flush_done(efx, event);
1190 #endif
1191 		break;
1192 	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1193 		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1194 			   channel->channel, ev_sub_data);
1195 		efx_farch_handle_rx_flush_done(efx, event);
1196 #ifdef CONFIG_SFC_SRIOV
1197 		efx_siena_sriov_rx_flush_done(efx, event);
1198 #endif
1199 		break;
1200 	case FSE_AZ_EVQ_INIT_DONE_EV:
1201 		netif_dbg(efx, hw, efx->net_dev,
1202 			  "channel %d EVQ %d initialised\n",
1203 			  channel->channel, ev_sub_data);
1204 		break;
1205 	case FSE_AZ_SRM_UPD_DONE_EV:
1206 		netif_vdbg(efx, hw, efx->net_dev,
1207 			   "channel %d SRAM update done\n", channel->channel);
1208 		break;
1209 	case FSE_AZ_WAKE_UP_EV:
1210 		netif_vdbg(efx, hw, efx->net_dev,
1211 			   "channel %d RXQ %d wakeup event\n",
1212 			   channel->channel, ev_sub_data);
1213 		break;
1214 	case FSE_AZ_TIMER_EV:
1215 		netif_vdbg(efx, hw, efx->net_dev,
1216 			   "channel %d RX queue %d timer expired\n",
1217 			   channel->channel, ev_sub_data);
1218 		break;
1219 	case FSE_AA_RX_RECOVER_EV:
1220 		netif_err(efx, rx_err, efx->net_dev,
1221 			  "channel %d seen DRIVER RX_RESET event. "
1222 			"Resetting.\n", channel->channel);
1223 		atomic_inc(&efx->rx_reset);
1224 		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1225 		break;
1226 	case FSE_BZ_RX_DSC_ERROR_EV:
1227 		if (ev_sub_data < EFX_VI_BASE) {
1228 			netif_err(efx, rx_err, efx->net_dev,
1229 				  "RX DMA Q %d reports descriptor fetch error."
1230 				  " RX Q %d is disabled.\n", ev_sub_data,
1231 				  ev_sub_data);
1232 			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1233 		}
1234 #ifdef CONFIG_SFC_SRIOV
1235 		else
1236 			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1237 #endif
1238 		break;
1239 	case FSE_BZ_TX_DSC_ERROR_EV:
1240 		if (ev_sub_data < EFX_VI_BASE) {
1241 			netif_err(efx, tx_err, efx->net_dev,
1242 				  "TX DMA Q %d reports descriptor fetch error."
1243 				  " TX Q %d is disabled.\n", ev_sub_data,
1244 				  ev_sub_data);
1245 			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1246 		}
1247 #ifdef CONFIG_SFC_SRIOV
1248 		else
1249 			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1250 #endif
1251 		break;
1252 	default:
1253 		netif_vdbg(efx, hw, efx->net_dev,
1254 			   "channel %d unknown driver event code %d "
1255 			   "data %04x\n", channel->channel, ev_sub_code,
1256 			   ev_sub_data);
1257 		break;
1258 	}
1259 }
1260 
efx_farch_ev_process(struct efx_channel * channel,int budget)1261 int efx_farch_ev_process(struct efx_channel *channel, int budget)
1262 {
1263 	struct efx_nic *efx = channel->efx;
1264 	unsigned int read_ptr;
1265 	efx_qword_t event, *p_event;
1266 	int ev_code;
1267 	int spent = 0;
1268 
1269 	if (budget <= 0)
1270 		return spent;
1271 
1272 	read_ptr = channel->eventq_read_ptr;
1273 
1274 	for (;;) {
1275 		p_event = efx_event(channel, read_ptr);
1276 		event = *p_event;
1277 
1278 		if (!efx_event_present(&event))
1279 			/* End of events */
1280 			break;
1281 
1282 		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1283 			   "channel %d event is "EFX_QWORD_FMT"\n",
1284 			   channel->channel, EFX_QWORD_VAL(event));
1285 
1286 		/* Clear this event by marking it all ones */
1287 		EFX_SET_QWORD(*p_event);
1288 
1289 		++read_ptr;
1290 
1291 		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1292 
1293 		switch (ev_code) {
1294 		case FSE_AZ_EV_CODE_RX_EV:
1295 			efx_farch_handle_rx_event(channel, &event);
1296 			if (++spent == budget)
1297 				goto out;
1298 			break;
1299 		case FSE_AZ_EV_CODE_TX_EV:
1300 			efx_farch_handle_tx_event(channel, &event);
1301 			break;
1302 		case FSE_AZ_EV_CODE_DRV_GEN_EV:
1303 			efx_farch_handle_generated_event(channel, &event);
1304 			break;
1305 		case FSE_AZ_EV_CODE_DRIVER_EV:
1306 			efx_farch_handle_driver_event(channel, &event);
1307 			break;
1308 #ifdef CONFIG_SFC_SRIOV
1309 		case FSE_CZ_EV_CODE_USER_EV:
1310 			efx_siena_sriov_event(channel, &event);
1311 			break;
1312 #endif
1313 		case FSE_CZ_EV_CODE_MCDI_EV:
1314 			efx_mcdi_process_event(channel, &event);
1315 			break;
1316 		case FSE_AZ_EV_CODE_GLOBAL_EV:
1317 			if (efx->type->handle_global_event &&
1318 			    efx->type->handle_global_event(channel, &event))
1319 				break;
1320 			fallthrough;
1321 		default:
1322 			netif_err(channel->efx, hw, channel->efx->net_dev,
1323 				  "channel %d unknown event type %d (data "
1324 				  EFX_QWORD_FMT ")\n", channel->channel,
1325 				  ev_code, EFX_QWORD_VAL(event));
1326 		}
1327 	}
1328 
1329 out:
1330 	channel->eventq_read_ptr = read_ptr;
1331 	return spent;
1332 }
1333 
1334 /* Allocate buffer table entries for event queue */
efx_farch_ev_probe(struct efx_channel * channel)1335 int efx_farch_ev_probe(struct efx_channel *channel)
1336 {
1337 	struct efx_nic *efx = channel->efx;
1338 	unsigned entries;
1339 
1340 	entries = channel->eventq_mask + 1;
1341 	return efx_alloc_special_buffer(efx, &channel->eventq,
1342 					entries * sizeof(efx_qword_t));
1343 }
1344 
efx_farch_ev_init(struct efx_channel * channel)1345 int efx_farch_ev_init(struct efx_channel *channel)
1346 {
1347 	efx_oword_t reg;
1348 	struct efx_nic *efx = channel->efx;
1349 
1350 	netif_dbg(efx, hw, efx->net_dev,
1351 		  "channel %d event queue in special buffers %d-%d\n",
1352 		  channel->channel, channel->eventq.index,
1353 		  channel->eventq.index + channel->eventq.entries - 1);
1354 
1355 	EFX_POPULATE_OWORD_3(reg,
1356 			     FRF_CZ_TIMER_Q_EN, 1,
1357 			     FRF_CZ_HOST_NOTIFY_MODE, 0,
1358 			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1359 	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1360 
1361 	/* Pin event queue buffer */
1362 	efx_init_special_buffer(efx, &channel->eventq);
1363 
1364 	/* Fill event queue with all ones (i.e. empty events) */
1365 	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1366 
1367 	/* Push event queue to card */
1368 	EFX_POPULATE_OWORD_3(reg,
1369 			     FRF_AZ_EVQ_EN, 1,
1370 			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1371 			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1372 	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1373 			 channel->channel);
1374 
1375 	return 0;
1376 }
1377 
efx_farch_ev_fini(struct efx_channel * channel)1378 void efx_farch_ev_fini(struct efx_channel *channel)
1379 {
1380 	efx_oword_t reg;
1381 	struct efx_nic *efx = channel->efx;
1382 
1383 	/* Remove event queue from card */
1384 	EFX_ZERO_OWORD(reg);
1385 	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1386 			 channel->channel);
1387 	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1388 
1389 	/* Unpin event queue */
1390 	efx_fini_special_buffer(efx, &channel->eventq);
1391 }
1392 
1393 /* Free buffers backing event queue */
efx_farch_ev_remove(struct efx_channel * channel)1394 void efx_farch_ev_remove(struct efx_channel *channel)
1395 {
1396 	efx_free_special_buffer(channel->efx, &channel->eventq);
1397 }
1398 
1399 
efx_farch_ev_test_generate(struct efx_channel * channel)1400 void efx_farch_ev_test_generate(struct efx_channel *channel)
1401 {
1402 	efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1403 }
1404 
efx_farch_rx_defer_refill(struct efx_rx_queue * rx_queue)1405 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1406 {
1407 	efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1408 			      EFX_CHANNEL_MAGIC_FILL(rx_queue));
1409 }
1410 
1411 /**************************************************************************
1412  *
1413  * Hardware interrupts
1414  * The hardware interrupt handler does very little work; all the event
1415  * queue processing is carried out by per-channel tasklets.
