1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2002 Richard Henderson
4  * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5  */
6 
7 #define INCLUDE_VERMAGIC
8 
9 #include <linux/export.h>
10 #include <linux/extable.h>
11 #include <linux/moduleloader.h>
12 #include <linux/module_signature.h>
13 #include <linux/trace_events.h>
14 #include <linux/init.h>
15 #include <linux/kallsyms.h>
16 #include <linux/file.h>
17 #include <linux/fs.h>
18 #include <linux/sysfs.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/elf.h>
24 #include <linux/proc_fs.h>
25 #include <linux/security.h>
26 #include <linux/seq_file.h>
27 #include <linux/syscalls.h>
28 #include <linux/fcntl.h>
29 #include <linux/rcupdate.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/moduleparam.h>
33 #include <linux/errno.h>
34 #include <linux/err.h>
35 #include <linux/vermagic.h>
36 #include <linux/notifier.h>
37 #include <linux/sched.h>
38 #include <linux/device.h>
39 #include <linux/string.h>
40 #include <linux/mutex.h>
41 #include <linux/rculist.h>
42 #include <linux/uaccess.h>
43 #include <asm/cacheflush.h>
44 #include <linux/set_memory.h>
45 #include <asm/mmu_context.h>
46 #include <linux/license.h>
47 #include <asm/sections.h>
48 #include <linux/tracepoint.h>
49 #include <linux/ftrace.h>
50 #include <linux/livepatch.h>
51 #include <linux/async.h>
52 #include <linux/percpu.h>
53 #include <linux/kmemleak.h>
54 #include <linux/jump_label.h>
55 #include <linux/pfn.h>
56 #include <linux/bsearch.h>
57 #include <linux/dynamic_debug.h>
58 #include <linux/audit.h>
59 #include <uapi/linux/module.h>
60 #include "module-internal.h"
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/module.h>
64 
65 #ifndef ARCH_SHF_SMALL
66 #define ARCH_SHF_SMALL 0
67 #endif
68 
69 /*
70  * Modules' sections will be aligned on page boundaries
71  * to ensure complete separation of code and data, but
72  * only when CONFIG_ARCH_HAS_STRICT_MODULE_RWX=y
73  */
74 #ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
75 # define debug_align(X) ALIGN(X, PAGE_SIZE)
76 #else
77 # define debug_align(X) (X)
78 #endif
79 
80 /* If this is set, the section belongs in the init part of the module */
81 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
82 
83 /*
84  * Mutex protects:
85  * 1) List of modules (also safely readable with preempt_disable),
86  * 2) module_use links,
87  * 3) module_addr_min/module_addr_max.
88  * (delete and add uses RCU list operations).
89  */
90 static DEFINE_MUTEX(module_mutex);
91 static LIST_HEAD(modules);
92 
93 /* Work queue for freeing init sections in success case */
94 static void do_free_init(struct work_struct *w);
95 static DECLARE_WORK(init_free_wq, do_free_init);
96 static LLIST_HEAD(init_free_list);
97 
98 #ifdef CONFIG_MODULES_TREE_LOOKUP
99 
100 /*
101  * Use a latched RB-tree for __module_address(); this allows us to use
102  * RCU-sched lookups of the address from any context.
103  *
104  * This is conditional on PERF_EVENTS || TRACING because those can really hit
105  * __module_address() hard by doing a lot of stack unwinding; potentially from
106  * NMI context.
107  */
108 
__mod_tree_val(struct latch_tree_node * n)109 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
110 {
111 	struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
112 
113 	return (unsigned long)layout->base;
114 }
115 
__mod_tree_size(struct latch_tree_node * n)116 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
117 {
118 	struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
119 
120 	return (unsigned long)layout->size;
121 }
122 
123 static __always_inline bool
mod_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)124 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
125 {
126 	return __mod_tree_val(a) < __mod_tree_val(b);
127 }
128 
129 static __always_inline int
mod_tree_comp(void * key,struct latch_tree_node * n)130 mod_tree_comp(void *key, struct latch_tree_node *n)
131 {
132 	unsigned long val = (unsigned long)key;
133 	unsigned long start, end;
134 
135 	start = __mod_tree_val(n);
136 	if (val < start)
137 		return -1;
138 
139 	end = start + __mod_tree_size(n);
140 	if (val >= end)
141 		return 1;
142 
143 	return 0;
144 }
145 
146 static const struct latch_tree_ops mod_tree_ops = {
147 	.less = mod_tree_less,
148 	.comp = mod_tree_comp,
149 };
150 
151 static struct mod_tree_root {
152 	struct latch_tree_root root;
153 	unsigned long addr_min;
154 	unsigned long addr_max;
155 } mod_tree __cacheline_aligned = {
156 	.addr_min = -1UL,
157 };
158 
159 #define module_addr_min mod_tree.addr_min
160 #define module_addr_max mod_tree.addr_max
161 
__mod_tree_insert(struct mod_tree_node * node)162 static noinline void __mod_tree_insert(struct mod_tree_node *node)
163 {
164 	latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
165 }
166 
__mod_tree_remove(struct mod_tree_node * node)167 static void __mod_tree_remove(struct mod_tree_node *node)
168 {
169 	latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
170 }
171 
172 /*
173  * These modifications: insert, remove_init and remove; are serialized by the
174  * module_mutex.
175  */
mod_tree_insert(struct module * mod)176 static void mod_tree_insert(struct module *mod)
177 {
178 	mod->core_layout.mtn.mod = mod;
179 	mod->init_layout.mtn.mod = mod;
180 
181 	__mod_tree_insert(&mod->core_layout.mtn);
182 	if (mod->init_layout.size)
183 		__mod_tree_insert(&mod->init_layout.mtn);
184 }
185 
mod_tree_remove_init(struct module * mod)186 static void mod_tree_remove_init(struct module *mod)
187 {
188 	if (mod->init_layout.size)
189 		__mod_tree_remove(&mod->init_layout.mtn);
190 }
191 
mod_tree_remove(struct module * mod)192 static void mod_tree_remove(struct module *mod)
193 {
194 	__mod_tree_remove(&mod->core_layout.mtn);
195 	mod_tree_remove_init(mod);
196 }
197 
mod_find(unsigned long addr)198 static struct module *mod_find(unsigned long addr)
199 {
200 	struct latch_tree_node *ltn;
201 
202 	ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
203 	if (!ltn)
204 		return NULL;
205 
206 	return container_of(ltn, struct mod_tree_node, node)->mod;
207 }
208 
209 #else /* MODULES_TREE_LOOKUP */
210 
211 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
212 
mod_tree_insert(struct module * mod)213 static void mod_tree_insert(struct module *mod) { }
mod_tree_remove_init(struct module * mod)214 static void mod_tree_remove_init(struct module *mod) { }
mod_tree_remove(struct module * mod)215 static void mod_tree_remove(struct module *mod) { }
216 
mod_find(unsigned long addr)217 static struct module *mod_find(unsigned long addr)
218 {
219 	struct module *mod;
220 
221 	list_for_each_entry_rcu(mod, &modules, list,
222 				lockdep_is_held(&module_mutex)) {
223 		if (within_module(addr, mod))
224 			return mod;
225 	}
226 
227 	return NULL;
228 }
229 
230 #endif /* MODULES_TREE_LOOKUP */
231 
232 /*
233  * Bounds of module text, for speeding up __module_address.
234  * Protected by module_mutex.
235  */
__mod_update_bounds(void * base,unsigned int size)236 static void __mod_update_bounds(void *base, unsigned int size)
237 {
238 	unsigned long min = (unsigned long)base;
239 	unsigned long max = min + size;
240 
241 	if (min < module_addr_min)
242 		module_addr_min = min;
243 	if (max > module_addr_max)
244 		module_addr_max = max;
245 }
246 
mod_update_bounds(struct module * mod)247 static void mod_update_bounds(struct module *mod)
248 {
249 	__mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
250 	if (mod->init_layout.size)
251 		__mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
252 }
253 
254 #ifdef CONFIG_KGDB_KDB
255 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
256 #endif /* CONFIG_KGDB_KDB */
257 
module_assert_mutex_or_preempt(void)258 static void module_assert_mutex_or_preempt(void)
259 {
260 #ifdef CONFIG_LOCKDEP
261 	if (unlikely(!debug_locks))
262 		return;
263 
264 	WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
265 		!lockdep_is_held(&module_mutex));
266 #endif
267 }
268 
269 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
270 module_param(sig_enforce, bool_enable_only, 0644);
271 
272 /*
273  * Export sig_enforce kernel cmdline parameter to allow other subsystems rely
274  * on that instead of directly to CONFIG_MODULE_SIG_FORCE config.
275  */
is_module_sig_enforced(void)276 bool is_module_sig_enforced(void)
277 {
278 	return sig_enforce;
279 }
280 EXPORT_SYMBOL(is_module_sig_enforced);
281 
set_module_sig_enforced(void)282 void set_module_sig_enforced(void)
283 {
284 	sig_enforce = true;
285 }
286 
287 /* Block module loading/unloading? */
288 int modules_disabled = 0;
289 core_param(nomodule, modules_disabled, bint, 0);
290 
291 /* Waiting for a module to finish initializing? */
292 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
293 
294 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
295 
register_module_notifier(struct notifier_block * nb)296 int register_module_notifier(struct notifier_block *nb)
297 {
298 	return blocking_notifier_chain_register(&module_notify_list, nb);
299 }
300 EXPORT_SYMBOL(register_module_notifier);
301 
unregister_module_notifier(struct notifier_block * nb)302 int unregister_module_notifier(struct notifier_block *nb)
303 {
304 	return blocking_notifier_chain_unregister(&module_notify_list, nb);
305 }
306 EXPORT_SYMBOL(unregister_module_notifier);
307 
308 /*
309  * We require a truly strong try_module_get(): 0 means success.
310  * Otherwise an error is returned due to ongoing or failed
311  * initialization etc.
312  */
strong_try_module_get(struct module * mod)313 static inline int strong_try_module_get(struct module *mod)
314 {
315 	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
316 	if (mod && mod->state == MODULE_STATE_COMING)
317 		return -EBUSY;
318 	if (try_module_get(mod))
319 		return 0;
320 	else
321 		return -ENOENT;
322 }
323 
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)324 static inline void add_taint_module(struct module *mod, unsigned flag,
325 				    enum lockdep_ok lockdep_ok)
326 {
327 	add_taint(flag, lockdep_ok);
328 	set_bit(flag, &mod->taints);
329 }
330 
331 /*
332  * A thread that wants to hold a reference to a module only while it
333  * is running can call this to safely exit.  nfsd and lockd use this.
334  */
__module_put_and_exit(struct module * mod,long code)335 void __noreturn __module_put_and_exit(struct module *mod, long code)
336 {
337 	module_put(mod);
338 	do_exit(code);
339 }
340 EXPORT_SYMBOL(__module_put_and_exit);
341 
342 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)343 static unsigned int find_sec(const struct load_info *info, const char *name)
344 {
345 	unsigned int i;
346 
347 	for (i = 1; i < info->hdr->e_shnum; i++) {
348 		Elf_Shdr *shdr = &info->sechdrs[i];
349 		/* Alloc bit cleared means "ignore it." */
350 		if ((shdr->sh_flags & SHF_ALLOC)
351 		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
352 			return i;
353 	}
354 	return 0;
355 }
356 
357 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)358 static void *section_addr(const struct load_info *info, const char *name)
359 {
360 	/* Section 0 has sh_addr 0. */
361 	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
362 }
363 
364 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)365 static void *section_objs(const struct load_info *info,
366 			  const char *name,
367 			  size_t object_size,
368 			  unsigned int *num)
369 {
370 	unsigned int sec = find_sec(info, name);
371 
372 	/* Section 0 has sh_addr 0 and sh_size 0. */
373 	*num = info->sechdrs[sec].sh_size / object_size;
374 	return (void *)info->sechdrs[sec].sh_addr;
375 }
376 
377 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
find_any_sec(const struct load_info * info,const char * name)378 static unsigned int find_any_sec(const struct load_info *info, const char *name)
379 {
380 	unsigned int i;
381 
382 	for (i = 1; i < info->hdr->e_shnum; i++) {
383 		Elf_Shdr *shdr = &info->sechdrs[i];
384 		if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
385 			return i;
386 	}
387 	return 0;
388 }
389 
390 /*
391  * Find a module section, or NULL. Fill in number of "objects" in section.
