1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_sb.h"
13 #include "xfs_mount.h"
14 #include "xfs_btree.h"
15 #include "xfs_btree_staging.h"
16 #include "xfs_alloc_btree.h"
17 #include "xfs_alloc.h"
18 #include "xfs_extent_busy.h"
19 #include "xfs_error.h"
20 #include "xfs_trace.h"
21 #include "xfs_trans.h"
22
23
24 STATIC struct xfs_btree_cur *
xfs_allocbt_dup_cursor(struct xfs_btree_cur * cur)25 xfs_allocbt_dup_cursor(
26 struct xfs_btree_cur *cur)
27 {
28 return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
29 cur->bc_ag.agbp, cur->bc_ag.agno,
30 cur->bc_btnum);
31 }
32
33 STATIC void
xfs_allocbt_set_root(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,int inc)34 xfs_allocbt_set_root(
35 struct xfs_btree_cur *cur,
36 union xfs_btree_ptr *ptr,
37 int inc)
38 {
39 struct xfs_buf *agbp = cur->bc_ag.agbp;
40 struct xfs_agf *agf = agbp->b_addr;
41 int btnum = cur->bc_btnum;
42 struct xfs_perag *pag = agbp->b_pag;
43
44 ASSERT(ptr->s != 0);
45
46 agf->agf_roots[btnum] = ptr->s;
47 be32_add_cpu(&agf->agf_levels[btnum], inc);
48 pag->pagf_levels[btnum] += inc;
49
50 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
51 }
52
53 STATIC int
xfs_allocbt_alloc_block(struct xfs_btree_cur * cur,union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat)54 xfs_allocbt_alloc_block(
55 struct xfs_btree_cur *cur,
56 union xfs_btree_ptr *start,
57 union xfs_btree_ptr *new,
58 int *stat)
59 {
60 int error;
61 xfs_agblock_t bno;
62
63 /* Allocate the new block from the freelist. If we can't, give up. */
64 error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_ag.agbp,
65 &bno, 1);
66 if (error)
67 return error;
68
69 if (bno == NULLAGBLOCK) {
70 *stat = 0;
71 return 0;
72 }
73
74 atomic64_inc(&cur->bc_mp->m_allocbt_blks);
75 xfs_extent_busy_reuse(cur->bc_mp, cur->bc_ag.agno, bno, 1, false);
76
77 new->s = cpu_to_be32(bno);
78
79 *stat = 1;
80 return 0;
81 }
82
83 STATIC int
xfs_allocbt_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)84 xfs_allocbt_free_block(
85 struct xfs_btree_cur *cur,
86 struct xfs_buf *bp)
87 {
88 struct xfs_buf *agbp = cur->bc_ag.agbp;
89 struct xfs_agf *agf = agbp->b_addr;
90 xfs_agblock_t bno;
91 int error;
92
93 bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
94 error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
95 if (error)
96 return error;
97
98 atomic64_dec(&cur->bc_mp->m_allocbt_blks);
99 xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
100 XFS_EXTENT_BUSY_SKIP_DISCARD);
101 return 0;
102 }
103
104 /*
105 * Update the longest extent in the AGF
106 */
107 STATIC void
xfs_allocbt_update_lastrec(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_rec * rec,int ptr,int reason)108 xfs_allocbt_update_lastrec(
109 struct xfs_btree_cur *cur,
110 struct xfs_btree_block *block,
111 union xfs_btree_rec *rec,
112 int ptr,
113 int reason)
114 {
115 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
116 struct xfs_perag *pag;
117 __be32 len;
118 int numrecs;
119
120 ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
121
122 switch (reason) {
123 case LASTREC_UPDATE:
124 /*
125 * If this is the last leaf block and it's the last record,
126 * then update the size of the longest extent in the AG.