1416  *
1417  **************************************************************************/
1418 
1419 /* Enable/disable/generate interrupts */
efx_farch_interrupts(struct efx_nic * efx,bool enabled,bool force)1420 static inline void efx_farch_interrupts(struct efx_nic *efx,
1421 				      bool enabled, bool force)
1422 {
1423 	efx_oword_t int_en_reg_ker;
1424 
1425 	EFX_POPULATE_OWORD_3(int_en_reg_ker,
1426 			     FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1427 			     FRF_AZ_KER_INT_KER, force,
1428 			     FRF_AZ_DRV_INT_EN_KER, enabled);
1429 	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1430 }
1431 
efx_farch_irq_enable_master(struct efx_nic * efx)1432 void efx_farch_irq_enable_master(struct efx_nic *efx)
1433 {
1434 	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1435 	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1436 
1437 	efx_farch_interrupts(efx, true, false);
1438 }
1439 
efx_farch_irq_disable_master(struct efx_nic * efx)1440 void efx_farch_irq_disable_master(struct efx_nic *efx)
1441 {
1442 	/* Disable interrupts */
1443 	efx_farch_interrupts(efx, false, false);
1444 }
1445 
1446 /* Generate a test interrupt
1447  * Interrupt must already have been enabled, otherwise nasty things
1448  * may happen.
1449  */
efx_farch_irq_test_generate(struct efx_nic * efx)1450 int efx_farch_irq_test_generate(struct efx_nic *efx)
1451 {
1452 	efx_farch_interrupts(efx, true, true);
1453 	return 0;
1454 }
1455 
1456 /* Process a fatal interrupt
1457  * Disable bus mastering ASAP and schedule a reset
1458  */
efx_farch_fatal_interrupt(struct efx_nic * efx)1459 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1460 {
1461 	efx_oword_t *int_ker = efx->irq_status.addr;
1462 	efx_oword_t fatal_intr;
1463 	int error, mem_perr;
1464 
1465 	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1466 	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1467 
1468 	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1469 		  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1470 		  EFX_OWORD_VAL(fatal_intr),
1471 		  error ? "disabling bus mastering" : "no recognised error");
1472 
1473 	/* If this is a memory parity error dump which blocks are offending */
1474 	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1475 		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1476 	if (mem_perr) {
1477 		efx_oword_t reg;
1478 		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1479 		netif_err(efx, hw, efx->net_dev,
1480 			  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1481 			  EFX_OWORD_VAL(reg));
1482 	}
1483 
1484 	/* Disable both devices */
1485 	pci_clear_master(efx->pci_dev);
1486 	efx_farch_irq_disable_master(efx);
1487 
1488 	/* Count errors and reset or disable the NIC accordingly */
1489 	if (efx->int_error_count == 0 ||
1490 	    time_after(jiffies, efx->int_error_expire)) {
1491 		efx->int_error_count = 0;
1492 		efx->int_error_expire =
1493 			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1494 	}
1495 	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1496 		netif_err(efx, hw, efx->net_dev,
1497 			  "SYSTEM ERROR - reset scheduled\n");
1498 		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1499 	} else {
1500 		netif_err(efx, hw, efx->net_dev,
1501 			  "SYSTEM ERROR - max number of errors seen."
1502 			  "NIC will be disabled\n");
1503 		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1504 	}
1505 
1506 	return IRQ_HANDLED;
1507 }
1508 
1509 /* Handle a legacy interrupt
1510  * Acknowledges the interrupt and schedule event queue processing.
1511  */
efx_farch_legacy_interrupt(int irq,void * dev_id)1512 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1513 {
1514 	struct efx_nic *efx = dev_id;
1515 	bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
1516 	efx_oword_t *int_ker = efx->irq_status.addr;
1517 	irqreturn_t result = IRQ_NONE;
1518 	struct efx_channel *channel;
1519 	efx_dword_t reg;
1520 	u32 queues;
1521 	int syserr;
1522 
1523 	/* Read the ISR which also ACKs the interrupts */
1524 	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1525 	queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1526 
1527 	/* Legacy interrupts are disabled too late by the EEH kernel
1528 	 * code. Disable them earlier.
1529 	 * If an EEH error occurred, the read will have returned all ones.
1530 	 */
1531 	if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1532 	    !efx->eeh_disabled_legacy_irq) {
1533 		disable_irq_nosync(efx->legacy_irq);
1534 		efx->eeh_disabled_legacy_irq = true;
1535 	}
1536 
1537 	/* Handle non-event-queue sources */
1538 	if (queues & (1U << efx->irq_level) && soft_enabled) {
1539 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1540 		if (unlikely(syserr))
1541 			return efx_farch_fatal_interrupt(efx);
1542 		efx->last_irq_cpu = raw_smp_processor_id();
1543 	}
1544 
1545 	if (queues != 0) {
1546 		efx->irq_zero_count = 0;
1547 
1548 		/* Schedule processing of any interrupting queues */
1549 		if (likely(soft_enabled)) {
1550 			efx_for_each_channel(channel, efx) {
1551 				if (queues & 1)
1552 					efx_schedule_channel_irq(channel);
1553 				queues >>= 1;
1554 			}
1555 		}
1556 		result = IRQ_HANDLED;
1557 
1558 	} else {
1559 		efx_qword_t *event;
1560 
1561 		/* Legacy ISR read can return zero once (SF bug 15783) */
1562 
1563 		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
1564 		 * because this might be a shared interrupt. */
1565 		if (efx->irq_zero_count++ == 0)
1566 			result = IRQ_HANDLED;
1567 
1568 		/* Ensure we schedule or rearm all event queues */
1569 		if (likely(soft_enabled)) {
1570 			efx_for_each_channel(channel, efx) {
1571 				event = efx_event(channel,
1572 						  channel->eventq_read_ptr);
1573 				if (efx_event_present(event))
1574 					efx_schedule_channel_irq(channel);
1575 				else
1576 					efx_farch_ev_read_ack(channel);
1577 			}
1578 		}
1579 	}
1580 
1581 	if (result == IRQ_HANDLED)
1582 		netif_vdbg(efx, intr, efx->net_dev,
1583 			   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1584 			   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1585 
1586 	return result;
1587 }
1588 
1589 /* Handle an MSI interrupt
1590  *
1591  * Handle an MSI hardware interrupt.  This routine schedules event
1592  * queue processing.  No interrupt acknowledgement cycle is necessary.
1593  * Also, we never need to check that the interrupt is for us, since
1594  * MSI interrupts cannot be shared.
1595  */
efx_farch_msi_interrupt(int irq,void * dev_id)1596 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1597 {
1598 	struct efx_msi_context *context = dev_id;
1599 	struct efx_nic *efx = context->efx;
1600 	efx_oword_t *int_ker = efx->irq_status.addr;
1601 	int syserr;
1602 
1603 	netif_vdbg(efx, intr, efx->net_dev,
1604 		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1605 		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1606 
1607 	if (!likely(READ_ONCE(efx->irq_soft_enabled)))
1608 		return IRQ_HANDLED;
1609 
1610 	/* Handle non-event-queue sources */
1611 	if (context->index == efx->irq_level) {
1612 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1613 		if (unlikely(syserr))
1614 			return efx_farch_fatal_interrupt(efx);
1615 		efx->last_irq_cpu = raw_smp_processor_id();
1616 	}
1617 
1618 	/* Schedule processing of the channel */
1619 	efx_schedule_channel_irq(efx->channel[context->index]);
1620 
1621 	return IRQ_HANDLED;
1622 }
1623 
1624 /* Setup RSS indirection table.