392  * Ignores SHF_ALLOC flag.
393  */
any_section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)394 static __maybe_unused void *any_section_objs(const struct load_info *info,
395 					     const char *name,
396 					     size_t object_size,
397 					     unsigned int *num)
398 {
399 	unsigned int sec = find_any_sec(info, name);
400 
401 	/* Section 0 has sh_addr 0 and sh_size 0. */
402 	*num = info->sechdrs[sec].sh_size / object_size;
403 	return (void *)info->sechdrs[sec].sh_addr;
404 }
405 
406 /* Provided by the linker */
407 extern const struct kernel_symbol __start___ksymtab[];
408 extern const struct kernel_symbol __stop___ksymtab[];
409 extern const struct kernel_symbol __start___ksymtab_gpl[];
410 extern const struct kernel_symbol __stop___ksymtab_gpl[];
411 extern const s32 __start___kcrctab[];
412 extern const s32 __start___kcrctab_gpl[];
413 
414 #ifndef CONFIG_MODVERSIONS
415 #define symversion(base, idx) NULL
416 #else
417 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
418 #endif
419 
420 struct symsearch {
421 	const struct kernel_symbol *start, *stop;
422 	const s32 *crcs;
423 	enum mod_license {
424 		NOT_GPL_ONLY,
425 		GPL_ONLY,
426 	} license;
427 };
428 
429 struct find_symbol_arg {
430 	/* Input */
431 	const char *name;
432 	bool gplok;
433 	bool warn;
434 
435 	/* Output */
436 	struct module *owner;
437 	const s32 *crc;
438 	const struct kernel_symbol *sym;
439 	enum mod_license license;
440 };
441 
check_exported_symbol(const struct symsearch * syms,struct module * owner,unsigned int symnum,void * data)442 static bool check_exported_symbol(const struct symsearch *syms,
443 				  struct module *owner,
444 				  unsigned int symnum, void *data)
445 {
446 	struct find_symbol_arg *fsa = data;
447 
448 	if (!fsa->gplok && syms->license == GPL_ONLY)
449 		return false;
450 	fsa->owner = owner;
451 	fsa->crc = symversion(syms->crcs, symnum);
452 	fsa->sym = &syms->start[symnum];
453 	fsa->license = syms->license;
454 	return true;
455 }
456 
kernel_symbol_value(const struct kernel_symbol * sym)457 static unsigned long kernel_symbol_value(const struct kernel_symbol *sym)
458 {
459 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
460 	return (unsigned long)offset_to_ptr(&sym->value_offset);
461 #else
462 	return sym->value;
463 #endif
464 }
465 
kernel_symbol_name(const struct kernel_symbol * sym)466 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
467 {
468 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
469 	return offset_to_ptr(&sym->name_offset);
470 #else
471 	return sym->name;
472 #endif
473 }
474 
kernel_symbol_namespace(const struct kernel_symbol * sym)475 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
476 {
477 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
478 	if (!sym->namespace_offset)
479 		return NULL;
480 	return offset_to_ptr(&sym->namespace_offset);
481 #else
482 	return sym->namespace;
483 #endif
484 }
485 
cmp_name(const void * name,const void * sym)486 static int cmp_name(const void *name, const void *sym)
487 {
488 	return strcmp(name, kernel_symbol_name(sym));
489 }
490 
find_exported_symbol_in_section(const struct symsearch * syms,struct module * owner,void * data)491 static bool find_exported_symbol_in_section(const struct symsearch *syms,
492 					    struct module *owner,
493 					    void *data)
494 {
495 	struct find_symbol_arg *fsa = data;
496 	struct kernel_symbol *sym;
497 
498 	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
499 			sizeof(struct kernel_symbol), cmp_name);
500 
501 	if (sym != NULL && check_exported_symbol(syms, owner,
502 						 sym - syms->start, data))
503 		return true;
504 
505 	return false;
506 }
507 
508 /*
509  * Find an exported symbol and return it, along with, (optional) crc and
510  * (optional) module which owns it.  Needs preempt disabled or module_mutex.
511  */
find_symbol(struct find_symbol_arg * fsa)512 static bool find_symbol(struct find_symbol_arg *fsa)
513 {
514 	static const struct symsearch arr[] = {
515 		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
516 		  NOT_GPL_ONLY },
517 		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
518 		  __start___kcrctab_gpl,
519 		  GPL_ONLY },
520 	};
521 	struct module *mod;
522 	unsigned int i;
523 
524 	module_assert_mutex_or_preempt();
525 
526 	for (i = 0; i < ARRAY_SIZE(arr); i++)
527 		if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
528 			return true;
529 
530 	list_for_each_entry_rcu(mod, &modules, list,
531 				lockdep_is_held(&module_mutex)) {
532 		struct symsearch arr[] = {
533 			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
534 			  NOT_GPL_ONLY },
535 			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
536 			  mod->gpl_crcs,
537 			  GPL_ONLY },
538 		};
539 
540 		if (mod->state == MODULE_STATE_UNFORMED)
541 			continue;
542 
543 		for (i = 0; i < ARRAY_SIZE(arr); i++)
544 			if (find_exported_symbol_in_section(&arr[i], mod, fsa))
545 				return true;
546 	}
547 
548 	pr_debug("Failed to find symbol %s\n", fsa->name);
549 	return false;
550 }
551 
552 /*
553  * Search for module by name: must hold module_mutex (or preempt disabled
554  * for read-only access).
555  */
find_module_all(const char * name,size_t len,bool even_unformed)556 static struct module *find_module_all(const char *name, size_t len,
557 				      bool even_unformed)
558 {
559 	struct module *mod;
560 
561 	module_assert_mutex_or_preempt();
562 
563 	list_for_each_entry_rcu(mod, &modules, list,
564 				lockdep_is_held(&module_mutex)) {
565 		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
566 			continue;
567 		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
568 			return mod;
569 	}
570 	return NULL;
571 }
572 
find_module(const char * name)573 struct module *find_module(const char *name)
574 {
575 	return find_module_all(name, strlen(name), false);
576 }
577 
578 #ifdef CONFIG_SMP
579 
mod_percpu(struct module * mod)580 static inline void __percpu *mod_percpu(struct module *mod)
581 {
582 	return mod->percpu;
583 }
584 
percpu_modalloc(struct module * mod,struct load_info * info)585 static int percpu_modalloc(struct module *mod, struct load_info *info)
586 {
587 	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
588 	unsigned long align = pcpusec->sh_addralign;
589 
590 	if (!pcpusec->sh_size)
591 		return 0;
592 
593 	if (align > PAGE_SIZE) {
594 		pr_warn("%s: per-cpu alignment %li > %li\n",
595 			mod->name, align, PAGE_SIZE);
596 		align = PAGE_SIZE;
597 	}
598 
599 	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
600 	if (!mod->percpu) {
601 		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
602 			mod->name, (unsigned long)pcpusec->sh_size);
603 		return -ENOMEM;
604 	}
605 	mod->percpu_size = pcpusec->sh_size;
606 	return 0;
607 }
608 
percpu_modfree(struct module * mod)609 static void percpu_modfree(struct module *mod)
610 {
611 	free_percpu(mod->percpu);
612 }
613 
find_pcpusec(struct load_info * info)614 static unsigned int find_pcpusec(struct load_info *info)
615 {
616 	return find_sec(info, ".data..percpu");
617 }
618 
percpu_modcopy(struct module * mod,const void * from,unsigned long size)619 static void percpu_modcopy(struct module *mod,
620 			   const void *from, unsigned long size)
621 {
622 	int cpu;
623 
624 	for_each_possible_cpu(cpu)
625 		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
626 }
627 
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)628 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
629 {
630 	struct module *mod;
631 	unsigned int cpu;
632 
633 	preempt_disable();
634 
635 	list_for_each_entry_rcu(mod, &modules, list) {
636 		if (mod->state == MODULE_STATE_UNFORMED)
637 			continue;
638 		if (!mod->percpu_size)
639 			continue;
640 		for_each_possible_cpu(cpu) {
641 			void *start = per_cpu_ptr(mod->percpu, cpu);
642 			void *va = (void *)addr;
643 
644 			if (va >= start && va < start + mod->percpu_size) {
645 				if (can_addr) {
646 					*can_addr = (unsigned long) (va - start);
647 					*can_addr += (unsigned long)
648 						per_cpu_ptr(mod->percpu,
649 							    get_boot_cpu_id());
650 				}
651 				preempt_enable();
652 				return true;
653 			}
654 		}
655 	}
656 
657 	preempt_enable();
658 	return false;
659 }
660 
661 /**
662  * is_module_percpu_address() - test whether address is from module static percpu
663  * @addr: address to test
664  *
665  * Test whether @addr belongs to module static percpu area.
666  *
667  * Return: %true if @addr is from module static percpu area
668  */
is_module_percpu_address(unsigned long addr)669 bool is_module_percpu_address(unsigned long addr)
670 {
671 	return __is_module_percpu_address(addr, NULL);
672 }
673 
674 #else /* ... !CONFIG_SMP */
675 
mod_percpu(struct module * mod)676 static inline void __percpu *mod_percpu(struct module *mod)
677 {
678 	return NULL;
679 }
percpu_modalloc(struct module * mod,struct load_info * info)680 static int percpu_modalloc(struct module *mod, struct load_info *info)
681 {
682 	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
683 	if (info->sechdrs[info->index.pcpu].sh_size != 0)
684 		return -ENOMEM;
685 	return 0;
686 }
percpu_modfree(struct module * mod)687 static inline void percpu_modfree(struct module *mod)
688 {
689 }
find_pcpusec(struct load_info * info)690 static unsigned int find_pcpusec(struct load_info *info)
691 {
692 	return 0;
693 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)694 static inline void percpu_modcopy(struct module *mod,
695 				  const void *from, unsigned long size)
696 {
697 	/* pcpusec should be 0, and size of that section should be 0. */
698 	BUG_ON(size != 0);
699 }
is_module_percpu_address(unsigned long addr)700 bool is_module_percpu_address(unsigned long addr)
701 {
702 	return false;
703 }
704 
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)705 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
706 {
707 	return false;
708 }
709 
710 #endif /* CONFIG_SMP */
711 
712 #define MODINFO_ATTR(field)	\
713 static void setup_modinfo_##field(struct module *mod, const char *s)  \
714 {                                                                     \
715 	mod->field = kstrdup(s, GFP_KERNEL);                          \
716 }                                                                     \
717 static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
718 			struct module_kobject *mk, char *buffer)      \
719 {                                                                     \
720 	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
721 }                                                                     \
722 static int modinfo_##field##_exists(struct module *mod)               \
723 {                                                                     \
724 	return mod->field != NULL;                                    \
725 }                                                                     \
726 static void free_modinfo_##field(struct module *mod)                  \
727 {                                                                     \
728 	kfree(mod->field);                                            \
729 	mod->field = NULL;                                            \
730 }                                                                     \
731 static struct module_attribute modinfo_##field = {                    \
732 	.attr = { .name = __stringify(field), .mode = 0444 },         \
733 	.show = show_modinfo_##field,                                 \
734 	.setup = setup_modinfo_##field,                               \
735 	.test = modinfo_##field##_exists,                             \
736 	.free = free_modinfo_##field,                                 \
737 };
738 
739 MODINFO_ATTR(version);
740 MODINFO_ATTR(srcversion);
741 
742 static char last_unloaded_module[MODULE_NAME_LEN+1];
743 
744 #ifdef CONFIG_MODULE_UNLOAD
745 
746 EXPORT_TRACEPOINT_SYMBOL(module_get);
747 
748 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
749 #define MODULE_REF_BASE	1
750 
751 /* Init the unload section of the module. */
module_unload_init(struct module * mod)752 static int module_unload_init(struct module *mod)
753 {
754 	/*
755 	 * Initialize reference counter to MODULE_REF_BASE.
756 	 * refcnt == 0 means module is going.