127 */
128 if (ptr != xfs_btree_get_numrecs(block))
129 return;
130 len = rec->alloc.ar_blockcount;
131 break;
132 case LASTREC_INSREC:
133 if (be32_to_cpu(rec->alloc.ar_blockcount) <=
134 be32_to_cpu(agf->agf_longest))
135 return;
136 len = rec->alloc.ar_blockcount;
137 break;
138 case LASTREC_DELREC:
139 numrecs = xfs_btree_get_numrecs(block);
140 if (ptr <= numrecs)
141 return;
142 ASSERT(ptr == numrecs + 1);
143
144 if (numrecs) {
145 xfs_alloc_rec_t *rrp;
146
147 rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
148 len = rrp->ar_blockcount;
149 } else {
150 len = 0;
151 }
152
153 break;
154 default:
155 ASSERT(0);
156 return;
157 }
158
159 agf->agf_longest = len;
160 pag = cur->bc_ag.agbp->b_pag;
161 pag->pagf_longest = be32_to_cpu(len);
162 xfs_alloc_log_agf(cur->bc_tp, cur->bc_ag.agbp, XFS_AGF_LONGEST);
163 }
164
165 STATIC int
xfs_allocbt_get_minrecs(struct xfs_btree_cur * cur,int level)166 xfs_allocbt_get_minrecs(
167 struct xfs_btree_cur *cur,
168 int level)
169 {
170 return cur->bc_mp->m_alloc_mnr[level != 0];
171 }
172
173 STATIC int
xfs_allocbt_get_maxrecs(struct xfs_btree_cur * cur,int level)174 xfs_allocbt_get_maxrecs(
175 struct xfs_btree_cur *cur,
176 int level)
177 {
178 return cur->bc_mp->m_alloc_mxr[level != 0];
179 }
180
181 STATIC void
xfs_allocbt_init_key_from_rec(union xfs_btree_key * key,union xfs_btree_rec * rec)182 xfs_allocbt_init_key_from_rec(
183 union xfs_btree_key *key,
184 union xfs_btree_rec *rec)
185 {
186 key->alloc.ar_startblock = rec->alloc.ar_startblock;
187 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
188 }
189
190 STATIC void
xfs_bnobt_init_high_key_from_rec(union xfs_btree_key * key,union xfs_btree_rec * rec)191 xfs_bnobt_init_high_key_from_rec(
192 union xfs_btree_key *key,
193 union xfs_btree_rec *rec)
194 {
195 __u32 x;
196
197 x = be32_to_cpu(rec->alloc.ar_startblock);
198 x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
199 key->alloc.ar_startblock = cpu_to_be32(x);
200 key->alloc.ar_blockcount = 0;
201 }
202
203 STATIC void
xfs_cntbt_init_high_key_from_rec(union xfs_btree_key * key,union xfs_btree_rec * rec)204 xfs_cntbt_init_high_key_from_rec(
205 union xfs_btree_key *key,
206 union xfs_btree_rec *rec)
207 {
208 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
209 key->alloc.ar_startblock = 0;
210 }
211
212 STATIC void
xfs_allocbt_init_rec_from_cur(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)213 xfs_allocbt_init_rec_from_cur(
214 struct xfs_btree_cur *cur,
215 union xfs_btree_rec *rec)
216 {
217 rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
218 rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
219 }
220
221 STATIC void
xfs_allocbt_init_ptr_from_cur(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)222 xfs_allocbt_init_ptr_from_cur(
223 struct xfs_btree_cur *cur,
224 union xfs_btree_ptr *ptr)
225 {
226 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
227
228 ASSERT(cur->bc_ag.agno == be32_to_cpu(agf->agf_seqno));
229
230 ptr->s = agf->agf_roots[cur->bc_btnum];
231 }
232
233 STATIC int64_t
xfs_bnobt_key_diff(struct xfs_btree_cur * cur,union xfs_btree_key * key)234 xfs_bnobt_key_diff(
235 struct xfs_btree_cur *cur,
236 union xfs_btree_key *key)
237 {
238 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a;
239 xfs_alloc_key_t *kp = &key->alloc;
240
241 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
242 }
243
244 STATIC int64_t
xfs_cntbt_key_diff(struct xfs_btree_cur * cur,union xfs_btree_key * key)245 xfs_cntbt_key_diff(
246 struct xfs_btree_cur *cur,
247 union xfs_btree_key *key)
248 {
249 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a;
250 xfs_alloc_key_t *kp = &key->alloc;
251 int64_t diff;
252
253 diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
254 if (diff)
255 return diff;
256
257 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
258 }
259
260 STATIC int64_t
xfs_bnobt_diff_two_keys(struct xfs_btree_cur * cur,union xfs_btree_key * k1,union xfs_btree_key * k2)261 xfs_bnobt_diff_two_keys(
262 struct xfs_btree_cur *cur,
263 union xfs_btree_key *k1,