1625  * This maps from the hash value of the packet to RXQ
1626  */
efx_farch_rx_push_indir_table(struct efx_nic * efx)1627 void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1628 {
1629 	size_t i = 0;
1630 	efx_dword_t dword;
1631 
1632 	BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1633 		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1634 
1635 	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1636 		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1637 				     efx->rss_context.rx_indir_table[i]);
1638 		efx_writed(efx, &dword,
1639 			   FR_BZ_RX_INDIRECTION_TBL +
1640 			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1641 	}
1642 }
1643 
efx_farch_rx_pull_indir_table(struct efx_nic * efx)1644 void efx_farch_rx_pull_indir_table(struct efx_nic *efx)
1645 {
1646 	size_t i = 0;
1647 	efx_dword_t dword;
1648 
1649 	BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1650 		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1651 
1652 	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1653 		efx_readd(efx, &dword,
1654 			   FR_BZ_RX_INDIRECTION_TBL +
1655 			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1656 		efx->rss_context.rx_indir_table[i] = EFX_DWORD_FIELD(dword, FRF_BZ_IT_QUEUE);
1657 	}
1658 }
1659 
1660 /* Looks at available SRAM resources and works out how many queues we
1661  * can support, and where things like descriptor caches should live.
1662  *
1663  * SRAM is split up as follows:
1664  * 0                          buftbl entries for channels
1665  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1666  * efx->rx_dc_base            RX descriptor caches
1667  * efx->tx_dc_base            TX descriptor caches
1668  */
efx_farch_dimension_resources(struct efx_nic * efx,unsigned sram_lim_qw)1669 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1670 {
1671 	unsigned vi_count, buftbl_min, total_tx_channels;
1672 
1673 #ifdef CONFIG_SFC_SRIOV
1674 	struct siena_nic_data *nic_data = efx->nic_data;
1675 #endif
1676 
1677 	total_tx_channels = efx->n_tx_channels + efx->n_extra_tx_channels;
1678 	/* Account for the buffer table entries backing the datapath channels
1679 	 * and the descriptor caches for those channels.
1680 	 */
1681 	buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1682 		       total_tx_channels * EFX_MAX_TXQ_PER_CHANNEL * EFX_MAX_DMAQ_SIZE +
1683 		       efx->n_channels * EFX_MAX_EVQ_SIZE)
1684 		      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1685 	vi_count = max(efx->n_channels, total_tx_channels * EFX_MAX_TXQ_PER_CHANNEL);
1686 
1687 #ifdef CONFIG_SFC_SRIOV
1688 	if (efx->type->sriov_wanted) {
1689 		if (efx->type->sriov_wanted(efx)) {
1690 			unsigned vi_dc_entries, buftbl_free;
1691 			unsigned entries_per_vf, vf_limit;
1692 
1693 			nic_data->vf_buftbl_base = buftbl_min;
1694 
1695 			vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1696 			vi_count = max(vi_count, EFX_VI_BASE);
1697 			buftbl_free = (sram_lim_qw - buftbl_min -
1698 				       vi_count * vi_dc_entries);
1699 
1700 			entries_per_vf = ((vi_dc_entries +
1701 					   EFX_VF_BUFTBL_PER_VI) *
1702 					  efx_vf_size(efx));
1703 			vf_limit = min(buftbl_free / entries_per_vf,
1704 				       (1024U - EFX_VI_BASE) >> efx->vi_scale);
1705 
1706 			if (efx->vf_count > vf_limit) {
1707 				netif_err(efx, probe, efx->net_dev,
1708 					  "Reducing VF count from from %d to %d\n",
1709 					  efx->vf_count, vf_limit);
1710 				efx->vf_count = vf_limit;
1711 			}
1712 			vi_count += efx->vf_count * efx_vf_size(efx);
1713 		}
1714 	}
1715 #endif
1716 
1717 	efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1718 	efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1719 }
1720 
efx_farch_fpga_ver(struct efx_nic * efx)1721 u32 efx_farch_fpga_ver(struct efx_nic *efx)
1722 {
1723 	efx_oword_t altera_build;
1724 	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1725 	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1726 }
1727 
efx_farch_init_common(struct efx_nic * efx)1728 void efx_farch_init_common(struct efx_nic *efx)
1729 {
1730 	efx_oword_t temp;
1731 
1732 	/* Set positions of descriptor caches in SRAM. */
1733 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1734 	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1735 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1736 	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1737 
1738 	/* Set TX descriptor cache size. */
1739 	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1740 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1741 	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1742 
1743 	/* Set RX descriptor cache size.  Set low watermark to size-8, as
1744 	 * this allows most efficient prefetching.
1745 	 */
1746 	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1747 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1748 	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1749 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1750 	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1751 
1752 	/* Program INT_KER address */
1753 	EFX_POPULATE_OWORD_2(temp,
1754 			     FRF_AZ_NORM_INT_VEC_DIS_KER,
1755 			     EFX_INT_MODE_USE_MSI(efx),
1756 			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1757 	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1758 
1759 	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1760 		/* Use an interrupt level unused by event queues */
1761 		efx->irq_level = 0x1f;
1762 	else
1763 		/* Use a valid MSI-X vector */
1764 		efx->irq_level = 0;
1765 
1766 	/* Enable all the genuinely fatal interrupts.  (They are still
1767 	 * masked by the overall interrupt mask, controlled by
1768 	 * falcon_interrupts()).
1769 	 *
1770 	 * Note: All other fatal interrupts are enabled
1771 	 */
1772 	EFX_POPULATE_OWORD_3(temp,
1773 			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1774 			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1775 			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1776 	EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1777 	EFX_INVERT_OWORD(temp);
1778 	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1779 
1780 	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1781 	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1782 	 */
1783 	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1784 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1785 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1786 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1787 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1788 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1789 	/* Enable SW_EV to inherit in char driver - assume harmless here */
1790 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1791 	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
1792 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1793 	/* Disable hardware watchdog which can misfire */
1794 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1795 	/* Squash TX of packets of 16 bytes or less */
1796 	EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1797 	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1798 
1799 	EFX_POPULATE_OWORD_4(temp,
1800 			     /* Default values */
1801 			     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1802 			     FRF_BZ_TX_PACE_SB_AF, 0xb,
1803 			     FRF_BZ_TX_PACE_FB_BASE, 0,
1804 			     /* Allow large pace values in the fast bin. */
1805 			     FRF_BZ_TX_PACE_BIN_TH,
1806 			     FFE_BZ_TX_PACE_RESERVED);
1807 	efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1808 }
1809 
1810 /**************************************************************************
1811  *
1812  * Filter tables
1813  *
1814  **************************************************************************
1815  */
1816 
1817 /* "Fudge factors" - difference between programmed value and actual depth.
1818  * Due to pipelined implementation we need to program H/W with a value that
1819  * is larger than the hop limit we want.
1820  */
1821 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1822 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1823 
1824 /* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1825  * We also need to avoid infinite loops in efx_farch_filter_search() when the
1826  * table is full.
