1 /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
2 /*
3  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
4  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
5  * Copyright (c) 2004, 2020 Intel Corporation.  All rights reserved.
6  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
7  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
8  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
9  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
10  */
11 
12 #ifndef IB_VERBS_H
13 #define IB_VERBS_H
14 
15 #include <linux/ethtool.h>
16 #include <linux/types.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/kref.h>
20 #include <linux/list.h>
21 #include <linux/rwsem.h>
22 #include <linux/workqueue.h>
23 #include <linux/irq_poll.h>
24 #include <uapi/linux/if_ether.h>
25 #include <net/ipv6.h>
26 #include <net/ip.h>
27 #include <linux/string.h>
28 #include <linux/slab.h>
29 #include <linux/netdevice.h>
30 #include <linux/refcount.h>
31 #include <linux/if_link.h>
32 #include <linux/atomic.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/uaccess.h>
35 #include <linux/cgroup_rdma.h>
36 #include <linux/irqflags.h>
37 #include <linux/preempt.h>
38 #include <linux/dim.h>
39 #include <uapi/rdma/ib_user_verbs.h>
40 #include <rdma/rdma_counter.h>
41 #include <rdma/restrack.h>
42 #include <rdma/signature.h>
43 #include <uapi/rdma/rdma_user_ioctl.h>
44 #include <uapi/rdma/ib_user_ioctl_verbs.h>
45 
46 #define IB_FW_VERSION_NAME_MAX	ETHTOOL_FWVERS_LEN
47 
48 struct ib_umem_odp;
49 struct ib_uqp_object;
50 struct ib_usrq_object;
51 struct ib_uwq_object;
52 struct rdma_cm_id;
53 
54 extern struct workqueue_struct *ib_wq;
55 extern struct workqueue_struct *ib_comp_wq;
56 extern struct workqueue_struct *ib_comp_unbound_wq;
57 
58 struct ib_ucq_object;
59 
60 __printf(3, 4) __cold
61 void ibdev_printk(const char *level, const struct ib_device *ibdev,
62 		  const char *format, ...);
63 __printf(2, 3) __cold
64 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
65 __printf(2, 3) __cold
66 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
67 __printf(2, 3) __cold
68 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
69 __printf(2, 3) __cold
70 void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
71 __printf(2, 3) __cold
72 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
73 __printf(2, 3) __cold
74 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
75 __printf(2, 3) __cold
76 void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
77 
78 #if defined(CONFIG_DYNAMIC_DEBUG) || \
79 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
80 #define ibdev_dbg(__dev, format, args...)                       \
81 	dynamic_ibdev_dbg(__dev, format, ##args)
82 #else
83 __printf(2, 3) __cold
84 static inline
ibdev_dbg(const struct ib_device * ibdev,const char * format,...)85 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
86 #endif
87 
88 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...)           \
89 do {                                                                    \
90 	static DEFINE_RATELIMIT_STATE(_rs,                              \
91 				      DEFAULT_RATELIMIT_INTERVAL,       \
92 				      DEFAULT_RATELIMIT_BURST);         \
93 	if (__ratelimit(&_rs))                                          \
94 		ibdev_level(ibdev, fmt, ##__VA_ARGS__);                 \
95 } while (0)
96 
97 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
98 	ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
99 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \
100 	ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
101 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \
102 	ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
103 #define ibdev_err_ratelimited(ibdev, fmt, ...) \
104 	ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
105 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \
106 	ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
107 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \
108 	ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
109 #define ibdev_info_ratelimited(ibdev, fmt, ...) \
110 	ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
111 
112 #if defined(CONFIG_DYNAMIC_DEBUG) || \
113 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
114 /* descriptor check is first to prevent flooding with "callbacks suppressed" */
115 #define ibdev_dbg_ratelimited(ibdev, fmt, ...)                          \
116 do {                                                                    \
117 	static DEFINE_RATELIMIT_STATE(_rs,                              \
118 				      DEFAULT_RATELIMIT_INTERVAL,       \
119 				      DEFAULT_RATELIMIT_BURST);         \
120 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt);                 \
121 	if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs))      \
122 		__dynamic_ibdev_dbg(&descriptor, ibdev, fmt,            \
123 				    ##__VA_ARGS__);                     \
124 } while (0)
125 #else
126 __printf(2, 3) __cold
127 static inline
ibdev_dbg_ratelimited(const struct ib_device * ibdev,const char * format,...)128 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
129 #endif
130 
131 union ib_gid {
132 	u8	raw[16];
133 	struct {
134 		__be64	subnet_prefix;
135 		__be64	interface_id;
136 	} global;
137 };
138 
139 extern union ib_gid zgid;
140 
141 enum ib_gid_type {
142 	IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
143 	IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
144 	IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
145 	IB_GID_TYPE_SIZE
146 };
147 
148 #define ROCE_V2_UDP_DPORT      4791
149 struct ib_gid_attr {
150 	struct net_device __rcu	*ndev;
151 	struct ib_device	*device;
152 	union ib_gid		gid;
153 	enum ib_gid_type	gid_type;
154 	u16			index;
155 	u32			port_num;
156 };
157 
158 enum {
159 	/* set the local administered indication */
160 	IB_SA_WELL_KNOWN_GUID	= BIT_ULL(57) | 2,
161 };
162 
163 enum rdma_transport_type {
164 	RDMA_TRANSPORT_IB,
165 	RDMA_TRANSPORT_IWARP,
166 	RDMA_TRANSPORT_USNIC,
167 	RDMA_TRANSPORT_USNIC_UDP,
168 	RDMA_TRANSPORT_UNSPECIFIED,
169 };
170 
171 enum rdma_protocol_type {
172 	RDMA_PROTOCOL_IB,
173 	RDMA_PROTOCOL_IBOE,
174 	RDMA_PROTOCOL_IWARP,
175 	RDMA_PROTOCOL_USNIC_UDP
176 };
177 
178 __attribute_const__ enum rdma_transport_type
179 rdma_node_get_transport(unsigned int node_type);
180 
181 enum rdma_network_type {
182 	RDMA_NETWORK_IB,
183 	RDMA_NETWORK_ROCE_V1,
184 	RDMA_NETWORK_IPV4,
185 	RDMA_NETWORK_IPV6
186 };
187 
ib_network_to_gid_type(enum rdma_network_type network_type)188 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
189 {
190 	if (network_type == RDMA_NETWORK_IPV4 ||
191 	    network_type == RDMA_NETWORK_IPV6)
192 		return IB_GID_TYPE_ROCE_UDP_ENCAP;
193 	else if (network_type == RDMA_NETWORK_ROCE_V1)
194 		return IB_GID_TYPE_ROCE;
195 	else
196 		return IB_GID_TYPE_IB;
197 }
198 
199 static inline enum rdma_network_type
rdma_gid_attr_network_type(const struct ib_gid_attr * attr)200 rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
201 {
202 	if (attr->gid_type == IB_GID_TYPE_IB)
203 		return RDMA_NETWORK_IB;
204 
205 	if (attr->gid_type == IB_GID_TYPE_ROCE)
206 		return RDMA_NETWORK_ROCE_V1;
207 
208 	if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
209 		return RDMA_NETWORK_IPV4;
210 	else
211 		return RDMA_NETWORK_IPV6;
212 }
213 
214 enum rdma_link_layer {
215 	IB_LINK_LAYER_UNSPECIFIED,
216 	IB_LINK_LAYER_INFINIBAND,
217 	IB_LINK_LAYER_ETHERNET,
218 };
219 
220 enum ib_device_cap_flags {
221 	IB_DEVICE_RESIZE_MAX_WR			= (1 << 0),
222 	IB_DEVICE_BAD_PKEY_CNTR			= (1 << 1),
223 	IB_DEVICE_BAD_QKEY_CNTR			= (1 << 2),
224 	IB_DEVICE_RAW_MULTI			= (1 << 3),
225 	IB_DEVICE_AUTO_PATH_MIG			= (1 << 4),
226 	IB_DEVICE_CHANGE_PHY_PORT		= (1 << 5),
227 	IB_DEVICE_UD_AV_PORT_ENFORCE		= (1 << 6),
228 	IB_DEVICE_CURR_QP_STATE_MOD		= (1 << 7),
229 	IB_DEVICE_SHUTDOWN_PORT			= (1 << 8),
230 	/* Not in use, former INIT_TYPE		= (1 << 9),*/
231 	IB_DEVICE_PORT_ACTIVE_EVENT		= (1 << 10),
232 	IB_DEVICE_SYS_IMAGE_GUID		= (1 << 11),
233 	IB_DEVICE_RC_RNR_NAK_GEN		= (1 << 12),
234 	IB_DEVICE_SRQ_RESIZE			= (1 << 13),
235 	IB_DEVICE_N_NOTIFY_CQ			= (1 << 14),
236 
237 	/*
238 	 * This device supports a per-device lkey or stag that can be
239 	 * used without performing a memory registration for the local
240 	 * memory.  Note that ULPs should never check this flag, but
241 	 * instead of use the local_dma_lkey flag in the ib_pd structure,
242 	 * which will always contain a usable lkey.
243 	 */
244 	IB_DEVICE_LOCAL_DMA_LKEY		= (1 << 15),
245 	/* Reserved, old SEND_W_INV		= (1 << 16),*/
246 	IB_DEVICE_MEM_WINDOW			= (1 << 17),
247 	/*
248 	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
249 	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
250 	 * messages and can verify the validity of checksum for
251 	 * incoming messages.  Setting this flag implies that the
252 	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
253 	 */
254 	IB_DEVICE_UD_IP_CSUM			= (1 << 18),
255 	IB_DEVICE_UD_TSO			= (1 << 19),
256 	IB_DEVICE_XRC				= (1 << 20),
257 
258 	/*
259 	 * This device supports the IB "base memory management extension",
260 	 * which includes support for fast registrations (IB_WR_REG_MR,
261 	 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
262 	 * also be set by any iWarp device which must support FRs to comply
263 	 * to the iWarp verbs spec.  iWarp devices also support the
264 	 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
265 	 * stag.
266 	 */
267 	IB_DEVICE_MEM_MGT_EXTENSIONS		= (1 << 21),
268 	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK	= (1 << 22),
269 	IB_DEVICE_MEM_WINDOW_TYPE_2A		= (1 << 23),
270 	IB_DEVICE_MEM_WINDOW_TYPE_2B		= (1 << 24),
271 	IB_DEVICE_RC_IP_CSUM			= (1 << 25),
272 	/* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
273 	IB_DEVICE_RAW_IP_CSUM			= (1 << 26),
274 	/*
275 	 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
276 	 * support execution of WQEs that involve synchronization
277 	 * of I/O operations with single completion queue managed
278 	 * by hardware.
279 	 */
280 	IB_DEVICE_CROSS_CHANNEL			= (1 << 27),
281 	IB_DEVICE_MANAGED_FLOW_STEERING		= (1 << 29),
282 	IB_DEVICE_INTEGRITY_HANDOVER		= (1 << 30),
283 	IB_DEVICE_ON_DEMAND_PAGING		= (1ULL << 31),
284 	IB_DEVICE_SG_GAPS_REG			= (1ULL << 32),
285 	IB_DEVICE_VIRTUAL_FUNCTION		= (1ULL << 33),
286 	/* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
287 	IB_DEVICE_RAW_SCATTER_FCS		= (1ULL << 34),
288 	IB_DEVICE_RDMA_NETDEV_OPA		= (1ULL << 35),
289 	/* The device supports padding incoming writes to cacheline. */
290 	IB_DEVICE_PCI_WRITE_END_PADDING		= (1ULL << 36),
291 	IB_DEVICE_ALLOW_USER_UNREG		= (1ULL << 37),
292 };
293 
294 enum ib_atomic_cap {
295 	IB_ATOMIC_NONE,
296 	IB_ATOMIC_HCA,
297 	IB_ATOMIC_GLOB
298 };
299 
300 enum ib_odp_general_cap_bits {
301 	IB_ODP_SUPPORT		= 1 << 0,
302 	IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
303 };
304 
305 enum ib_odp_transport_cap_bits {
306 	IB_ODP_SUPPORT_SEND	= 1 << 0,
307 	IB_ODP_SUPPORT_RECV	= 1 << 1,
308 	IB_ODP_SUPPORT_WRITE	= 1 << 2,
309 	IB_ODP_SUPPORT_READ	= 1 << 3,
310 	IB_ODP_SUPPORT_ATOMIC	= 1 << 4,
311 	IB_ODP_SUPPORT_SRQ_RECV	= 1 << 5,
312 };
313 
314 struct ib_odp_caps {
315 	uint64_t general_caps;
316 	struct {
317 		uint32_t  rc_odp_caps;
318 		uint32_t  uc_odp_caps;
319 		uint32_t  ud_odp_caps;
320 		uint32_t  xrc_odp_caps;
321 	} per_transport_caps;
322 };
323 
324 struct ib_rss_caps {
325 	/* Corresponding bit will be set if qp type from
326 	 * 'enum ib_qp_type' is supported, e.g.
327 	 * supported_qpts |= 1 << IB_QPT_UD
328 	 */
329 	u32 supported_qpts;
330 	u32 max_rwq_indirection_tables;
331 	u32 max_rwq_indirection_table_size;
332 };
333 
334 enum ib_tm_cap_flags {
335 	/*  Support tag matching with rendezvous offload for RC transport */
336 	IB_TM_CAP_RNDV_RC = 1 << 0,
337 };
338 
339 struct ib_tm_caps {
340 	/* Max size of RNDV header */
341 	u32 max_rndv_hdr_size;
342 	/* Max number of entries in tag matching list */
343 	u32 max_num_tags;
344 	/* From enum ib_tm_cap_flags */
345 	u32 flags;
346 	/* Max number of outstanding list operations */
347 	u32 max_ops;
348 	/* Max number of SGE in tag matching entry */
349 	u32 max_sge;
350 };
351 
352 struct ib_cq_init_attr {
353 	unsigned int	cqe;
354 	u32		comp_vector;
355 	u32		flags;
356 };
357 
358 enum ib_cq_attr_mask {
359 	IB_CQ_MODERATE = 1 << 0,
360 };
361 
362 struct ib_cq_caps {
363 	u16     max_cq_moderation_count;
364 	u16     max_cq_moderation_period;
365 };
366 
367 struct ib_dm_mr_attr {
368 	u64		length;
369 	u64		offset;
370 	u32		access_flags;
371 };
372 
373 struct ib_dm_alloc_attr {
374 	u64	length;
375 	u32	alignment;
376 	u32	flags;
377 };
378 
379 struct ib_device_attr {
380 	u64			fw_ver;
381 	__be64			sys_image_guid;
382 	u64			max_mr_size;
383 	u64			page_size_cap;
384 	u32			vendor_id;
385 	u32			vendor_part_id;
386 	u32			hw_ver;
387 	int			max_qp;
388 	int			max_qp_wr;
389 	u64			device_cap_flags;
390 	int			max_send_sge;
391 	int			max_recv_sge;
392 	int			max_sge_rd;
393 	int			max_cq;
394 	int			max_cqe;
395 	int			max_mr;
396 	int			max_pd;
397 	int			max_qp_rd_atom;
398 	int			max_ee_rd_atom;
399 	int			max_res_rd_atom;
400 	int			max_qp_init_rd_atom;
401 	int			max_ee_init_rd_atom;
402 	enum ib_atomic_cap	atomic_cap;
403 	enum ib_atomic_cap	masked_atomic_cap;
404 	int			max_ee;
405 	int			max_rdd;
406 	int			max_mw;
407 	int			max_raw_ipv6_qp;
408 	int			max_raw_ethy_qp;
409 	int			max_mcast_grp;
410 	int			max_mcast_qp_attach;
411 	int			max_total_mcast_qp_attach;
412 	int			max_ah;
413 	int			max_srq;
414 	int			max_srq_wr;
415 	int			max_srq_sge;
416 	unsigned int		max_fast_reg_page_list_len;
417 	unsigned int		max_pi_fast_reg_page_list_len;
418 	u16			max_pkeys;
419 	u8			local_ca_ack_delay;
420 	int			sig_prot_cap;
421 	int			sig_guard_cap;
422 	struct ib_odp_caps	odp_caps;
423 	uint64_t		timestamp_mask;
424 	uint64_t		hca_core_clock; /* in KHZ */
425 	struct ib_rss_caps	rss_caps;
426 	u32			max_wq_type_rq;
427 	u32			raw_packet_caps; /* Use ib_raw_packet_caps enum */
428 	struct ib_tm_caps	tm_caps;
429 	struct ib_cq_caps       cq_caps;
430 	u64			max_dm_size;
431 	/* Max entries for sgl for optimized performance per READ */
432 	u32			max_sgl_rd;
433 };
434 
435 enum ib_mtu {
436 	IB_MTU_256  = 1,
437 	IB_MTU_512  = 2,
438 	IB_MTU_1024 = 3,
439 	IB_MTU_2048 = 4,
440 	IB_MTU_4096 = 5
441 };
442 
443 enum opa_mtu {
444 	OPA_MTU_8192 = 6,
445 	OPA_MTU_10240 = 7
446 };
447 
ib_mtu_enum_to_int(enum ib_mtu mtu)448 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
449 {
450 	switch (mtu) {
451 	case IB_MTU_256:  return  256;
452 	case IB_MTU_512:  return  512;
453 	case IB_MTU_1024: return 1024;
454 	case IB_MTU_2048: return 2048;
455 	case IB_MTU_4096: return 4096;
456 	default: 	  return -1;
457 	}
458 }
459 
ib_mtu_int_to_enum(int mtu)460 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
461 {
462 	if (mtu >= 4096)
463 		return IB_MTU_4096;
464 	else if (mtu >= 2048)
465 		return IB_MTU_2048;
466 	else if (mtu >= 1024)
467 		return IB_MTU_1024;
468 	else if (mtu >= 512)
469 		return IB_MTU_512;
470 	else
471 		return IB_MTU_256;
472 }
473 
opa_mtu_enum_to_int(enum opa_mtu mtu)474 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
475 {
476 	switch (mtu) {
477 	case OPA_MTU_8192:
478 		return 8192;
479 	case OPA_MTU_10240:
480 		return 10240;
481 	default:
482 		return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
483 	}
484 }
485 
opa_mtu_int_to_enum(int mtu)486 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
487 {
488 	if (mtu >= 10240)
489 		return OPA_MTU_10240;
490 	else if (mtu >= 8192)
491 		return OPA_MTU_8192;
492 	else
493 		return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
494 }
495 
496 enum ib_port_state {
497 	IB_PORT_NOP		= 0,
498 	IB_PORT_DOWN		= 1,
499 	IB_PORT_INIT		= 2,
500 	IB_PORT_ARMED		= 3,
501 	IB_PORT_ACTIVE		= 4,
502 	IB_PORT_ACTIVE_DEFER	= 5
503 };
504 
505 enum ib_port_phys_state {
506 	IB_PORT_PHYS_STATE_SLEEP = 1,
507 	IB_PORT_PHYS_STATE_POLLING = 2,
508 	IB_PORT_PHYS_STATE_DISABLED = 3,
509 	IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
510 	IB_PORT_PHYS_STATE_LINK_UP = 5,
511 	IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
512 	IB_PORT_PHYS_STATE_PHY_TEST = 7,
513 };
514 
515 enum ib_port_width {
516 	IB_WIDTH_1X	= 1,
517 	IB_WIDTH_2X	= 16,
518 	IB_WIDTH_4X	= 2,
519 	IB_WIDTH_8X	= 4,
520 	IB_WIDTH_12X	= 8
521 };
522 
ib_width_enum_to_int(enum ib_port_width width)523 static inline int ib_width_enum_to_int(enum ib_port_width width)
524 {
525 	switch (width) {
526 	case IB_WIDTH_1X:  return  1;
527 	case IB_WIDTH_2X:  return  2;
528 	case IB_WIDTH_4X:  return  4;
529 	case IB_WIDTH_8X:  return  8;
530 	case IB_WIDTH_12X: return 12;
531 	default: 	  return -1;
532 	}
533 }
534 
535 enum ib_port_speed {
536 	IB_SPEED_SDR	= 1,
537 	IB_SPEED_DDR	= 2,
538 	IB_SPEED_QDR	= 4,
539 	IB_SPEED_FDR10	= 8,
540 	IB_SPEED_FDR	= 16,
541 	IB_SPEED_EDR	= 32,
542 	IB_SPEED_HDR	= 64,
543 	IB_SPEED_NDR	= 128,
544 };
545 
546 /**
547  * struct rdma_hw_stats
548  * @lock - Mutex to protect parallel write access to lifespan and values
549  *    of counters, which are 64bits and not guaranteeed to be written
550  *    atomicaly on 32bits systems.
551  * @timestamp - Used by the core code to track when the last update was
552  * @lifespan - Used by the core code to determine how old the counters
553  *   should be before being updated again.  Stored in jiffies, defaults
554  *   to 10 milliseconds, drivers can override the default be specifying
555  *   their own value during their allocation routine.
556  * @name - Array of pointers to static names used for the counters in
557  *   directory.
558  * @num_counters - How many hardware counters there are.  If name is
559  *   shorter than this number, a kernel oops will result.  Driver authors
560  *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
561  *   in their code to prevent this.
562  * @value - Array of u64 counters that are accessed by the sysfs code and
563  *   filled in by the drivers get_stats routine
564  */
565 struct rdma_hw_stats {
566 	struct mutex	lock; /* Protect lifespan and values[] */
567 	unsigned long	timestamp;
568 	unsigned long	lifespan;
569 	const char * const *names;
570 	int		num_counters;
571 	u64		value[];
572 };
573 
574 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
575 /**
576  * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
577  *   for drivers.