264 union xfs_btree_key *k2)
265 {
266 return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
267 be32_to_cpu(k2->alloc.ar_startblock);
268 }
269
270 STATIC int64_t
xfs_cntbt_diff_two_keys(struct xfs_btree_cur * cur,union xfs_btree_key * k1,union xfs_btree_key * k2)271 xfs_cntbt_diff_two_keys(
272 struct xfs_btree_cur *cur,
273 union xfs_btree_key *k1,
274 union xfs_btree_key *k2)
275 {
276 int64_t diff;
277
278 diff = be32_to_cpu(k1->alloc.ar_blockcount) -
279 be32_to_cpu(k2->alloc.ar_blockcount);
280 if (diff)
281 return diff;
282
283 return be32_to_cpu(k1->alloc.ar_startblock) -
284 be32_to_cpu(k2->alloc.ar_startblock);
285 }
286
287 static xfs_failaddr_t
xfs_allocbt_verify(struct xfs_buf * bp)288 xfs_allocbt_verify(
289 struct xfs_buf *bp)
290 {
291 struct xfs_mount *mp = bp->b_mount;
292 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
293 struct xfs_perag *pag = bp->b_pag;
294 xfs_failaddr_t fa;
295 unsigned int level;
296 xfs_btnum_t btnum = XFS_BTNUM_BNOi;
297
298 if (!xfs_verify_magic(bp, block->bb_magic))
299 return __this_address;
300
301 if (xfs_sb_version_hascrc(&mp->m_sb)) {
302 fa = xfs_btree_sblock_v5hdr_verify(bp);
303 if (fa)
304 return fa;
305 }
306
307 /*
308 * The perag may not be attached during grow operations or fully
309 * initialized from the AGF during log recovery. Therefore we can only
310 * check against maximum tree depth from those contexts.
311 *
312 * Otherwise check against the per-tree limit. Peek at one of the
313 * verifier magic values to determine the type of tree we're verifying
314 * against.
315 */
316 level = be16_to_cpu(block->bb_level);
317 if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC))
318 btnum = XFS_BTNUM_CNTi;
319 if (pag && pag->pagf_init) {
320 if (level >= pag->pagf_levels[btnum])
321 return __this_address;
322 } else if (level >= mp->m_ag_maxlevels)
323 return __this_address;
324
325 return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
326 }
327
328 static void
xfs_allocbt_read_verify(struct xfs_buf * bp)329 xfs_allocbt_read_verify(
330 struct xfs_buf *bp)
331 {
332 xfs_failaddr_t fa;
333
334 if (!xfs_btree_sblock_verify_crc(bp))
335 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
336 else {
337 fa = xfs_allocbt_verify(bp);
338 if (fa)
339 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
340 }
341
342 if (bp->b_error)
343 trace_xfs_btree_corrupt(bp, _RET_IP_);
344 }
345
346 static void
xfs_allocbt_write_verify(struct xfs_buf * bp)347 xfs_allocbt_write_verify(
348 struct xfs_buf *bp)
349 {
350 xfs_failaddr_t fa;
351
352 fa = xfs_allocbt_verify(bp);
353 if (fa) {
354 trace_xfs_btree_corrupt(bp, _RET_IP_);
355 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
356 return;
357 }
358 xfs_btree_sblock_calc_crc(bp);
359
360 }
361
362 const struct xfs_buf_ops xfs_bnobt_buf_ops = {
363 .name = "xfs_bnobt",
364 .magic = { cpu_to_be32(XFS_ABTB_MAGIC),
365 cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
366 .verify_read = xfs_allocbt_read_verify,
367 .verify_write = xfs_allocbt_write_verify,
368 .verify_struct = xfs_allocbt_verify,
369 };
370
371 const struct xfs_buf_ops xfs_cntbt_buf_ops = {
372 .name = "xfs_cntbt",
373 .magic = { cpu_to_be32(XFS_ABTC_MAGIC),
374 cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
375 .verify_read = xfs_allocbt_read_verify,
376 .verify_write = xfs_allocbt_write_verify,
377 .verify_struct = xfs_allocbt_verify,
378 };
379
380 STATIC int
xfs_bnobt_keys_inorder(struct xfs_btree_cur * cur,union xfs_btree_key * k1,union xfs_btree_key * k2)381 xfs_bnobt_keys_inorder(
382 struct xfs_btree_cur *cur,
383 union xfs_btree_key *k1,
384 union xfs_btree_key *k2)
385 {
386 return be32_to_cpu(k1->alloc.ar_startblock) <
387 be32_to_cpu(k2->alloc.ar_startblock);
388 }
389
390 STATIC int
xfs_bnobt_recs_inorder(struct xfs_btree_cur * cur,union xfs_btree_rec * r1,union xfs_btree_rec * r2)391 xfs_bnobt_recs_inorder(
392 struct xfs_btree_cur *cur,
393 union xfs_btree_rec *r1,
394 union xfs_btree_rec *r2)
395 {
396 return be32_to_cpu(r1->alloc.ar_startblock) +