757 	 */
758 	atomic_set(&mod->refcnt, MODULE_REF_BASE);
759 
760 	INIT_LIST_HEAD(&mod->source_list);
761 	INIT_LIST_HEAD(&mod->target_list);
762 
763 	/* Hold reference count during initialization. */
764 	atomic_inc(&mod->refcnt);
765 
766 	return 0;
767 }
768 
769 /* Does a already use b? */
already_uses(struct module * a,struct module * b)770 static int already_uses(struct module *a, struct module *b)
771 {
772 	struct module_use *use;
773 
774 	list_for_each_entry(use, &b->source_list, source_list) {
775 		if (use->source == a) {
776 			pr_debug("%s uses %s!\n", a->name, b->name);
777 			return 1;
778 		}
779 	}
780 	pr_debug("%s does not use %s!\n", a->name, b->name);
781 	return 0;
782 }
783 
784 /*
785  * Module a uses b
786  *  - we add 'a' as a "source", 'b' as a "target" of module use
787  *  - the module_use is added to the list of 'b' sources (so
788  *    'b' can walk the list to see who sourced them), and of 'a'
789  *    targets (so 'a' can see what modules it targets).
790  */
add_module_usage(struct module * a,struct module * b)791 static int add_module_usage(struct module *a, struct module *b)
792 {
793 	struct module_use *use;
794 
795 	pr_debug("Allocating new usage for %s.\n", a->name);
796 	use = kmalloc(sizeof(*use), GFP_ATOMIC);
797 	if (!use)
798 		return -ENOMEM;
799 
800 	use->source = a;
801 	use->target = b;
802 	list_add(&use->source_list, &b->source_list);
803 	list_add(&use->target_list, &a->target_list);
804 	return 0;
805 }
806 
807 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)808 static int ref_module(struct module *a, struct module *b)
809 {
810 	int err;
811 
812 	if (b == NULL || already_uses(a, b))
813 		return 0;
814 
815 	/* If module isn't available, we fail. */
816 	err = strong_try_module_get(b);
817 	if (err)
818 		return err;
819 
820 	err = add_module_usage(a, b);
821 	if (err) {
822 		module_put(b);
823 		return err;
824 	}
825 	return 0;
826 }
827 
828 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)829 static void module_unload_free(struct module *mod)
830 {
831 	struct module_use *use, *tmp;
832 
833 	mutex_lock(&module_mutex);
834 	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
835 		struct module *i = use->target;
836 		pr_debug("%s unusing %s\n", mod->name, i->name);
837 		module_put(i);
838 		list_del(&use->source_list);
839 		list_del(&use->target_list);
840 		kfree(use);
841 	}
842 	mutex_unlock(&module_mutex);
843 }
844 
845 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)846 static inline int try_force_unload(unsigned int flags)
847 {
848 	int ret = (flags & O_TRUNC);
849 	if (ret)
850 		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
851 	return ret;
852 }
853 #else
try_force_unload(unsigned int flags)854 static inline int try_force_unload(unsigned int flags)
855 {
856 	return 0;
857 }
858 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
859 
860 /* Try to release refcount of module, 0 means success. */
try_release_module_ref(struct module * mod)861 static int try_release_module_ref(struct module *mod)
862 {
863 	int ret;
864 
865 	/* Try to decrement refcnt which we set at loading */
866 	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
867 	BUG_ON(ret < 0);
868 	if (ret)
869 		/* Someone can put this right now, recover with checking */
870 		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
871 
872 	return ret;
873 }
874 
try_stop_module(struct module * mod,int flags,int * forced)875 static int try_stop_module(struct module *mod, int flags, int *forced)
876 {
877 	/* If it's not unused, quit unless we're forcing. */
878 	if (try_release_module_ref(mod) != 0) {
879 		*forced = try_force_unload(flags);
880 		if (!(*forced))
881 			return -EWOULDBLOCK;
882 	}
883 
884 	/* Mark it as dying. */
885 	mod->state = MODULE_STATE_GOING;
886 
887 	return 0;
888 }
889 
890 /**
891  * module_refcount() - return the refcount or -1 if unloading
892  * @mod:	the module we're checking
893  *
894  * Return:
895  *	-1 if the module is in the process of unloading
896  *	otherwise the number of references in the kernel to the module
897  */
module_refcount(struct module * mod)898 int module_refcount(struct module *mod)
899 {
900 	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
901 }
902 EXPORT_SYMBOL(module_refcount);
903 
904 /* This exists whether we can unload or not */
905 static void free_module(struct module *mod);
906 
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)907 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
908 		unsigned int, flags)
909 {
910 	struct module *mod;
911 	char name[MODULE_NAME_LEN];
912 	int ret, forced = 0;
913 
914 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
915 		return -EPERM;
916 
917 	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
918 		return -EFAULT;
919 	name[MODULE_NAME_LEN-1] = '\0';
920 
921 	audit_log_kern_module(name);
922 
923 	if (mutex_lock_interruptible(&module_mutex) != 0)
924 		return -EINTR;
925 
926 	mod = find_module(name);
927 	if (!mod) {
928 		ret = -ENOENT;
929 		goto out;
930 	}
931 
932 	if (!list_empty(&mod->source_list)) {
933 		/* Other modules depend on us: get rid of them first. */
934 		ret = -EWOULDBLOCK;
935 		goto out;
936 	}
937 
938 	/* Doing init or already dying? */
939 	if (mod->state != MODULE_STATE_LIVE) {
940 		/* FIXME: if (force), slam module count damn the torpedoes */
941 		pr_debug("%s already dying\n", mod->name);
942 		ret = -EBUSY;
943 		goto out;
944 	}
945 
946 	/* If it has an init func, it must have an exit func to unload */
947 	if (mod->init && !mod->exit) {
948 		forced = try_force_unload(flags);
949 		if (!forced) {
950 			/* This module can't be removed */
951 			ret = -EBUSY;
952 			goto out;
953 		}
954 	}
955 
956 	/* Stop the machine so refcounts can't move and disable module. */
957 	ret = try_stop_module(mod, flags, &forced);
958 	if (ret != 0)
959 		goto out;
960 
961 	mutex_unlock(&module_mutex);
962 	/* Final destruction now no one is using it. */
963 	if (mod->exit != NULL)
964 		mod->exit();
965 	blocking_notifier_call_chain(&module_notify_list,
966 				     MODULE_STATE_GOING, mod);
967 	klp_module_going(mod);
968 	ftrace_release_mod(mod);
969 
970 	async_synchronize_full();
971 
972 	/* Store the name of the last unloaded module for diagnostic purposes */
973 	strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
974 
975 	free_module(mod);
976 	/* someone could wait for the module in add_unformed_module() */
977 	wake_up_all(&module_wq);
978 	return 0;
979 out:
980 	mutex_unlock(&module_mutex);
981 	return ret;
982 }
983 
print_unload_info(struct seq_file * m,struct module * mod)984 static inline void print_unload_info(struct seq_file *m, struct module *mod)
985 {
986 	struct module_use *use;
987 	int printed_something = 0;
988 
989 	seq_printf(m, " %i ", module_refcount(mod));
990 
991 	/*
992 	 * Always include a trailing , so userspace can differentiate
993 	 * between this and the old multi-field proc format.
994 	 */
995 	list_for_each_entry(use, &mod->source_list, source_list) {
996 		printed_something = 1;
997 		seq_printf(m, "%s,", use->source->name);
998 	}
999 
1000 	if (mod->init != NULL && mod->exit == NULL) {
1001 		printed_something = 1;
1002 		seq_puts(m, "[permanent],");
1003 	}
1004 
1005 	if (!printed_something)
1006 		seq_puts(m, "-");
1007 }
1008 
__symbol_put(const char * symbol)1009 void __symbol_put(const char *symbol)
1010 {
1011 	struct find_symbol_arg fsa = {
1012 		.name	= symbol,
1013 		.gplok	= true,
1014 	};
1015 
1016 	preempt_disable();
1017 	if (!find_symbol(&fsa))
1018 		BUG();
1019 	module_put(fsa.owner);
1020 	preempt_enable();
1021 }
1022 EXPORT_SYMBOL(__symbol_put);
1023 
1024 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)1025 void symbol_put_addr(void *addr)
1026 {
1027 	struct module *modaddr;
1028 	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1029 
1030 	if (core_kernel_text(a))
1031 		return;
1032 
1033 	/*
1034 	 * Even though we hold a reference on the module; we still need to
1035 	 * disable preemption in order to safely traverse the data structure.
1036 	 */
1037 	preempt_disable();
1038 	modaddr = __module_text_address(a);
1039 	BUG_ON(!modaddr);
1040 	module_put(modaddr);
1041 	preempt_enable();
1042 }
1043 EXPORT_SYMBOL_GPL(symbol_put_addr);
1044 
show_refcnt(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1045 static ssize_t show_refcnt(struct module_attribute *mattr,
1046 			   struct module_kobject *mk, char *buffer)
1047 {
1048 	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1049 }
1050 
1051 static struct module_attribute modinfo_refcnt =
1052 	__ATTR(refcnt, 0444, show_refcnt, NULL);
1053 
__module_get(struct module * module)1054 void __module_get(struct module *module)
1055 {
1056 	if (module) {
1057 		preempt_disable();
1058 		atomic_inc(&module->refcnt);
1059 		trace_module_get(module, _RET_IP_);
1060 		preempt_enable();
1061 	}
1062 }
1063 EXPORT_SYMBOL(__module_get);
1064 
try_module_get(struct module * module)1065 bool try_module_get(struct module *module)
1066 {
1067 	bool ret = true;
1068 
1069 	if (module) {
1070 		preempt_disable();
1071 		/* Note: here, we can fail to get a reference */
1072 		if (likely(module_is_live(module) &&
1073 			   atomic_inc_not_zero(&module->refcnt) != 0))
1074 			trace_module_get(module, _RET_IP_);
1075 		else
1076 			ret = false;
1077 
1078 		preempt_enable();
1079 	}
1080 	return ret;
1081 }
1082 EXPORT_SYMBOL(try_module_get);
1083 
module_put(struct module * module)1084 void module_put(struct module *module)
1085 {
1086 	int ret;
1087 
1088 	if (module) {
1089 		preempt_disable();
1090 		ret = atomic_dec_if_positive(&module->refcnt);
1091 		WARN_ON(ret < 0);	/* Failed to put refcount */
1092 		trace_module_put(module, _RET_IP_);
1093 		preempt_enable();
1094 	}
1095 }
1096 EXPORT_SYMBOL(module_put);
1097 
1098 #else /* !CONFIG_MODULE_UNLOAD */
print_unload_info(struct seq_file * m,struct module * mod)1099 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1100 {
1101 	/* We don't know the usage count, or what modules are using. */
1102 	seq_puts(m, " - -");
1103 }
1104 
module_unload_free(struct module * mod)1105 static inline void module_unload_free(struct module *mod)
1106 {
1107 }
1108 
ref_module(struct module * a,struct module * b)1109 static int ref_module(struct module *a, struct module *b)
1110 {
1111 	return strong_try_module_get(b);
1112 }
1113 
module_unload_init(struct module * mod)1114 static inline int module_unload_init(struct module *mod)
1115 {
1116 	return 0;
1117 }
1118 #endif /* CONFIG_MODULE_UNLOAD */
1119 
module_flags_taint(struct module * mod,char * buf)1120 static size_t module_flags_taint(struct module *mod, char *buf)
1121 {
1122 	size_t l = 0;
1123 	int i;
1124 
1125 	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1126 		if (taint_flags[i].module && test_bit(i, &mod->taints))
1127 			buf[l++] = taint_flags[i].c_true;
1128 	}
1129 
1130 	return l;
1131 }
1132 
show_initstate(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1133 static ssize_t show_initstate(struct module_attribute *mattr,
1134 			      struct module_kobject *mk, char *buffer)
1135 {
1136 	const char *state = "unknown";
1137 
1138 	switch (mk->mod->state) {
1139 	case MODULE_STATE_LIVE:
1140 		state = "live";
1141 		break;
1142 	case MODULE_STATE_COMING:
1143 		state = "coming";
1144 		break;
1145 	case MODULE_STATE_GOING:
1146 		state = "going";
1147 		break;
1148 	default:
1149 		BUG();
1150 	}
1151 	return sprintf(buffer, "%s\n", state);
1152 }
1153 
1154 static struct module_attribute modinfo_initstate =