1827  */
1828 #define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1829 
1830 /* Don't try very hard to find space for performance hints, as this is
1831  * counter-productive. */
1832 #define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1833 
1834 enum efx_farch_filter_type {
1835 	EFX_FARCH_FILTER_TCP_FULL = 0,
1836 	EFX_FARCH_FILTER_TCP_WILD,
1837 	EFX_FARCH_FILTER_UDP_FULL,
1838 	EFX_FARCH_FILTER_UDP_WILD,
1839 	EFX_FARCH_FILTER_MAC_FULL = 4,
1840 	EFX_FARCH_FILTER_MAC_WILD,
1841 	EFX_FARCH_FILTER_UC_DEF = 8,
1842 	EFX_FARCH_FILTER_MC_DEF,
1843 	EFX_FARCH_FILTER_TYPE_COUNT,		/* number of specific types */
1844 };
1845 
1846 enum efx_farch_filter_table_id {
1847 	EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1848 	EFX_FARCH_FILTER_TABLE_RX_MAC,
1849 	EFX_FARCH_FILTER_TABLE_RX_DEF,
1850 	EFX_FARCH_FILTER_TABLE_TX_MAC,
1851 	EFX_FARCH_FILTER_TABLE_COUNT,
1852 };
1853 
1854 enum efx_farch_filter_index {
1855 	EFX_FARCH_FILTER_INDEX_UC_DEF,
1856 	EFX_FARCH_FILTER_INDEX_MC_DEF,
1857 	EFX_FARCH_FILTER_SIZE_RX_DEF,
1858 };
1859 
1860 struct efx_farch_filter_spec {
1861 	u8	type:4;
1862 	u8	priority:4;
1863 	u8	flags;
1864 	u16	dmaq_id;
1865 	u32	data[3];
1866 };
1867 
1868 struct efx_farch_filter_table {
1869 	enum efx_farch_filter_table_id id;
1870 	u32		offset;		/* address of table relative to BAR */
1871 	unsigned	size;		/* number of entries */
1872 	unsigned	step;		/* step between entries */
1873 	unsigned	used;		/* number currently used */
1874 	unsigned long	*used_bitmap;
1875 	struct efx_farch_filter_spec *spec;
1876 	unsigned	search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1877 };
1878 
1879 struct efx_farch_filter_state {
1880 	struct rw_semaphore lock; /* Protects table contents */
1881 	struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1882 };
1883 
1884 static void
1885 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1886 				   struct efx_farch_filter_table *table,
1887 				   unsigned int filter_idx);
1888 
1889 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1890  * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
efx_farch_filter_hash(u32 key)1891 static u16 efx_farch_filter_hash(u32 key)
1892 {
1893 	u16 tmp;
1894 
1895 	/* First 16 rounds */
1896 	tmp = 0x1fff ^ key >> 16;
1897 	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1898 	tmp = tmp ^ tmp >> 9;
1899 	/* Last 16 rounds */
1900 	tmp = tmp ^ tmp << 13 ^ key;
1901 	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1902 	return tmp ^ tmp >> 9;
1903 }
1904 
1905 /* To allow for hash collisions, filter search continues at these
1906  * increments from the first possible entry selected by the hash. */
efx_farch_filter_increment(u32 key)1907 static u16 efx_farch_filter_increment(u32 key)
1908 {
1909 	return key * 2 - 1;
1910 }
1911 
1912 static enum efx_farch_filter_table_id
efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec * spec)1913 efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1914 {
1915 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1916 		     (EFX_FARCH_FILTER_TCP_FULL >> 2));
1917 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1918 		     (EFX_FARCH_FILTER_TCP_WILD >> 2));
1919 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1920 		     (EFX_FARCH_FILTER_UDP_FULL >> 2));
1921 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1922 		     (EFX_FARCH_FILTER_UDP_WILD >> 2));
1923 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1924 		     (EFX_FARCH_FILTER_MAC_FULL >> 2));
1925 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1926 		     (EFX_FARCH_FILTER_MAC_WILD >> 2));
1927 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1928 		     EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1929 	return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1930 }
1931 
efx_farch_filter_push_rx_config(struct efx_nic * efx)1932 static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1933 {
1934 	struct efx_farch_filter_state *state = efx->filter_state;
1935 	struct efx_farch_filter_table *table;
1936 	efx_oword_t filter_ctl;
1937 
1938 	efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1939 
1940 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1941 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1942 			    table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1943 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1944 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1945 			    table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1946 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1947 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1948 			    table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1949 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1950 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1951 			    table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1952 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1953 
1954 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1955 	if (table->size) {
1956 		EFX_SET_OWORD_FIELD(
1957 			filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1958 			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1959 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1960 		EFX_SET_OWORD_FIELD(
1961 			filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1962 			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1963 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1964 	}
1965 
1966 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1967 	if (table->size) {
1968 		EFX_SET_OWORD_FIELD(
1969 			filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1970 			table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1971 		EFX_SET_OWORD_FIELD(
1972 			filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1973 			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1974 			   EFX_FILTER_FLAG_RX_RSS));
1975 		EFX_SET_OWORD_FIELD(
1976 			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1977 			table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1978 		EFX_SET_OWORD_FIELD(
1979 			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1980 			!!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1981 			   EFX_FILTER_FLAG_RX_RSS));
1982 
1983 		/* There is a single bit to enable RX scatter for all
1984 		 * unmatched packets.  Only set it if scatter is
1985 		 * enabled in both filter specs.
1986 		 */
1987 		EFX_SET_OWORD_FIELD(
1988 			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1989 			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1990 			   table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1991 			   EFX_FILTER_FLAG_RX_SCATTER));
1992 	} else {
1993 		/* We don't expose 'default' filters because unmatched
1994 		 * packets always go to the queue number found in the
1995 		 * RSS table.  But we still need to set the RX scatter
1996 		 * bit here.
1997 		 */
1998 		EFX_SET_OWORD_FIELD(
1999 			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2000 			efx->rx_scatter);
2001 	}
2002 
2003 	efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
2004 }
2005 
efx_farch_filter_push_tx_limits(struct efx_nic * efx)2006 static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2007 {
2008 	struct efx_farch_filter_state *state = efx->filter_state;
2009 	struct efx_farch_filter_table *table;
2010 	efx_oword_t tx_cfg;
2011 
2012 	efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2013 
2014 	table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2015 	if (table->size) {
2016 		EFX_SET_OWORD_FIELD(
2017 			tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2018 			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2019 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2020 		EFX_SET_OWORD_FIELD(
2021 			tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2022 			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2023 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2024 	}
2025 
2026 	efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2027 }
2028 
2029 static int
efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec * spec,const struct efx_filter_spec * gen_spec)2030 efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2031 			       const struct efx_filter_spec *gen_spec)
2032 {
2033 	bool is_full = false;
2034 
2035 	if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) && gen_spec->rss_context)
2036 		return -EINVAL;
2037 
2038 	spec->priority = gen_spec->priority;
2039 	spec->flags = gen_spec->flags;
2040 	spec->dmaq_id = gen_spec->dmaq_id;
2041 
2042 	switch (gen_spec->match_flags) {
2043 	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2044 	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2045 	      EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2046 		is_full = true;
2047 		fallthrough;
2048 	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2049 	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2050 		__be32 rhost, host1, host2;
2051 		__be16 rport, port1, port2;
2052 
2053 		EFX_WARN_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2054 
2055 		if (gen_spec->ether_type != htons(ETH_P_IP))
2056 			return -EPROTONOSUPPORT;
2057 		if (gen_spec->loc_port == 0 ||
2058 		    (is_full && gen_spec->rem_port == 0))
2059 			return -EADDRNOTAVAIL;
2060 		switch (gen_spec->ip_proto) {
2061 		case IPPROTO_TCP:
2062 			spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2063 				      EFX_FARCH_FILTER_TCP_WILD);
2064 			break;
2065 		case IPPROTO_UDP:
2066 			spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2067 				      EFX_FARCH_FILTER_UDP_WILD);
2068 			break;
2069 		default:
2070 			return -EPROTONOSUPPORT;
2071 		}
2072 
2073 		/* Filter is constructed in terms of source and destination,
2074 		 * with the odd wrinkle that the ports are swapped in a UDP
2075 		 * wildcard filter.  We need to convert from local and remote
2076 		 * (= zero for wildcard) addresses.