397 be32_to_cpu(r1->alloc.ar_blockcount) <=
398 be32_to_cpu(r2->alloc.ar_startblock);
399 }
400
401 STATIC int
xfs_cntbt_keys_inorder(struct xfs_btree_cur * cur,union xfs_btree_key * k1,union xfs_btree_key * k2)402 xfs_cntbt_keys_inorder(
403 struct xfs_btree_cur *cur,
404 union xfs_btree_key *k1,
405 union xfs_btree_key *k2)
406 {
407 return be32_to_cpu(k1->alloc.ar_blockcount) <
408 be32_to_cpu(k2->alloc.ar_blockcount) ||
409 (k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
410 be32_to_cpu(k1->alloc.ar_startblock) <
411 be32_to_cpu(k2->alloc.ar_startblock));
412 }
413
414 STATIC int
xfs_cntbt_recs_inorder(struct xfs_btree_cur * cur,union xfs_btree_rec * r1,union xfs_btree_rec * r2)415 xfs_cntbt_recs_inorder(
416 struct xfs_btree_cur *cur,
417 union xfs_btree_rec *r1,
418 union xfs_btree_rec *r2)
419 {
420 return be32_to_cpu(r1->alloc.ar_blockcount) <
421 be32_to_cpu(r2->alloc.ar_blockcount) ||
422 (r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
423 be32_to_cpu(r1->alloc.ar_startblock) <
424 be32_to_cpu(r2->alloc.ar_startblock));
425 }
426
427 static const struct xfs_btree_ops xfs_bnobt_ops = {
428 .rec_len = sizeof(xfs_alloc_rec_t),
429 .key_len = sizeof(xfs_alloc_key_t),
430
431 .dup_cursor = xfs_allocbt_dup_cursor,
432 .set_root = xfs_allocbt_set_root,
433 .alloc_block = xfs_allocbt_alloc_block,
434 .free_block = xfs_allocbt_free_block,
435 .update_lastrec = xfs_allocbt_update_lastrec,
436 .get_minrecs = xfs_allocbt_get_minrecs,
437 .get_maxrecs = xfs_allocbt_get_maxrecs,
438 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
439 .init_high_key_from_rec = xfs_bnobt_init_high_key_from_rec,
440 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
441 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
442 .key_diff = xfs_bnobt_key_diff,
443 .buf_ops = &xfs_bnobt_buf_ops,
444 .diff_two_keys = xfs_bnobt_diff_two_keys,
445 .keys_inorder = xfs_bnobt_keys_inorder,
446 .recs_inorder = xfs_bnobt_recs_inorder,
447 };
448
449 static const struct xfs_btree_ops xfs_cntbt_ops = {
450 .rec_len = sizeof(xfs_alloc_rec_t),
451 .key_len = sizeof(xfs_alloc_key_t),
452
453 .dup_cursor = xfs_allocbt_dup_cursor,
454 .set_root = xfs_allocbt_set_root,
455 .alloc_block = xfs_allocbt_alloc_block,
456 .free_block = xfs_allocbt_free_block,
457 .update_lastrec = xfs_allocbt_update_lastrec,
458 .get_minrecs = xfs_allocbt_get_minrecs,
459 .get_maxrecs = xfs_allocbt_get_maxrecs,
460 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
461 .init_high_key_from_rec = xfs_cntbt_init_high_key_from_rec,
462 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
463 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
464 .key_diff = xfs_cntbt_key_diff,
465 .buf_ops = &xfs_cntbt_buf_ops,
466 .diff_two_keys = xfs_cntbt_diff_two_keys,
467 .keys_inorder = xfs_cntbt_keys_inorder,
468 .recs_inorder = xfs_cntbt_recs_inorder,
469 };
470
471 /* Allocate most of a new allocation btree cursor. */
472 STATIC struct xfs_btree_cur *
xfs_allocbt_init_common(struct xfs_mount * mp,struct xfs_trans * tp,xfs_agnumber_t agno,xfs_btnum_t btnum)473 xfs_allocbt_init_common(
474 struct xfs_mount *mp,
475 struct xfs_trans *tp,
476 xfs_agnumber_t agno,
477 xfs_btnum_t btnum)
478 {
479 struct xfs_btree_cur *cur;
480
481 ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
482
483 cur = kmem_cache_zalloc(xfs_btree_cur_zone, GFP_NOFS | __GFP_NOFAIL);
484
485 cur->bc_tp = tp;
486 cur->bc_mp = mp;
487 cur->bc_btnum = btnum;
488 cur->bc_blocklog = mp->m_sb.sb_blocklog;
489
490 if (btnum == XFS_BTNUM_CNT) {
491 cur->bc_ops = &xfs_cntbt_ops;
492 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
493 cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
494 } else {
495 cur->bc_ops = &xfs_bnobt_ops;
496 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
497 }
498
499 cur->bc_ag.agno = agno;
500 cur->bc_ag.abt.active = false;
501
502 if (xfs_sb_version_hascrc(&mp->m_sb))
503 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
504
505 return cur;
506 }
507
508 /*
509 * Allocate a new allocation btree cursor.