1155 	__ATTR(initstate, 0444, show_initstate, NULL);
1156 
store_uevent(struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)1157 static ssize_t store_uevent(struct module_attribute *mattr,
1158 			    struct module_kobject *mk,
1159 			    const char *buffer, size_t count)
1160 {
1161 	int rc;
1162 
1163 	rc = kobject_synth_uevent(&mk->kobj, buffer, count);
1164 	return rc ? rc : count;
1165 }
1166 
1167 struct module_attribute module_uevent =
1168 	__ATTR(uevent, 0200, NULL, store_uevent);
1169 
show_coresize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1170 static ssize_t show_coresize(struct module_attribute *mattr,
1171 			     struct module_kobject *mk, char *buffer)
1172 {
1173 	return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1174 }
1175 
1176 static struct module_attribute modinfo_coresize =
1177 	__ATTR(coresize, 0444, show_coresize, NULL);
1178 
show_initsize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1179 static ssize_t show_initsize(struct module_attribute *mattr,
1180 			     struct module_kobject *mk, char *buffer)
1181 {
1182 	return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1183 }
1184 
1185 static struct module_attribute modinfo_initsize =
1186 	__ATTR(initsize, 0444, show_initsize, NULL);
1187 
show_taint(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1188 static ssize_t show_taint(struct module_attribute *mattr,
1189 			  struct module_kobject *mk, char *buffer)
1190 {
1191 	size_t l;
1192 
1193 	l = module_flags_taint(mk->mod, buffer);
1194 	buffer[l++] = '\n';
1195 	return l;
1196 }
1197 
1198 static struct module_attribute modinfo_taint =
1199 	__ATTR(taint, 0444, show_taint, NULL);
1200 
1201 static struct module_attribute *modinfo_attrs[] = {
1202 	&module_uevent,
1203 	&modinfo_version,
1204 	&modinfo_srcversion,
1205 	&modinfo_initstate,
1206 	&modinfo_coresize,
1207 	&modinfo_initsize,
1208 	&modinfo_taint,
1209 #ifdef CONFIG_MODULE_UNLOAD
1210 	&modinfo_refcnt,
1211 #endif
1212 	NULL,
1213 };
1214 
1215 static const char vermagic[] = VERMAGIC_STRING;
1216 
try_to_force_load(struct module * mod,const char * reason)1217 static int try_to_force_load(struct module *mod, const char *reason)
1218 {
1219 #ifdef CONFIG_MODULE_FORCE_LOAD
1220 	if (!test_taint(TAINT_FORCED_MODULE))
1221 		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1222 	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1223 	return 0;
1224 #else
1225 	return -ENOEXEC;
1226 #endif
1227 }
1228 
1229 #ifdef CONFIG_MODVERSIONS
1230 
resolve_rel_crc(const s32 * crc)1231 static u32 resolve_rel_crc(const s32 *crc)
1232 {
1233 	return *(u32 *)((void *)crc + *crc);
1234 }
1235 
check_version(const struct load_info * info,const char * symname,struct module * mod,const s32 * crc)1236 static int check_version(const struct load_info *info,
1237 			 const char *symname,
1238 			 struct module *mod,
1239 			 const s32 *crc)
1240 {
1241 	Elf_Shdr *sechdrs = info->sechdrs;
1242 	unsigned int versindex = info->index.vers;
1243 	unsigned int i, num_versions;
1244 	struct modversion_info *versions;
1245 
1246 	/* Exporting module didn't supply crcs?  OK, we're already tainted. */
1247 	if (!crc)
1248 		return 1;
1249 
1250 	/* No versions at all?  modprobe --force does this. */
1251 	if (versindex == 0)
1252 		return try_to_force_load(mod, symname) == 0;
1253 
1254 	versions = (void *) sechdrs[versindex].sh_addr;
1255 	num_versions = sechdrs[versindex].sh_size
1256 		/ sizeof(struct modversion_info);
1257 
1258 	for (i = 0; i < num_versions; i++) {
1259 		u32 crcval;
1260 
1261 		if (strcmp(versions[i].name, symname) != 0)
1262 			continue;
1263 
1264 		if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1265 			crcval = resolve_rel_crc(crc);
1266 		else
1267 			crcval = *crc;
1268 		if (versions[i].crc == crcval)
1269 			return 1;
1270 		pr_debug("Found checksum %X vs module %lX\n",
1271 			 crcval, versions[i].crc);
1272 		goto bad_version;
1273 	}
1274 
1275 	/* Broken toolchain. Warn once, then let it go.. */
1276 	pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1277 	return 1;
1278 
1279 bad_version:
1280 	pr_warn("%s: disagrees about version of symbol %s\n",
1281 	       info->name, symname);
1282 	return 0;
1283 }
1284 
check_modstruct_version(const struct load_info * info,struct module * mod)1285 static inline int check_modstruct_version(const struct load_info *info,
1286 					  struct module *mod)
1287 {
1288 	struct find_symbol_arg fsa = {
1289 		.name	= "module_layout",
1290 		.gplok	= true,
1291 	};
1292 
1293 	/*
1294 	 * Since this should be found in kernel (which can't be removed), no
1295 	 * locking is necessary -- use preempt_disable() to placate lockdep.
1296 	 */
1297 	preempt_disable();
1298 	if (!find_symbol(&fsa)) {
1299 		preempt_enable();
1300 		BUG();
1301 	}
1302 	preempt_enable();
1303 	return check_version(info, "module_layout", mod, fsa.crc);
1304 }
1305 
1306 /* First part is kernel version, which we ignore if module has crcs. */
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1307 static inline int same_magic(const char *amagic, const char *bmagic,
1308 			     bool has_crcs)
1309 {
1310 	if (has_crcs) {
1311 		amagic += strcspn(amagic, " ");
1312 		bmagic += strcspn(bmagic, " ");
1313 	}
1314 	return strcmp(amagic, bmagic) == 0;
1315 }
1316 #else
check_version(const struct load_info * info,const char * symname,struct module * mod,const s32 * crc)1317 static inline int check_version(const struct load_info *info,
1318 				const char *symname,
1319 				struct module *mod,
1320 				const s32 *crc)
1321 {
1322 	return 1;
1323 }
1324 
check_modstruct_version(const struct load_info * info,struct module * mod)1325 static inline int check_modstruct_version(const struct load_info *info,
1326 					  struct module *mod)
1327 {
1328 	return 1;
1329 }
1330 
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1331 static inline int same_magic(const char *amagic, const char *bmagic,
1332 			     bool has_crcs)
1333 {
1334 	return strcmp(amagic, bmagic) == 0;
1335 }
1336 #endif /* CONFIG_MODVERSIONS */
1337 
1338 static char *get_modinfo(const struct load_info *info, const char *tag);
1339 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1340 			      char *prev);
1341 
verify_namespace_is_imported(const struct load_info * info,const struct kernel_symbol * sym,struct module * mod)1342 static int verify_namespace_is_imported(const struct load_info *info,
1343 					const struct kernel_symbol *sym,
1344 					struct module *mod)
1345 {
1346 	const char *namespace;
1347 	char *imported_namespace;
1348 
1349 	namespace = kernel_symbol_namespace(sym);
1350 	if (namespace && namespace[0]) {
1351 		imported_namespace = get_modinfo(info, "import_ns");
1352 		while (imported_namespace) {
1353 			if (strcmp(namespace, imported_namespace) == 0)
1354 				return 0;
1355 			imported_namespace = get_next_modinfo(
1356 				info, "import_ns", imported_namespace);
1357 		}
1358 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1359 		pr_warn(
1360 #else
1361 		pr_err(
1362 #endif
1363 			"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1364 			mod->name, kernel_symbol_name(sym), namespace);
1365 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1366 		return -EINVAL;
1367 #endif
1368 	}
1369 	return 0;
1370 }
1371 
inherit_taint(struct module * mod,struct module * owner)1372 static bool inherit_taint(struct module *mod, struct module *owner)
1373 {
1374 	if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1375 		return true;
1376 
1377 	if (mod->using_gplonly_symbols) {
1378 		pr_err("%s: module using GPL-only symbols uses symbols from proprietary module %s.\n",
1379 			mod->name, owner->name);
1380 		return false;
1381 	}
1382 
1383 	if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1384 		pr_warn("%s: module uses symbols from proprietary module %s, inheriting taint.\n",
1385 			mod->name, owner->name);
1386 		set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1387 	}
1388 	return true;
1389 }
1390 
1391 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1392 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1393 						  const struct load_info *info,
1394 						  const char *name,
1395 						  char ownername[])
1396 {
1397 	struct find_symbol_arg fsa = {
1398 		.name	= name,
1399 		.gplok	= !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1400 		.warn	= true,
1401 	};
1402 	int err;
1403 
1404 	/*
1405 	 * The module_mutex should not be a heavily contended lock;
1406 	 * if we get the occasional sleep here, we'll go an extra iteration
1407 	 * in the wait_event_interruptible(), which is harmless.
1408 	 */
1409 	sched_annotate_sleep();
1410 	mutex_lock(&module_mutex);
1411 	if (!find_symbol(&fsa))
1412 		goto unlock;
1413 
1414 	if (fsa.license == GPL_ONLY)
1415 		mod->using_gplonly_symbols = true;
1416 
1417 	if (!inherit_taint(mod, fsa.owner)) {
1418 		fsa.sym = NULL;
1419 		goto getname;
1420 	}
1421 
1422 	if (!check_version(info, name, mod, fsa.crc)) {
1423 		fsa.sym = ERR_PTR(-EINVAL);
1424 		goto getname;
1425 	}
1426 
1427 	err = verify_namespace_is_imported(info, fsa.sym, mod);
1428 	if (err) {
1429 		fsa.sym = ERR_PTR(err);
1430 		goto getname;
1431 	}
1432 
1433 	err = ref_module(mod, fsa.owner);
1434 	if (err) {
1435 		fsa.sym = ERR_PTR(err);
1436 		goto getname;
1437 	}
1438 
1439 getname:
1440 	/* We must make copy under the lock if we failed to get ref. */
1441 	strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1442 unlock:
1443 	mutex_unlock(&module_mutex);
1444 	return fsa.sym;
1445 }
1446 
1447 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1448 resolve_symbol_wait(struct module *mod,
1449 		    const struct load_info *info,
1450 		    const char *name)
1451 {
1452 	const struct kernel_symbol *ksym;
1453 	char owner[MODULE_NAME_LEN];
1454 
1455 	if (wait_event_interruptible_timeout(module_wq,
1456 			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1457 			|| PTR_ERR(ksym) != -EBUSY,
1458 					     30 * HZ) <= 0) {
1459 		pr_warn("%s: gave up waiting for init of module %s.\n",
1460 			mod->name, owner);
1461 	}
1462 	return ksym;
1463 }
1464 
1465 /*
1466  * /sys/module/foo/sections stuff
1467  * J. Corbet <corbet@lwn.net>
1468  */
1469 #ifdef CONFIG_SYSFS
1470 
1471 #ifdef CONFIG_KALLSYMS
sect_empty(const Elf_Shdr * sect)1472 static inline bool sect_empty(const Elf_Shdr *sect)
1473 {
1474 	return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1475 }
1476 
1477 struct module_sect_attr {
1478 	struct bin_attribute battr;
1479 	unsigned long address;
1480 };
1481 
1482 struct module_sect_attrs {
1483 	struct attribute_group grp;
1484 	unsigned int nsections;
1485 	struct module_sect_attr attrs[];
1486 };
1487 
1488 #define MODULE_SECT_READ_SIZE (3 /* "0x", "\n" */ + (BITS_PER_LONG / 4))
module_sect_read(struct file * file,struct kobject * kobj,struct bin_attribute * battr,char * buf,loff_t pos,size_t count)1489 static ssize_t module_sect_read(struct file *file, struct kobject *kobj,
1490 				struct bin_attribute *battr,
1491 				char *buf, loff_t pos, size_t count)
1492 {
1493 	struct module_sect_attr *sattr =
1494 		container_of(battr, struct module_sect_attr, battr);
1495 	char bounce[MODULE_SECT_READ_SIZE + 1];
1496 	size_t wrote;
1497 
1498 	if (pos != 0)
1499 		return -EINVAL;
1500 
1501 	/*
1502 	 * Since we're a binary read handler, we must account for the
1503 	 * trailing NUL byte that sprintf will write: if "buf" is
1504 	 * too small to hold the NUL, or the NUL is exactly the last
1505 	 * byte, the read will look like it got truncated by one byte.