578  * @names - Array of static const char *
579  * @num_counters - How many elements in array
580  * @lifespan - How many milliseconds between updates
581  */
rdma_alloc_hw_stats_struct(const char * const * names,int num_counters,unsigned long lifespan)582 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
583 		const char * const *names, int num_counters,
584 		unsigned long lifespan)
585 {
586 	struct rdma_hw_stats *stats;
587 
588 	stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
589 			GFP_KERNEL);
590 	if (!stats)
591 		return NULL;
592 	stats->names = names;
593 	stats->num_counters = num_counters;
594 	stats->lifespan = msecs_to_jiffies(lifespan);
595 
596 	return stats;
597 }
598 
599 
600 /* Define bits for the various functionality this port needs to be supported by
601  * the core.
602  */
603 /* Management                           0x00000FFF */
604 #define RDMA_CORE_CAP_IB_MAD            0x00000001
605 #define RDMA_CORE_CAP_IB_SMI            0x00000002
606 #define RDMA_CORE_CAP_IB_CM             0x00000004
607 #define RDMA_CORE_CAP_IW_CM             0x00000008
608 #define RDMA_CORE_CAP_IB_SA             0x00000010
609 #define RDMA_CORE_CAP_OPA_MAD           0x00000020
610 
611 /* Address format                       0x000FF000 */
612 #define RDMA_CORE_CAP_AF_IB             0x00001000
613 #define RDMA_CORE_CAP_ETH_AH            0x00002000
614 #define RDMA_CORE_CAP_OPA_AH            0x00004000
615 #define RDMA_CORE_CAP_IB_GRH_REQUIRED   0x00008000
616 
617 /* Protocol                             0xFFF00000 */
618 #define RDMA_CORE_CAP_PROT_IB           0x00100000
619 #define RDMA_CORE_CAP_PROT_ROCE         0x00200000
620 #define RDMA_CORE_CAP_PROT_IWARP        0x00400000
621 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
622 #define RDMA_CORE_CAP_PROT_RAW_PACKET   0x01000000
623 #define RDMA_CORE_CAP_PROT_USNIC        0x02000000
624 
625 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
626 					| RDMA_CORE_CAP_PROT_ROCE     \
627 					| RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
628 
629 #define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
630 					| RDMA_CORE_CAP_IB_MAD \
631 					| RDMA_CORE_CAP_IB_SMI \
632 					| RDMA_CORE_CAP_IB_CM  \
633 					| RDMA_CORE_CAP_IB_SA  \
634 					| RDMA_CORE_CAP_AF_IB)
635 #define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
636 					| RDMA_CORE_CAP_IB_MAD  \
637 					| RDMA_CORE_CAP_IB_CM   \
638 					| RDMA_CORE_CAP_AF_IB   \
639 					| RDMA_CORE_CAP_ETH_AH)
640 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP			\
641 					(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
642 					| RDMA_CORE_CAP_IB_MAD  \
643 					| RDMA_CORE_CAP_IB_CM   \
644 					| RDMA_CORE_CAP_AF_IB   \
645 					| RDMA_CORE_CAP_ETH_AH)
646 #define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
647 					| RDMA_CORE_CAP_IW_CM)
648 #define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
649 					| RDMA_CORE_CAP_OPA_MAD)
650 
651 #define RDMA_CORE_PORT_RAW_PACKET	(RDMA_CORE_CAP_PROT_RAW_PACKET)
652 
653 #define RDMA_CORE_PORT_USNIC		(RDMA_CORE_CAP_PROT_USNIC)
654 
655 struct ib_port_attr {
656 	u64			subnet_prefix;
657 	enum ib_port_state	state;
658 	enum ib_mtu		max_mtu;
659 	enum ib_mtu		active_mtu;
660 	u32                     phys_mtu;
661 	int			gid_tbl_len;
662 	unsigned int		ip_gids:1;
663 	/* This is the value from PortInfo CapabilityMask, defined by IBA */
664 	u32			port_cap_flags;
665 	u32			max_msg_sz;
666 	u32			bad_pkey_cntr;
667 	u32			qkey_viol_cntr;
668 	u16			pkey_tbl_len;
669 	u32			sm_lid;
670 	u32			lid;
671 	u8			lmc;
672 	u8			max_vl_num;
673 	u8			sm_sl;
674 	u8			subnet_timeout;
675 	u8			init_type_reply;
676 	u8			active_width;
677 	u16			active_speed;
678 	u8                      phys_state;
679 	u16			port_cap_flags2;
680 };
681 
682 enum ib_device_modify_flags {
683 	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
684 	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
685 };
686 
687 #define IB_DEVICE_NODE_DESC_MAX 64
688 
689 struct ib_device_modify {
690 	u64	sys_image_guid;
691 	char	node_desc[IB_DEVICE_NODE_DESC_MAX];
692 };
693 
694 enum ib_port_modify_flags {
695 	IB_PORT_SHUTDOWN		= 1,
696 	IB_PORT_INIT_TYPE		= (1<<2),
697 	IB_PORT_RESET_QKEY_CNTR		= (1<<3),
698 	IB_PORT_OPA_MASK_CHG		= (1<<4)
699 };
700 
701 struct ib_port_modify {
702 	u32	set_port_cap_mask;
703 	u32	clr_port_cap_mask;
704 	u8	init_type;
705 };
706 
707 enum ib_event_type {
708 	IB_EVENT_CQ_ERR,
709 	IB_EVENT_QP_FATAL,
710 	IB_EVENT_QP_REQ_ERR,
711 	IB_EVENT_QP_ACCESS_ERR,
712 	IB_EVENT_COMM_EST,
713 	IB_EVENT_SQ_DRAINED,
714 	IB_EVENT_PATH_MIG,
715 	IB_EVENT_PATH_MIG_ERR,
716 	IB_EVENT_DEVICE_FATAL,
717 	IB_EVENT_PORT_ACTIVE,
718 	IB_EVENT_PORT_ERR,
719 	IB_EVENT_LID_CHANGE,
720 	IB_EVENT_PKEY_CHANGE,
721 	IB_EVENT_SM_CHANGE,
722 	IB_EVENT_SRQ_ERR,
723 	IB_EVENT_SRQ_LIMIT_REACHED,
724 	IB_EVENT_QP_LAST_WQE_REACHED,
725 	IB_EVENT_CLIENT_REREGISTER,
726 	IB_EVENT_GID_CHANGE,
727 	IB_EVENT_WQ_FATAL,
728 };
729 
730 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
731 
732 struct ib_event {
733 	struct ib_device	*device;
734 	union {
735 		struct ib_cq	*cq;
736 		struct ib_qp	*qp;
737 		struct ib_srq	*srq;
738 		struct ib_wq	*wq;
739 		u32		port_num;
740 	} element;
741 	enum ib_event_type	event;
742 };
743 
744 struct ib_event_handler {
745 	struct ib_device *device;
746 	void            (*handler)(struct ib_event_handler *, struct ib_event *);
747 	struct list_head  list;
748 };
749 
750 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
751 	do {							\
752 		(_ptr)->device  = _device;			\
753 		(_ptr)->handler = _handler;			\
754 		INIT_LIST_HEAD(&(_ptr)->list);			\
755 	} while (0)
756 
757 struct ib_global_route {
758 	const struct ib_gid_attr *sgid_attr;
759 	union ib_gid	dgid;
760 	u32		flow_label;
761 	u8		sgid_index;
762 	u8		hop_limit;
763 	u8		traffic_class;
764 };
765 
766 struct ib_grh {
767 	__be32		version_tclass_flow;
768 	__be16		paylen;
769 	u8		next_hdr;
770 	u8		hop_limit;
771 	union ib_gid	sgid;
772 	union ib_gid	dgid;
773 };
774 
775 union rdma_network_hdr {
776 	struct ib_grh ibgrh;
777 	struct {
778 		/* The IB spec states that if it's IPv4, the header
779 		 * is located in the last 20 bytes of the header.
780 		 */
781 		u8		reserved[20];
782 		struct iphdr	roce4grh;
783 	};
784 };
785 
786 #define IB_QPN_MASK		0xFFFFFF
787 
788 enum {
789 	IB_MULTICAST_QPN = 0xffffff
790 };
791 
792 #define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
793 #define IB_MULTICAST_LID_BASE	cpu_to_be16(0xC000)
794 
795 enum ib_ah_flags {
796 	IB_AH_GRH	= 1
797 };
798 
799 enum ib_rate {
800 	IB_RATE_PORT_CURRENT = 0,
801 	IB_RATE_2_5_GBPS = 2,
802 	IB_RATE_5_GBPS   = 5,
803 	IB_RATE_10_GBPS  = 3,
804 	IB_RATE_20_GBPS  = 6,
805 	IB_RATE_30_GBPS  = 4,
806 	IB_RATE_40_GBPS  = 7,
807 	IB_RATE_60_GBPS  = 8,
808 	IB_RATE_80_GBPS  = 9,
809 	IB_RATE_120_GBPS = 10,
810 	IB_RATE_14_GBPS  = 11,
811 	IB_RATE_56_GBPS  = 12,
812 	IB_RATE_112_GBPS = 13,
813 	IB_RATE_168_GBPS = 14,
814 	IB_RATE_25_GBPS  = 15,
815 	IB_RATE_100_GBPS = 16,
816 	IB_RATE_200_GBPS = 17,
817 	IB_RATE_300_GBPS = 18,
818 	IB_RATE_28_GBPS  = 19,
819 	IB_RATE_50_GBPS  = 20,
820 	IB_RATE_400_GBPS = 21,
821 	IB_RATE_600_GBPS = 22,
822 };
823 
824 /**
825  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
826  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
827  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
828  * @rate: rate to convert.
829  */
830 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
831 
832 /**
833  * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
834  * For example, IB_RATE_2_5_GBPS will be converted to 2500.
835  * @rate: rate to convert.
836  */
837 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
838 
839 
840 /**
841  * enum ib_mr_type - memory region type
842  * @IB_MR_TYPE_MEM_REG:       memory region that is used for
843  *                            normal registration
844  * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
845  *                            register any arbitrary sg lists (without
846  *                            the normal mr constraints - see
847  *                            ib_map_mr_sg)
848  * @IB_MR_TYPE_DM:            memory region that is used for device
849  *                            memory registration
850  * @IB_MR_TYPE_USER:          memory region that is used for the user-space
851  *                            application
852  * @IB_MR_TYPE_DMA:           memory region that is used for DMA operations
853  *                            without address translations (VA=PA)
854  * @IB_MR_TYPE_INTEGRITY:     memory region that is used for
855  *                            data integrity operations
856  */
857 enum ib_mr_type {
858 	IB_MR_TYPE_MEM_REG,
859 	IB_MR_TYPE_SG_GAPS,
860 	IB_MR_TYPE_DM,
861 	IB_MR_TYPE_USER,
862 	IB_MR_TYPE_DMA,
863 	IB_MR_TYPE_INTEGRITY,
864 };
865 
866 enum ib_mr_status_check {
867 	IB_MR_CHECK_SIG_STATUS = 1,
868 };
869 
870 /**
871  * struct ib_mr_status - Memory region status container
872  *
873  * @fail_status: Bitmask of MR checks status. For each
874  *     failed check a corresponding status bit is set.
875  * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
876  *     failure.
877  */
878 struct ib_mr_status {
879 	u32		    fail_status;
880 	struct ib_sig_err   sig_err;
881 };
882 
883 /**
884  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
885  * enum.
886  * @mult: multiple to convert.
887  */
888 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
889 
890 struct rdma_ah_init_attr {
891 	struct rdma_ah_attr *ah_attr;
892 	u32 flags;
893 	struct net_device *xmit_slave;
894 };
895 
896 enum rdma_ah_attr_type {
897 	RDMA_AH_ATTR_TYPE_UNDEFINED,
898 	RDMA_AH_ATTR_TYPE_IB,
899 	RDMA_AH_ATTR_TYPE_ROCE,
900 	RDMA_AH_ATTR_TYPE_OPA,
901 };
902 
903 struct ib_ah_attr {
904 	u16			dlid;
905 	u8			src_path_bits;
906 };
907 
908 struct roce_ah_attr {
909 	u8			dmac[ETH_ALEN];
910 };
911 
912 struct opa_ah_attr {
913 	u32			dlid;
914 	u8			src_path_bits;
915 	bool			make_grd;
916 };
917 
918 struct rdma_ah_attr {
919 	struct ib_global_route	grh;
920 	u8			sl;
921 	u8			static_rate;
922 	u32			port_num;
923 	u8			ah_flags;
924 	enum rdma_ah_attr_type type;
925 	union {
926 		struct ib_ah_attr ib;
927 		struct roce_ah_attr roce;
928 		struct opa_ah_attr opa;
929 	};
930 };
931 
932 enum ib_wc_status {
933 	IB_WC_SUCCESS,
934 	IB_WC_LOC_LEN_ERR,
935 	IB_WC_LOC_QP_OP_ERR,
936 	IB_WC_LOC_EEC_OP_ERR,
937 	IB_WC_LOC_PROT_ERR,
938 	IB_WC_WR_FLUSH_ERR,
939 	IB_WC_MW_BIND_ERR,
940 	IB_WC_BAD_RESP_ERR,
941 	IB_WC_LOC_ACCESS_ERR,
942 	IB_WC_REM_INV_REQ_ERR,
943 	IB_WC_REM_ACCESS_ERR,
944 	IB_WC_REM_OP_ERR,
945 	IB_WC_RETRY_EXC_ERR,
946 	IB_WC_RNR_RETRY_EXC_ERR,
947 	IB_WC_LOC_RDD_VIOL_ERR,
948 	IB_WC_REM_INV_RD_REQ_ERR,
949 	IB_WC_REM_ABORT_ERR,
950 	IB_WC_INV_EECN_ERR,
951 	IB_WC_INV_EEC_STATE_ERR,
952 	IB_WC_FATAL_ERR,
953 	IB_WC_RESP_TIMEOUT_ERR,
954 	IB_WC_GENERAL_ERR
955 };
956 
957 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
958 
959 enum ib_wc_opcode {
960 	IB_WC_SEND = IB_UVERBS_WC_SEND,
961 	IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
962 	IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
963 	IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
964 	IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
965 	IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
966 	IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
967 	IB_WC_LSO = IB_UVERBS_WC_TSO,
968 	IB_WC_REG_MR,
969 	IB_WC_MASKED_COMP_SWAP,
970 	IB_WC_MASKED_FETCH_ADD,
971 /*
972  * Set value of IB_WC_RECV so consumers can test if a completion is a
973  * receive by testing (opcode & IB_WC_RECV).
974  */
975 	IB_WC_RECV			= 1 << 7,
976 	IB_WC_RECV_RDMA_WITH_IMM
977 };
978 
979 enum ib_wc_flags {
980 	IB_WC_GRH		= 1,
981 	IB_WC_WITH_IMM		= (1<<1),
982 	IB_WC_WITH_INVALIDATE	= (1<<2),
983 	IB_WC_IP_CSUM_OK	= (1<<3),
984 	IB_WC_WITH_SMAC		= (1<<4),
985 	IB_WC_WITH_VLAN		= (1<<5),
986 	IB_WC_WITH_NETWORK_HDR_TYPE	= (1<<6),
987 };
988 
989 struct ib_wc {
990 	union {
991 		u64		wr_id;
992 		struct ib_cqe	*wr_cqe;
993 	};
994 	enum ib_wc_status	status;
995 	enum ib_wc_opcode	opcode;
996 	u32			vendor_err;
997 	u32			byte_len;
998 	struct ib_qp	       *qp;
999 	union {
1000 		__be32		imm_data;
1001 		u32		invalidate_rkey;
1002 	} ex;
1003 	u32			src_qp;
1004 	u32			slid;
1005 	int			wc_flags;
1006 	u16			pkey_index;
1007 	u8			sl;
1008 	u8			dlid_path_bits;
1009 	u32 port_num; /* valid only for DR SMPs on switches */
1010 	u8			smac[ETH_ALEN];
1011 	u16			vlan_id;
1012 	u8			network_hdr_type;
1013 };
1014 
1015 enum ib_cq_notify_flags {
1016 	IB_CQ_SOLICITED			= 1 << 0,
1017 	IB_CQ_NEXT_COMP			= 1 << 1,
1018 	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1019 	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
1020 };
1021 
1022 enum ib_srq_type {
1023 	IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1024 	IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1025 	IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1026 };
1027 
ib_srq_has_cq(enum ib_srq_type srq_type)1028 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1029 {
1030 	return srq_type == IB_SRQT_XRC ||
1031 	       srq_type == IB_SRQT_TM;
1032 }
1033 
1034 enum ib_srq_attr_mask {
1035 	IB_SRQ_MAX_WR	= 1 << 0,
1036 	IB_SRQ_LIMIT	= 1 << 1,
1037 };
1038 
1039 struct ib_srq_attr {
1040 	u32	max_wr;
1041 	u32	max_sge;
1042 	u32	srq_limit;
1043 };
1044 
1045 struct ib_srq_init_attr {
1046 	void		      (*event_handler)(struct ib_event *, void *);
1047 	void		       *srq_context;
1048 	struct ib_srq_attr	attr;
1049 	enum ib_srq_type	srq_type;
1050 
1051 	struct {
1052 		struct ib_cq   *cq;
1053 		union {
1054 			struct {
1055 				struct ib_xrcd *xrcd;
1056 			} xrc;
1057 
1058 			struct {
1059 				u32		max_num_tags;
1060 			} tag_matching;
1061 		};
1062 	} ext;
1063 };
1064 
1065 struct ib_qp_cap {
1066 	u32	max_send_wr;
1067 	u32	max_recv_wr;
1068 	u32	max_send_sge;
1069 	u32	max_recv_sge;
1070 	u32	max_inline_data;
1071 
1072 	/*
1073 	 * Maximum number of rdma_rw_ctx structures in flight at a time.
1074 	 * ib_create_qp() will calculate the right amount of neededed WRs
1075 	 * and MRs based on this.
1076 	 */
1077 	u32	max_rdma_ctxs;
1078 };
1079 
1080 enum ib_sig_type {
1081 	IB_SIGNAL_ALL_WR,
1082 	IB_SIGNAL_REQ_WR
1083 };
1084 
1085 enum ib_qp_type {
1086 	/*
1087 	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1088 	 * here (and in that order) since the MAD layer uses them as
1089 	 * indices into a 2-entry table.
1090 	 */
1091 	IB_QPT_SMI,
1092 	IB_QPT_GSI,
1093 
1094 	IB_QPT_RC = IB_UVERBS_QPT_RC,
1095 	IB_QPT_UC = IB_UVERBS_QPT_UC,
1096 	IB_QPT_UD = IB_UVERBS_QPT_UD,
1097 	IB_QPT_RAW_IPV6,
1098 	IB_QPT_RAW_ETHERTYPE,
1099 	IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1100 	IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1101 	IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1102 	IB_QPT_MAX,
1103 	IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1104 	/* Reserve a range for qp types internal to the low level driver.
1105 	 * These qp types will not be visible at the IB core layer, so the
1106 	 * IB_QPT_MAX usages should not be affected in the core layer
1107 	 */
1108 	IB_QPT_RESERVED1 = 0x1000,
1109 	IB_QPT_RESERVED2,
1110 	IB_QPT_RESERVED3,
1111 	IB_QPT_RESERVED4,
1112 	IB_QPT_RESERVED5,
1113 	IB_QPT_RESERVED6,
1114 	IB_QPT_RESERVED7,
1115 	IB_QPT_RESERVED8,
1116 	IB_QPT_RESERVED9,
1117 	IB_QPT_RESERVED10,
1118 };
1119 
1120 enum ib_qp_create_flags {
1121 	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
1122 	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	=
1123 		IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1124 	IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1125 	IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1126 	IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1127 	IB_QP_CREATE_NETIF_QP			= 1 << 5,
1128 	IB_QP_CREATE_INTEGRITY_EN		= 1 << 6,
1129 	IB_QP_CREATE_NETDEV_USE			= 1 << 7,
1130 	IB_QP_CREATE_SCATTER_FCS		=
1131 		IB_UVERBS_QP_CREATE_SCATTER_FCS,
1132 	IB_QP_CREATE_CVLAN_STRIPPING		=
1133 		IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1134 	IB_QP_CREATE_SOURCE_QPN			= 1 << 10,
1135 	IB_QP_CREATE_PCI_WRITE_END_PADDING	=
1136 		IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1137 	/* reserve bits 26-31 for low level drivers' internal use */
1138 	IB_QP_CREATE_RESERVED_START		= 1 << 26,
1139 	IB_QP_CREATE_RESERVED_END		= 1 << 31,
1140 };
1141 
1142 /*
1143  * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1144  * callback to destroy the passed in QP.
1145  */
1146 
1147 struct ib_qp_init_attr {
1148 	/* Consumer's event_handler callback must not block */
1149 	void                  (*event_handler)(struct ib_event *, void *);
1150 
1151 	void		       *qp_context;
1152 	struct ib_cq	       *send_cq;
1153 	struct ib_cq	       *recv_cq;
1154 	struct ib_srq	       *srq;
1155 	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
1156 	struct ib_qp_cap	cap;
1157 	enum ib_sig_type	sq_sig_type;
1158 	enum ib_qp_type		qp_type;
1159 	u32			create_flags;
1160 
1161 	/*
1162 	 * Only needed for special QP types, or when using the RW API.