2077 		 */
2078 		rhost = is_full ? gen_spec->rem_host[0] : 0;
2079 		rport = is_full ? gen_spec->rem_port : 0;
2080 		host1 = rhost;
2081 		host2 = gen_spec->loc_host[0];
2082 		if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2083 			port1 = gen_spec->loc_port;
2084 			port2 = rport;
2085 		} else {
2086 			port1 = rport;
2087 			port2 = gen_spec->loc_port;
2088 		}
2089 		spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2090 		spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2091 		spec->data[2] = ntohl(host2);
2092 
2093 		break;
2094 	}
2095 
2096 	case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2097 		is_full = true;
2098 		fallthrough;
2099 	case EFX_FILTER_MATCH_LOC_MAC:
2100 		spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2101 			      EFX_FARCH_FILTER_MAC_WILD);
2102 		spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2103 		spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2104 				 gen_spec->loc_mac[3] << 16 |
2105 				 gen_spec->loc_mac[4] << 8 |
2106 				 gen_spec->loc_mac[5]);
2107 		spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2108 				 gen_spec->loc_mac[1]);
2109 		break;
2110 
2111 	case EFX_FILTER_MATCH_LOC_MAC_IG:
2112 		spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2113 			      EFX_FARCH_FILTER_MC_DEF :
2114 			      EFX_FARCH_FILTER_UC_DEF);
2115 		memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2116 		break;
2117 
2118 	default:
2119 		return -EPROTONOSUPPORT;
2120 	}
2121 
2122 	return 0;
2123 }
2124 
2125 static void
efx_farch_filter_to_gen_spec(struct efx_filter_spec * gen_spec,const struct efx_farch_filter_spec * spec)2126 efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2127 			     const struct efx_farch_filter_spec *spec)
2128 {
2129 	bool is_full = false;
2130 
2131 	/* *gen_spec should be completely initialised, to be consistent
2132 	 * with efx_filter_init_{rx,tx}() and in case we want to copy
2133 	 * it back to userland.
2134 	 */
2135 	memset(gen_spec, 0, sizeof(*gen_spec));
2136 
2137 	gen_spec->priority = spec->priority;
2138 	gen_spec->flags = spec->flags;
2139 	gen_spec->dmaq_id = spec->dmaq_id;
2140 
2141 	switch (spec->type) {
2142 	case EFX_FARCH_FILTER_TCP_FULL:
2143 	case EFX_FARCH_FILTER_UDP_FULL:
2144 		is_full = true;
2145 		fallthrough;
2146 	case EFX_FARCH_FILTER_TCP_WILD:
2147 	case EFX_FARCH_FILTER_UDP_WILD: {
2148 		__be32 host1, host2;
2149 		__be16 port1, port2;
2150 
2151 		gen_spec->match_flags =
2152 			EFX_FILTER_MATCH_ETHER_TYPE |
2153 			EFX_FILTER_MATCH_IP_PROTO |
2154 			EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2155 		if (is_full)
2156 			gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2157 						  EFX_FILTER_MATCH_REM_PORT);
2158 		gen_spec->ether_type = htons(ETH_P_IP);
2159 		gen_spec->ip_proto =
2160 			(spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2161 			 spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2162 			IPPROTO_TCP : IPPROTO_UDP;
2163 
2164 		host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2165 		port1 = htons(spec->data[0]);
2166 		host2 = htonl(spec->data[2]);
2167 		port2 = htons(spec->data[1] >> 16);
2168 		if (spec->flags & EFX_FILTER_FLAG_TX) {
2169 			gen_spec->loc_host[0] = host1;
2170 			gen_spec->rem_host[0] = host2;
2171 		} else {
2172 			gen_spec->loc_host[0] = host2;
2173 			gen_spec->rem_host[0] = host1;
2174 		}
2175 		if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2176 		    (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2177 			gen_spec->loc_port = port1;
2178 			gen_spec->rem_port = port2;
2179 		} else {
2180 			gen_spec->loc_port = port2;
2181 			gen_spec->rem_port = port1;
2182 		}
2183 
2184 		break;
2185 	}
2186 
2187 	case EFX_FARCH_FILTER_MAC_FULL:
2188 		is_full = true;
2189 		fallthrough;
2190 	case EFX_FARCH_FILTER_MAC_WILD:
2191 		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2192 		if (is_full)
2193 			gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2194 		gen_spec->loc_mac[0] = spec->data[2] >> 8;
2195 		gen_spec->loc_mac[1] = spec->data[2];
2196 		gen_spec->loc_mac[2] = spec->data[1] >> 24;
2197 		gen_spec->loc_mac[3] = spec->data[1] >> 16;
2198 		gen_spec->loc_mac[4] = spec->data[1] >> 8;
2199 		gen_spec->loc_mac[5] = spec->data[1];
2200 		gen_spec->outer_vid = htons(spec->data[0]);
2201 		break;
2202 
2203 	case EFX_FARCH_FILTER_UC_DEF:
2204 	case EFX_FARCH_FILTER_MC_DEF:
2205 		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2206 		gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2207 		break;
2208 
2209 	default:
2210 		WARN_ON(1);
2211 		break;
2212 	}
2213 }
2214 
2215 static void
efx_farch_filter_init_rx_auto(struct efx_nic * efx,struct efx_farch_filter_spec * spec)2216 efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2217 			      struct efx_farch_filter_spec *spec)
2218 {
2219 	/* If there's only one channel then disable RSS for non VF
2220 	 * traffic, thereby allowing VFs to use RSS when the PF can't.
2221 	 */
2222 	spec->priority = EFX_FILTER_PRI_AUTO;
2223 	spec->flags = (EFX_FILTER_FLAG_RX |
2224 		       (efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0) |
2225 		       (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2226 	spec->dmaq_id = 0;
2227 }
2228 
2229 /* Build a filter entry and return its n-tuple key. */
efx_farch_filter_build(efx_oword_t * filter,struct efx_farch_filter_spec * spec)2230 static u32 efx_farch_filter_build(efx_oword_t *filter,
2231 				  struct efx_farch_filter_spec *spec)
2232 {
2233 	u32 data3;
2234 
2235 	switch (efx_farch_filter_spec_table_id(spec)) {
2236 	case EFX_FARCH_FILTER_TABLE_RX_IP: {
2237 		bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2238 			       spec->type == EFX_FARCH_FILTER_UDP_WILD);
2239 		EFX_POPULATE_OWORD_7(
2240 			*filter,
2241 			FRF_BZ_RSS_EN,
2242 			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2243 			FRF_BZ_SCATTER_EN,
2244 			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2245 			FRF_BZ_TCP_UDP, is_udp,
2246 			FRF_BZ_RXQ_ID, spec->dmaq_id,
2247 			EFX_DWORD_2, spec->data[2],
2248 			EFX_DWORD_1, spec->data[1],
2249 			EFX_DWORD_0, spec->data[0]);
2250 		data3 = is_udp;
2251 		break;
2252 	}
2253 
2254 	case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2255 		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2256 		EFX_POPULATE_OWORD_7(
2257 			*filter,
2258 			FRF_CZ_RMFT_RSS_EN,
2259 			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2260 			FRF_CZ_RMFT_SCATTER_EN,
2261 			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2262 			FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2263 			FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2264 			FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2265 			FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2266 			FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2267 		data3 = is_wild;
2268 		break;
2269 	}
2270 
2271 	case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2272 		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2273 		EFX_POPULATE_OWORD_5(*filter,
2274 				     FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2275 				     FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2276 				     FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2277 				     FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2278 				     FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2279 		data3 = is_wild | spec->dmaq_id << 1;
2280 		break;
2281 	}
2282 
2283 	default:
2284 		BUG();
2285 	}
2286 
2287 	return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2288 }
2289 
efx_farch_filter_equal(const struct efx_farch_filter_spec * left,const struct efx_farch_filter_spec * right)2290 static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2291 				   const struct efx_farch_filter_spec *right)
2292 {
2293 	if (left->type != right->type ||
2294 	    memcmp(left->data, right->data, sizeof(left->data)))
2295 		return false;
2296 
2297 	if (left->flags & EFX_FILTER_FLAG_TX &&
2298 	    left->dmaq_id != right->dmaq_id)
2299 		return false;
2300 
2301 	return true;
2302 }
2303 
2304 /*
2305  * Construct/deconstruct external filter IDs.  At least the RX filter
2306  * IDs must be ordered by matching priority, for RX NFC semantics.
2307  *
2308  * Deconstruction needs to be robust against invalid IDs so that
2309  * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2310  * accept user-provided IDs.