1506 	 * Since there is no way to ask sprintf nicely to not write
1507 	 * the NUL, we have to use a bounce buffer.
1508 	 */
1509 	wrote = scnprintf(bounce, sizeof(bounce), "0x%px\n",
1510 			 kallsyms_show_value(file->f_cred)
1511 				? (void *)sattr->address : NULL);
1512 	count = min(count, wrote);
1513 	memcpy(buf, bounce, count);
1514 
1515 	return count;
1516 }
1517 
free_sect_attrs(struct module_sect_attrs * sect_attrs)1518 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1519 {
1520 	unsigned int section;
1521 
1522 	for (section = 0; section < sect_attrs->nsections; section++)
1523 		kfree(sect_attrs->attrs[section].battr.attr.name);
1524 	kfree(sect_attrs);
1525 }
1526 
add_sect_attrs(struct module * mod,const struct load_info * info)1527 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1528 {
1529 	unsigned int nloaded = 0, i, size[2];
1530 	struct module_sect_attrs *sect_attrs;
1531 	struct module_sect_attr *sattr;
1532 	struct bin_attribute **gattr;
1533 
1534 	/* Count loaded sections and allocate structures */
1535 	for (i = 0; i < info->hdr->e_shnum; i++)
1536 		if (!sect_empty(&info->sechdrs[i]))
1537 			nloaded++;
1538 	size[0] = ALIGN(struct_size(sect_attrs, attrs, nloaded),
1539 			sizeof(sect_attrs->grp.bin_attrs[0]));
1540 	size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.bin_attrs[0]);
1541 	sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1542 	if (sect_attrs == NULL)
1543 		return;
1544 
1545 	/* Setup section attributes. */
1546 	sect_attrs->grp.name = "sections";
1547 	sect_attrs->grp.bin_attrs = (void *)sect_attrs + size[0];
1548 
1549 	sect_attrs->nsections = 0;
1550 	sattr = &sect_attrs->attrs[0];
1551 	gattr = &sect_attrs->grp.bin_attrs[0];
1552 	for (i = 0; i < info->hdr->e_shnum; i++) {
1553 		Elf_Shdr *sec = &info->sechdrs[i];
1554 		if (sect_empty(sec))
1555 			continue;
1556 		sysfs_bin_attr_init(&sattr->battr);
1557 		sattr->address = sec->sh_addr;
1558 		sattr->battr.attr.name =
1559 			kstrdup(info->secstrings + sec->sh_name, GFP_KERNEL);
1560 		if (sattr->battr.attr.name == NULL)
1561 			goto out;
1562 		sect_attrs->nsections++;
1563 		sattr->battr.read = module_sect_read;
1564 		sattr->battr.size = MODULE_SECT_READ_SIZE;
1565 		sattr->battr.attr.mode = 0400;
1566 		*(gattr++) = &(sattr++)->battr;
1567 	}
1568 	*gattr = NULL;
1569 
1570 	if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1571 		goto out;
1572 
1573 	mod->sect_attrs = sect_attrs;
1574 	return;
1575   out:
1576 	free_sect_attrs(sect_attrs);
1577 }
1578 
remove_sect_attrs(struct module * mod)1579 static void remove_sect_attrs(struct module *mod)
1580 {
1581 	if (mod->sect_attrs) {
1582 		sysfs_remove_group(&mod->mkobj.kobj,
1583 				   &mod->sect_attrs->grp);
1584 		/*
1585 		 * We are positive that no one is using any sect attrs
1586 		 * at this point.  Deallocate immediately.
1587 		 */
1588 		free_sect_attrs(mod->sect_attrs);
1589 		mod->sect_attrs = NULL;
1590 	}
1591 }
1592 
1593 /*
1594  * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1595  */
1596 
1597 struct module_notes_attrs {
1598 	struct kobject *dir;
1599 	unsigned int notes;
1600 	struct bin_attribute attrs[];
1601 };
1602 
module_notes_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t pos,size_t count)1603 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1604 				 struct bin_attribute *bin_attr,
1605 				 char *buf, loff_t pos, size_t count)
1606 {
1607 	/*
1608 	 * The caller checked the pos and count against our size.
1609 	 */
1610 	memcpy(buf, bin_attr->private + pos, count);
1611 	return count;
1612 }
1613 
free_notes_attrs(struct module_notes_attrs * notes_attrs,unsigned int i)1614 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1615 			     unsigned int i)
1616 {
1617 	if (notes_attrs->dir) {
1618 		while (i-- > 0)
1619 			sysfs_remove_bin_file(notes_attrs->dir,
1620 					      &notes_attrs->attrs[i]);
1621 		kobject_put(notes_attrs->dir);
1622 	}
1623 	kfree(notes_attrs);
1624 }
1625 
add_notes_attrs(struct module * mod,const struct load_info * info)1626 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1627 {
1628 	unsigned int notes, loaded, i;
1629 	struct module_notes_attrs *notes_attrs;
1630 	struct bin_attribute *nattr;
1631 
1632 	/* failed to create section attributes, so can't create notes */
1633 	if (!mod->sect_attrs)
1634 		return;
1635 
1636 	/* Count notes sections and allocate structures.  */
1637 	notes = 0;
1638 	for (i = 0; i < info->hdr->e_shnum; i++)
1639 		if (!sect_empty(&info->sechdrs[i]) &&
1640 		    (info->sechdrs[i].sh_type == SHT_NOTE))
1641 			++notes;
1642 
1643 	if (notes == 0)
1644 		return;
1645 
1646 	notes_attrs = kzalloc(struct_size(notes_attrs, attrs, notes),
1647 			      GFP_KERNEL);
1648 	if (notes_attrs == NULL)
1649 		return;
1650 
1651 	notes_attrs->notes = notes;
1652 	nattr = &notes_attrs->attrs[0];
1653 	for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1654 		if (sect_empty(&info->sechdrs[i]))
1655 			continue;
1656 		if (info->sechdrs[i].sh_type == SHT_NOTE) {
1657 			sysfs_bin_attr_init(nattr);
1658 			nattr->attr.name = mod->sect_attrs->attrs[loaded].battr.attr.name;
1659 			nattr->attr.mode = S_IRUGO;
1660 			nattr->size = info->sechdrs[i].sh_size;
1661 			nattr->private = (void *) info->sechdrs[i].sh_addr;
1662 			nattr->read = module_notes_read;
1663 			++nattr;
1664 		}
1665 		++loaded;
1666 	}
1667 
1668 	notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1669 	if (!notes_attrs->dir)
1670 		goto out;
1671 
1672 	for (i = 0; i < notes; ++i)
1673 		if (sysfs_create_bin_file(notes_attrs->dir,
1674 					  &notes_attrs->attrs[i]))
1675 			goto out;
1676 
1677 	mod->notes_attrs = notes_attrs;
1678 	return;
1679 
1680   out:
1681 	free_notes_attrs(notes_attrs, i);
1682 }
1683 
remove_notes_attrs(struct module * mod)1684 static void remove_notes_attrs(struct module *mod)
1685 {
1686 	if (mod->notes_attrs)
1687 		free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1688 }
1689 
1690 #else
1691 
add_sect_attrs(struct module * mod,const struct load_info * info)1692 static inline void add_sect_attrs(struct module *mod,
1693 				  const struct load_info *info)
1694 {
1695 }
1696 
remove_sect_attrs(struct module * mod)1697 static inline void remove_sect_attrs(struct module *mod)
1698 {
1699 }
1700 
add_notes_attrs(struct module * mod,const struct load_info * info)1701 static inline void add_notes_attrs(struct module *mod,
1702 				   const struct load_info *info)
1703 {
1704 }
1705 
remove_notes_attrs(struct module * mod)1706 static inline void remove_notes_attrs(struct module *mod)
1707 {
1708 }
1709 #endif /* CONFIG_KALLSYMS */
1710 
del_usage_links(struct module * mod)1711 static void del_usage_links(struct module *mod)
1712 {
1713 #ifdef CONFIG_MODULE_UNLOAD
1714 	struct module_use *use;
1715 
1716 	mutex_lock(&module_mutex);
1717 	list_for_each_entry(use, &mod->target_list, target_list)
1718 		sysfs_remove_link(use->target->holders_dir, mod->name);
1719 	mutex_unlock(&module_mutex);
1720 #endif
1721 }
1722 
add_usage_links(struct module * mod)1723 static int add_usage_links(struct module *mod)
1724 {
1725 	int ret = 0;
1726 #ifdef CONFIG_MODULE_UNLOAD
1727 	struct module_use *use;
1728 
1729 	mutex_lock(&module_mutex);
1730 	list_for_each_entry(use, &mod->target_list, target_list) {
1731 		ret = sysfs_create_link(use->target->holders_dir,
1732 					&mod->mkobj.kobj, mod->name);
1733 		if (ret)
1734 			break;
1735 	}
1736 	mutex_unlock(&module_mutex);
1737 	if (ret)
1738 		del_usage_links(mod);
1739 #endif
1740 	return ret;
1741 }
1742 
1743 static void module_remove_modinfo_attrs(struct module *mod, int end);
1744 
module_add_modinfo_attrs(struct module * mod)1745 static int module_add_modinfo_attrs(struct module *mod)
1746 {
1747 	struct module_attribute *attr;
1748 	struct module_attribute *temp_attr;
1749 	int error = 0;
1750 	int i;
1751 
1752 	mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1753 					(ARRAY_SIZE(modinfo_attrs) + 1)),
1754 					GFP_KERNEL);
1755 	if (!mod->modinfo_attrs)
1756 		return -ENOMEM;
1757 
1758 	temp_attr = mod->modinfo_attrs;
1759 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1760 		if (!attr->test || attr->test(mod)) {
1761 			memcpy(temp_attr, attr, sizeof(*temp_attr));
1762 			sysfs_attr_init(&temp_attr->attr);
1763 			error = sysfs_create_file(&mod->mkobj.kobj,
1764 					&temp_attr->attr);
1765 			if (error)
1766 				goto error_out;
1767 			++temp_attr;
1768 		}
1769 	}
1770 
1771 	return 0;
1772 
1773 error_out:
1774 	if (i > 0)
1775 		module_remove_modinfo_attrs(mod, --i);
1776 	else
1777 		kfree(mod->modinfo_attrs);
1778 	return error;
1779 }
1780 
module_remove_modinfo_attrs(struct module * mod,int end)1781 static void module_remove_modinfo_attrs(struct module *mod, int end)
1782 {
1783 	struct module_attribute *attr;
1784 	int i;
1785 
1786 	for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1787 		if (end >= 0 && i > end)
1788 			break;
1789 		/* pick a field to test for end of list */
1790 		if (!attr->attr.name)
1791 			break;
1792 		sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1793 		if (attr->free)
1794 			attr->free(mod);
1795 	}
1796 	kfree(mod->modinfo_attrs);
1797 }
1798 
mod_kobject_put(struct module * mod)1799 static void mod_kobject_put(struct module *mod)
1800 {
1801 	DECLARE_COMPLETION_ONSTACK(c);
1802 	mod->mkobj.kobj_completion = &c;
1803 	kobject_put(&mod->mkobj.kobj);
1804 	wait_for_completion(&c);
1805 }
1806 
mod_sysfs_init(struct module * mod)1807 static int mod_sysfs_init(struct module *mod)
1808 {
1809 	int err;
1810 	struct kobject *kobj;
1811 
1812 	if (!module_sysfs_initialized) {
1813 		pr_err("%s: module sysfs not initialized\n", mod->name);
1814 		err = -EINVAL;
1815 		goto out;
1816 	}
1817 
1818 	kobj = kset_find_obj(module_kset, mod->name);
1819 	if (kobj) {
1820 		pr_err("%s: module is already loaded\n", mod->name);
1821 		kobject_put(kobj);
1822 		err = -EINVAL;
1823 		goto out;
1824 	}
1825 
1826 	mod->mkobj.mod = mod;
1827 
1828 	memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1829 	mod->mkobj.kobj.kset = module_kset;
1830 	err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1831 				   "%s", mod->name);
1832 	if (err)
1833 		mod_kobject_put(mod);
1834 
1835 out:
1836 	return err;
1837 }
1838 
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1839 static int mod_sysfs_setup(struct module *mod,
1840 			   const struct load_info *info,
1841 			   struct kernel_param *kparam,
1842 			   unsigned int num_params)
1843 {
1844 	int err;
1845 
1846 	err = mod_sysfs_init(mod);
1847 	if (err)
1848 		goto out;
1849 