1163 	 */
1164 	u32			port_num;
1165 	struct ib_rwq_ind_table *rwq_ind_tbl;
1166 	u32			source_qpn;
1167 };
1168 
1169 struct ib_qp_open_attr {
1170 	void                  (*event_handler)(struct ib_event *, void *);
1171 	void		       *qp_context;
1172 	u32			qp_num;
1173 	enum ib_qp_type		qp_type;
1174 };
1175 
1176 enum ib_rnr_timeout {
1177 	IB_RNR_TIMER_655_36 =  0,
1178 	IB_RNR_TIMER_000_01 =  1,
1179 	IB_RNR_TIMER_000_02 =  2,
1180 	IB_RNR_TIMER_000_03 =  3,
1181 	IB_RNR_TIMER_000_04 =  4,
1182 	IB_RNR_TIMER_000_06 =  5,
1183 	IB_RNR_TIMER_000_08 =  6,
1184 	IB_RNR_TIMER_000_12 =  7,
1185 	IB_RNR_TIMER_000_16 =  8,
1186 	IB_RNR_TIMER_000_24 =  9,
1187 	IB_RNR_TIMER_000_32 = 10,
1188 	IB_RNR_TIMER_000_48 = 11,
1189 	IB_RNR_TIMER_000_64 = 12,
1190 	IB_RNR_TIMER_000_96 = 13,
1191 	IB_RNR_TIMER_001_28 = 14,
1192 	IB_RNR_TIMER_001_92 = 15,
1193 	IB_RNR_TIMER_002_56 = 16,
1194 	IB_RNR_TIMER_003_84 = 17,
1195 	IB_RNR_TIMER_005_12 = 18,
1196 	IB_RNR_TIMER_007_68 = 19,
1197 	IB_RNR_TIMER_010_24 = 20,
1198 	IB_RNR_TIMER_015_36 = 21,
1199 	IB_RNR_TIMER_020_48 = 22,
1200 	IB_RNR_TIMER_030_72 = 23,
1201 	IB_RNR_TIMER_040_96 = 24,
1202 	IB_RNR_TIMER_061_44 = 25,
1203 	IB_RNR_TIMER_081_92 = 26,
1204 	IB_RNR_TIMER_122_88 = 27,
1205 	IB_RNR_TIMER_163_84 = 28,
1206 	IB_RNR_TIMER_245_76 = 29,
1207 	IB_RNR_TIMER_327_68 = 30,
1208 	IB_RNR_TIMER_491_52 = 31
1209 };
1210 
1211 enum ib_qp_attr_mask {
1212 	IB_QP_STATE			= 1,
1213 	IB_QP_CUR_STATE			= (1<<1),
1214 	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
1215 	IB_QP_ACCESS_FLAGS		= (1<<3),
1216 	IB_QP_PKEY_INDEX		= (1<<4),
1217 	IB_QP_PORT			= (1<<5),
1218 	IB_QP_QKEY			= (1<<6),
1219 	IB_QP_AV			= (1<<7),
1220 	IB_QP_PATH_MTU			= (1<<8),
1221 	IB_QP_TIMEOUT			= (1<<9),
1222 	IB_QP_RETRY_CNT			= (1<<10),
1223 	IB_QP_RNR_RETRY			= (1<<11),
1224 	IB_QP_RQ_PSN			= (1<<12),
1225 	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
1226 	IB_QP_ALT_PATH			= (1<<14),
1227 	IB_QP_MIN_RNR_TIMER		= (1<<15),
1228 	IB_QP_SQ_PSN			= (1<<16),
1229 	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
1230 	IB_QP_PATH_MIG_STATE		= (1<<18),
1231 	IB_QP_CAP			= (1<<19),
1232 	IB_QP_DEST_QPN			= (1<<20),
1233 	IB_QP_RESERVED1			= (1<<21),
1234 	IB_QP_RESERVED2			= (1<<22),
1235 	IB_QP_RESERVED3			= (1<<23),
1236 	IB_QP_RESERVED4			= (1<<24),
1237 	IB_QP_RATE_LIMIT		= (1<<25),
1238 
1239 	IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0),
1240 };
1241 
1242 enum ib_qp_state {
1243 	IB_QPS_RESET,
1244 	IB_QPS_INIT,
1245 	IB_QPS_RTR,
1246 	IB_QPS_RTS,
1247 	IB_QPS_SQD,
1248 	IB_QPS_SQE,
1249 	IB_QPS_ERR
1250 };
1251 
1252 enum ib_mig_state {
1253 	IB_MIG_MIGRATED,
1254 	IB_MIG_REARM,
1255 	IB_MIG_ARMED
1256 };
1257 
1258 enum ib_mw_type {
1259 	IB_MW_TYPE_1 = 1,
1260 	IB_MW_TYPE_2 = 2
1261 };
1262 
1263 struct ib_qp_attr {
1264 	enum ib_qp_state	qp_state;
1265 	enum ib_qp_state	cur_qp_state;
1266 	enum ib_mtu		path_mtu;
1267 	enum ib_mig_state	path_mig_state;
1268 	u32			qkey;
1269 	u32			rq_psn;
1270 	u32			sq_psn;
1271 	u32			dest_qp_num;
1272 	int			qp_access_flags;
1273 	struct ib_qp_cap	cap;
1274 	struct rdma_ah_attr	ah_attr;
1275 	struct rdma_ah_attr	alt_ah_attr;
1276 	u16			pkey_index;
1277 	u16			alt_pkey_index;
1278 	u8			en_sqd_async_notify;
1279 	u8			sq_draining;
1280 	u8			max_rd_atomic;
1281 	u8			max_dest_rd_atomic;
1282 	u8			min_rnr_timer;
1283 	u32			port_num;
1284 	u8			timeout;
1285 	u8			retry_cnt;
1286 	u8			rnr_retry;
1287 	u32			alt_port_num;
1288 	u8			alt_timeout;
1289 	u32			rate_limit;
1290 	struct net_device	*xmit_slave;
1291 };
1292 
1293 enum ib_wr_opcode {
1294 	/* These are shared with userspace */
1295 	IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1296 	IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1297 	IB_WR_SEND = IB_UVERBS_WR_SEND,
1298 	IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1299 	IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1300 	IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1301 	IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1302 	IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
1303 	IB_WR_LSO = IB_UVERBS_WR_TSO,
1304 	IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1305 	IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1306 	IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1307 	IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1308 		IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1309 	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1310 		IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1311 
1312 	/* These are kernel only and can not be issued by userspace */
1313 	IB_WR_REG_MR = 0x20,
1314 	IB_WR_REG_MR_INTEGRITY,
1315 
1316 	/* reserve values for low level drivers' internal use.
1317 	 * These values will not be used at all in the ib core layer.
1318 	 */
1319 	IB_WR_RESERVED1 = 0xf0,
1320 	IB_WR_RESERVED2,
1321 	IB_WR_RESERVED3,
1322 	IB_WR_RESERVED4,
1323 	IB_WR_RESERVED5,
1324 	IB_WR_RESERVED6,
1325 	IB_WR_RESERVED7,
1326 	IB_WR_RESERVED8,
1327 	IB_WR_RESERVED9,
1328 	IB_WR_RESERVED10,
1329 };
1330 
1331 enum ib_send_flags {
1332 	IB_SEND_FENCE		= 1,
1333 	IB_SEND_SIGNALED	= (1<<1),
1334 	IB_SEND_SOLICITED	= (1<<2),
1335 	IB_SEND_INLINE		= (1<<3),
1336 	IB_SEND_IP_CSUM		= (1<<4),
1337 
1338 	/* reserve bits 26-31 for low level drivers' internal use */
1339 	IB_SEND_RESERVED_START	= (1 << 26),
1340 	IB_SEND_RESERVED_END	= (1 << 31),
1341 };
1342 
1343 struct ib_sge {
1344 	u64	addr;
1345 	u32	length;
1346 	u32	lkey;
1347 };
1348 
1349 struct ib_cqe {
1350 	void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1351 };
1352 
1353 struct ib_send_wr {
1354 	struct ib_send_wr      *next;
1355 	union {
1356 		u64		wr_id;
1357 		struct ib_cqe	*wr_cqe;
1358 	};
1359 	struct ib_sge	       *sg_list;
1360 	int			num_sge;
1361 	enum ib_wr_opcode	opcode;
1362 	int			send_flags;
1363 	union {
1364 		__be32		imm_data;
1365 		u32		invalidate_rkey;
1366 	} ex;
1367 };
1368 
1369 struct ib_rdma_wr {
1370 	struct ib_send_wr	wr;
1371 	u64			remote_addr;
1372 	u32			rkey;
1373 };
1374 
rdma_wr(const struct ib_send_wr * wr)1375 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1376 {
1377 	return container_of(wr, struct ib_rdma_wr, wr);
1378 }
1379 
1380 struct ib_atomic_wr {
1381 	struct ib_send_wr	wr;
1382 	u64			remote_addr;
1383 	u64			compare_add;
1384 	u64			swap;
1385 	u64			compare_add_mask;
1386 	u64			swap_mask;
1387 	u32			rkey;
1388 };
1389 
atomic_wr(const struct ib_send_wr * wr)1390 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1391 {
1392 	return container_of(wr, struct ib_atomic_wr, wr);
1393 }
1394 
1395 struct ib_ud_wr {
1396 	struct ib_send_wr	wr;
1397 	struct ib_ah		*ah;
1398 	void			*header;
1399 	int			hlen;
1400 	int			mss;
1401 	u32			remote_qpn;
1402 	u32			remote_qkey;
1403 	u16			pkey_index; /* valid for GSI only */
1404 	u32			port_num; /* valid for DR SMPs on switch only */
1405 };
1406 
ud_wr(const struct ib_send_wr * wr)1407 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1408 {
1409 	return container_of(wr, struct ib_ud_wr, wr);
1410 }
1411 
1412 struct ib_reg_wr {
1413 	struct ib_send_wr	wr;
1414 	struct ib_mr		*mr;
1415 	u32			key;
1416 	int			access;
1417 };
1418 
reg_wr(const struct ib_send_wr * wr)1419 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1420 {
1421 	return container_of(wr, struct ib_reg_wr, wr);
1422 }
1423 
1424 struct ib_recv_wr {
1425 	struct ib_recv_wr      *next;
1426 	union {
1427 		u64		wr_id;
1428 		struct ib_cqe	*wr_cqe;
1429 	};
1430 	struct ib_sge	       *sg_list;
1431 	int			num_sge;
1432 };
1433 
1434 enum ib_access_flags {
1435 	IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1436 	IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1437 	IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1438 	IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1439 	IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1440 	IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1441 	IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1442 	IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1443 	IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1444 
1445 	IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1446 	IB_ACCESS_SUPPORTED =
1447 		((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL,
1448 };
1449 
1450 /*
1451  * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1452  * are hidden here instead of a uapi header!
1453  */
1454 enum ib_mr_rereg_flags {
1455 	IB_MR_REREG_TRANS	= 1,
1456 	IB_MR_REREG_PD		= (1<<1),
1457 	IB_MR_REREG_ACCESS	= (1<<2),
1458 	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
1459 };
1460 
1461 struct ib_umem;
1462 
1463 enum rdma_remove_reason {
1464 	/*
1465 	 * Userspace requested uobject deletion or initial try
1466 	 * to remove uobject via cleanup. Call could fail
1467 	 */
1468 	RDMA_REMOVE_DESTROY,
1469 	/* Context deletion. This call should delete the actual object itself */
1470 	RDMA_REMOVE_CLOSE,
1471 	/* Driver is being hot-unplugged. This call should delete the actual object itself */
1472 	RDMA_REMOVE_DRIVER_REMOVE,
1473 	/* uobj is being cleaned-up before being committed */
1474 	RDMA_REMOVE_ABORT,
1475 	/* The driver failed to destroy the uobject and is being disconnected */
1476 	RDMA_REMOVE_DRIVER_FAILURE,
1477 };
1478 
1479 struct ib_rdmacg_object {
1480 #ifdef CONFIG_CGROUP_RDMA
1481 	struct rdma_cgroup	*cg;		/* owner rdma cgroup */
1482 #endif
1483 };
1484 
1485 struct ib_ucontext {
1486 	struct ib_device       *device;
1487 	struct ib_uverbs_file  *ufile;
1488 
1489 	struct ib_rdmacg_object	cg_obj;
1490 	/*
1491 	 * Implementation details of the RDMA core, don't use in drivers:
1492 	 */
1493 	struct rdma_restrack_entry res;
1494 	struct xarray mmap_xa;
1495 };
1496 
1497 struct ib_uobject {
1498 	u64			user_handle;	/* handle given to us by userspace */
1499 	/* ufile & ucontext owning this object */
1500 	struct ib_uverbs_file  *ufile;
1501 	/* FIXME, save memory: ufile->context == context */
1502 	struct ib_ucontext     *context;	/* associated user context */
1503 	void		       *object;		/* containing object */
1504 	struct list_head	list;		/* link to context's list */
1505 	struct ib_rdmacg_object	cg_obj;		/* rdmacg object */
1506 	int			id;		/* index into kernel idr */
1507 	struct kref		ref;
1508 	atomic_t		usecnt;		/* protects exclusive access */
1509 	struct rcu_head		rcu;		/* kfree_rcu() overhead */
1510 
1511 	const struct uverbs_api_object *uapi_object;
1512 };
1513 
1514 struct ib_udata {
1515 	const void __user *inbuf;
1516 	void __user *outbuf;
1517 	size_t       inlen;
1518 	size_t       outlen;
1519 };
1520 
1521 struct ib_pd {
1522 	u32			local_dma_lkey;
1523 	u32			flags;
1524 	struct ib_device       *device;
1525 	struct ib_uobject      *uobject;
1526 	atomic_t          	usecnt; /* count all resources */
1527 
1528 	u32			unsafe_global_rkey;
1529 
1530 	/*
1531 	 * Implementation details of the RDMA core, don't use in drivers:
1532 	 */
1533 	struct ib_mr	       *__internal_mr;
1534 	struct rdma_restrack_entry res;
1535 };
1536 
1537 struct ib_xrcd {
1538 	struct ib_device       *device;
1539 	atomic_t		usecnt; /* count all exposed resources */
1540 	struct inode	       *inode;
1541 	struct rw_semaphore	tgt_qps_rwsem;
1542 	struct xarray		tgt_qps;
1543 };
1544 
1545 struct ib_ah {
1546 	struct ib_device	*device;
1547 	struct ib_pd		*pd;
1548 	struct ib_uobject	*uobject;
1549 	const struct ib_gid_attr *sgid_attr;
1550 	enum rdma_ah_attr_type	type;
1551 };
1552 
1553 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1554 
1555 enum ib_poll_context {
1556 	IB_POLL_SOFTIRQ,	   /* poll from softirq context */
1557 	IB_POLL_WORKQUEUE,	   /* poll from workqueue */
1558 	IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1559 	IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1560 
1561 	IB_POLL_DIRECT,		   /* caller context, no hw completions */
1562 };
1563 
1564 struct ib_cq {
1565 	struct ib_device       *device;
1566 	struct ib_ucq_object   *uobject;
1567 	ib_comp_handler   	comp_handler;
1568 	void                  (*event_handler)(struct ib_event *, void *);
1569 	void                   *cq_context;
1570 	int               	cqe;
1571 	unsigned int		cqe_used;
1572 	atomic_t          	usecnt; /* count number of work queues */
1573 	enum ib_poll_context	poll_ctx;
1574 	struct ib_wc		*wc;
1575 	struct list_head        pool_entry;
1576 	union {
1577 		struct irq_poll		iop;
1578 		struct work_struct	work;
1579 	};
1580 	struct workqueue_struct *comp_wq;
1581 	struct dim *dim;
1582 
1583 	/* updated only by trace points */
1584 	ktime_t timestamp;
1585 	u8 interrupt:1;
1586 	u8 shared:1;
1587 	unsigned int comp_vector;
1588 
1589 	/*
1590 	 * Implementation details of the RDMA core, don't use in drivers:
1591 	 */
1592 	struct rdma_restrack_entry res;
1593 };
1594 
1595 struct ib_srq {
1596 	struct ib_device       *device;
1597 	struct ib_pd	       *pd;
1598 	struct ib_usrq_object  *uobject;
1599 	void		      (*event_handler)(struct ib_event *, void *);
1600 	void		       *srq_context;
1601 	enum ib_srq_type	srq_type;
1602 	atomic_t		usecnt;
1603 
1604 	struct {
1605 		struct ib_cq   *cq;
1606 		union {
1607 			struct {
1608 				struct ib_xrcd *xrcd;
1609 				u32		srq_num;
1610 			} xrc;
1611 		};
1612 	} ext;
1613 
1614 	/*
1615 	 * Implementation details of the RDMA core, don't use in drivers:
1616 	 */
1617 	struct rdma_restrack_entry res;
1618 };
1619 
1620 enum ib_raw_packet_caps {
1621 	/* Strip cvlan from incoming packet and report it in the matching work
1622 	 * completion is supported.
1623 	 */
1624 	IB_RAW_PACKET_CAP_CVLAN_STRIPPING	= (1 << 0),
1625 	/* Scatter FCS field of an incoming packet to host memory is supported.
1626 	 */
1627 	IB_RAW_PACKET_CAP_SCATTER_FCS		= (1 << 1),
1628 	/* Checksum offloads are supported (for both send and receive). */
1629 	IB_RAW_PACKET_CAP_IP_CSUM		= (1 << 2),
1630 	/* When a packet is received for an RQ with no receive WQEs, the
1631 	 * packet processing is delayed.
1632 	 */
1633 	IB_RAW_PACKET_CAP_DELAY_DROP		= (1 << 3),
1634 };
1635 
1636 enum ib_wq_type {
1637 	IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1638 };
1639 
1640 enum ib_wq_state {
1641 	IB_WQS_RESET,
1642 	IB_WQS_RDY,
1643 	IB_WQS_ERR
1644 };
1645 
1646 struct ib_wq {
1647 	struct ib_device       *device;
1648 	struct ib_uwq_object   *uobject;
1649 	void		    *wq_context;
1650 	void		    (*event_handler)(struct ib_event *, void *);
1651 	struct ib_pd	       *pd;
1652 	struct ib_cq	       *cq;
1653 	u32		wq_num;
1654 	enum ib_wq_state       state;
1655 	enum ib_wq_type	wq_type;
1656 	atomic_t		usecnt;
1657 };
1658 
1659 enum ib_wq_flags {
1660 	IB_WQ_FLAGS_CVLAN_STRIPPING	= IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1661 	IB_WQ_FLAGS_SCATTER_FCS		= IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1662 	IB_WQ_FLAGS_DELAY_DROP		= IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1663 	IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1664 				IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1665 };
1666 
1667 struct ib_wq_init_attr {
1668 	void		       *wq_context;
1669 	enum ib_wq_type	wq_type;
1670 	u32		max_wr;
1671 	u32		max_sge;
1672 	struct	ib_cq	       *cq;
1673 	void		    (*event_handler)(struct ib_event *, void *);
1674 	u32		create_flags; /* Use enum ib_wq_flags */
1675 };
1676 
1677 enum ib_wq_attr_mask {
1678 	IB_WQ_STATE		= 1 << 0,
1679 	IB_WQ_CUR_STATE		= 1 << 1,
1680 	IB_WQ_FLAGS		= 1 << 2,
1681 };
1682 
1683 struct ib_wq_attr {
1684 	enum	ib_wq_state	wq_state;
1685 	enum	ib_wq_state	curr_wq_state;
1686 	u32			flags; /* Use enum ib_wq_flags */
1687 	u32			flags_mask; /* Use enum ib_wq_flags */
1688 };
1689 
1690 struct ib_rwq_ind_table {
1691 	struct ib_device	*device;
1692 	struct ib_uobject      *uobject;
1693 	atomic_t		usecnt;
1694 	u32		ind_tbl_num;
1695 	u32		log_ind_tbl_size;
1696 	struct ib_wq	**ind_tbl;
1697 };
1698 
1699 struct ib_rwq_ind_table_init_attr {
1700 	u32		log_ind_tbl_size;
1701 	/* Each entry is a pointer to Receive Work Queue */
1702 	struct ib_wq	**ind_tbl;
1703 };
1704 
1705 enum port_pkey_state {
1706 	IB_PORT_PKEY_NOT_VALID = 0,
1707 	IB_PORT_PKEY_VALID = 1,
1708 	IB_PORT_PKEY_LISTED = 2,
1709 };
1710 
1711 struct ib_qp_security;
1712 
1713 struct ib_port_pkey {
1714 	enum port_pkey_state	state;
1715 	u16			pkey_index;
1716 	u32			port_num;
1717 	struct list_head	qp_list;
1718 	struct list_head	to_error_list;
1719 	struct ib_qp_security  *sec;
1720 };
1721 
1722 struct ib_ports_pkeys {
1723 	struct ib_port_pkey	main;
1724 	struct ib_port_pkey	alt;
1725 };
1726 
1727 struct ib_qp_security {
1728 	struct ib_qp	       *qp;
1729 	struct ib_device       *dev;
1730 	/* Hold this mutex when changing port and pkey settings. */
1731 	struct mutex		mutex;
1732 	struct ib_ports_pkeys  *ports_pkeys;
1733 	/* A list of all open shared QP handles.  Required to enforce security
1734 	 * properly for all users of a shared QP.