510 */
511 struct xfs_btree_cur * /* new alloc btree cursor */
xfs_allocbt_init_cursor(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_agnumber_t agno,xfs_btnum_t btnum)512 xfs_allocbt_init_cursor(
513 struct xfs_mount *mp, /* file system mount point */
514 struct xfs_trans *tp, /* transaction pointer */
515 struct xfs_buf *agbp, /* buffer for agf structure */
516 xfs_agnumber_t agno, /* allocation group number */
517 xfs_btnum_t btnum) /* btree identifier */
518 {
519 struct xfs_agf *agf = agbp->b_addr;
520 struct xfs_btree_cur *cur;
521
522 cur = xfs_allocbt_init_common(mp, tp, agno, btnum);
523 if (btnum == XFS_BTNUM_CNT)
524 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
525 else
526 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
527
528 cur->bc_ag.agbp = agbp;
529
530 return cur;
531 }
532
533 /* Create a free space btree cursor with a fake root for staging. */
534 struct xfs_btree_cur *
xfs_allocbt_stage_cursor(struct xfs_mount * mp,struct xbtree_afakeroot * afake,xfs_agnumber_t agno,xfs_btnum_t btnum)535 xfs_allocbt_stage_cursor(
536 struct xfs_mount *mp,
537 struct xbtree_afakeroot *afake,
538 xfs_agnumber_t agno,
539 xfs_btnum_t btnum)
540 {
541 struct xfs_btree_cur *cur;
542
543 cur = xfs_allocbt_init_common(mp, NULL, agno, btnum);
544 xfs_btree_stage_afakeroot(cur, afake);
545 return cur;
546 }
547
548 /*
549 * Install a new free space btree root. Caller is responsible for invalidating
550 * and freeing the old btree blocks.
551 */
552 void
xfs_allocbt_commit_staged_btree(struct xfs_btree_cur * cur,struct xfs_trans * tp,struct xfs_buf * agbp)553 xfs_allocbt_commit_staged_btree(
554 struct xfs_btree_cur *cur,
555 struct xfs_trans *tp,
556 struct xfs_buf *agbp)
557 {
558 struct xfs_agf *agf = agbp->b_addr;
559 struct xbtree_afakeroot *afake = cur->bc_ag.afake;
560
561 ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
562
563 agf->agf_roots[cur->bc_btnum] = cpu_to_be32(afake->af_root);
564 agf->agf_levels[cur->bc_btnum] = cpu_to_be32(afake->af_levels);
565 xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
566
567 if (cur->bc_btnum == XFS_BTNUM_BNO) {
568 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_bnobt_ops);
569 } else {
570 cur->bc_flags |= XFS_BTREE_LASTREC_UPDATE;
571 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_cntbt_ops);
572 }
573 }
574
575 /*
576 * Calculate number of records in an alloc btree block.
577 */
578 int
xfs_allocbt_maxrecs(struct xfs_mount * mp,int blocklen,int leaf)579 xfs_allocbt_maxrecs(
580 struct xfs_mount *mp,
581 int blocklen,
582 int leaf)
583 {
584 blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
585
586 if (leaf)
587 return blocklen / sizeof(xfs_alloc_rec_t);
588 return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
589 }
590
591 /* Calculate the freespace btree size for some records. */
592 xfs_extlen_t
xfs_allocbt_calc_size(struct xfs_mount * mp,unsigned long long len)593 xfs_allocbt_calc_size(
594 struct xfs_mount *mp,
595 unsigned long long len)
596 {
597 return xfs_btree_calc_size(mp->m_alloc_mnr, len);
598 }
599