1850 	mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1851 	if (!mod->holders_dir) {
1852 		err = -ENOMEM;
1853 		goto out_unreg;
1854 	}
1855 
1856 	err = module_param_sysfs_setup(mod, kparam, num_params);
1857 	if (err)
1858 		goto out_unreg_holders;
1859 
1860 	err = module_add_modinfo_attrs(mod);
1861 	if (err)
1862 		goto out_unreg_param;
1863 
1864 	err = add_usage_links(mod);
1865 	if (err)
1866 		goto out_unreg_modinfo_attrs;
1867 
1868 	add_sect_attrs(mod, info);
1869 	add_notes_attrs(mod, info);
1870 
1871 	return 0;
1872 
1873 out_unreg_modinfo_attrs:
1874 	module_remove_modinfo_attrs(mod, -1);
1875 out_unreg_param:
1876 	module_param_sysfs_remove(mod);
1877 out_unreg_holders:
1878 	kobject_put(mod->holders_dir);
1879 out_unreg:
1880 	mod_kobject_put(mod);
1881 out:
1882 	return err;
1883 }
1884 
mod_sysfs_fini(struct module * mod)1885 static void mod_sysfs_fini(struct module *mod)
1886 {
1887 	remove_notes_attrs(mod);
1888 	remove_sect_attrs(mod);
1889 	mod_kobject_put(mod);
1890 }
1891 
init_param_lock(struct module * mod)1892 static void init_param_lock(struct module *mod)
1893 {
1894 	mutex_init(&mod->param_lock);
1895 }
1896 #else /* !CONFIG_SYSFS */
1897 
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1898 static int mod_sysfs_setup(struct module *mod,
1899 			   const struct load_info *info,
1900 			   struct kernel_param *kparam,
1901 			   unsigned int num_params)
1902 {
1903 	return 0;
1904 }
1905 
mod_sysfs_fini(struct module * mod)1906 static void mod_sysfs_fini(struct module *mod)
1907 {
1908 }
1909 
module_remove_modinfo_attrs(struct module * mod,int end)1910 static void module_remove_modinfo_attrs(struct module *mod, int end)
1911 {
1912 }
1913 
del_usage_links(struct module * mod)1914 static void del_usage_links(struct module *mod)
1915 {
1916 }
1917 
init_param_lock(struct module * mod)1918 static void init_param_lock(struct module *mod)
1919 {
1920 }
1921 #endif /* CONFIG_SYSFS */
1922 
mod_sysfs_teardown(struct module * mod)1923 static void mod_sysfs_teardown(struct module *mod)
1924 {
1925 	del_usage_links(mod);
1926 	module_remove_modinfo_attrs(mod, -1);
1927 	module_param_sysfs_remove(mod);
1928 	kobject_put(mod->mkobj.drivers_dir);
1929 	kobject_put(mod->holders_dir);
1930 	mod_sysfs_fini(mod);
1931 }
1932 
1933 /*
1934  * LKM RO/NX protection: protect module's text/ro-data
1935  * from modification and any data from execution.
1936  *
1937  * General layout of module is:
1938  *          [text] [read-only-data] [ro-after-init] [writable data]
1939  * text_size -----^                ^               ^               ^
1940  * ro_size ------------------------|               |               |
1941  * ro_after_init_size -----------------------------|               |
1942  * size -----------------------------------------------------------|
1943  *
1944  * These values are always page-aligned (as is base)
1945  */
1946 
1947 /*
1948  * Since some arches are moving towards PAGE_KERNEL module allocations instead
1949  * of PAGE_KERNEL_EXEC, keep frob_text() and module_enable_x() outside of the
1950  * CONFIG_STRICT_MODULE_RWX block below because they are needed regardless of
1951  * whether we are strict.
1952  */
1953 #ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
frob_text(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))1954 static void frob_text(const struct module_layout *layout,
1955 		      int (*set_memory)(unsigned long start, int num_pages))
1956 {
1957 	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1958 	BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1959 	set_memory((unsigned long)layout->base,
1960 		   layout->text_size >> PAGE_SHIFT);
1961 }
1962 
module_enable_x(const struct module * mod)1963 static void module_enable_x(const struct module *mod)
1964 {
1965 	frob_text(&mod->core_layout, set_memory_x);
1966 	frob_text(&mod->init_layout, set_memory_x);
1967 }
1968 #else /* !CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
module_enable_x(const struct module * mod)1969 static void module_enable_x(const struct module *mod) { }
1970 #endif /* CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
1971 
1972 #ifdef CONFIG_STRICT_MODULE_RWX
frob_rodata(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))1973 static void frob_rodata(const struct module_layout *layout,
1974 			int (*set_memory)(unsigned long start, int num_pages))
1975 {
1976 	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1977 	BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1978 	BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1979 	set_memory((unsigned long)layout->base + layout->text_size,
1980 		   (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1981 }
1982 
frob_ro_after_init(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))1983 static void frob_ro_after_init(const struct module_layout *layout,
1984 				int (*set_memory)(unsigned long start, int num_pages))
1985 {
1986 	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1987 	BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1988 	BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1989 	set_memory((unsigned long)layout->base + layout->ro_size,
1990 		   (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
1991 }
1992 
frob_writable_data(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))1993 static void frob_writable_data(const struct module_layout *layout,
1994 			       int (*set_memory)(unsigned long start, int num_pages))
1995 {
1996 	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1997 	BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1998 	BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
1999 	set_memory((unsigned long)layout->base + layout->ro_after_init_size,
2000 		   (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
2001 }
2002 
module_enable_ro(const struct module * mod,bool after_init)2003 static void module_enable_ro(const struct module *mod, bool after_init)
2004 {
2005 	if (!rodata_enabled)
2006 		return;
2007 
2008 	set_vm_flush_reset_perms(mod->core_layout.base);
2009 	set_vm_flush_reset_perms(mod->init_layout.base);
2010 	frob_text(&mod->core_layout, set_memory_ro);
2011 
2012 	frob_rodata(&mod->core_layout, set_memory_ro);
2013 	frob_text(&mod->init_layout, set_memory_ro);
2014 	frob_rodata(&mod->init_layout, set_memory_ro);
2015 
2016 	if (after_init)
2017 		frob_ro_after_init(&mod->core_layout, set_memory_ro);
2018 }
2019 
module_enable_nx(const struct module * mod)2020 static void module_enable_nx(const struct module *mod)
2021 {
2022 	frob_rodata(&mod->core_layout, set_memory_nx);
2023 	frob_ro_after_init(&mod->core_layout, set_memory_nx);
2024 	frob_writable_data(&mod->core_layout, set_memory_nx);
2025 	frob_rodata(&mod->init_layout, set_memory_nx);
2026 	frob_writable_data(&mod->init_layout, set_memory_nx);
2027 }
2028 
module_enforce_rwx_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)2029 static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2030 				       char *secstrings, struct module *mod)
2031 {
2032 	const unsigned long shf_wx = SHF_WRITE|SHF_EXECINSTR;
2033 	int i;
2034 
2035 	for (i = 0; i < hdr->e_shnum; i++) {
2036 		if ((sechdrs[i].sh_flags & shf_wx) == shf_wx) {
2037 			pr_err("%s: section %s (index %d) has invalid WRITE|EXEC flags\n",
2038 				mod->name, secstrings + sechdrs[i].sh_name, i);
2039 			return -ENOEXEC;
2040 		}
2041 	}
2042 
2043 	return 0;
2044 }
2045 
2046 #else /* !CONFIG_STRICT_MODULE_RWX */
module_enable_nx(const struct module * mod)2047 static void module_enable_nx(const struct module *mod) { }
module_enable_ro(const struct module * mod,bool after_init)2048 static void module_enable_ro(const struct module *mod, bool after_init) {}
module_enforce_rwx_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)2049 static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2050 				       char *secstrings, struct module *mod)
2051 {
2052 	return 0;
2053 }
2054 #endif /*  CONFIG_STRICT_MODULE_RWX */
2055 
2056 #ifdef CONFIG_LIVEPATCH
2057 /*
2058  * Persist Elf information about a module. Copy the Elf header,
2059  * section header table, section string table, and symtab section
2060  * index from info to mod->klp_info.
2061  */
copy_module_elf(struct module * mod,struct load_info * info)2062 static int copy_module_elf(struct module *mod, struct load_info *info)
2063 {
2064 	unsigned int size, symndx;
2065 	int ret;
2066 
2067 	size = sizeof(*mod->klp_info);
2068 	mod->klp_info = kmalloc(size, GFP_KERNEL);
2069 	if (mod->klp_info == NULL)
2070 		return -ENOMEM;
2071 
2072 	/* Elf header */
2073 	size = sizeof(mod->klp_info->hdr);
2074 	memcpy(&mod->klp_info->hdr, info->hdr, size);
2075 
2076 	/* Elf section header table */
2077 	size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2078 	mod->klp_info->sechdrs = kmemdup(info->sechdrs, size, GFP_KERNEL);
2079 	if (mod->klp_info->sechdrs == NULL) {
2080 		ret = -ENOMEM;
2081 		goto free_info;
2082 	}
2083 
2084 	/* Elf section name string table */
2085 	size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2086 	mod->klp_info->secstrings = kmemdup(info->secstrings, size, GFP_KERNEL);
2087 	if (mod->klp_info->secstrings == NULL) {
2088 		ret = -ENOMEM;
2089 		goto free_sechdrs;
2090 	}
2091 
2092 	/* Elf symbol section index */
2093 	symndx = info->index.sym;
2094 	mod->klp_info->symndx = symndx;
2095 
2096 	/*
2097 	 * For livepatch modules, core_kallsyms.symtab is a complete
2098 	 * copy of the original symbol table. Adjust sh_addr to point
2099 	 * to core_kallsyms.symtab since the copy of the symtab in module
2100 	 * init memory is freed at the end of do_init_module().
2101 	 */
2102 	mod->klp_info->sechdrs[symndx].sh_addr = \
2103 		(unsigned long) mod->core_kallsyms.symtab;
2104 
2105 	return 0;
2106 
2107 free_sechdrs:
2108 	kfree(mod->klp_info->sechdrs);
2109 free_info:
2110 	kfree(mod->klp_info);
2111 	return ret;
2112 }
2113 
free_module_elf(struct module * mod)2114 static void free_module_elf(struct module *mod)
2115 {
2116 	kfree(mod->klp_info->sechdrs);
2117 	kfree(mod->klp_info->secstrings);
2118 	kfree(mod->klp_info);
2119 }
2120 #else /* !CONFIG_LIVEPATCH */
copy_module_elf(struct module * mod,struct load_info * info)2121 static int copy_module_elf(struct module *mod, struct load_info *info)
2122 {
2123 	return 0;
2124 }
2125 
free_module_elf(struct module * mod)2126 static void free_module_elf(struct module *mod)
2127 {
2128 }
2129 #endif /* CONFIG_LIVEPATCH */
2130 
module_memfree(void * module_region)2131 void __weak module_memfree(void *module_region)
2132 {
2133 	/*
2134 	 * This memory may be RO, and freeing RO memory in an interrupt is not
2135 	 * supported by vmalloc.