1735 	 */
1736 	struct list_head        shared_qp_list;
1737 	void                   *security;
1738 	bool			destroying;
1739 	atomic_t		error_list_count;
1740 	struct completion	error_complete;
1741 	int			error_comps_pending;
1742 };
1743 
1744 /*
1745  * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1746  * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1747  */
1748 struct ib_qp {
1749 	struct ib_device       *device;
1750 	struct ib_pd	       *pd;
1751 	struct ib_cq	       *send_cq;
1752 	struct ib_cq	       *recv_cq;
1753 	spinlock_t		mr_lock;
1754 	int			mrs_used;
1755 	struct list_head	rdma_mrs;
1756 	struct list_head	sig_mrs;
1757 	struct ib_srq	       *srq;
1758 	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1759 	struct list_head	xrcd_list;
1760 
1761 	/* count times opened, mcast attaches, flow attaches */
1762 	atomic_t		usecnt;
1763 	struct list_head	open_list;
1764 	struct ib_qp           *real_qp;
1765 	struct ib_uqp_object   *uobject;
1766 	void                  (*event_handler)(struct ib_event *, void *);
1767 	void		       *qp_context;
1768 	/* sgid_attrs associated with the AV's */
1769 	const struct ib_gid_attr *av_sgid_attr;
1770 	const struct ib_gid_attr *alt_path_sgid_attr;
1771 	u32			qp_num;
1772 	u32			max_write_sge;
1773 	u32			max_read_sge;
1774 	enum ib_qp_type		qp_type;
1775 	struct ib_rwq_ind_table *rwq_ind_tbl;
1776 	struct ib_qp_security  *qp_sec;
1777 	u32			port;
1778 
1779 	bool			integrity_en;
1780 	/*
1781 	 * Implementation details of the RDMA core, don't use in drivers:
1782 	 */
1783 	struct rdma_restrack_entry     res;
1784 
1785 	/* The counter the qp is bind to */
1786 	struct rdma_counter    *counter;
1787 };
1788 
1789 struct ib_dm {
1790 	struct ib_device  *device;
1791 	u32		   length;
1792 	u32		   flags;
1793 	struct ib_uobject *uobject;
1794 	atomic_t	   usecnt;
1795 };
1796 
1797 struct ib_mr {
1798 	struct ib_device  *device;
1799 	struct ib_pd	  *pd;
1800 	u32		   lkey;
1801 	u32		   rkey;
1802 	u64		   iova;
1803 	u64		   length;
1804 	unsigned int	   page_size;
1805 	enum ib_mr_type	   type;
1806 	bool		   need_inval;
1807 	union {
1808 		struct ib_uobject	*uobject;	/* user */
1809 		struct list_head	qp_entry;	/* FR */
1810 	};
1811 
1812 	struct ib_dm      *dm;
1813 	struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1814 	/*
1815 	 * Implementation details of the RDMA core, don't use in drivers:
1816 	 */
1817 	struct rdma_restrack_entry res;
1818 };
1819 
1820 struct ib_mw {
1821 	struct ib_device	*device;
1822 	struct ib_pd		*pd;
1823 	struct ib_uobject	*uobject;
1824 	u32			rkey;
1825 	enum ib_mw_type         type;
1826 };
1827 
1828 /* Supported steering options */
1829 enum ib_flow_attr_type {
1830 	/* steering according to rule specifications */
1831 	IB_FLOW_ATTR_NORMAL		= 0x0,
1832 	/* default unicast and multicast rule -
1833 	 * receive all Eth traffic which isn't steered to any QP
1834 	 */
1835 	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1836 	/* default multicast rule -
1837 	 * receive all Eth multicast traffic which isn't steered to any QP
1838 	 */
1839 	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1840 	/* sniffer rule - receive all port traffic */
1841 	IB_FLOW_ATTR_SNIFFER		= 0x3
1842 };
1843 
1844 /* Supported steering header types */
1845 enum ib_flow_spec_type {
1846 	/* L2 headers*/
1847 	IB_FLOW_SPEC_ETH		= 0x20,
1848 	IB_FLOW_SPEC_IB			= 0x22,
1849 	/* L3 header*/
1850 	IB_FLOW_SPEC_IPV4		= 0x30,
1851 	IB_FLOW_SPEC_IPV6		= 0x31,
1852 	IB_FLOW_SPEC_ESP                = 0x34,
1853 	/* L4 headers*/
1854 	IB_FLOW_SPEC_TCP		= 0x40,
1855 	IB_FLOW_SPEC_UDP		= 0x41,
1856 	IB_FLOW_SPEC_VXLAN_TUNNEL	= 0x50,
1857 	IB_FLOW_SPEC_GRE		= 0x51,
1858 	IB_FLOW_SPEC_MPLS		= 0x60,
1859 	IB_FLOW_SPEC_INNER		= 0x100,
1860 	/* Actions */
1861 	IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1862 	IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1863 	IB_FLOW_SPEC_ACTION_HANDLE	= 0x1002,
1864 	IB_FLOW_SPEC_ACTION_COUNT       = 0x1003,
1865 };
1866 #define IB_FLOW_SPEC_LAYER_MASK	0xF0
1867 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1868 
1869 enum ib_flow_flags {
1870 	IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1871 	IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1872 	IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 3  /* Must be last */
1873 };
1874 
1875 struct ib_flow_eth_filter {
1876 	u8	dst_mac[6];
1877 	u8	src_mac[6];
1878 	__be16	ether_type;
1879 	__be16	vlan_tag;
1880 	/* Must be last */
1881 	u8	real_sz[];
1882 };
1883 
1884 struct ib_flow_spec_eth {
1885 	u32			  type;
1886 	u16			  size;
1887 	struct ib_flow_eth_filter val;
1888 	struct ib_flow_eth_filter mask;
1889 };
1890 
1891 struct ib_flow_ib_filter {
1892 	__be16 dlid;
1893 	__u8   sl;
1894 	/* Must be last */
1895 	u8	real_sz[];
1896 };
1897 
1898 struct ib_flow_spec_ib {
1899 	u32			 type;
1900 	u16			 size;
1901 	struct ib_flow_ib_filter val;
1902 	struct ib_flow_ib_filter mask;
1903 };
1904 
1905 /* IPv4 header flags */
1906 enum ib_ipv4_flags {
1907 	IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1908 	IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1909 				    last have this flag set */
1910 };
1911 
1912 struct ib_flow_ipv4_filter {
1913 	__be32	src_ip;
1914 	__be32	dst_ip;
1915 	u8	proto;
1916 	u8	tos;
1917 	u8	ttl;
1918 	u8	flags;
1919 	/* Must be last */
1920 	u8	real_sz[];
1921 };
1922 
1923 struct ib_flow_spec_ipv4 {
1924 	u32			   type;
1925 	u16			   size;
1926 	struct ib_flow_ipv4_filter val;
1927 	struct ib_flow_ipv4_filter mask;
1928 };
1929 
1930 struct ib_flow_ipv6_filter {
1931 	u8	src_ip[16];
1932 	u8	dst_ip[16];
1933 	__be32	flow_label;
1934 	u8	next_hdr;
1935 	u8	traffic_class;
1936 	u8	hop_limit;
1937 	/* Must be last */
1938 	u8	real_sz[];
1939 };
1940 
1941 struct ib_flow_spec_ipv6 {
1942 	u32			   type;
1943 	u16			   size;
1944 	struct ib_flow_ipv6_filter val;
1945 	struct ib_flow_ipv6_filter mask;
1946 };
1947 
1948 struct ib_flow_tcp_udp_filter {
1949 	__be16	dst_port;
1950 	__be16	src_port;
1951 	/* Must be last */
1952 	u8	real_sz[];
1953 };
1954 
1955 struct ib_flow_spec_tcp_udp {
1956 	u32			      type;
1957 	u16			      size;
1958 	struct ib_flow_tcp_udp_filter val;
1959 	struct ib_flow_tcp_udp_filter mask;
1960 };
1961 
1962 struct ib_flow_tunnel_filter {
1963 	__be32	tunnel_id;
1964 	u8	real_sz[];
1965 };
1966 
1967 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1968  * the tunnel_id from val has the vni value
1969  */
1970 struct ib_flow_spec_tunnel {
1971 	u32			      type;
1972 	u16			      size;
1973 	struct ib_flow_tunnel_filter  val;
1974 	struct ib_flow_tunnel_filter  mask;
1975 };
1976 
1977 struct ib_flow_esp_filter {
1978 	__be32	spi;
1979 	__be32  seq;
1980 	/* Must be last */
1981 	u8	real_sz[];
1982 };
1983 
1984 struct ib_flow_spec_esp {
1985 	u32                           type;
1986 	u16			      size;
1987 	struct ib_flow_esp_filter     val;
1988 	struct ib_flow_esp_filter     mask;
1989 };
1990 
1991 struct ib_flow_gre_filter {
1992 	__be16 c_ks_res0_ver;
1993 	__be16 protocol;
1994 	__be32 key;
1995 	/* Must be last */
1996 	u8	real_sz[];
1997 };
1998 
1999 struct ib_flow_spec_gre {
2000 	u32                           type;
2001 	u16			      size;
2002 	struct ib_flow_gre_filter     val;
2003 	struct ib_flow_gre_filter     mask;
2004 };
2005 
2006 struct ib_flow_mpls_filter {
2007 	__be32 tag;
2008 	/* Must be last */
2009 	u8	real_sz[];
2010 };
2011 
2012 struct ib_flow_spec_mpls {
2013 	u32                           type;
2014 	u16			      size;
2015 	struct ib_flow_mpls_filter     val;
2016 	struct ib_flow_mpls_filter     mask;
2017 };
2018 
2019 struct ib_flow_spec_action_tag {
2020 	enum ib_flow_spec_type	      type;
2021 	u16			      size;
2022 	u32                           tag_id;
2023 };
2024 
2025 struct ib_flow_spec_action_drop {
2026 	enum ib_flow_spec_type	      type;
2027 	u16			      size;
2028 };
2029 
2030 struct ib_flow_spec_action_handle {
2031 	enum ib_flow_spec_type	      type;
2032 	u16			      size;
2033 	struct ib_flow_action	     *act;
2034 };
2035 
2036 enum ib_counters_description {
2037 	IB_COUNTER_PACKETS,
2038 	IB_COUNTER_BYTES,
2039 };
2040 
2041 struct ib_flow_spec_action_count {
2042 	enum ib_flow_spec_type type;
2043 	u16 size;
2044 	struct ib_counters *counters;
2045 };
2046 
2047 union ib_flow_spec {
2048 	struct {
2049 		u32			type;
2050 		u16			size;
2051 	};
2052 	struct ib_flow_spec_eth		eth;
2053 	struct ib_flow_spec_ib		ib;
2054 	struct ib_flow_spec_ipv4        ipv4;
2055 	struct ib_flow_spec_tcp_udp	tcp_udp;
2056 	struct ib_flow_spec_ipv6        ipv6;
2057 	struct ib_flow_spec_tunnel      tunnel;
2058 	struct ib_flow_spec_esp		esp;
2059 	struct ib_flow_spec_gre		gre;
2060 	struct ib_flow_spec_mpls	mpls;
2061 	struct ib_flow_spec_action_tag  flow_tag;
2062 	struct ib_flow_spec_action_drop drop;
2063 	struct ib_flow_spec_action_handle action;
2064 	struct ib_flow_spec_action_count flow_count;
2065 };
2066 
2067 struct ib_flow_attr {
2068 	enum ib_flow_attr_type type;
2069 	u16	     size;
2070 	u16	     priority;
2071 	u32	     flags;
2072 	u8	     num_of_specs;
2073 	u32	     port;
2074 	union ib_flow_spec flows[];
2075 };
2076 
2077 struct ib_flow {
2078 	struct ib_qp		*qp;
2079 	struct ib_device	*device;
2080 	struct ib_uobject	*uobject;
2081 };
2082 
2083 enum ib_flow_action_type {
2084 	IB_FLOW_ACTION_UNSPECIFIED,
2085 	IB_FLOW_ACTION_ESP = 1,
2086 };
2087 
2088 struct ib_flow_action_attrs_esp_keymats {
2089 	enum ib_uverbs_flow_action_esp_keymat			protocol;
2090 	union {
2091 		struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2092 	} keymat;
2093 };
2094 
2095 struct ib_flow_action_attrs_esp_replays {
2096 	enum ib_uverbs_flow_action_esp_replay			protocol;
2097 	union {
2098 		struct ib_uverbs_flow_action_esp_replay_bmp	bmp;
2099 	} replay;
2100 };
2101 
2102 enum ib_flow_action_attrs_esp_flags {
2103 	/* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2104 	 * This is done in order to share the same flags between user-space and
2105 	 * kernel and spare an unnecessary translation.
2106 	 */
2107 
2108 	/* Kernel flags */
2109 	IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED	= 1ULL << 32,
2110 	IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS	= 1ULL << 33,
2111 };
2112 
2113 struct ib_flow_spec_list {
2114 	struct ib_flow_spec_list	*next;
2115 	union ib_flow_spec		spec;
2116 };
2117 
2118 struct ib_flow_action_attrs_esp {
2119 	struct ib_flow_action_attrs_esp_keymats		*keymat;
2120 	struct ib_flow_action_attrs_esp_replays		*replay;
2121 	struct ib_flow_spec_list			*encap;
2122 	/* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2123 	 * Value of 0 is a valid value.
2124 	 */
2125 	u32						esn;
2126 	u32						spi;
2127 	u32						seq;
2128 	u32						tfc_pad;
2129 	/* Use enum ib_flow_action_attrs_esp_flags */
2130 	u64						flags;
2131 	u64						hard_limit_pkts;
2132 };
2133 
2134 struct ib_flow_action {
2135 	struct ib_device		*device;
2136 	struct ib_uobject		*uobject;
2137 	enum ib_flow_action_type	type;
2138 	atomic_t			usecnt;
2139 };
2140 
2141 struct ib_mad;
2142 struct ib_grh;
2143 
2144 enum ib_process_mad_flags {
2145 	IB_MAD_IGNORE_MKEY	= 1,
2146 	IB_MAD_IGNORE_BKEY	= 2,
2147 	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2148 };
2149 
2150 enum ib_mad_result {
2151 	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
2152 	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
2153 	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
2154 	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
2155 };
2156 
2157 struct ib_port_cache {
2158 	u64		      subnet_prefix;
2159 	struct ib_pkey_cache  *pkey;
2160 	struct ib_gid_table   *gid;
2161 	u8                     lmc;
2162 	enum ib_port_state     port_state;
2163 };
2164 
2165 struct ib_port_immutable {
2166 	int                           pkey_tbl_len;
2167 	int                           gid_tbl_len;
2168 	u32                           core_cap_flags;
2169 	u32                           max_mad_size;
2170 };
2171 
2172 struct ib_port_data {
2173 	struct ib_device *ib_dev;
2174 
2175 	struct ib_port_immutable immutable;
2176 
2177 	spinlock_t pkey_list_lock;
2178 	struct list_head pkey_list;
2179 
2180 	struct ib_port_cache cache;
2181 
2182 	spinlock_t netdev_lock;
2183 	struct net_device __rcu *netdev;
2184 	struct hlist_node ndev_hash_link;
2185 	struct rdma_port_counter port_counter;
2186 	struct rdma_hw_stats *hw_stats;
2187 };
2188 
2189 /* rdma netdev type - specifies protocol type */
2190 enum rdma_netdev_t {
2191 	RDMA_NETDEV_OPA_VNIC,
2192 	RDMA_NETDEV_IPOIB,
2193 };
2194 
2195 /**
2196  * struct rdma_netdev - rdma netdev
2197  * For cases where netstack interfacing is required.
2198  */
2199 struct rdma_netdev {
2200 	void              *clnt_priv;
2201 	struct ib_device  *hca;
2202 	u32		   port_num;
2203 	int                mtu;
2204 
2205 	/*
2206 	 * cleanup function must be specified.
2207 	 * FIXME: This is only used for OPA_VNIC and that usage should be
2208 	 * removed too.
2209 	 */
2210 	void (*free_rdma_netdev)(struct net_device *netdev);
2211 
2212 	/* control functions */
2213 	void (*set_id)(struct net_device *netdev, int id);
2214 	/* send packet */
2215 	int (*send)(struct net_device *dev, struct sk_buff *skb,
2216 		    struct ib_ah *address, u32 dqpn);
2217 	/* multicast */
2218 	int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2219 			    union ib_gid *gid, u16 mlid,
2220 			    int set_qkey, u32 qkey);
2221 	int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2222 			    union ib_gid *gid, u16 mlid);
2223 	/* timeout */
2224 	void (*tx_timeout)(struct net_device *dev, unsigned int txqueue);
2225 };
2226 
2227 struct rdma_netdev_alloc_params {
2228 	size_t sizeof_priv;
2229 	unsigned int txqs;
2230 	unsigned int rxqs;
2231 	void *param;
2232 
2233 	int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num,
2234 				      struct net_device *netdev, void *param);
2235 };
2236 
2237 struct ib_odp_counters {
2238 	atomic64_t faults;
2239 	atomic64_t invalidations;
2240 	atomic64_t prefetch;
2241 };
2242 
2243 struct ib_counters {
2244 	struct ib_device	*device;
2245 	struct ib_uobject	*uobject;
2246 	/* num of objects attached */
2247 	atomic_t	usecnt;
2248 };
2249 
2250 struct ib_counters_read_attr {
2251 	u64	*counters_buff;
2252 	u32	ncounters;
2253 	u32	flags; /* use enum ib_read_counters_flags */
2254 };
2255 
2256 struct uverbs_attr_bundle;
2257 struct iw_cm_id;
2258 struct iw_cm_conn_param;
2259 
2260 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member)                      \
2261 	.size_##ib_struct =                                                    \
2262 		(sizeof(struct drv_struct) +                                   \
2263 		 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) +      \
2264 		 BUILD_BUG_ON_ZERO(                                            \
2265 			 !__same_type(((struct drv_struct *)NULL)->member,     \
2266 				      struct ib_struct)))
2267 
2268 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp)                         \
2269 	((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp))
2270 
2271 #define rdma_zalloc_drv_obj(ib_dev, ib_type)                                   \
2272 	rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2273 
2274 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2275 
2276 struct rdma_user_mmap_entry {
2277 	struct kref ref;
2278 	struct ib_ucontext *ucontext;
2279 	unsigned long start_pgoff;
2280 	size_t npages;
2281 	bool driver_removed;
2282 };
2283 
2284 /* Return the offset (in bytes) the user should pass to libc's mmap() */
2285 static inline u64
rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry * entry)2286 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2287 {
2288 	return (u64)entry->start_pgoff << PAGE_SHIFT;
2289 }
2290 
2291 /**
2292  * struct ib_device_ops - InfiniBand device operations
2293  * This structure defines all the InfiniBand device operations, providers will
2294  * need to define the supported operations, otherwise they will be set to null.
2295  */
2296 struct ib_device_ops {
2297 	struct module *owner;
2298 	enum rdma_driver_id driver_id;
2299 	u32 uverbs_abi_ver;
2300 	unsigned int uverbs_no_driver_id_binding:1;
2301 
2302 	int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2303 			 const struct ib_send_wr **bad_send_wr);
2304 	int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2305 			 const struct ib_recv_wr **bad_recv_wr);
2306 	void (*drain_rq)(struct ib_qp *qp);
2307 	void (*drain_sq)(struct ib_qp *qp);
2308 	int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2309 	int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2310 	int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2311 	int (*post_srq_recv)(struct ib_srq *srq,
2312 			     const struct ib_recv_wr *recv_wr,
2313 			     const struct ib_recv_wr **bad_recv_wr);
2314 	int (*process_mad)(struct ib_device *device, int process_mad_flags,
2315 			   u32 port_num, const struct ib_wc *in_wc,
2316 			   const struct ib_grh *in_grh,
2317 			   const struct ib_mad *in_mad, struct ib_mad *out_mad,
2318 			   size_t *out_mad_size, u16 *out_mad_pkey_index);
2319 	int (*query_device)(struct ib_device *device,
2320 			    struct ib_device_attr *device_attr,
2321 			    struct ib_udata *udata);
2322 	int (*modify_device)(struct ib_device *device, int device_modify_mask,
2323 			     struct ib_device_modify *device_modify);
2324 	void (*get_dev_fw_str)(struct ib_device *device, char *str);
2325 	const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2326 						     int comp_vector);
2327 	int (*query_port)(struct ib_device *device, u32 port_num,
2328 			  struct ib_port_attr *port_attr);
2329 	int (*modify_port)(struct ib_device *device, u32 port_num,
2330 			   int port_modify_mask,
2331 			   struct ib_port_modify *port_modify);
2332 	/**
2333 	 * The following mandatory functions are used only at device
2334 	 * registration.  Keep functions such as these at the end of this
2335 	 * structure to avoid cache line misses when accessing struct ib_device
2336 	 * in fast paths.
2337 	 */
2338 	int (*get_port_immutable)(struct ib_device *device, u32 port_num,
2339 				  struct ib_port_immutable *immutable);
2340 	enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2341 					       u32 port_num);
2342 	/**
2343 	 * When calling get_netdev, the HW vendor's driver should return the
2344 	 * net device of device @device at port @port_num or NULL if such
2345 	 * a net device doesn't exist. The vendor driver should call dev_hold
2346 	 * on this net device. The HW vendor's device driver must guarantee
2347 	 * that this function returns NULL before the net device has finished
2348 	 * NETDEV_UNREGISTER state.