2311  */
2312 
2313 #define EFX_FARCH_FILTER_MATCH_PRI_COUNT	5
2314 
2315 static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2316 	[EFX_FARCH_FILTER_TCP_FULL]	= 0,
2317 	[EFX_FARCH_FILTER_UDP_FULL]	= 0,
2318 	[EFX_FARCH_FILTER_TCP_WILD]	= 1,
2319 	[EFX_FARCH_FILTER_UDP_WILD]	= 1,
2320 	[EFX_FARCH_FILTER_MAC_FULL]	= 2,
2321 	[EFX_FARCH_FILTER_MAC_WILD]	= 3,
2322 	[EFX_FARCH_FILTER_UC_DEF]	= 4,
2323 	[EFX_FARCH_FILTER_MC_DEF]	= 4,
2324 };
2325 
2326 static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2327 	EFX_FARCH_FILTER_TABLE_RX_IP,	/* RX match pri 0 */
2328 	EFX_FARCH_FILTER_TABLE_RX_IP,
2329 	EFX_FARCH_FILTER_TABLE_RX_MAC,
2330 	EFX_FARCH_FILTER_TABLE_RX_MAC,
2331 	EFX_FARCH_FILTER_TABLE_RX_DEF,	/* RX match pri 4 */
2332 	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 0 */
2333 	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 1 */
2334 };
2335 
2336 #define EFX_FARCH_FILTER_INDEX_WIDTH 13
2337 #define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2338 
2339 static inline u32
efx_farch_filter_make_id(const struct efx_farch_filter_spec * spec,unsigned int index)2340 efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2341 			 unsigned int index)
2342 {
2343 	unsigned int range;
2344 
2345 	range = efx_farch_filter_type_match_pri[spec->type];
2346 	if (!(spec->flags & EFX_FILTER_FLAG_RX))
2347 		range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2348 
2349 	return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2350 }
2351 
2352 static inline enum efx_farch_filter_table_id
efx_farch_filter_id_table_id(u32 id)2353 efx_farch_filter_id_table_id(u32 id)
2354 {
2355 	unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2356 
2357 	if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2358 		return efx_farch_filter_range_table[range];
2359 	else
2360 		return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2361 }
2362 
efx_farch_filter_id_index(u32 id)2363 static inline unsigned int efx_farch_filter_id_index(u32 id)
2364 {
2365 	return id & EFX_FARCH_FILTER_INDEX_MASK;
2366 }
2367 
efx_farch_filter_get_rx_id_limit(struct efx_nic * efx)2368 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2369 {
2370 	struct efx_farch_filter_state *state = efx->filter_state;
2371 	unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2372 	enum efx_farch_filter_table_id table_id;
2373 
2374 	do {
2375 		table_id = efx_farch_filter_range_table[range];
2376 		if (state->table[table_id].size != 0)
2377 			return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2378 				state->table[table_id].size;
2379 	} while (range--);
2380 
2381 	return 0;
2382 }
2383 
efx_farch_filter_insert(struct efx_nic * efx,struct efx_filter_spec * gen_spec,bool replace_equal)2384 s32 efx_farch_filter_insert(struct efx_nic *efx,
2385 			    struct efx_filter_spec *gen_spec,
2386 			    bool replace_equal)
2387 {
2388 	struct efx_farch_filter_state *state = efx->filter_state;
2389 	struct efx_farch_filter_table *table;
2390 	struct efx_farch_filter_spec spec;
2391 	efx_oword_t filter;
2392 	int rep_index, ins_index;
2393 	unsigned int depth = 0;
2394 	int rc;
2395 
2396 	rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2397 	if (rc)
2398 		return rc;
2399 
2400 	down_write(&state->lock);
2401 
2402 	table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2403 	if (table->size == 0) {
2404 		rc = -EINVAL;
2405 		goto out_unlock;
2406 	}
2407 
2408 	netif_vdbg(efx, hw, efx->net_dev,
2409 		   "%s: type %d search_limit=%d", __func__, spec.type,
2410 		   table->search_limit[spec.type]);
2411 
2412 	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2413 		/* One filter spec per type */
2414 		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2415 		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2416 			     EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2417 		rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2418 		ins_index = rep_index;
2419 	} else {
2420 		/* Search concurrently for
2421 		 * (1) a filter to be replaced (rep_index): any filter
2422 		 *     with the same match values, up to the current
2423 		 *     search depth for this type, and
2424 		 * (2) the insertion point (ins_index): (1) or any
2425 		 *     free slot before it or up to the maximum search
2426 		 *     depth for this priority
2427 		 * We fail if we cannot find (2).
2428 		 *
2429 		 * We can stop once either
2430 		 * (a) we find (1), in which case we have definitely
2431 		 *     found (2) as well; or
2432 		 * (b) we have searched exhaustively for (1), and have
2433 		 *     either found (2) or searched exhaustively for it
2434 		 */
2435 		u32 key = efx_farch_filter_build(&filter, &spec);
2436 		unsigned int hash = efx_farch_filter_hash(key);
2437 		unsigned int incr = efx_farch_filter_increment(key);
2438 		unsigned int max_rep_depth = table->search_limit[spec.type];
2439 		unsigned int max_ins_depth =
2440 			spec.priority <= EFX_FILTER_PRI_HINT ?
2441 			EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2442 			EFX_FARCH_FILTER_CTL_SRCH_MAX;
2443 		unsigned int i = hash & (table->size - 1);
2444 
2445 		ins_index = -1;
2446 		depth = 1;
2447 
2448 		for (;;) {
2449 			if (!test_bit(i, table->used_bitmap)) {
2450 				if (ins_index < 0)
2451 					ins_index = i;
2452 			} else if (efx_farch_filter_equal(&spec,
2453 							  &table->spec[i])) {
2454 				/* Case (a) */
2455 				if (ins_index < 0)
2456 					ins_index = i;
2457 				rep_index = i;
2458 				break;
2459 			}
2460 
2461 			if (depth >= max_rep_depth &&
2462 			    (ins_index >= 0 || depth >= max_ins_depth)) {
2463 				/* Case (b) */
2464 				if (ins_index < 0) {
2465 					rc = -EBUSY;
2466 					goto out_unlock;
2467 				}
2468 				rep_index = -1;
2469 				break;
2470 			}
2471 
2472 			i = (i + incr) & (table->size - 1);
2473 			++depth;
2474 		}
2475 	}
2476 
2477 	/* If we found a filter to be replaced, check whether we
2478 	 * should do so
2479 	 */
2480 	if (rep_index >= 0) {
2481 		struct efx_farch_filter_spec *saved_spec =
2482 			&table->spec[rep_index];
2483 
2484 		if (spec.priority == saved_spec->priority && !replace_equal) {
2485 			rc = -EEXIST;
2486 			goto out_unlock;
2487 		}
2488 		if (spec.priority < saved_spec->priority) {
2489 			rc = -EPERM;
2490 			goto out_unlock;
2491 		}
2492 		if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2493 		    saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2494 			spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2495 	}
2496 
2497 	/* Insert the filter */
2498 	if (ins_index != rep_index) {
2499 		__set_bit(ins_index, table->used_bitmap);
2500 		++table->used;
2501 	}
2502 	table->spec[ins_index] = spec;
2503 
2504 	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2505 		efx_farch_filter_push_rx_config(efx);
2506 	} else {
2507 		if (table->search_limit[spec.type] < depth) {
2508 			table->search_limit[spec.type] = depth;
2509 			if (spec.flags & EFX_FILTER_FLAG_TX)
2510 				efx_farch_filter_push_tx_limits(efx);
2511 			else
2512 				efx_farch_filter_push_rx_config(efx);
2513 		}
2514 
2515 		efx_writeo(efx, &filter,
2516 			   table->offset + table->step * ins_index);
2517 
2518 		/* If we were able to replace a filter by inserting
2519 		 * at a lower depth, clear the replaced filter
2520 		 */
2521 		if (ins_index != rep_index && rep_index >= 0)
2522 			efx_farch_filter_table_clear_entry(efx, table,
2523 							   rep_index);
2524 	}
2525 
2526 	netif_vdbg(efx, hw, efx->net_dev,
2527 		   "%s: filter type %d index %d rxq %u set",
2528 		   __func__, spec.type, ins_index, spec.dmaq_id);
2529 	rc = efx_farch_filter_make_id(&spec, ins_index);
2530 
2531 out_unlock:
2532 	up_write(&state->lock);
2533 	return rc;
2534 }
2535 
2536 static void
efx_farch_filter_table_clear_entry(struct efx_nic * efx,struct efx_farch_filter_table * table,unsigned int filter_idx)2537 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2538 				   struct efx_farch_filter_table *table,
2539 				   unsigned int filter_idx)
2540 {
2541 	static efx_oword_t filter;
2542 
2543 	EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2544 	BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2545 
2546 	__clear_bit(filter_idx, table->used_bitmap);
2547 	--table->used;
2548 	memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2549 
2550 	efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2551 
2552 	/* If this filter required a greater search depth than
2553 	 * any other, the search limit for its type can now be
2554 	 * decreased.  However, it is hard to determine that
2555 	 * unless the table has become completely empty - in
2556 	 * which case, all its search limits can be set to 0.