2136 	 */
2137 	WARN_ON(in_interrupt());
2138 	vfree(module_region);
2139 }
2140 
module_arch_cleanup(struct module * mod)2141 void __weak module_arch_cleanup(struct module *mod)
2142 {
2143 }
2144 
module_arch_freeing_init(struct module * mod)2145 void __weak module_arch_freeing_init(struct module *mod)
2146 {
2147 }
2148 
2149 static void cfi_cleanup(struct module *mod);
2150 
2151 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)2152 static void free_module(struct module *mod)
2153 {
2154 	trace_module_free(mod);
2155 
2156 	mod_sysfs_teardown(mod);
2157 
2158 	/*
2159 	 * We leave it in list to prevent duplicate loads, but make sure
2160 	 * that noone uses it while it's being deconstructed.
2161 	 */
2162 	mutex_lock(&module_mutex);
2163 	mod->state = MODULE_STATE_UNFORMED;
2164 	mutex_unlock(&module_mutex);
2165 
2166 	/* Remove dynamic debug info */
2167 	ddebug_remove_module(mod->name);
2168 
2169 	/* Arch-specific cleanup. */
2170 	module_arch_cleanup(mod);
2171 
2172 	/* Module unload stuff */
2173 	module_unload_free(mod);
2174 
2175 	/* Free any allocated parameters. */
2176 	destroy_params(mod->kp, mod->num_kp);
2177 
2178 	if (is_livepatch_module(mod))
2179 		free_module_elf(mod);
2180 
2181 	/* Now we can delete it from the lists */
2182 	mutex_lock(&module_mutex);
2183 	/* Unlink carefully: kallsyms could be walking list. */
2184 	list_del_rcu(&mod->list);
2185 	mod_tree_remove(mod);
2186 	/* Remove this module from bug list, this uses list_del_rcu */
2187 	module_bug_cleanup(mod);
2188 	/* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2189 	synchronize_rcu();
2190 	mutex_unlock(&module_mutex);
2191 
2192 	/* Clean up CFI for the module. */
2193 	cfi_cleanup(mod);
2194 
2195 	/* This may be empty, but that's OK */
2196 	module_arch_freeing_init(mod);
2197 	module_memfree(mod->init_layout.base);
2198 	kfree(mod->args);
2199 	percpu_modfree(mod);
2200 
2201 	/* Free lock-classes; relies on the preceding sync_rcu(). */
2202 	lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2203 
2204 	/* Finally, free the core (containing the module structure) */
2205 	module_memfree(mod->core_layout.base);
2206 }
2207 
__symbol_get(const char * symbol)2208 void *__symbol_get(const char *symbol)
2209 {
2210 	struct find_symbol_arg fsa = {
2211 		.name	= symbol,
2212 		.gplok	= true,
2213 		.warn	= true,
2214 	};
2215 
2216 	preempt_disable();
2217 	if (!find_symbol(&fsa) || strong_try_module_get(fsa.owner)) {
2218 		preempt_enable();
2219 		return NULL;
2220 	}
2221 	preempt_enable();
2222 	return (void *)kernel_symbol_value(fsa.sym);
2223 }
2224 EXPORT_SYMBOL_GPL(__symbol_get);
2225 
2226 /*
2227  * Ensure that an exported symbol [global namespace] does not already exist
2228  * in the kernel or in some other module's exported symbol table.
2229  *
2230  * You must hold the module_mutex.
2231  */
verify_exported_symbols(struct module * mod)2232 static int verify_exported_symbols(struct module *mod)
2233 {
2234 	unsigned int i;
2235 	const struct kernel_symbol *s;
2236 	struct {
2237 		const struct kernel_symbol *sym;
2238 		unsigned int num;
2239 	} arr[] = {
2240 		{ mod->syms, mod->num_syms },
2241 		{ mod->gpl_syms, mod->num_gpl_syms },
2242 	};
2243 
2244 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2245 		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2246 			struct find_symbol_arg fsa = {
2247 				.name	= kernel_symbol_name(s),
2248 				.gplok	= true,
2249 			};
2250 			if (find_symbol(&fsa)) {
2251 				pr_err("%s: exports duplicate symbol %s"
2252 				       " (owned by %s)\n",
2253 				       mod->name, kernel_symbol_name(s),
2254 				       module_name(fsa.owner));
2255 				return -ENOEXEC;
2256 			}
2257 		}
2258 	}
2259 	return 0;
2260 }
2261 
ignore_undef_symbol(Elf_Half emachine,const char * name)2262 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
2263 {
2264 	/*
2265 	 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
2266 	 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
2267 	 * i386 has a similar problem but may not deserve a fix.
2268 	 *
2269 	 * If we ever have to ignore many symbols, consider refactoring the code to
2270 	 * only warn if referenced by a relocation.
2271 	 */
2272 	if (emachine == EM_386 || emachine == EM_X86_64)
2273 		return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
2274 	return false;
2275 }
2276 
2277 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)2278 static int simplify_symbols(struct module *mod, const struct load_info *info)
2279 {
2280 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2281 	Elf_Sym *sym = (void *)symsec->sh_addr;
2282 	unsigned long secbase;
2283 	unsigned int i;
2284 	int ret = 0;
2285 	const struct kernel_symbol *ksym;
2286 
2287 	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2288 		const char *name = info->strtab + sym[i].st_name;
2289 
2290 		switch (sym[i].st_shndx) {
2291 		case SHN_COMMON:
2292 			/* Ignore common symbols */
2293 			if (!strncmp(name, "__gnu_lto", 9))
2294 				break;
2295 
2296 			/*
2297 			 * We compiled with -fno-common.  These are not
2298 			 * supposed to happen.
2299 			 */
2300 			pr_debug("Common symbol: %s\n", name);
2301 			pr_warn("%s: please compile with -fno-common\n",
2302 			       mod->name);
2303 			ret = -ENOEXEC;
2304 			break;
2305 
2306 		case SHN_ABS:
2307 			/* Don't need to do anything */
2308 			pr_debug("Absolute symbol: 0x%08lx\n",
2309 			       (long)sym[i].st_value);
2310 			break;
2311 
2312 		case SHN_LIVEPATCH:
2313 			/* Livepatch symbols are resolved by livepatch */
2314 			break;
2315 
2316 		case SHN_UNDEF:
2317 			ksym = resolve_symbol_wait(mod, info, name);
2318 			/* Ok if resolved.  */
2319 			if (ksym && !IS_ERR(ksym)) {
2320 				sym[i].st_value = kernel_symbol_value(ksym);
2321 				break;
2322 			}
2323 
2324 			/* Ok if weak or ignored.  */
2325 			if (!ksym &&
2326 			    (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
2327 			     ignore_undef_symbol(info->hdr->e_machine, name)))
2328 				break;
2329 
2330 			ret = PTR_ERR(ksym) ?: -ENOENT;
2331 			pr_warn("%s: Unknown symbol %s (err %d)\n",
2332 				mod->name, name, ret);
2333 			break;
2334 
2335 		default:
2336 			/* Divert to percpu allocation if a percpu var. */
2337 			if (sym[i].st_shndx == info->index.pcpu)
2338 				secbase = (unsigned long)mod_percpu(mod);
2339 			else
2340 				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2341 			sym[i].st_value += secbase;
2342 			break;
2343 		}
2344 	}
2345 
2346 	return ret;
2347 }
2348 
apply_relocations(struct module * mod,const struct load_info * info)2349 static int apply_relocations(struct module *mod, const struct load_info *info)
2350 {
2351 	unsigned int i;
2352 	int err = 0;
2353 
2354 	/* Now do relocations. */
2355 	for (i = 1; i < info->hdr->e_shnum; i++) {
2356 		unsigned int infosec = info->sechdrs[i].sh_info;
2357 
2358 		/* Not a valid relocation section? */
2359 		if (infosec >= info->hdr->e_shnum)
2360 			continue;
2361 
2362 		/* Don't bother with non-allocated sections */
2363 		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2364 			continue;
2365 
2366 		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2367 			err = klp_apply_section_relocs(mod, info->sechdrs,
2368 						       info->secstrings,
2369 						       info->strtab,
2370 						       info->index.sym, i,
2371 						       NULL);
2372 		else if (info->sechdrs[i].sh_type == SHT_REL)
2373 			err = apply_relocate(info->sechdrs, info->strtab,
2374 					     info->index.sym, i, mod);
2375 		else if (info->sechdrs[i].sh_type == SHT_RELA)
2376 			err = apply_relocate_add(info->sechdrs, info->strtab,
2377 						 info->index.sym, i, mod);
2378 		if (err < 0)
2379 			break;
2380 	}
2381 	return err;
2382 }
2383 
2384 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)2385 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2386 					     unsigned int section)
2387 {
2388 	/* default implementation just returns zero */
2389 	return 0;
2390 }
2391 
2392 /* Update size with this section: return offset. */
get_offset(struct module * mod,unsigned int * size,Elf_Shdr * sechdr,unsigned int section)2393 static long get_offset(struct module *mod, unsigned int *size,
2394 		       Elf_Shdr *sechdr, unsigned int section)
2395 {
2396 	long ret;
2397 
2398 	*size += arch_mod_section_prepend(mod, section);
2399 	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2400 	*size = ret + sechdr->sh_size;
2401 	return ret;
2402 }
2403 
2404 /*
2405  * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2406  * might -- code, read-only data, read-write data, small data.  Tally
2407  * sizes, and place the offsets into sh_entsize fields: high bit means it
2408  * belongs in init.
2409  */
layout_sections(struct module * mod,struct load_info * info)2410 static void layout_sections(struct module *mod, struct load_info *info)
2411 {
2412 	static unsigned long const masks[][2] = {
2413 		/*
2414 		 * NOTE: all executable code must be the first section
2415 		 * in this array; otherwise modify the text_size
2416 		 * finder in the two loops below
2417 		 */
2418 		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2419 		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2420 		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2421 		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2422 		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2423 	};
2424 	unsigned int m, i;
2425 
2426 	for (i = 0; i < info->hdr->e_shnum; i++)
2427 		info->sechdrs[i].sh_entsize = ~0UL;
2428 
2429 	pr_debug("Core section allocation order:\n");
2430 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2431 		for (i = 0; i < info->hdr->e_shnum; ++i) {
2432 			Elf_Shdr *s = &info->sechdrs[i];
2433 			const char *sname = info->secstrings + s->sh_name;
2434 
2435 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2436 			    || (s->sh_flags & masks[m][1])
2437 			    || s->sh_entsize != ~0UL
2438 			    || module_init_section(sname))
2439 				continue;
2440 			s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2441 			pr_debug("\t%s\n", sname);
2442 		}
2443 		switch (m) {
2444 		case 0: /* executable */
2445 			mod->core_layout.size = debug_align(mod->core_layout.size);
2446 			mod->core_layout.text_size = mod->core_layout.size;
2447 			break;
2448 		case 1: /* RO: text and ro-data */
2449 			mod->core_layout.size = debug_align(mod->core_layout.size);
2450 			mod->core_layout.ro_size = mod->core_layout.size;
2451 			break;
2452 		case 2: /* RO after init */
2453 			mod->core_layout.size = debug_align(mod->core_layout.size);
2454 			mod->core_layout.ro_after_init_size = mod->core_layout.size;
2455 			break;
2456 		case 4: /* whole core */
2457 			mod->core_layout.size = debug_align(mod->core_layout.size);
2458 			break;
2459 		}
2460 	}
2461 
2462 	pr_debug("Init section allocation order:\n");
2463 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2464 		for (i = 0; i < info->hdr->e_shnum; ++i) {
2465 			Elf_Shdr *s = &info->sechdrs[i];
2466 			const char *sname = info->secstrings + s->sh_name;
2467 
2468 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2469 			    || (s->sh_flags & masks[m][1])
2470 			    || s->sh_entsize != ~0UL
2471 			    || !module_init_section(sname))
2472 				continue;
2473 			s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2474 					 | INIT_OFFSET_MASK);
2475 			pr_debug("\t%s\n", sname);
2476 		}
2477 		switch (m) {
2478 		case 0: /* executable */
2479 			mod->init_layout.size = debug_align(mod->init_layout.size);
2480 			mod->init_layout.text_size = mod->init_layout.size;
2481 			break;
2482 		case 1: /* RO: text and ro-data */
2483 			mod->init_layout.size = debug_align(mod->init_layout.size);
2484 			mod->init_layout.ro_size = mod->init_layout.size;
2485 			break;
2486 		case 2:
2487 			/*
2488 			 * RO after init doesn't apply to init_layout (only
2489 			 * core_layout), so it just takes the value of ro_size.