2349 	 */
2350 	struct net_device *(*get_netdev)(struct ib_device *device,
2351 					 u32 port_num);
2352 	/**
2353 	 * rdma netdev operation
2354 	 *
2355 	 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2356 	 * must return -EOPNOTSUPP if it doesn't support the specified type.
2357 	 */
2358 	struct net_device *(*alloc_rdma_netdev)(
2359 		struct ib_device *device, u32 port_num, enum rdma_netdev_t type,
2360 		const char *name, unsigned char name_assign_type,
2361 		void (*setup)(struct net_device *));
2362 
2363 	int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num,
2364 				      enum rdma_netdev_t type,
2365 				      struct rdma_netdev_alloc_params *params);
2366 	/**
2367 	 * query_gid should be return GID value for @device, when @port_num
2368 	 * link layer is either IB or iWarp. It is no-op if @port_num port
2369 	 * is RoCE link layer.
2370 	 */
2371 	int (*query_gid)(struct ib_device *device, u32 port_num, int index,
2372 			 union ib_gid *gid);
2373 	/**
2374 	 * When calling add_gid, the HW vendor's driver should add the gid
2375 	 * of device of port at gid index available at @attr. Meta-info of
2376 	 * that gid (for example, the network device related to this gid) is
2377 	 * available at @attr. @context allows the HW vendor driver to store
2378 	 * extra information together with a GID entry. The HW vendor driver may
2379 	 * allocate memory to contain this information and store it in @context
2380 	 * when a new GID entry is written to. Params are consistent until the
2381 	 * next call of add_gid or delete_gid. The function should return 0 on
2382 	 * success or error otherwise. The function could be called
2383 	 * concurrently for different ports. This function is only called when
2384 	 * roce_gid_table is used.
2385 	 */
2386 	int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2387 	/**
2388 	 * When calling del_gid, the HW vendor's driver should delete the
2389 	 * gid of device @device at gid index gid_index of port port_num
2390 	 * available in @attr.
2391 	 * Upon the deletion of a GID entry, the HW vendor must free any
2392 	 * allocated memory. The caller will clear @context afterwards.
2393 	 * This function is only called when roce_gid_table is used.
2394 	 */
2395 	int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2396 	int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index,
2397 			  u16 *pkey);
2398 	int (*alloc_ucontext)(struct ib_ucontext *context,
2399 			      struct ib_udata *udata);
2400 	void (*dealloc_ucontext)(struct ib_ucontext *context);
2401 	int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2402 	/**
2403 	 * This will be called once refcount of an entry in mmap_xa reaches
2404 	 * zero. The type of the memory that was mapped may differ between
2405 	 * entries and is opaque to the rdma_user_mmap interface.
2406 	 * Therefore needs to be implemented by the driver in mmap_free.
2407 	 */
2408 	void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2409 	void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2410 	int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2411 	int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2412 	int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2413 			 struct ib_udata *udata);
2414 	int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2415 			      struct ib_udata *udata);
2416 	int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2417 	int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2418 	int (*destroy_ah)(struct ib_ah *ah, u32 flags);
2419 	int (*create_srq)(struct ib_srq *srq,
2420 			  struct ib_srq_init_attr *srq_init_attr,
2421 			  struct ib_udata *udata);
2422 	int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2423 			  enum ib_srq_attr_mask srq_attr_mask,
2424 			  struct ib_udata *udata);
2425 	int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2426 	int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2427 	struct ib_qp *(*create_qp)(struct ib_pd *pd,
2428 				   struct ib_qp_init_attr *qp_init_attr,
2429 				   struct ib_udata *udata);
2430 	int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2431 			 int qp_attr_mask, struct ib_udata *udata);
2432 	int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2433 			int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2434 	int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2435 	int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2436 			 struct ib_udata *udata);
2437 	int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2438 	int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2439 	int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2440 	struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2441 	struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2442 				     u64 virt_addr, int mr_access_flags,
2443 				     struct ib_udata *udata);
2444 	struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset,
2445 					    u64 length, u64 virt_addr, int fd,
2446 					    int mr_access_flags,
2447 					    struct ib_udata *udata);
2448 	struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start,
2449 				       u64 length, u64 virt_addr,
2450 				       int mr_access_flags, struct ib_pd *pd,
2451 				       struct ib_udata *udata);
2452 	int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2453 	struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2454 				  u32 max_num_sg);
2455 	struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2456 					    u32 max_num_data_sg,
2457 					    u32 max_num_meta_sg);
2458 	int (*advise_mr)(struct ib_pd *pd,
2459 			 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2460 			 struct ib_sge *sg_list, u32 num_sge,
2461 			 struct uverbs_attr_bundle *attrs);
2462 	int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2463 			 unsigned int *sg_offset);
2464 	int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2465 			       struct ib_mr_status *mr_status);
2466 	int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
2467 	int (*dealloc_mw)(struct ib_mw *mw);
2468 	int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2469 	int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2470 	int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2471 	int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2472 	struct ib_flow *(*create_flow)(struct ib_qp *qp,
2473 				       struct ib_flow_attr *flow_attr,
2474 				       struct ib_udata *udata);
2475 	int (*destroy_flow)(struct ib_flow *flow_id);
2476 	struct ib_flow_action *(*create_flow_action_esp)(
2477 		struct ib_device *device,
2478 		const struct ib_flow_action_attrs_esp *attr,
2479 		struct uverbs_attr_bundle *attrs);
2480 	int (*destroy_flow_action)(struct ib_flow_action *action);
2481 	int (*modify_flow_action_esp)(
2482 		struct ib_flow_action *action,
2483 		const struct ib_flow_action_attrs_esp *attr,
2484 		struct uverbs_attr_bundle *attrs);
2485 	int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port,
2486 				 int state);
2487 	int (*get_vf_config)(struct ib_device *device, int vf, u32 port,
2488 			     struct ifla_vf_info *ivf);
2489 	int (*get_vf_stats)(struct ib_device *device, int vf, u32 port,
2490 			    struct ifla_vf_stats *stats);
2491 	int (*get_vf_guid)(struct ib_device *device, int vf, u32 port,
2492 			    struct ifla_vf_guid *node_guid,
2493 			    struct ifla_vf_guid *port_guid);
2494 	int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid,
2495 			   int type);
2496 	struct ib_wq *(*create_wq)(struct ib_pd *pd,
2497 				   struct ib_wq_init_attr *init_attr,
2498 				   struct ib_udata *udata);
2499 	int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2500 	int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2501 			 u32 wq_attr_mask, struct ib_udata *udata);
2502 	int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
2503 				    struct ib_rwq_ind_table_init_attr *init_attr,
2504 				    struct ib_udata *udata);
2505 	int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2506 	struct ib_dm *(*alloc_dm)(struct ib_device *device,
2507 				  struct ib_ucontext *context,
2508 				  struct ib_dm_alloc_attr *attr,
2509 				  struct uverbs_attr_bundle *attrs);
2510 	int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2511 	struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2512 				   struct ib_dm_mr_attr *attr,
2513 				   struct uverbs_attr_bundle *attrs);
2514 	int (*create_counters)(struct ib_counters *counters,
2515 			       struct uverbs_attr_bundle *attrs);
2516 	int (*destroy_counters)(struct ib_counters *counters);
2517 	int (*read_counters)(struct ib_counters *counters,
2518 			     struct ib_counters_read_attr *counters_read_attr,
2519 			     struct uverbs_attr_bundle *attrs);
2520 	int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2521 			    int data_sg_nents, unsigned int *data_sg_offset,
2522 			    struct scatterlist *meta_sg, int meta_sg_nents,
2523 			    unsigned int *meta_sg_offset);
2524 
2525 	/**
2526 	 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2527 	 *   driver initialized data.  The struct is kfree()'ed by the sysfs
2528 	 *   core when the device is removed.  A lifespan of -1 in the return
2529 	 *   struct tells the core to set a default lifespan.
2530 	 */
2531 	struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2532 						u32 port_num);
2533 	/**
2534 	 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2535 	 * @index - The index in the value array we wish to have updated, or
2536 	 *   num_counters if we want all stats updated
2537 	 * Return codes -
2538 	 *   < 0 - Error, no counters updated
2539 	 *   index - Updated the single counter pointed to by index
2540 	 *   num_counters - Updated all counters (will reset the timestamp
2541 	 *     and prevent further calls for lifespan milliseconds)
2542 	 * Drivers are allowed to update all counters in leiu of just the
2543 	 *   one given in index at their option
2544 	 */
2545 	int (*get_hw_stats)(struct ib_device *device,
2546 			    struct rdma_hw_stats *stats, u32 port, int index);
2547 	/*
2548 	 * This function is called once for each port when a ib device is
2549 	 * registered.
2550 	 */
2551 	int (*init_port)(struct ib_device *device, u32 port_num,
2552 			 struct kobject *port_sysfs);
2553 	/**
2554 	 * Allows rdma drivers to add their own restrack attributes.
2555 	 */
2556 	int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2557 	int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
2558 	int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
2559 	int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
2560 	int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
2561 	int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
2562 	int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
2563 
2564 	/* Device lifecycle callbacks */
2565 	/*
2566 	 * Called after the device becomes registered, before clients are
2567 	 * attached
2568 	 */
2569 	int (*enable_driver)(struct ib_device *dev);
2570 	/*
2571 	 * This is called as part of ib_dealloc_device().
2572 	 */
2573 	void (*dealloc_driver)(struct ib_device *dev);
2574 
2575 	/* iWarp CM callbacks */
2576 	void (*iw_add_ref)(struct ib_qp *qp);
2577 	void (*iw_rem_ref)(struct ib_qp *qp);
2578 	struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2579 	int (*iw_connect)(struct iw_cm_id *cm_id,
2580 			  struct iw_cm_conn_param *conn_param);
2581 	int (*iw_accept)(struct iw_cm_id *cm_id,
2582 			 struct iw_cm_conn_param *conn_param);
2583 	int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2584 			 u8 pdata_len);
2585 	int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2586 	int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2587 	/**
2588 	 * counter_bind_qp - Bind a QP to a counter.
2589 	 * @counter - The counter to be bound. If counter->id is zero then
2590 	 *   the driver needs to allocate a new counter and set counter->id
2591 	 */
2592 	int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2593 	/**
2594 	 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2595 	 *   counter and bind it onto the default one
2596 	 */
2597 	int (*counter_unbind_qp)(struct ib_qp *qp);
2598 	/**
2599 	 * counter_dealloc -De-allocate the hw counter
2600 	 */
2601 	int (*counter_dealloc)(struct rdma_counter *counter);
2602 	/**
2603 	 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2604 	 * the driver initialized data.
2605 	 */
2606 	struct rdma_hw_stats *(*counter_alloc_stats)(
2607 		struct rdma_counter *counter);
2608 	/**
2609 	 * counter_update_stats - Query the stats value of this counter
2610 	 */
2611 	int (*counter_update_stats)(struct rdma_counter *counter);
2612 
2613 	/**
2614 	 * Allows rdma drivers to add their own restrack attributes
2615 	 * dumped via 'rdma stat' iproute2 command.
2616 	 */
2617 	int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2618 
2619 	/* query driver for its ucontext properties */
2620 	int (*query_ucontext)(struct ib_ucontext *context,
2621 			      struct uverbs_attr_bundle *attrs);
2622 
2623 	DECLARE_RDMA_OBJ_SIZE(ib_ah);
2624 	DECLARE_RDMA_OBJ_SIZE(ib_counters);
2625 	DECLARE_RDMA_OBJ_SIZE(ib_cq);
2626 	DECLARE_RDMA_OBJ_SIZE(ib_mw);
2627 	DECLARE_RDMA_OBJ_SIZE(ib_pd);
2628 	DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
2629 	DECLARE_RDMA_OBJ_SIZE(ib_srq);
2630 	DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2631 	DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
2632 };
2633 
2634 struct ib_core_device {
2635 	/* device must be the first element in structure until,
2636 	 * union of ib_core_device and device exists in ib_device.
2637 	 */
2638 	struct device dev;
2639 	possible_net_t rdma_net;
2640 	struct kobject *ports_kobj;
2641 	struct list_head port_list;
2642 	struct ib_device *owner; /* reach back to owner ib_device */
2643 };
2644 
2645 struct rdma_restrack_root;
2646 struct ib_device {
2647 	/* Do not access @dma_device directly from ULP nor from HW drivers. */
2648 	struct device                *dma_device;
2649 	struct ib_device_ops	     ops;
2650 	char                          name[IB_DEVICE_NAME_MAX];
2651 	struct rcu_head rcu_head;
2652 
2653 	struct list_head              event_handler_list;
2654 	/* Protects event_handler_list */
2655 	struct rw_semaphore event_handler_rwsem;
2656 
2657 	/* Protects QP's event_handler calls and open_qp list */
2658 	spinlock_t qp_open_list_lock;
2659 
2660 	struct rw_semaphore	      client_data_rwsem;
2661 	struct xarray                 client_data;
2662 	struct mutex                  unregistration_lock;
2663 
2664 	/* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2665 	rwlock_t cache_lock;
2666 	/**
2667 	 * port_data is indexed by port number
2668 	 */
2669 	struct ib_port_data *port_data;
2670 
2671 	int			      num_comp_vectors;
2672 
2673 	union {
2674 		struct device		dev;
2675 		struct ib_core_device	coredev;
2676 	};
2677 
2678 	/* First group for device attributes,
2679 	 * Second group for driver provided attributes (optional).
2680 	 * It is NULL terminated array.
2681 	 */
2682 	const struct attribute_group	*groups[3];
2683 
2684 	u64			     uverbs_cmd_mask;
2685 
2686 	char			     node_desc[IB_DEVICE_NODE_DESC_MAX];
2687 	__be64			     node_guid;
2688 	u32			     local_dma_lkey;
2689 	u16                          is_switch:1;
2690 	/* Indicates kernel verbs support, should not be used in drivers */
2691 	u16                          kverbs_provider:1;
2692 	/* CQ adaptive moderation (RDMA DIM) */
2693 	u16                          use_cq_dim:1;
2694 	u8                           node_type;
2695 	u32			     phys_port_cnt;
2696 	struct ib_device_attr        attrs;
2697 	struct attribute_group	     *hw_stats_ag;
2698 	struct rdma_hw_stats         *hw_stats;
2699 
2700 #ifdef CONFIG_CGROUP_RDMA
2701 	struct rdmacg_device         cg_device;
2702 #endif
2703 
2704 	u32                          index;
2705 
2706 	spinlock_t                   cq_pools_lock;
2707 	struct list_head             cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2708 
2709 	struct rdma_restrack_root *res;
2710 
2711 	const struct uapi_definition   *driver_def;
2712 
2713 	/*
2714 	 * Positive refcount indicates that the device is currently
2715 	 * registered and cannot be unregistered.
2716 	 */
2717 	refcount_t refcount;
2718 	struct completion unreg_completion;
2719 	struct work_struct unregistration_work;
2720 
2721 	const struct rdma_link_ops *link_ops;
2722 
2723 	/* Protects compat_devs xarray modifications */
2724 	struct mutex compat_devs_mutex;
2725 	/* Maintains compat devices for each net namespace */
2726 	struct xarray compat_devs;
2727 
2728 	/* Used by iWarp CM */
2729 	char iw_ifname[IFNAMSIZ];
2730 	u32 iw_driver_flags;
2731 	u32 lag_flags;
2732 };
2733 
2734 struct ib_client_nl_info;
2735 struct ib_client {
2736 	const char *name;
2737 	int (*add)(struct ib_device *ibdev);
2738 	void (*remove)(struct ib_device *, void *client_data);
2739 	void (*rename)(struct ib_device *dev, void *client_data);
2740 	int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2741 			   struct ib_client_nl_info *res);
2742 	int (*get_global_nl_info)(struct ib_client_nl_info *res);
2743 
2744 	/* Returns the net_dev belonging to this ib_client and matching the
2745 	 * given parameters.
2746 	 * @dev:	 An RDMA device that the net_dev use for communication.
2747 	 * @port:	 A physical port number on the RDMA device.
2748 	 * @pkey:	 P_Key that the net_dev uses if applicable.
2749 	 * @gid:	 A GID that the net_dev uses to communicate.
2750 	 * @addr:	 An IP address the net_dev is configured with.
2751 	 * @client_data: The device's client data set by ib_set_client_data().
2752 	 *
2753 	 * An ib_client that implements a net_dev on top of RDMA devices
2754 	 * (such as IP over IB) should implement this callback, allowing the
2755 	 * rdma_cm module to find the right net_dev for a given request.
2756 	 *
2757 	 * The caller is responsible for calling dev_put on the returned
2758 	 * netdev. */
2759 	struct net_device *(*get_net_dev_by_params)(
2760 			struct ib_device *dev,
2761 			u32 port,
2762 			u16 pkey,
2763 			const union ib_gid *gid,
2764 			const struct sockaddr *addr,
2765 			void *client_data);
2766 
2767 	refcount_t uses;
2768 	struct completion uses_zero;
2769 	u32 client_id;
2770 
2771 	/* kverbs are not required by the client */
2772 	u8 no_kverbs_req:1;
2773 };
2774 
2775 /*
2776  * IB block DMA iterator
2777  *
2778  * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2779  * to a HW supported page size.
2780  */
2781 struct ib_block_iter {
2782 	/* internal states */
2783 	struct scatterlist *__sg;	/* sg holding the current aligned block */
2784 	dma_addr_t __dma_addr;		/* unaligned DMA address of this block */
2785 	unsigned int __sg_nents;	/* number of SG entries */
2786 	unsigned int __sg_advance;	/* number of bytes to advance in sg in next step */
2787 	unsigned int __pg_bit;		/* alignment of current block */
2788 };
2789 
2790 struct ib_device *_ib_alloc_device(size_t size);
2791 #define ib_alloc_device(drv_struct, member)                                    \
2792 	container_of(_ib_alloc_device(sizeof(struct drv_struct) +              \
2793 				      BUILD_BUG_ON_ZERO(offsetof(              \
2794 					      struct drv_struct, member))),    \
2795 		     struct drv_struct, member)
2796 
2797 void ib_dealloc_device(struct ib_device *device);
2798 
2799 void ib_get_device_fw_str(struct ib_device *device, char *str);
2800 
2801 int ib_register_device(struct ib_device *device, const char *name,
2802 		       struct device *dma_device);
2803 void ib_unregister_device(struct ib_device *device);
2804 void ib_unregister_driver(enum rdma_driver_id driver_id);
2805 void ib_unregister_device_and_put(struct ib_device *device);
2806 void ib_unregister_device_queued(struct ib_device *ib_dev);
2807 
2808 int ib_register_client   (struct ib_client *client);
2809 void ib_unregister_client(struct ib_client *client);
2810 
2811 void __rdma_block_iter_start(struct ib_block_iter *biter,
2812 			     struct scatterlist *sglist,
2813 			     unsigned int nents,
2814 			     unsigned long pgsz);
2815 bool __rdma_block_iter_next(struct ib_block_iter *biter);
2816 
2817 /**
2818  * rdma_block_iter_dma_address - get the aligned dma address of the current
2819  * block held by the block iterator.
2820  * @biter: block iterator holding the memory block
2821  */
2822 static inline dma_addr_t
rdma_block_iter_dma_address(struct ib_block_iter * biter)2823 rdma_block_iter_dma_address(struct ib_block_iter *biter)
2824 {
2825 	return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2826 }
2827 
2828 /**
2829  * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2830  * @sglist: sglist to iterate over
2831  * @biter: block iterator holding the memory block
2832  * @nents: maximum number of sg entries to iterate over
2833  * @pgsz: best HW supported page size to use
2834  *
2835  * Callers may use rdma_block_iter_dma_address() to get each
2836  * blocks aligned DMA address.
2837  */
2838 #define rdma_for_each_block(sglist, biter, nents, pgsz)		\
2839 	for (__rdma_block_iter_start(biter, sglist, nents,	\
2840 				     pgsz);			\
2841 	     __rdma_block_iter_next(biter);)
2842 
2843 /**
2844  * ib_get_client_data - Get IB client context
2845  * @device:Device to get context for
2846  * @client:Client to get context for
2847  *
2848  * ib_get_client_data() returns the client context data set with
2849  * ib_set_client_data(). This can only be called while the client is
2850  * registered to the device, once the ib_client remove() callback returns this
2851  * cannot be called.
2852  */
ib_get_client_data(struct ib_device * device,struct ib_client * client)2853 static inline void *ib_get_client_data(struct ib_device *device,
2854 				       struct ib_client *client)
2855 {
2856 	return xa_load(&device->client_data, client->client_id);
2857 }
2858 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2859 			 void *data);
2860 void ib_set_device_ops(struct ib_device *device,
2861 		       const struct ib_device_ops *ops);
2862 
2863 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2864 		      unsigned long pfn, unsigned long size, pgprot_t prot,
2865 		      struct rdma_user_mmap_entry *entry);
2866 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2867 				struct rdma_user_mmap_entry *entry,
2868 				size_t length);
2869 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2870 				      struct rdma_user_mmap_entry *entry,
2871 				      size_t length, u32 min_pgoff,
2872 				      u32 max_pgoff);
2873 
2874 struct rdma_user_mmap_entry *
2875 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2876 			       unsigned long pgoff);
2877 struct rdma_user_mmap_entry *
2878 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2879 			 struct vm_area_struct *vma);
2880 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2881 
2882 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
2883 
ib_copy_from_udata(void * dest,struct ib_udata * udata,size_t len)2884 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2885 {
2886 	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2887 }
2888 
ib_copy_to_udata(struct ib_udata * udata,void * src,size_t len)2889 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2890 {
2891 	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2892 }
2893 
ib_is_buffer_cleared(const void __user * p,size_t len)2894 static inline bool ib_is_buffer_cleared(const void __user *p,
2895 					size_t len)
2896 {
2897 	bool ret;
2898 	u8 *buf;
2899 
2900 	if (len > USHRT_MAX)
2901 		return false;
2902 
2903 	buf = memdup_user(p, len);
2904 	if (IS_ERR(buf))
2905 		return false;
2906 
2907 	ret = !memchr_inv(buf, 0, len);
2908 	kfree(buf);
2909 	return ret;
2910 }
2911 
ib_is_udata_cleared(struct ib_udata * udata,size_t offset,size_t len)2912 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2913 				       size_t offset,
2914 				       size_t len)
2915 {
2916 	return ib_is_buffer_cleared(udata->inbuf + offset, len);
2917 }
2918 
2919 /**
2920  * ib_modify_qp_is_ok - Check that the supplied attribute mask
2921  * contains all required attributes and no attributes not allowed for
2922  * the given QP state transition.