2557 	 */
2558 	if (unlikely(table->used == 0)) {
2559 		memset(table->search_limit, 0, sizeof(table->search_limit));
2560 		if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2561 			efx_farch_filter_push_tx_limits(efx);
2562 		else
2563 			efx_farch_filter_push_rx_config(efx);
2564 	}
2565 }
2566 
efx_farch_filter_remove(struct efx_nic * efx,struct efx_farch_filter_table * table,unsigned int filter_idx,enum efx_filter_priority priority)2567 static int efx_farch_filter_remove(struct efx_nic *efx,
2568 				   struct efx_farch_filter_table *table,
2569 				   unsigned int filter_idx,
2570 				   enum efx_filter_priority priority)
2571 {
2572 	struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2573 
2574 	if (!test_bit(filter_idx, table->used_bitmap) ||
2575 	    spec->priority != priority)
2576 		return -ENOENT;
2577 
2578 	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2579 		efx_farch_filter_init_rx_auto(efx, spec);
2580 		efx_farch_filter_push_rx_config(efx);
2581 	} else {
2582 		efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2583 	}
2584 
2585 	return 0;
2586 }
2587 
efx_farch_filter_remove_safe(struct efx_nic * efx,enum efx_filter_priority priority,u32 filter_id)2588 int efx_farch_filter_remove_safe(struct efx_nic *efx,
2589 				 enum efx_filter_priority priority,
2590 				 u32 filter_id)
2591 {
2592 	struct efx_farch_filter_state *state = efx->filter_state;
2593 	enum efx_farch_filter_table_id table_id;
2594 	struct efx_farch_filter_table *table;
2595 	unsigned int filter_idx;
2596 	int rc;
2597 
2598 	table_id = efx_farch_filter_id_table_id(filter_id);
2599 	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2600 		return -ENOENT;
2601 	table = &state->table[table_id];
2602 
2603 	filter_idx = efx_farch_filter_id_index(filter_id);
2604 	if (filter_idx >= table->size)
2605 		return -ENOENT;
2606 	down_write(&state->lock);
2607 
2608 	rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2609 	up_write(&state->lock);
2610 
2611 	return rc;
2612 }
2613 
efx_farch_filter_get_safe(struct efx_nic * efx,enum efx_filter_priority priority,u32 filter_id,struct efx_filter_spec * spec_buf)2614 int efx_farch_filter_get_safe(struct efx_nic *efx,
2615 			      enum efx_filter_priority priority,
2616 			      u32 filter_id, struct efx_filter_spec *spec_buf)
2617 {
2618 	struct efx_farch_filter_state *state = efx->filter_state;
2619 	enum efx_farch_filter_table_id table_id;
2620 	struct efx_farch_filter_table *table;
2621 	struct efx_farch_filter_spec *spec;
2622 	unsigned int filter_idx;
2623 	int rc = -ENOENT;
2624 
2625 	down_read(&state->lock);
2626 
2627 	table_id = efx_farch_filter_id_table_id(filter_id);
2628 	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2629 		goto out_unlock;
2630 	table = &state->table[table_id];
2631 
2632 	filter_idx = efx_farch_filter_id_index(filter_id);
2633 	if (filter_idx >= table->size)
2634 		goto out_unlock;
2635 	spec = &table->spec[filter_idx];
2636 
2637 	if (test_bit(filter_idx, table->used_bitmap) &&
2638 	    spec->priority == priority) {
2639 		efx_farch_filter_to_gen_spec(spec_buf, spec);
2640 		rc = 0;
2641 	}
2642 
2643 out_unlock:
2644 	up_read(&state->lock);
2645 	return rc;
2646 }
2647 
2648 static void
efx_farch_filter_table_clear(struct efx_nic * efx,enum efx_farch_filter_table_id table_id,enum efx_filter_priority priority)2649 efx_farch_filter_table_clear(struct efx_nic *efx,
2650 			     enum efx_farch_filter_table_id table_id,
2651 			     enum efx_filter_priority priority)
2652 {
2653 	struct efx_farch_filter_state *state = efx->filter_state;
2654 	struct efx_farch_filter_table *table = &state->table[table_id];
2655 	unsigned int filter_idx;
2656 
2657 	down_write(&state->lock);
2658 	for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2659 		if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2660 			efx_farch_filter_remove(efx, table,
2661 						filter_idx, priority);
2662 	}
2663 	up_write(&state->lock);
2664 }
2665 
efx_farch_filter_clear_rx(struct efx_nic * efx,enum efx_filter_priority priority)2666 int efx_farch_filter_clear_rx(struct efx_nic *efx,
2667 			       enum efx_filter_priority priority)
2668 {
2669 	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2670 				     priority);
2671 	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2672 				     priority);
2673 	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2674 				     priority);
2675 	return 0;
2676 }
2677 
efx_farch_filter_count_rx_used(struct efx_nic * efx,enum efx_filter_priority priority)2678 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2679 				   enum efx_filter_priority priority)
2680 {
2681 	struct efx_farch_filter_state *state = efx->filter_state;
2682 	enum efx_farch_filter_table_id table_id;
2683 	struct efx_farch_filter_table *table;
2684 	unsigned int filter_idx;
2685 	u32 count = 0;
2686 
2687 	down_read(&state->lock);
2688 
2689 	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2690 	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2691 	     table_id++) {
2692 		table = &state->table[table_id];
2693 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2694 			if (test_bit(filter_idx, table->used_bitmap) &&
2695 			    table->spec[filter_idx].priority == priority)
2696 				++count;
2697 		}
2698 	}
2699 
2700 	up_read(&state->lock);
2701 
2702 	return count;
2703 }
2704 
efx_farch_filter_get_rx_ids(struct efx_nic * efx,enum efx_filter_priority priority,u32 * buf,u32 size)2705 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2706 				enum efx_filter_priority priority,
2707 				u32 *buf, u32 size)
2708 {
2709 	struct efx_farch_filter_state *state = efx->filter_state;
2710 	enum efx_farch_filter_table_id table_id;
2711 	struct efx_farch_filter_table *table;
2712 	unsigned int filter_idx;
2713 	s32 count = 0;
2714 
2715 	down_read(&state->lock);
2716 
2717 	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2718 	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2719 	     table_id++) {
2720 		table = &state->table[table_id];
2721 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2722 			if (test_bit(filter_idx, table->used_bitmap) &&
2723 			    table->spec[filter_idx].priority == priority) {
2724 				if (count == size) {
2725 					count = -EMSGSIZE;
2726 					goto out;
2727 				}
2728 				buf[count++] = efx_farch_filter_make_id(
2729 					&table->spec[filter_idx], filter_idx);
2730 			}
2731 		}
2732 	}
2733 out:
2734 	up_read(&state->lock);
2735 
2736 	return count;
2737 }
2738 
2739 /* Restore filter stater after reset */
efx_farch_filter_table_restore(struct efx_nic * efx)2740 void efx_farch_filter_table_restore(struct efx_nic *efx)
2741 {
2742 	struct efx_farch_filter_state *state = efx->filter_state;
2743 	enum efx_farch_filter_table_id table_id;
2744 	struct efx_farch_filter_table *table;
2745 	efx_oword_t filter;
2746 	unsigned int filter_idx;
2747 
2748 	down_write(&state->lock);
2749 
2750 	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2751 		table = &state->table[table_id];
2752 
2753 		/* Check whether this is a regular register table */
2754 		if (table->step == 0)
2755 			continue;
2756 
2757 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2758 			if (!test_bit(filter_idx, table->used_bitmap))
2759 				continue;
2760 			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2761 			efx_writeo(efx, &filter,
2762 				   table->offset + table->step * filter_idx);
2763 		}
2764 	}
2765 
2766 	efx_farch_filter_push_rx_config(efx);
2767 	efx_farch_filter_push_tx_limits(efx);
2768 