2923  * @cur_state: Current QP state
2924  * @next_state: Next QP state
2925  * @type: QP type
2926  * @mask: Mask of supplied QP attributes
2927  *
2928  * This function is a helper function that a low-level driver's
2929  * modify_qp method can use to validate the consumer's input.  It
2930  * checks that cur_state and next_state are valid QP states, that a
2931  * transition from cur_state to next_state is allowed by the IB spec,
2932  * and that the attribute mask supplied is allowed for the transition.
2933  */
2934 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2935 			enum ib_qp_type type, enum ib_qp_attr_mask mask);
2936 
2937 void ib_register_event_handler(struct ib_event_handler *event_handler);
2938 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
2939 void ib_dispatch_event(const struct ib_event *event);
2940 
2941 int ib_query_port(struct ib_device *device,
2942 		  u32 port_num, struct ib_port_attr *port_attr);
2943 
2944 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2945 					       u32 port_num);
2946 
2947 /**
2948  * rdma_cap_ib_switch - Check if the device is IB switch
2949  * @device: Device to check
2950  *
2951  * Device driver is responsible for setting is_switch bit on
2952  * in ib_device structure at init time.
2953  *
2954  * Return: true if the device is IB switch.
2955  */
rdma_cap_ib_switch(const struct ib_device * device)2956 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2957 {
2958 	return device->is_switch;
2959 }
2960 
2961 /**
2962  * rdma_start_port - Return the first valid port number for the device
2963  * specified
2964  *
2965  * @device: Device to be checked
2966  *
2967  * Return start port number
2968  */
rdma_start_port(const struct ib_device * device)2969 static inline u32 rdma_start_port(const struct ib_device *device)
2970 {
2971 	return rdma_cap_ib_switch(device) ? 0 : 1;
2972 }
2973 
2974 /**
2975  * rdma_for_each_port - Iterate over all valid port numbers of the IB device
2976  * @device - The struct ib_device * to iterate over
2977  * @iter - The unsigned int to store the port number
2978  */
2979 #define rdma_for_each_port(device, iter)                                       \
2980 	for (iter = rdma_start_port(device +				       \
2981 				    BUILD_BUG_ON_ZERO(!__same_type(u32,	       \
2982 								   iter)));    \
2983 	     iter <= rdma_end_port(device); iter++)
2984 
2985 /**
2986  * rdma_end_port - Return the last valid port number for the device
2987  * specified
2988  *
2989  * @device: Device to be checked
2990  *
2991  * Return last port number
2992  */
rdma_end_port(const struct ib_device * device)2993 static inline u32 rdma_end_port(const struct ib_device *device)
2994 {
2995 	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2996 }
2997 
rdma_is_port_valid(const struct ib_device * device,unsigned int port)2998 static inline int rdma_is_port_valid(const struct ib_device *device,
2999 				     unsigned int port)
3000 {
3001 	return (port >= rdma_start_port(device) &&
3002 		port <= rdma_end_port(device));
3003 }
3004 
rdma_is_grh_required(const struct ib_device * device,u32 port_num)3005 static inline bool rdma_is_grh_required(const struct ib_device *device,
3006 					u32 port_num)
3007 {
3008 	return device->port_data[port_num].immutable.core_cap_flags &
3009 	       RDMA_CORE_PORT_IB_GRH_REQUIRED;
3010 }
3011 
rdma_protocol_ib(const struct ib_device * device,u32 port_num)3012 static inline bool rdma_protocol_ib(const struct ib_device *device,
3013 				    u32 port_num)
3014 {
3015 	return device->port_data[port_num].immutable.core_cap_flags &
3016 	       RDMA_CORE_CAP_PROT_IB;
3017 }
3018 
rdma_protocol_roce(const struct ib_device * device,u32 port_num)3019 static inline bool rdma_protocol_roce(const struct ib_device *device,
3020 				      u32 port_num)
3021 {
3022 	return device->port_data[port_num].immutable.core_cap_flags &
3023 	       (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3024 }
3025 
rdma_protocol_roce_udp_encap(const struct ib_device * device,u32 port_num)3026 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device,
3027 						u32 port_num)
3028 {
3029 	return device->port_data[port_num].immutable.core_cap_flags &
3030 	       RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3031 }
3032 
rdma_protocol_roce_eth_encap(const struct ib_device * device,u32 port_num)3033 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device,
3034 						u32 port_num)
3035 {
3036 	return device->port_data[port_num].immutable.core_cap_flags &
3037 	       RDMA_CORE_CAP_PROT_ROCE;
3038 }
3039 
rdma_protocol_iwarp(const struct ib_device * device,u32 port_num)3040 static inline bool rdma_protocol_iwarp(const struct ib_device *device,
3041 				       u32 port_num)
3042 {
3043 	return device->port_data[port_num].immutable.core_cap_flags &
3044 	       RDMA_CORE_CAP_PROT_IWARP;
3045 }
3046 
rdma_ib_or_roce(const struct ib_device * device,u32 port_num)3047 static inline bool rdma_ib_or_roce(const struct ib_device *device,
3048 				   u32 port_num)
3049 {
3050 	return rdma_protocol_ib(device, port_num) ||
3051 		rdma_protocol_roce(device, port_num);
3052 }
3053 
rdma_protocol_raw_packet(const struct ib_device * device,u32 port_num)3054 static inline bool rdma_protocol_raw_packet(const struct ib_device *device,
3055 					    u32 port_num)
3056 {
3057 	return device->port_data[port_num].immutable.core_cap_flags &
3058 	       RDMA_CORE_CAP_PROT_RAW_PACKET;
3059 }
3060 
rdma_protocol_usnic(const struct ib_device * device,u32 port_num)3061 static inline bool rdma_protocol_usnic(const struct ib_device *device,
3062 				       u32 port_num)
3063 {
3064 	return device->port_data[port_num].immutable.core_cap_flags &
3065 	       RDMA_CORE_CAP_PROT_USNIC;
3066 }
3067 
3068 /**
3069  * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3070  * Management Datagrams.
3071  * @device: Device to check
3072  * @port_num: Port number to check
3073  *
3074  * Management Datagrams (MAD) are a required part of the InfiniBand
3075  * specification and are supported on all InfiniBand devices.  A slightly
3076  * extended version are also supported on OPA interfaces.
3077  *
3078  * Return: true if the port supports sending/receiving of MAD packets.
3079  */
rdma_cap_ib_mad(const struct ib_device * device,u32 port_num)3080 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num)
3081 {
3082 	return device->port_data[port_num].immutable.core_cap_flags &
3083 	       RDMA_CORE_CAP_IB_MAD;
3084 }
3085 
3086 /**
3087  * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3088  * Management Datagrams.
3089  * @device: Device to check
3090  * @port_num: Port number to check
3091  *
3092  * Intel OmniPath devices extend and/or replace the InfiniBand Management
3093  * datagrams with their own versions.  These OPA MADs share many but not all of
3094  * the characteristics of InfiniBand MADs.
3095  *
3096  * OPA MADs differ in the following ways:
3097  *
3098  *    1) MADs are variable size up to 2K
3099  *       IBTA defined MADs remain fixed at 256 bytes
3100  *    2) OPA SMPs must carry valid PKeys
3101  *    3) OPA SMP packets are a different format
3102  *
3103  * Return: true if the port supports OPA MAD packet formats.
3104  */
rdma_cap_opa_mad(struct ib_device * device,u32 port_num)3105 static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num)
3106 {
3107 	return device->port_data[port_num].immutable.core_cap_flags &
3108 		RDMA_CORE_CAP_OPA_MAD;
3109 }
3110 
3111 /**
3112  * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3113  * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3114  * @device: Device to check
3115  * @port_num: Port number to check
3116  *
3117  * Each InfiniBand node is required to provide a Subnet Management Agent
3118  * that the subnet manager can access.  Prior to the fabric being fully
3119  * configured by the subnet manager, the SMA is accessed via a well known
3120  * interface called the Subnet Management Interface (SMI).  This interface
3121  * uses directed route packets to communicate with the SM to get around the
3122  * chicken and egg problem of the SM needing to know what's on the fabric
3123  * in order to configure the fabric, and needing to configure the fabric in
3124  * order to send packets to the devices on the fabric.  These directed
3125  * route packets do not need the fabric fully configured in order to reach
3126  * their destination.  The SMI is the only method allowed to send
3127  * directed route packets on an InfiniBand fabric.
3128  *
3129  * Return: true if the port provides an SMI.
3130  */
rdma_cap_ib_smi(const struct ib_device * device,u32 port_num)3131 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num)
3132 {
3133 	return device->port_data[port_num].immutable.core_cap_flags &
3134 	       RDMA_CORE_CAP_IB_SMI;
3135 }
3136 
3137 /**
3138  * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3139  * Communication Manager.
3140  * @device: Device to check
3141  * @port_num: Port number to check
3142  *
3143  * The InfiniBand Communication Manager is one of many pre-defined General
3144  * Service Agents (GSA) that are accessed via the General Service
3145  * Interface (GSI).  It's role is to facilitate establishment of connections
3146  * between nodes as well as other management related tasks for established
3147  * connections.
3148  *
3149  * Return: true if the port supports an IB CM (this does not guarantee that
3150  * a CM is actually running however).
3151  */
rdma_cap_ib_cm(const struct ib_device * device,u32 port_num)3152 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num)
3153 {
3154 	return device->port_data[port_num].immutable.core_cap_flags &
3155 	       RDMA_CORE_CAP_IB_CM;
3156 }
3157 
3158 /**
3159  * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3160  * Communication Manager.
3161  * @device: Device to check
3162  * @port_num: Port number to check
3163  *
3164  * Similar to above, but specific to iWARP connections which have a different
3165  * managment protocol than InfiniBand.
3166  *
3167  * Return: true if the port supports an iWARP CM (this does not guarantee that
3168  * a CM is actually running however).
3169  */
rdma_cap_iw_cm(const struct ib_device * device,u32 port_num)3170 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num)
3171 {
3172 	return device->port_data[port_num].immutable.core_cap_flags &
3173 	       RDMA_CORE_CAP_IW_CM;
3174 }
3175 
3176 /**
3177  * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3178  * Subnet Administration.
3179  * @device: Device to check
3180  * @port_num: Port number to check
3181  *
3182  * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3183  * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
3184  * fabrics, devices should resolve routes to other hosts by contacting the
3185  * SA to query the proper route.
3186  *
3187  * Return: true if the port should act as a client to the fabric Subnet
3188  * Administration interface.  This does not imply that the SA service is
3189  * running locally.
3190  */
rdma_cap_ib_sa(const struct ib_device * device,u32 port_num)3191 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num)
3192 {
3193 	return device->port_data[port_num].immutable.core_cap_flags &
3194 	       RDMA_CORE_CAP_IB_SA;
3195 }
3196 
3197 /**
3198  * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3199  * Multicast.
3200  * @device: Device to check
3201  * @port_num: Port number to check
3202  *
3203  * InfiniBand multicast registration is more complex than normal IPv4 or
3204  * IPv6 multicast registration.  Each Host Channel Adapter must register
3205  * with the Subnet Manager when it wishes to join a multicast group.  It
3206  * should do so only once regardless of how many queue pairs it subscribes
3207  * to this group.  And it should leave the group only after all queue pairs
3208  * attached to the group have been detached.
3209  *
3210  * Return: true if the port must undertake the additional adminstrative
3211  * overhead of registering/unregistering with the SM and tracking of the
3212  * total number of queue pairs attached to the multicast group.
3213  */
rdma_cap_ib_mcast(const struct ib_device * device,u32 port_num)3214 static inline bool rdma_cap_ib_mcast(const struct ib_device *device,
3215 				     u32 port_num)
3216 {
3217 	return rdma_cap_ib_sa(device, port_num);
3218 }
3219 
3220 /**
3221  * rdma_cap_af_ib - Check if the port of device has the capability
3222  * Native Infiniband Address.
3223  * @device: Device to check
3224  * @port_num: Port number to check
3225  *
3226  * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3227  * GID.  RoCE uses a different mechanism, but still generates a GID via
3228  * a prescribed mechanism and port specific data.
3229  *
3230  * Return: true if the port uses a GID address to identify devices on the
3231  * network.
3232  */
rdma_cap_af_ib(const struct ib_device * device,u32 port_num)3233 static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num)
3234 {
3235 	return device->port_data[port_num].immutable.core_cap_flags &
3236 	       RDMA_CORE_CAP_AF_IB;
3237 }
3238 
3239 /**
3240  * rdma_cap_eth_ah - Check if the port of device has the capability
3241  * Ethernet Address Handle.
3242  * @device: Device to check
3243  * @port_num: Port number to check
3244  *
3245  * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3246  * to fabricate GIDs over Ethernet/IP specific addresses native to the
3247  * port.  Normally, packet headers are generated by the sending host
3248  * adapter, but when sending connectionless datagrams, we must manually
3249  * inject the proper headers for the fabric we are communicating over.
3250  *
3251  * Return: true if we are running as a RoCE port and must force the
3252  * addition of a Global Route Header built from our Ethernet Address
3253  * Handle into our header list for connectionless packets.
3254  */
rdma_cap_eth_ah(const struct ib_device * device,u32 port_num)3255 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num)
3256 {
3257 	return device->port_data[port_num].immutable.core_cap_flags &
3258 	       RDMA_CORE_CAP_ETH_AH;
3259 }
3260 
3261 /**
3262  * rdma_cap_opa_ah - Check if the port of device supports
3263  * OPA Address handles
3264  * @device: Device to check
3265  * @port_num: Port number to check
3266  *
3267  * Return: true if we are running on an OPA device which supports
3268  * the extended OPA addressing.
3269  */
rdma_cap_opa_ah(struct ib_device * device,u32 port_num)3270 static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num)
3271 {
3272 	return (device->port_data[port_num].immutable.core_cap_flags &
3273 		RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3274 }
3275 
3276 /**
3277  * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3278  *
3279  * @device: Device
3280  * @port_num: Port number
3281  *
3282  * This MAD size includes the MAD headers and MAD payload.  No other headers
3283  * are included.
3284  *
3285  * Return the max MAD size required by the Port.  Will return 0 if the port
3286  * does not support MADs
3287  */
rdma_max_mad_size(const struct ib_device * device,u32 port_num)3288 static inline size_t rdma_max_mad_size(const struct ib_device *device,
3289 				       u32 port_num)
3290 {
3291 	return device->port_data[port_num].immutable.max_mad_size;
3292 }
3293 
3294 /**
3295  * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3296  * @device: Device to check
3297  * @port_num: Port number to check
3298  *
3299  * RoCE GID table mechanism manages the various GIDs for a device.
3300  *
3301  * NOTE: if allocating the port's GID table has failed, this call will still
3302  * return true, but any RoCE GID table API will fail.
3303  *
3304  * Return: true if the port uses RoCE GID table mechanism in order to manage
3305  * its GIDs.
3306  */
rdma_cap_roce_gid_table(const struct ib_device * device,u32 port_num)3307 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3308 					   u32 port_num)
3309 {
3310 	return rdma_protocol_roce(device, port_num) &&
3311 		device->ops.add_gid && device->ops.del_gid;
3312 }
3313 
3314 /*
3315  * Check if the device supports READ W/ INVALIDATE.
3316  */
rdma_cap_read_inv(struct ib_device * dev,u32 port_num)3317 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3318 {
3319 	/*
3320 	 * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
3321 	 * has support for it yet.
3322 	 */
3323 	return rdma_protocol_iwarp(dev, port_num);
3324 }
3325 
3326 /**
3327  * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3328  * @device: Device
3329  * @port_num: 1 based Port number
3330  *
3331  * Return true if port is an Intel OPA port , false if not
3332  */
rdma_core_cap_opa_port(struct ib_device * device,u32 port_num)3333 static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3334 					  u32 port_num)
3335 {
3336 	return (device->port_data[port_num].immutable.core_cap_flags &
3337 		RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3338 }
3339 
3340 /**
3341  * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3342  * @device: Device
3343  * @port_num: Port number
3344  * @mtu: enum value of MTU
3345  *
3346  * Return the MTU size supported by the port as an integer value. Will return
3347  * -1 if enum value of mtu is not supported.
3348  */
rdma_mtu_enum_to_int(struct ib_device * device,u32 port,int mtu)3349 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port,
3350 				       int mtu)
3351 {
3352 	if (rdma_core_cap_opa_port(device, port))
3353 		return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3354 	else
3355 		return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3356 }
3357 
3358 /**
3359  * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3360  * @device: Device
3361  * @port_num: Port number
3362  * @attr: port attribute
3363  *
3364  * Return the MTU size supported by the port as an integer value.
3365  */
rdma_mtu_from_attr(struct ib_device * device,u32 port,struct ib_port_attr * attr)3366 static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port,
3367 				     struct ib_port_attr *attr)
3368 {
3369 	if (rdma_core_cap_opa_port(device, port))
3370 		return attr->phys_mtu;
3371 	else
3372 		return ib_mtu_enum_to_int(attr->max_mtu);
3373 }
3374 
3375 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
3376 			 int state);
3377 int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
3378 		     struct ifla_vf_info *info);
3379 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
3380 		    struct ifla_vf_stats *stats);
3381 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
3382 		    struct ifla_vf_guid *node_guid,
3383 		    struct ifla_vf_guid *port_guid);
3384 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
3385 		   int type);
3386 
3387 int ib_query_pkey(struct ib_device *device,
3388 		  u32 port_num, u16 index, u16 *pkey);
3389 
3390 int ib_modify_device(struct ib_device *device,
3391 		     int device_modify_mask,
3392 		     struct ib_device_modify *device_modify);
3393 
3394 int ib_modify_port(struct ib_device *device,
3395 		   u32 port_num, int port_modify_mask,
3396 		   struct ib_port_modify *port_modify);
3397 
3398 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3399 		u32 *port_num, u16 *index);
3400 
3401 int ib_find_pkey(struct ib_device *device,
3402 		 u32 port_num, u16 pkey, u16 *index);
3403 
3404 enum ib_pd_flags {
3405 	/*
3406 	 * Create a memory registration for all memory in the system and place
3407 	 * the rkey for it into pd->unsafe_global_rkey.  This can be used by
3408 	 * ULPs to avoid the overhead of dynamic MRs.
3409 	 *
3410 	 * This flag is generally considered unsafe and must only be used in
3411 	 * extremly trusted environments.  Every use of it will log a warning
3412 	 * in the kernel log.
3413 	 */
3414 	IB_PD_UNSAFE_GLOBAL_RKEY	= 0x01,
3415 };
3416 
3417 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3418 		const char *caller);
3419 
3420 /**
3421  * ib_alloc_pd - Allocates an unused protection domain.
3422  * @device: The device on which to allocate the protection domain.
3423  * @flags: protection domain flags
3424  *
3425  * A protection domain object provides an association between QPs, shared
3426  * receive queues, address handles, memory regions, and memory windows.
3427  *
3428  * Every PD has a local_dma_lkey which can be used as the lkey value for local
3429  * memory operations.
3430  */
3431 #define ib_alloc_pd(device, flags) \
3432 	__ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3433 
3434 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3435 
3436 /**
3437  * ib_dealloc_pd - Deallocate kernel PD
3438  * @pd: The protection domain
3439  *
3440  * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3441  */
ib_dealloc_pd(struct ib_pd * pd)3442 static inline void ib_dealloc_pd(struct ib_pd *pd)
3443 {
3444 	int ret = ib_dealloc_pd_user(pd, NULL);
3445 
3446 	WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
3447 }
3448 
3449 enum rdma_create_ah_flags {
3450 	/* In a sleepable context */
3451 	RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3452 };
3453 
3454 /**
3455  * rdma_create_ah - Creates an address handle for the given address vector.
3456  * @pd: The protection domain associated with the address handle.
3457  * @ah_attr: The attributes of the address vector.
3458  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3459  *
3460  * The address handle is used to reference a local or global destination
3461  * in all UD QP post sends.
3462  */
3463 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3464 			     u32 flags);
3465 
3466 /**
3467  * rdma_create_user_ah - Creates an address handle for the given address vector.
3468  * It resolves destination mac address for ah attribute of RoCE type.
3469  * @pd: The protection domain associated with the address handle.
3470  * @ah_attr: The attributes of the address vector.
3471  * @udata: pointer to user's input output buffer information need by
3472  *         provider driver.
3473  *
3474  * It returns 0 on success and returns appropriate error code on error.
3475  * The address handle is used to reference a local or global destination
3476  * in all UD QP post sends.