2769 	up_write(&state->lock);
2770 }
2771 
efx_farch_filter_table_remove(struct efx_nic * efx)2772 void efx_farch_filter_table_remove(struct efx_nic *efx)
2773 {
2774 	struct efx_farch_filter_state *state = efx->filter_state;
2775 	enum efx_farch_filter_table_id table_id;
2776 
2777 	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2778 		kfree(state->table[table_id].used_bitmap);
2779 		vfree(state->table[table_id].spec);
2780 	}
2781 	kfree(state);
2782 }
2783 
efx_farch_filter_table_probe(struct efx_nic * efx)2784 int efx_farch_filter_table_probe(struct efx_nic *efx)
2785 {
2786 	struct efx_farch_filter_state *state;
2787 	struct efx_farch_filter_table *table;
2788 	unsigned table_id;
2789 
2790 	state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2791 	if (!state)
2792 		return -ENOMEM;
2793 	efx->filter_state = state;
2794 	init_rwsem(&state->lock);
2795 
2796 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2797 	table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2798 	table->offset = FR_BZ_RX_FILTER_TBL0;
2799 	table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2800 	table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2801 
2802 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2803 	table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2804 	table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2805 	table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2806 	table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2807 
2808 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2809 	table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2810 	table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2811 
2812 	table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2813 	table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2814 	table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2815 	table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2816 	table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2817 
2818 	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2819 		table = &state->table[table_id];
2820 		if (table->size == 0)
2821 			continue;
2822 		table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2823 					     sizeof(unsigned long),
2824 					     GFP_KERNEL);
2825 		if (!table->used_bitmap)
2826 			goto fail;
2827 		table->spec = vzalloc(array_size(sizeof(*table->spec),
2828 						 table->size));
2829 		if (!table->spec)
2830 			goto fail;
2831 	}
2832 
2833 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2834 	if (table->size) {
2835 		/* RX default filters must always exist */
2836 		struct efx_farch_filter_spec *spec;
2837 		unsigned i;
2838 
2839 		for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2840 			spec = &table->spec[i];
2841 			spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2842 			efx_farch_filter_init_rx_auto(efx, spec);
2843 			__set_bit(i, table->used_bitmap);
2844 		}
2845 	}
2846 
2847 	efx_farch_filter_push_rx_config(efx);
2848 
2849 	return 0;
2850 
2851 fail:
2852 	efx_farch_filter_table_remove(efx);
2853 	return -ENOMEM;
2854 }
2855 
2856 /* Update scatter enable flags for filters pointing to our own RX queues */
efx_farch_filter_update_rx_scatter(struct efx_nic * efx)2857 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2858 {
2859 	struct efx_farch_filter_state *state = efx->filter_state;
2860 	enum efx_farch_filter_table_id table_id;
2861 	struct efx_farch_filter_table *table;
2862 	efx_oword_t filter;
2863 	unsigned int filter_idx;
2864 
2865 	down_write(&state->lock);
2866 
2867 	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2868 	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2869 	     table_id++) {
2870 		table = &state->table[table_id];
2871 
2872 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2873 			if (!test_bit(filter_idx, table->used_bitmap) ||
2874 			    table->spec[filter_idx].dmaq_id >=
2875 			    efx->n_rx_channels)
2876 				continue;
2877 
2878 			if (efx->rx_scatter)
2879 				table->spec[filter_idx].flags |=
2880 					EFX_FILTER_FLAG_RX_SCATTER;
2881 			else
2882 				table->spec[filter_idx].flags &=
2883 					~EFX_FILTER_FLAG_RX_SCATTER;
2884 
2885 			if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2886 				/* Pushed by efx_farch_filter_push_rx_config() */
2887 				continue;
2888 
2889 			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2890 			efx_writeo(efx, &filter,
2891 				   table->offset + table->step * filter_idx);
2892 		}
2893 	}
2894 
2895 	efx_farch_filter_push_rx_config(efx);
2896 
2897 	up_write(&state->lock);
2898 }
2899 
2900 #ifdef CONFIG_RFS_ACCEL
2901 
efx_farch_filter_rfs_expire_one(struct efx_nic * efx,u32 flow_id,unsigned int index)2902 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2903 				     unsigned int index)
2904 {
2905 	struct efx_farch_filter_state *state = efx->filter_state;
2906 	struct efx_farch_filter_table *table;
2907 	bool ret = false, force = false;
2908 	u16 arfs_id;
2909 
2910 	down_write(&state->lock);
2911 	spin_lock_bh(&efx->rps_hash_lock);
2912 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2913 	if (test_bit(index, table->used_bitmap) &&
2914 	    table->spec[index].priority == EFX_FILTER_PRI_HINT) {
2915 		struct efx_arfs_rule *rule = NULL;
2916 		struct efx_filter_spec spec;
2917 
2918 		efx_farch_filter_to_gen_spec(&spec, &table->spec[index]);
2919 		if (!efx->rps_hash_table) {
2920 			/* In the absence of the table, we always returned 0 to
2921 			 * ARFS, so use the same to query it.
2922 			 */
2923 			arfs_id = 0;
2924 		} else {
2925 			rule = efx_rps_hash_find(efx, &spec);
2926 			if (!rule) {
2927 				/* ARFS table doesn't know of this filter, remove it */
2928 				force = true;
2929 			} else {
2930 				arfs_id = rule->arfs_id;
2931 				if (!efx_rps_check_rule(rule, index, &force))
2932 					goto out_unlock;
2933 			}
2934 		}
2935 		if (force || rps_may_expire_flow(efx->net_dev, spec.dmaq_id,
2936 						 flow_id, arfs_id)) {
2937 			if (rule)
2938 				rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
2939 			efx_rps_hash_del(efx, &spec);
2940 			efx_farch_filter_table_clear_entry(efx, table, index);
2941 			ret = true;
2942 		}
2943 	}
2944 out_unlock:
2945 	spin_unlock_bh(&efx->rps_hash_lock);
2946 	up_write(&state->lock);
2947 	return ret;
2948 }
2949 
2950 #endif /* CONFIG_RFS_ACCEL */
2951 
efx_farch_filter_sync_rx_mode(struct efx_nic * efx)2952 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2953 {
2954 	struct net_device *net_dev = efx->net_dev;
2955 	struct netdev_hw_addr *ha;
2956 	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2957 	u32 crc;
2958 	int bit;
2959 
2960 	if (!efx_dev_registered(efx))
2961 		return;
2962 
2963 	netif_addr_lock_bh(net_dev);
2964 
2965 	efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2966 
2967 	/* Build multicast hash table */
2968 	if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2969 		memset(mc_hash, 0xff, sizeof(*mc_hash));
2970 	} else {
2971 		memset(mc_hash, 0x00, sizeof(*mc_hash));
2972 		netdev_for_each_mc_addr(ha, net_dev) {
2973 			crc = ether_crc_le(ETH_ALEN, ha->addr);
2974 			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2975 			__set_bit_le(bit, mc_hash);
2976 		}
2977 
2978 		/* Broadcast packets go through the multicast hash filter.
2979 		 * ether_crc_le() of the broadcast address is 0xbe2612ff
2980 		 * so we always add bit 0xff to the mask.
2981 		 */
2982 		__set_bit_le(0xff, mc_hash);
2983 	}
2984 
2985 	netif_addr_unlock_bh(net_dev);
2986 }
2987