3477  */
3478 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3479 				  struct rdma_ah_attr *ah_attr,
3480 				  struct ib_udata *udata);
3481 /**
3482  * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3483  *   work completion.
3484  * @hdr: the L3 header to parse
3485  * @net_type: type of header to parse
3486  * @sgid: place to store source gid
3487  * @dgid: place to store destination gid
3488  */
3489 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3490 			      enum rdma_network_type net_type,
3491 			      union ib_gid *sgid, union ib_gid *dgid);
3492 
3493 /**
3494  * ib_get_rdma_header_version - Get the header version
3495  * @hdr: the L3 header to parse
3496  */
3497 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3498 
3499 /**
3500  * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3501  *   work completion.
3502  * @device: Device on which the received message arrived.
3503  * @port_num: Port on which the received message arrived.
3504  * @wc: Work completion associated with the received message.
3505  * @grh: References the received global route header.  This parameter is
3506  *   ignored unless the work completion indicates that the GRH is valid.
3507  * @ah_attr: Returned attributes that can be used when creating an address
3508  *   handle for replying to the message.
3509  * When ib_init_ah_attr_from_wc() returns success,
3510  * (a) for IB link layer it optionally contains a reference to SGID attribute
3511  * when GRH is present for IB link layer.
3512  * (b) for RoCE link layer it contains a reference to SGID attribute.
3513  * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3514  * attributes which are initialized using ib_init_ah_attr_from_wc().
3515  *
3516  */
3517 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
3518 			    const struct ib_wc *wc, const struct ib_grh *grh,
3519 			    struct rdma_ah_attr *ah_attr);
3520 
3521 /**
3522  * ib_create_ah_from_wc - Creates an address handle associated with the
3523  *   sender of the specified work completion.
3524  * @pd: The protection domain associated with the address handle.
3525  * @wc: Work completion information associated with a received message.
3526  * @grh: References the received global route header.  This parameter is
3527  *   ignored unless the work completion indicates that the GRH is valid.
3528  * @port_num: The outbound port number to associate with the address.
3529  *
3530  * The address handle is used to reference a local or global destination
3531  * in all UD QP post sends.
3532  */
3533 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3534 				   const struct ib_grh *grh, u32 port_num);
3535 
3536 /**
3537  * rdma_modify_ah - Modifies the address vector associated with an address
3538  *   handle.
3539  * @ah: The address handle to modify.
3540  * @ah_attr: The new address vector attributes to associate with the
3541  *   address handle.
3542  */
3543 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3544 
3545 /**
3546  * rdma_query_ah - Queries the address vector associated with an address
3547  *   handle.
3548  * @ah: The address handle to query.
3549  * @ah_attr: The address vector attributes associated with the address
3550  *   handle.
3551  */
3552 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3553 
3554 enum rdma_destroy_ah_flags {
3555 	/* In a sleepable context */
3556 	RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3557 };
3558 
3559 /**
3560  * rdma_destroy_ah_user - Destroys an address handle.
3561  * @ah: The address handle to destroy.
3562  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3563  * @udata: Valid user data or NULL for kernel objects
3564  */
3565 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3566 
3567 /**
3568  * rdma_destroy_ah - Destroys an kernel address handle.
3569  * @ah: The address handle to destroy.
3570  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3571  *
3572  * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3573  */
rdma_destroy_ah(struct ib_ah * ah,u32 flags)3574 static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3575 {
3576 	int ret = rdma_destroy_ah_user(ah, flags, NULL);
3577 
3578 	WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
3579 }
3580 
3581 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3582 				  struct ib_srq_init_attr *srq_init_attr,
3583 				  struct ib_usrq_object *uobject,
3584 				  struct ib_udata *udata);
3585 static inline struct ib_srq *
ib_create_srq(struct ib_pd * pd,struct ib_srq_init_attr * srq_init_attr)3586 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3587 {
3588 	if (!pd->device->ops.create_srq)
3589 		return ERR_PTR(-EOPNOTSUPP);
3590 
3591 	return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3592 }
3593 
3594 /**
3595  * ib_modify_srq - Modifies the attributes for the specified SRQ.
3596  * @srq: The SRQ to modify.
3597  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
3598  *   the current values of selected SRQ attributes are returned.
3599  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3600  *   are being modified.
3601  *
3602  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3603  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3604  * the number of receives queued drops below the limit.
3605  */
3606 int ib_modify_srq(struct ib_srq *srq,
3607 		  struct ib_srq_attr *srq_attr,
3608 		  enum ib_srq_attr_mask srq_attr_mask);
3609 
3610 /**
3611  * ib_query_srq - Returns the attribute list and current values for the
3612  *   specified SRQ.
3613  * @srq: The SRQ to query.
3614  * @srq_attr: The attributes of the specified SRQ.
3615  */
3616 int ib_query_srq(struct ib_srq *srq,
3617 		 struct ib_srq_attr *srq_attr);
3618 
3619 /**
3620  * ib_destroy_srq_user - Destroys the specified SRQ.
3621  * @srq: The SRQ to destroy.
3622  * @udata: Valid user data or NULL for kernel objects
3623  */
3624 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3625 
3626 /**
3627  * ib_destroy_srq - Destroys the specified kernel SRQ.
3628  * @srq: The SRQ to destroy.
3629  *
3630  * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3631  */
ib_destroy_srq(struct ib_srq * srq)3632 static inline void ib_destroy_srq(struct ib_srq *srq)
3633 {
3634 	int ret = ib_destroy_srq_user(srq, NULL);
3635 
3636 	WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
3637 }
3638 
3639 /**
3640  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3641  * @srq: The SRQ to post the work request on.
3642  * @recv_wr: A list of work requests to post on the receive queue.
3643  * @bad_recv_wr: On an immediate failure, this parameter will reference
3644  *   the work request that failed to be posted on the QP.
3645  */
ib_post_srq_recv(struct ib_srq * srq,const struct ib_recv_wr * recv_wr,const struct ib_recv_wr ** bad_recv_wr)3646 static inline int ib_post_srq_recv(struct ib_srq *srq,
3647 				   const struct ib_recv_wr *recv_wr,
3648 				   const struct ib_recv_wr **bad_recv_wr)
3649 {
3650 	const struct ib_recv_wr *dummy;
3651 
3652 	return srq->device->ops.post_srq_recv(srq, recv_wr,
3653 					      bad_recv_wr ? : &dummy);
3654 }
3655 
3656 struct ib_qp *ib_create_named_qp(struct ib_pd *pd,
3657 				 struct ib_qp_init_attr *qp_init_attr,
3658 				 const char *caller);
ib_create_qp(struct ib_pd * pd,struct ib_qp_init_attr * init_attr)3659 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3660 					 struct ib_qp_init_attr *init_attr)
3661 {
3662 	return ib_create_named_qp(pd, init_attr, KBUILD_MODNAME);
3663 }
3664 
3665 /**
3666  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3667  * @qp: The QP to modify.
3668  * @attr: On input, specifies the QP attributes to modify.  On output,
3669  *   the current values of selected QP attributes are returned.
3670  * @attr_mask: A bit-mask used to specify which attributes of the QP
3671  *   are being modified.
3672  * @udata: pointer to user's input output buffer information
3673  *   are being modified.
3674  * It returns 0 on success and returns appropriate error code on error.
3675  */
3676 int ib_modify_qp_with_udata(struct ib_qp *qp,
3677 			    struct ib_qp_attr *attr,
3678 			    int attr_mask,
3679 			    struct ib_udata *udata);
3680 
3681 /**
3682  * ib_modify_qp - Modifies the attributes for the specified QP and then
3683  *   transitions the QP to the given state.
3684  * @qp: The QP to modify.
3685  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
3686  *   the current values of selected QP attributes are returned.
3687  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3688  *   are being modified.
3689  */
3690 int ib_modify_qp(struct ib_qp *qp,
3691 		 struct ib_qp_attr *qp_attr,
3692 		 int qp_attr_mask);
3693 
3694 /**
3695  * ib_query_qp - Returns the attribute list and current values for the
3696  *   specified QP.
3697  * @qp: The QP to query.
3698  * @qp_attr: The attributes of the specified QP.
3699  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3700  * @qp_init_attr: Additional attributes of the selected QP.
3701  *
3702  * The qp_attr_mask may be used to limit the query to gathering only the
3703  * selected attributes.
3704  */
3705 int ib_query_qp(struct ib_qp *qp,
3706 		struct ib_qp_attr *qp_attr,
3707 		int qp_attr_mask,
3708 		struct ib_qp_init_attr *qp_init_attr);
3709 
3710 /**
3711  * ib_destroy_qp - Destroys the specified QP.
3712  * @qp: The QP to destroy.
3713  * @udata: Valid udata or NULL for kernel objects
3714  */
3715 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3716 
3717 /**
3718  * ib_destroy_qp - Destroys the specified kernel QP.
3719  * @qp: The QP to destroy.
3720  *
3721  * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3722  */
ib_destroy_qp(struct ib_qp * qp)3723 static inline int ib_destroy_qp(struct ib_qp *qp)
3724 {
3725 	return ib_destroy_qp_user(qp, NULL);
3726 }
3727 
3728 /**
3729  * ib_open_qp - Obtain a reference to an existing sharable QP.
3730  * @xrcd - XRC domain
3731  * @qp_open_attr: Attributes identifying the QP to open.
3732  *
3733  * Returns a reference to a sharable QP.
3734  */
3735 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3736 			 struct ib_qp_open_attr *qp_open_attr);
3737 
3738 /**
3739  * ib_close_qp - Release an external reference to a QP.
3740  * @qp: The QP handle to release
3741  *
3742  * The opened QP handle is released by the caller.  The underlying
3743  * shared QP is not destroyed until all internal references are released.
3744  */
3745 int ib_close_qp(struct ib_qp *qp);
3746 
3747 /**
3748  * ib_post_send - Posts a list of work requests to the send queue of
3749  *   the specified QP.
3750  * @qp: The QP to post the work request on.
3751  * @send_wr: A list of work requests to post on the send queue.
3752  * @bad_send_wr: On an immediate failure, this parameter will reference
3753  *   the work request that failed to be posted on the QP.
3754  *
3755  * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3756  * error is returned, the QP state shall not be affected,
3757  * ib_post_send() will return an immediate error after queueing any
3758  * earlier work requests in the list.
3759  */
ib_post_send(struct ib_qp * qp,const struct ib_send_wr * send_wr,const struct ib_send_wr ** bad_send_wr)3760 static inline int ib_post_send(struct ib_qp *qp,
3761 			       const struct ib_send_wr *send_wr,
3762 			       const struct ib_send_wr **bad_send_wr)
3763 {
3764 	const struct ib_send_wr *dummy;
3765 
3766 	return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3767 }
3768 
3769 /**
3770  * ib_post_recv - Posts a list of work requests to the receive queue of
3771  *   the specified QP.
3772  * @qp: The QP to post the work request on.
3773  * @recv_wr: A list of work requests to post on the receive queue.
3774  * @bad_recv_wr: On an immediate failure, this parameter will reference
3775  *   the work request that failed to be posted on the QP.
3776  */
ib_post_recv(struct ib_qp * qp,const struct ib_recv_wr * recv_wr,const struct ib_recv_wr ** bad_recv_wr)3777 static inline int ib_post_recv(struct ib_qp *qp,
3778 			       const struct ib_recv_wr *recv_wr,
3779 			       const struct ib_recv_wr **bad_recv_wr)
3780 {
3781 	const struct ib_recv_wr *dummy;
3782 
3783 	return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3784 }
3785 
3786 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
3787 			    int comp_vector, enum ib_poll_context poll_ctx,
3788 			    const char *caller);
ib_alloc_cq(struct ib_device * dev,void * private,int nr_cqe,int comp_vector,enum ib_poll_context poll_ctx)3789 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3790 					int nr_cqe, int comp_vector,
3791 					enum ib_poll_context poll_ctx)
3792 {
3793 	return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
3794 			     KBUILD_MODNAME);
3795 }
3796 
3797 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3798 				int nr_cqe, enum ib_poll_context poll_ctx,
3799 				const char *caller);
3800 
3801 /**
3802  * ib_alloc_cq_any: Allocate kernel CQ
3803  * @dev: The IB device
3804  * @private: Private data attached to the CQE
3805  * @nr_cqe: Number of CQEs in the CQ
3806  * @poll_ctx: Context used for polling the CQ
3807  */
ib_alloc_cq_any(struct ib_device * dev,void * private,int nr_cqe,enum ib_poll_context poll_ctx)3808 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3809 					    void *private, int nr_cqe,
3810 					    enum ib_poll_context poll_ctx)
3811 {
3812 	return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3813 				 KBUILD_MODNAME);
3814 }
3815 
3816 void ib_free_cq(struct ib_cq *cq);
3817 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3818 
3819 /**
3820  * ib_create_cq - Creates a CQ on the specified device.
3821  * @device: The device on which to create the CQ.
3822  * @comp_handler: A user-specified callback that is invoked when a
3823  *   completion event occurs on the CQ.
3824  * @event_handler: A user-specified callback that is invoked when an
3825  *   asynchronous event not associated with a completion occurs on the CQ.
3826  * @cq_context: Context associated with the CQ returned to the user via
3827  *   the associated completion and event handlers.
3828  * @cq_attr: The attributes the CQ should be created upon.
3829  *
3830  * Users can examine the cq structure to determine the actual CQ size.
3831  */
3832 struct ib_cq *__ib_create_cq(struct ib_device *device,
3833 			     ib_comp_handler comp_handler,
3834 			     void (*event_handler)(struct ib_event *, void *),
3835 			     void *cq_context,
3836 			     const struct ib_cq_init_attr *cq_attr,
3837 			     const char *caller);
3838 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3839 	__ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3840 
3841 /**
3842  * ib_resize_cq - Modifies the capacity of the CQ.
3843  * @cq: The CQ to resize.
3844  * @cqe: The minimum size of the CQ.
3845  *
3846  * Users can examine the cq structure to determine the actual CQ size.
3847  */
3848 int ib_resize_cq(struct ib_cq *cq, int cqe);
3849 
3850 /**
3851  * rdma_set_cq_moderation - Modifies moderation params of the CQ
3852  * @cq: The CQ to modify.
3853  * @cq_count: number of CQEs that will trigger an event
3854  * @cq_period: max period of time in usec before triggering an event
3855  *
3856  */
3857 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3858 
3859 /**
3860  * ib_destroy_cq_user - Destroys the specified CQ.
3861  * @cq: The CQ to destroy.
3862  * @udata: Valid user data or NULL for kernel objects
3863  */
3864 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3865 
3866 /**
3867  * ib_destroy_cq - Destroys the specified kernel CQ.
3868  * @cq: The CQ to destroy.
3869  *
3870  * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3871  */
ib_destroy_cq(struct ib_cq * cq)3872 static inline void ib_destroy_cq(struct ib_cq *cq)
3873 {
3874 	int ret = ib_destroy_cq_user(cq, NULL);
3875 
3876 	WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
3877 }
3878 
3879 /**
3880  * ib_poll_cq - poll a CQ for completion(s)
3881  * @cq:the CQ being polled
3882  * @num_entries:maximum number of completions to return
3883  * @wc:array of at least @num_entries &struct ib_wc where completions
3884  *   will be returned
3885  *
3886  * Poll a CQ for (possibly multiple) completions.  If the return value
3887  * is < 0, an error occurred.  If the return value is >= 0, it is the
3888  * number of completions returned.  If the return value is
3889  * non-negative and < num_entries, then the CQ was emptied.
3890  */
ib_poll_cq(struct ib_cq * cq,int num_entries,struct ib_wc * wc)3891 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3892 			     struct ib_wc *wc)
3893 {
3894 	return cq->device->ops.poll_cq(cq, num_entries, wc);
3895 }
3896 
3897 /**
3898  * ib_req_notify_cq - Request completion notification on a CQ.
3899  * @cq: The CQ to generate an event for.
3900  * @flags:
3901  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3902  *   to request an event on the next solicited event or next work
3903  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3904  *   may also be |ed in to request a hint about missed events, as
3905  *   described below.
3906  *
3907  * Return Value:
3908  *    < 0 means an error occurred while requesting notification
3909  *   == 0 means notification was requested successfully, and if
3910  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3911  *        were missed and it is safe to wait for another event.  In
3912  *        this case is it guaranteed that any work completions added
3913  *        to the CQ since the last CQ poll will trigger a completion
3914  *        notification event.
3915  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3916  *        in.  It means that the consumer must poll the CQ again to
3917  *        make sure it is empty to avoid missing an event because of a
3918  *        race between requesting notification and an entry being
3919  *        added to the CQ.  This return value means it is possible
3920  *        (but not guaranteed) that a work completion has been added
3921  *        to the CQ since the last poll without triggering a
3922  *        completion notification event.
3923  */
ib_req_notify_cq(struct ib_cq * cq,enum ib_cq_notify_flags flags)3924 static inline int ib_req_notify_cq(struct ib_cq *cq,
3925 				   enum ib_cq_notify_flags flags)
3926 {
3927 	return cq->device->ops.req_notify_cq(cq, flags);
3928 }
3929 
3930 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
3931 			     int comp_vector_hint,
3932 			     enum ib_poll_context poll_ctx);
3933 
3934 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
3935 
3936 /*
3937  * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to
3938  * NULL. This causes the ib_dma* helpers to just stash the kernel virtual
3939  * address into the dma address.
3940  */
ib_uses_virt_dma(struct ib_device * dev)3941 static inline bool ib_uses_virt_dma(struct ib_device *dev)
3942 {
3943 	return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device;
3944 }
3945 
3946 /**
3947  * ib_dma_mapping_error - check a DMA addr for error
3948  * @dev: The device for which the dma_addr was created
3949  * @dma_addr: The DMA address to check
3950  */
ib_dma_mapping_error(struct ib_device * dev,u64 dma_addr)3951 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3952 {
3953 	if (ib_uses_virt_dma(dev))
3954 		return 0;
3955 	return dma_mapping_error(dev->dma_device, dma_addr);
3956 }
3957 
3958 /**
3959  * ib_dma_map_single - Map a kernel virtual address to DMA address
3960  * @dev: The device for which the dma_addr is to be created
3961  * @cpu_addr: The kernel virtual address
3962  * @size: The size of the region in bytes
3963  * @direction: The direction of the DMA
3964  */
ib_dma_map_single(struct ib_device * dev,void * cpu_addr,size_t size,enum dma_data_direction direction)3965 static inline u64 ib_dma_map_single(struct ib_device *dev,
3966 				    void *cpu_addr, size_t size,
3967 				    enum dma_data_direction direction)
3968 {
3969 	if (ib_uses_virt_dma(dev))
3970 		return (uintptr_t)cpu_addr;
3971 	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3972 }
3973 
3974 /**
3975  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3976  * @dev: The device for which the DMA address was created
3977  * @addr: The DMA address
3978  * @size: The size of the region in bytes
3979  * @direction: The direction of the DMA
3980  */
ib_dma_unmap_single(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)3981 static inline void ib_dma_unmap_single(struct ib_device *dev,
3982 				       u64 addr, size_t size,
3983 				       enum dma_data_direction direction)
3984 {
3985 	if (!ib_uses_virt_dma(dev))
3986 		dma_unmap_single(dev->dma_device, addr, size, direction);
3987 }
3988 
3989 /**
3990  * ib_dma_map_page - Map a physical page to DMA address
3991  * @dev: The device for which the dma_addr is to be created
3992  * @page: The page to be mapped
3993  * @offset: The offset within the page
3994  * @size: The size of the region in bytes
3995  * @direction: The direction of the DMA
3996  */
ib_dma_map_page(struct ib_device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction direction)3997 static inline u64 ib_dma_map_page(struct ib_device *dev,
3998 				  struct page *page,
3999 				  unsigned long offset,
4000 				  size_t size,
4001 					 enum dma_data_direction direction)
4002 {
4003 	if (ib_uses_virt_dma(dev))
4004 		return (uintptr_t)(page_address(page) + offset);
4005 	return dma_map_page(dev->dma_device, page, offset, size, direction);
4006 }
4007 
4008 /**
4009  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4010  * @dev: The device for which the DMA address was created
4011  * @addr: The DMA address
4012  * @size: The size of the region in bytes
4013  * @direction: The direction of the DMA
4014  */
ib_dma_unmap_page(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)4015 static inline void ib_dma_unmap_page(struct ib_device *dev,
4016 				     u64 addr, size_t size,
4017 				     enum dma_data_direction direction)
4018 {
4019 	if (!ib_uses_virt_dma(dev))
4020 		dma_unmap_page(dev->dma_device, addr, size, direction);
4021 }
4022 
4023 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents);
ib_dma_map_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,unsigned long dma_attrs)4024 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4025 				      struct scatterlist *sg, int nents,
4026 				      enum dma_data_direction direction,
4027 				      unsigned long dma_attrs)
4028 {
4029 	if (ib_uses_virt_dma(dev))
4030 		return ib_dma_virt_map_sg(dev, sg, nents);
4031 	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4032 				dma_attrs);
4033 }
4034 
ib_dma_unmap_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,unsigned long dma_attrs)4035 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4036 					 struct scatterlist *sg, int nents,
4037 					 enum dma_data_direction direction,
4038 					 unsigned long dma_attrs)
4039 {
4040 	if (!ib_uses_virt_dma(dev))
4041 		dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
4042 				   dma_attrs);
4043 }
4044 
4045 /**
4046  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4047  * @dev: The device for which the DMA addresses are to be created
4048  * @sg: The array of scatter/gather entries
4049  * @nents: The number of scatter/gather entries
4050  * @direction: The direction of the DMA
4051  */
ib_dma_map_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)4052 static inline int ib_dma_map_sg(struct ib_device *dev,
4053 				struct scatterlist *sg, int nents,
4054 				enum dma_data_direction direction)
4055 {
4056 	return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0);
4057 }
4058 
4059 /**
4060  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4061  * @dev: The device for which the DMA addresses were created
4062  * @sg: The array of scatter/gather entries
4063  * @nents: The number of scatter/gather entries
4064  * @direction: The direction of the DMA
4065  */
ib_dma_unmap_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)4066 static inline void ib_dma_unmap_sg(struct ib_device *dev,
4067 				   struct scatterlist *sg, int nents,
4068 				   enum dma_data_direction direction)
4069 {
4070 	ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0);
4071 }
4072 
4073 /**
4074  * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4075  * @dev: The device to query
4076  *
4077  * The returned value represents a size in bytes.
4078  */
ib_dma_max_seg_size(struct ib_device * dev)4079 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4080 {
4081 	if (ib_uses_virt_dma(dev))
4082 		return UINT_MAX;
4083 	return dma_get_max_seg_size(dev->dma_device);
4084 }
4085 
4086 /**
4087  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4088  * @dev: The device for which the DMA address was created
4089  * @addr: The DMA address
4090  * @size: The size of the region in bytes
4091  * @dir: The direction of the DMA
4092  */
ib_dma_sync_single_for_cpu(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)4093 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4094 					      u64 addr,
4095 					      size_t size,
4096 					      enum dma_data_direction dir)
4097 {
4098 	if (!ib_uses_virt_dma(dev))
4099 		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4100 }
4101 
4102 /**
4103  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4104  * @dev: The device for which the DMA address was created
4105  * @addr: The DMA address
4106  * @size: The size of the region in bytes
4107  * @dir: The direction of the DMA
4108  */
ib_dma_sync_single_for_device(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)4109 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4110 						 u64 addr,
4111 						 size_t size,
4112 						 enum dma_data_direction dir)
4113 {
4114 	if (!ib_uses_virt_dma(dev))
4115 		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4116 }
4117 
4118 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4119  * space. This function should be called when 'current' is the owning MM.
4120  */
4121 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4122 			     u64 virt_addr, int mr_access_flags);
4123 
4124 /* ib_advise_mr -  give an advice about an address range in a memory region */
4125 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4126 		 u32 flags, struct ib_sge *sg_list, u32 num_sge);
4127 /**
4128  * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4129  *   HCA translation table.
4130  * @mr: The memory region to deregister.
4131  * @udata: Valid user data or NULL for kernel object
4132  *
4133  * This function can fail, if the memory region has memory windows bound to it.
4134  */
4135 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4136 
4137 /**
4138  * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4139  *   HCA translation table.
4140  * @mr: The memory region to deregister.
4141  *
4142  * This function can fail, if the memory region has memory windows bound to it.
4143  *
4144  * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4145  */
ib_dereg_mr(struct ib_mr * mr)4146 static inline int ib_dereg_mr(struct ib_mr *mr)
4147 {
4148 	return ib_dereg_mr_user(mr, NULL);
4149 }
4150 
4151 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4152 			  u32 max_num_sg);
4153 
4154 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4155 				    u32 max_num_data_sg,
4156 				    u32 max_num_meta_sg);
4157 
4158 /**
4159  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4160  *   R_Key and L_Key.
4161  * @mr - struct ib_mr pointer to be updated.
4162  * @newkey - new key to be used.
4163  */
ib_update_fast_reg_key(struct ib_mr * mr,u8 newkey)4164 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4165 {
4166 	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4167 	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4168 }
4169 
4170 /**
4171  * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4172  * for calculating a new rkey for type 2 memory windows.
4173  * @rkey - the rkey to increment.
4174  */
ib_inc_rkey(u32 rkey)4175 static inline u32 ib_inc_rkey(u32 rkey)
4176 {
4177 	const u32 mask = 0x000000ff;
4178 	return ((rkey + 1) & mask) | (rkey & ~mask);
4179 }
4180 
4181 /**
4182  * ib_attach_mcast - Attaches the specified QP to a multicast group.
4183  * @qp: QP to attach to the multicast group.  The QP must be type
4184  *   IB_QPT_UD.
4185  * @gid: Multicast group GID.
4186  * @lid: Multicast group LID in host byte order.
4187  *
4188  * In order to send and receive multicast packets, subnet
4189  * administration must have created the multicast group and configured
4190  * the fabric appropriately.  The port associated with the specified
4191  * QP must also be a member of the multicast group.
4192  */
4193 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4194 
4195 /**
4196  * ib_detach_mcast - Detaches the specified QP from a multicast group.
4197  * @qp: QP to detach from the multicast group.
4198  * @gid: Multicast group GID.
4199  * @lid: Multicast group LID in host byte order.
4200  */
4201 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4202 
4203 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4204 				   struct inode *inode, struct ib_udata *udata);
4205 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
4206 
ib_check_mr_access(struct ib_device * ib_dev,unsigned int flags)4207 static inline int ib_check_mr_access(struct ib_device *ib_dev,
4208 				     unsigned int flags)
4209 {
4210 	/*
4211 	 * Local write permission is required if remote write or
4212 	 * remote atomic permission is also requested.
4213 	 */
4214 	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4215 	    !(flags & IB_ACCESS_LOCAL_WRITE))
4216 		return -EINVAL;
4217 
4218 	if (flags & ~IB_ACCESS_SUPPORTED)
4219 		return -EINVAL;
4220 
4221 	if (flags & IB_ACCESS_ON_DEMAND &&
4222 	    !(ib_dev->attrs.device_cap_flags & IB_DEVICE_ON_DEMAND_PAGING))
4223 		return -EINVAL;
4224 	return 0;
4225 }
4226 
ib_access_writable(int access_flags)4227 static inline bool ib_access_writable(int access_flags)
4228 {
4229 	/*
4230 	 * We have writable memory backing the MR if any of the following
4231 	 * access flags are set.  "Local write" and "remote write" obviously
4232 	 * require write access.  "Remote atomic" can do things like fetch and
4233 	 * add, which will modify memory, and "MW bind" can change permissions
4234 	 * by binding a window.
4235 	 */
4236 	return access_flags &
4237 		(IB_ACCESS_LOCAL_WRITE   | IB_ACCESS_REMOTE_WRITE |
4238 		 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4239 }
4240 
4241 /**
4242  * ib_check_mr_status: lightweight check of MR status.
4243  *     This routine may provide status checks on a selected
4244  *     ib_mr. first use is for signature status check.
4245  *
4246  * @mr: A memory region.
4247  * @check_mask: Bitmask of which checks to perform from
4248  *     ib_mr_status_check enumeration.
4249  * @mr_status: The container of relevant status checks.
4250  *     failed checks will be indicated in the status bitmask
4251  *     and the relevant info shall be in the error item.
4252  */
4253 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4254 		       struct ib_mr_status *mr_status);
4255 
4256 /**
4257  * ib_device_try_get: Hold a registration lock
4258  * device: The device to lock
4259  *
4260  * A device under an active registration lock cannot become unregistered. It
4261  * is only possible to obtain a registration lock on a device that is fully
4262  * registered, otherwise this function returns false.
4263  *
4264  * The registration lock is only necessary for actions which require the
4265  * device to still be registered. Uses that only require the device pointer to
4266  * be valid should use get_device(&ibdev->dev) to hold the memory.
4267  *
4268  */
ib_device_try_get(struct ib_device * dev)4269 static inline bool ib_device_try_get(struct ib_device *dev)
4270 {
4271 	return refcount_inc_not_zero(&dev->refcount);
4272 }
4273 
4274 void ib_device_put(struct ib_device *device);
4275 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4276 					  enum rdma_driver_id driver_id);
4277 struct ib_device *ib_device_get_by_name(const char *name,
4278 					enum rdma_driver_id driver_id);
4279 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port,
4280 					    u16 pkey, const union ib_gid *gid,
4281 					    const struct sockaddr *addr);
4282 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4283 			 unsigned int port);
4284 struct net_device *ib_device_netdev(struct ib_device *dev, u32 port);
4285 
4286 struct ib_wq *ib_create_wq(struct ib_pd *pd,
4287 			   struct ib_wq_init_attr *init_attr);
4288 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);
4289 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
4290 		 u32 wq_attr_mask);
4291 
4292 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4293 		 unsigned int *sg_offset, unsigned int page_size);
4294 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4295 		    int data_sg_nents, unsigned int *data_sg_offset,
4296 		    struct scatterlist *meta_sg, int meta_sg_nents,
4297 		    unsigned int *meta_sg_offset, unsigned int page_size);
4298 
4299 static inline int
ib_map_mr_sg_zbva(struct ib_mr * mr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset,unsigned int page_size)4300 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4301 		  unsigned int *sg_offset, unsigned int page_size)
4302 {
4303 	int n;
4304 
4305 	n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4306 	mr->iova = 0;
4307 
4308 	return n;
4309 }
4310 
4311 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4312 		unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4313 
4314 void ib_drain_rq(struct ib_qp *qp);
4315 void ib_drain_sq(struct ib_qp *qp);
4316 void ib_drain_qp(struct ib_qp *qp);
4317 
4318 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed,
4319 		     u8 *width);
4320 
rdma_ah_retrieve_dmac(struct rdma_ah_attr * attr)4321 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4322 {
4323 	if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4324 		return attr->roce.dmac;
4325 	return NULL;
4326 }
4327 
rdma_ah_set_dlid(struct rdma_ah_attr * attr,u32 dlid)4328 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4329 {
4330 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4331 		attr->ib.dlid = (u16)dlid;
4332 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4333 		attr->opa.dlid = dlid;
4334 }
4335 
rdma_ah_get_dlid(const struct rdma_ah_attr * attr)4336 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4337 {
4338 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4339 		return attr->ib.dlid;
4340 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4341 		return attr->opa.dlid;
4342 	return 0;
4343 }
4344 
rdma_ah_set_sl(struct rdma_ah_attr * attr,u8 sl)4345 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4346 {
4347 	attr->sl = sl;
4348 }
4349 
rdma_ah_get_sl(const struct rdma_ah_attr * attr)4350 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4351 {
4352 	return attr->sl;
4353 }
4354 
rdma_ah_set_path_bits(struct rdma_ah_attr * attr,u8 src_path_bits)4355 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4356 					 u8 src_path_bits)
4357 {
4358 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4359 		attr->ib.src_path_bits = src_path_bits;
4360 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4361 		attr->opa.src_path_bits = src_path_bits;
4362 }
4363 
rdma_ah_get_path_bits(const struct rdma_ah_attr * attr)4364 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4365 {
4366 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4367 		return attr->ib.src_path_bits;
4368 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4369 		return attr->opa.src_path_bits;
4370 	return 0;
4371 }
4372 
rdma_ah_set_make_grd(struct rdma_ah_attr * attr,bool make_grd)4373 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4374 					bool make_grd)
4375 {
4376 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4377 		attr->opa.make_grd = make_grd;
4378 }
4379 
rdma_ah_get_make_grd(const struct rdma_ah_attr * attr)4380 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4381 {
4382 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4383 		return attr->opa.make_grd;
4384 	return false;
4385 }
4386 
rdma_ah_set_port_num(struct rdma_ah_attr * attr,u32 port_num)4387 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num)
4388 {
4389 	attr->port_num = port_num;
4390 }
4391 
rdma_ah_get_port_num(const struct rdma_ah_attr * attr)4392 static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4393 {
4394 	return attr->port_num;
4395 }
4396 
rdma_ah_set_static_rate(struct rdma_ah_attr * attr,u8 static_rate)4397 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4398 					   u8 static_rate)
4399 {
4400 	attr->static_rate = static_rate;
4401 }
4402 
rdma_ah_get_static_rate(const struct rdma_ah_attr * attr)4403 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4404 {
4405 	return attr->static_rate;
4406 }
4407 
rdma_ah_set_ah_flags(struct rdma_ah_attr * attr,enum ib_ah_flags flag)4408 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4409 					enum ib_ah_flags flag)
4410 {
4411 	attr->ah_flags = flag;
4412 }
4413 
4414 static inline enum ib_ah_flags
rdma_ah_get_ah_flags(const struct rdma_ah_attr * attr)4415 		rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4416 {
4417 	return attr->ah_flags;
4418 }
4419 
4420 static inline const struct ib_global_route
rdma_ah_read_grh(const struct rdma_ah_attr * attr)4421 		*rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4422 {
4423 	return &attr->grh;
4424 }
4425 
4426 /*To retrieve and modify the grh */
4427 static inline struct ib_global_route
rdma_ah_retrieve_grh(struct rdma_ah_attr * attr)4428 		*rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4429 {
4430 	return &attr->grh;
4431 }
4432 
rdma_ah_set_dgid_raw(struct rdma_ah_attr * attr,void * dgid)4433 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4434 {
4435 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4436 
4437 	memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4438 }
4439 
rdma_ah_set_subnet_prefix(struct rdma_ah_attr * attr,__be64 prefix)4440 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4441 					     __be64 prefix)
4442 {
4443 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4444 
4445 	grh->dgid.global.subnet_prefix = prefix;
4446 }
4447 
rdma_ah_set_interface_id(struct rdma_ah_attr * attr,__be64 if_id)4448 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4449 					    __be64 if_id)
4450 {
4451 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4452 
4453 	grh->dgid.global.interface_id = if_id;
4454 }
4455 
rdma_ah_set_grh(struct rdma_ah_attr * attr,union ib_gid * dgid,u32 flow_label,u8 sgid_index,u8 hop_limit,u8 traffic_class)4456 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4457 				   union ib_gid *dgid, u32 flow_label,
4458 				   u8 sgid_index, u8 hop_limit,
4459 				   u8 traffic_class)
4460 {
4461 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4462 
4463 	attr->ah_flags = IB_AH_GRH;
4464 	if (dgid)
4465 		grh->dgid = *dgid;
4466 	grh->flow_label = flow_label;
4467 	grh->sgid_index = sgid_index;
4468 	grh->hop_limit = hop_limit;
4469 	grh->traffic_class = traffic_class;
4470 	grh->sgid_attr = NULL;
4471 }
4472 
4473 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4474 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4475 			     u32 flow_label, u8 hop_limit, u8 traffic_class,
4476 			     const struct ib_gid_attr *sgid_attr);
4477 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4478 		       const struct rdma_ah_attr *src);
4479 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4480 			  const struct rdma_ah_attr *new);
4481 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4482 
4483 /**
4484  * rdma_ah_find_type - Return address handle type.
4485  *
4486  * @dev: Device to be checked
4487  * @port_num: Port number
4488  */
rdma_ah_find_type(struct ib_device * dev,u32 port_num)4489 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4490 						       u32 port_num)
4491 {
4492 	if (rdma_protocol_roce(dev, port_num))
4493 		return RDMA_AH_ATTR_TYPE_ROCE;
4494 	if (rdma_protocol_ib(dev, port_num)) {
4495 		if (rdma_cap_opa_ah(dev, port_num))
4496 			return RDMA_AH_ATTR_TYPE_OPA;
4497 		return RDMA_AH_ATTR_TYPE_IB;
4498 	}
4499 
4500 	return RDMA_AH_ATTR_TYPE_UNDEFINED;
4501 }
4502 
4503 /**
4504  * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4505  *     In the current implementation the only way to get
4506  *     get the 32bit lid is from other sources for OPA.
4507  *     For IB, lids will always be 16bits so cast the
4508  *     value accordingly.
4509  *
4510  * @lid: A 32bit LID
4511  */
ib_lid_cpu16(u32 lid)4512 static inline u16 ib_lid_cpu16(u32 lid)
4513 {
4514 	WARN_ON_ONCE(lid & 0xFFFF0000);
4515 	return (u16)lid;
4516 }
4517 
4518 /**
4519  * ib_lid_be16 - Return lid in 16bit BE encoding.
4520  *
4521  * @lid: A 32bit LID
4522  */
ib_lid_be16(u32 lid)4523 static inline __be16 ib_lid_be16(u32 lid)
4524 {
4525 	WARN_ON_ONCE(lid & 0xFFFF0000);
4526 	return cpu_to_be16((u16)lid);
4527 }
4528 
4529 /**
4530  * ib_get_vector_affinity - Get the affinity mappings of a given completion
4531  *   vector
4532  * @device:         the rdma device
4533  * @comp_vector:    index of completion vector
4534  *
4535  * Returns NULL on failure, otherwise a corresponding cpu map of the
4536  * completion vector (returns all-cpus map if the device driver doesn't
4537  * implement get_vector_affinity).
4538  */
4539 static inline const struct cpumask *
ib_get_vector_affinity(struct ib_device * device,int comp_vector)4540 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4541 {
4542 	if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4543 	    !device->ops.get_vector_affinity)
4544 		return NULL;
4545 
4546 	return device->ops.get_vector_affinity(device, comp_vector);
4547 
4548 }
4549 
4550 /**
4551  * rdma_roce_rescan_device - Rescan all of the network devices in the system
4552  * and add their gids, as needed, to the relevant RoCE devices.
4553  *
4554  * @device:         the rdma device
4555  */
4556 void rdma_roce_rescan_device(struct ib_device *ibdev);
4557 
4558 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4559 
4560 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4561 
4562 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
4563 				     enum rdma_netdev_t type, const char *name,
4564 				     unsigned char name_assign_type,
4565 				     void (*setup)(struct net_device *));
4566 
4567 int rdma_init_netdev(struct ib_device *device, u32 port_num,
4568 		     enum rdma_netdev_t type, const char *name,
4569 		     unsigned char name_assign_type,
4570 		     void (*setup)(struct net_device *),
4571 		     struct net_device *netdev);
4572 
4573 /**
4574  * rdma_set_device_sysfs_group - Set device attributes group to have
4575  *				 driver specific sysfs entries at
4576  *				 for infiniband class.
4577  *
4578  * @device:	device pointer for which attributes to be created
4579  * @group:	Pointer to group which should be added when device
4580  *		is registered with sysfs.
4581  * rdma_set_device_sysfs_group() allows existing drivers to expose one
4582  * group per device to have sysfs attributes.
4583  *
4584  * NOTE: New drivers should not make use of this API; instead new device
4585  * parameter should be exposed via netlink command. This API and mechanism
4586  * exist only for existing drivers.
4587  */
4588 static inline void
rdma_set_device_sysfs_group(struct ib_device * dev,const struct attribute_group * group)4589 rdma_set_device_sysfs_group(struct ib_device *dev,
4590 			    const struct attribute_group *group)
4591 {
4592 	dev->groups[1] = group;
4593 }
4594 
4595 /**
4596  * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4597  *
4598  * @device:	device pointer for which ib_device pointer to retrieve
4599  *
4600  * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4601  *
4602  */
rdma_device_to_ibdev(struct device * device)4603 static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4604 {
4605 	struct ib_core_device *coredev =
4606 		container_of(device, struct ib_core_device, dev);
4607 
4608 	return coredev->owner;
4609 }
4610 
4611 /**
4612  * ibdev_to_node - return the NUMA node for a given ib_device
4613  * @dev:	device to get the NUMA node for.
4614  */
ibdev_to_node(struct ib_device * ibdev)4615 static inline int ibdev_to_node(struct ib_device *ibdev)
4616 {
4617 	struct device *parent = ibdev->dev.parent;
4618 
4619 	if (!parent)
4620 		return NUMA_NO_NODE;
4621 	return dev_to_node(parent);
4622 }
4623 
4624 /**
4625  * rdma_device_to_drv_device - Helper macro to reach back to driver's
4626  *			       ib_device holder structure from device pointer.
4627  *
4628  * NOTE: New drivers should not make use of this API; This API is only for
4629  * existing drivers who have exposed sysfs entries using
4630  * rdma_set_device_sysfs_group().
4631  */
4632 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member)           \
4633 	container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4634 
4635 bool rdma_dev_access_netns(const struct ib_device *device,
4636 			   const struct net *net);
4637 
4638 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4639 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
4640 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4641 
4642 /**
4643  * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4644  *                               on the flow_label
4645  *
4646  * This function will convert the 20 bit flow_label input to a valid RoCE v2
4647  * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4648  * convention.
4649  */
rdma_flow_label_to_udp_sport(u32 fl)4650 static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4651 {
4652 	u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4653 
4654 	fl_low ^= fl_high >> 14;
4655 	return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4656 }
4657 
4658 /**
4659  * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4660  *                        local and remote qpn values
4661  *
4662  * This function folded the multiplication results of two qpns, 24 bit each,
4663  * fields, and converts it to a 20 bit results.
4664  *
4665  * This function will create symmetric flow_label value based on the local
4666  * and remote qpn values. this will allow both the requester and responder
4667  * to calculate the same flow_label for a given connection.
4668  *
4669  * This helper function should be used by driver in case the upper layer
4670  * provide a zero flow_label value. This is to improve entropy of RDMA
4671  * traffic in the network.
4672  */
rdma_calc_flow_label(u32 lqpn,u32 rqpn)4673 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4674 {
4675 	u64 v = (u64)lqpn * rqpn;
4676 
4677 	v ^= v >> 20;
4678 	v ^= v >> 40;
4679 
4680 	return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4681 }
4682 
4683 const struct ib_port_immutable*
4684 ib_port_immutable_read(struct ib_device *dev, unsigned int port);
4685 #endif /* IB_VERBS_H */
4686