2490 			 */
2491 			mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2492 			break;
2493 		case 4: /* whole init */
2494 			mod->init_layout.size = debug_align(mod->init_layout.size);
2495 			break;
2496 		}
2497 	}
2498 }
2499 
set_license(struct module * mod,const char * license)2500 static void set_license(struct module *mod, const char *license)
2501 {
2502 	if (!license)
2503 		license = "unspecified";
2504 
2505 	if (!license_is_gpl_compatible(license)) {
2506 		if (!test_taint(TAINT_PROPRIETARY_MODULE))
2507 			pr_warn("%s: module license '%s' taints kernel.\n",
2508 				mod->name, license);
2509 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2510 				 LOCKDEP_NOW_UNRELIABLE);
2511 	}
2512 }
2513 
2514 /* Parse tag=value strings from .modinfo section */
next_string(char * string,unsigned long * secsize)2515 static char *next_string(char *string, unsigned long *secsize)
2516 {
2517 	/* Skip non-zero chars */
2518 	while (string[0]) {
2519 		string++;
2520 		if ((*secsize)-- <= 1)
2521 			return NULL;
2522 	}
2523 
2524 	/* Skip any zero padding. */
2525 	while (!string[0]) {
2526 		string++;
2527 		if ((*secsize)-- <= 1)
2528 			return NULL;
2529 	}
2530 	return string;
2531 }
2532 
get_next_modinfo(const struct load_info * info,const char * tag,char * prev)2533 static char *get_next_modinfo(const struct load_info *info, const char *tag,
2534 			      char *prev)
2535 {
2536 	char *p;
2537 	unsigned int taglen = strlen(tag);
2538 	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2539 	unsigned long size = infosec->sh_size;
2540 
2541 	/*
2542 	 * get_modinfo() calls made before rewrite_section_headers()
2543 	 * must use sh_offset, as sh_addr isn't set!
2544 	 */
2545 	char *modinfo = (char *)info->hdr + infosec->sh_offset;
2546 
2547 	if (prev) {
2548 		size -= prev - modinfo;
2549 		modinfo = next_string(prev, &size);
2550 	}
2551 
2552 	for (p = modinfo; p; p = next_string(p, &size)) {
2553 		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2554 			return p + taglen + 1;
2555 	}
2556 	return NULL;
2557 }
2558 
get_modinfo(const struct load_info * info,const char * tag)2559 static char *get_modinfo(const struct load_info *info, const char *tag)
2560 {
2561 	return get_next_modinfo(info, tag, NULL);
2562 }
2563 
setup_modinfo(struct module * mod,struct load_info * info)2564 static void setup_modinfo(struct module *mod, struct load_info *info)
2565 {
2566 	struct module_attribute *attr;
2567 	int i;
2568 
2569 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2570 		if (attr->setup)
2571 			attr->setup(mod, get_modinfo(info, attr->attr.name));
2572 	}
2573 }
2574 
free_modinfo(struct module * mod)2575 static void free_modinfo(struct module *mod)
2576 {
2577 	struct module_attribute *attr;
2578 	int i;
2579 
2580 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2581 		if (attr->free)
2582 			attr->free(mod);
2583 	}
2584 }
2585 
2586 #ifdef CONFIG_KALLSYMS
2587 
2588 /* Lookup exported symbol in given range of kernel_symbols */
lookup_exported_symbol(const char * name,const struct kernel_symbol * start,const struct kernel_symbol * stop)2589 static const struct kernel_symbol *lookup_exported_symbol(const char *name,
2590 							  const struct kernel_symbol *start,
2591 							  const struct kernel_symbol *stop)
2592 {
2593 	return bsearch(name, start, stop - start,
2594 			sizeof(struct kernel_symbol), cmp_name);
2595 }
2596 
is_exported(const char * name,unsigned long value,const struct module * mod)2597 static int is_exported(const char *name, unsigned long value,
2598 		       const struct module *mod)
2599 {
2600 	const struct kernel_symbol *ks;
2601 	if (!mod)
2602 		ks = lookup_exported_symbol(name, __start___ksymtab, __stop___ksymtab);
2603 	else
2604 		ks = lookup_exported_symbol(name, mod->syms, mod->syms + mod->num_syms);
2605 
2606 	return ks != NULL && kernel_symbol_value(ks) == value;
2607 }
2608 
2609 /* As per nm */
elf_type(const Elf_Sym * sym,const struct load_info * info)2610 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2611 {
2612 	const Elf_Shdr *sechdrs = info->sechdrs;
2613 
2614 	if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2615 		if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2616 			return 'v';
2617 		else
2618 			return 'w';
2619 	}
2620 	if (sym->st_shndx == SHN_UNDEF)
2621 		return 'U';
2622 	if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2623 		return 'a';
2624 	if (sym->st_shndx >= SHN_LORESERVE)
2625 		return '?';
2626 	if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2627 		return 't';
2628 	if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2629 	    && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2630 		if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2631 			return 'r';
2632 		else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2633 			return 'g';
2634 		else
2635 			return 'd';
2636 	}
2637 	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2638 		if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2639 			return 's';
2640 		else
2641 			return 'b';
2642 	}
2643 	if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2644 		      ".debug")) {
2645 		return 'n';
2646 	}
2647 	return '?';
2648 }
2649 
is_core_symbol(const Elf_Sym * src,const Elf_Shdr * sechdrs,unsigned int shnum,unsigned int pcpundx)2650 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2651 			unsigned int shnum, unsigned int pcpundx)
2652 {
2653 	const Elf_Shdr *sec;
2654 
2655 	if (src->st_shndx == SHN_UNDEF
2656 	    || src->st_shndx >= shnum
2657 	    || !src->st_name)
2658 		return false;
2659 
2660 #ifdef CONFIG_KALLSYMS_ALL
2661 	if (src->st_shndx == pcpundx)
2662 		return true;
2663 #endif
2664 
2665 	sec = sechdrs + src->st_shndx;
2666 	if (!(sec->sh_flags & SHF_ALLOC)
2667 #ifndef CONFIG_KALLSYMS_ALL
2668 	    || !(sec->sh_flags & SHF_EXECINSTR)
2669 #endif
2670 	    || (sec->sh_entsize & INIT_OFFSET_MASK))
2671 		return false;
2672 
2673 	return true;
2674 }
2675 
2676 /*
2677  * We only allocate and copy the strings needed by the parts of symtab
2678  * we keep.  This is simple, but has the effect of making multiple
2679  * copies of duplicates.  We could be more sophisticated, see
2680  * linux-kernel thread starting with
2681  * <73defb5e4bca04a6431392cc341112b1@localhost>.
2682  */
layout_symtab(struct module * mod,struct load_info * info)2683 static void layout_symtab(struct module *mod, struct load_info *info)
2684 {
2685 	Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2686 	Elf_Shdr *strsect = info->sechdrs + info->index.str;
2687 	const Elf_Sym *src;
2688 	unsigned int i, nsrc, ndst, strtab_size = 0;
2689 
2690 	/* Put symbol section at end of init part of module. */
2691 	symsect->sh_flags |= SHF_ALLOC;
2692 	symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2693 					 info->index.sym) | INIT_OFFSET_MASK;
2694 	pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2695 
2696 	src = (void *)info->hdr + symsect->sh_offset;
2697 	nsrc = symsect->sh_size / sizeof(*src);
2698 
2699 	/* Compute total space required for the core symbols' strtab. */
2700 	for (ndst = i = 0; i < nsrc; i++) {
2701 		if (i == 0 || is_livepatch_module(mod) ||
2702 		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2703 				   info->index.pcpu)) {
2704 			strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2705 			ndst++;
2706 		}
2707 	}
2708 
2709 	/* Append room for core symbols at end of core part. */
2710 	info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2711 	info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2712 	mod->core_layout.size += strtab_size;
2713 	info->core_typeoffs = mod->core_layout.size;
2714 	mod->core_layout.size += ndst * sizeof(char);
2715 	mod->core_layout.size = debug_align(mod->core_layout.size);
2716 
2717 	/* Put string table section at end of init part of module. */
2718 	strsect->sh_flags |= SHF_ALLOC;
2719 	strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2720 					 info->index.str) | INIT_OFFSET_MASK;
2721 	pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2722 
2723 	/* We'll tack temporary mod_kallsyms on the end. */
2724 	mod->init_layout.size = ALIGN(mod->init_layout.size,
2725 				      __alignof__(struct mod_kallsyms));
2726 	info->mod_kallsyms_init_off = mod->init_layout.size;
2727 	mod->init_layout.size += sizeof(struct mod_kallsyms);
2728 	info->init_typeoffs = mod->init_layout.size;
2729 	mod->init_layout.size += nsrc * sizeof(char);
2730 	mod->init_layout.size = debug_align(mod->init_layout.size);
2731 }
2732 
2733 /*
2734  * We use the full symtab and strtab which layout_symtab arranged to
2735  * be appended to the init section.  Later we switch to the cut-down
2736  * core-only ones.
2737  */
add_kallsyms(struct module * mod,const struct load_info * info)2738 static void add_kallsyms(struct module *mod, const struct load_info *info)
2739 {
2740 	unsigned int i, ndst;
2741 	const Elf_Sym *src;
2742 	Elf_Sym *dst;
2743 	char *s;
2744 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2745 
2746 	/* Set up to point into init section. */
2747 	mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2748 
2749 	mod->kallsyms->symtab = (void *)symsec->sh_addr;
2750 	mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2751 	/* Make sure we get permanent strtab: don't use info->strtab. */
2752 	mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2753 	mod->kallsyms->typetab = mod->init_layout.base + info->init_typeoffs;
2754 
2755 	/*
2756 	 * Now populate the cut down core kallsyms for after init
2757 	 * and set types up while we still have access to sections.
2758 	 */
2759 	mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2760 	mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2761 	mod->core_kallsyms.typetab = mod->core_layout.base + info->core_typeoffs;
2762 	src = mod->kallsyms->symtab;
2763 	for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2764 		mod->kallsyms->typetab[i] = elf_type(src + i, info);
2765 		if (i == 0 || is_livepatch_module(mod) ||
2766 		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2767 				   info->index.pcpu)) {
2768 			mod->core_kallsyms.typetab[ndst] =
2769 			    mod->kallsyms->typetab[i];
2770 			dst[ndst] = src[i];
2771 			dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2772 			s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2773 				     KSYM_NAME_LEN) + 1;
2774 		}
2775 	}
2776 	mod->core_kallsyms.num_symtab = ndst;
2777 }
2778 #else
layout_symtab(struct module * mod,struct load_info * info)2779 static inline void layout_symtab(struct module *mod, struct load_info *info)
2780 {
2781 }
2782 
add_kallsyms(struct module * mod,const struct load_info * info)2783 static void add_kallsyms(struct module *mod, const struct load_info *info)
2784 {
2785 }
2786 #endif /* CONFIG_KALLSYMS */
2787 
dynamic_debug_setup(struct module * mod,struct _ddebug * debug,unsigned int num)2788 static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2789 {
2790 	if (!debug)
2791 		return;
2792 	ddebug_add_module(debug, num, mod->name);
2793 }
2794 
dynamic_debug_remove(struct module * mod,struct _ddebug * debug)2795 static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2796 {
2797 	if (debug)
2798 		ddebug_remove_module(mod->name);
2799 }
2800 
module_alloc(unsigned long size)2801 void * __weak module_alloc(unsigned long size)
2802 {
2803 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2804 			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2805 			NUMA_NO_NODE, __builtin_return_address(0));
2806 }
2807 
module_init_section(const char * name)2808 bool __weak module_init_section(const char *name)
2809 {
2810 #ifndef CONFIG_MODULE_UNLOAD
2811 	return strstarts(name, ".init") || module_exit_section(name);
2812 #else
2813 	return strstarts(name, ".init");
2814 #endif
2815 }
2816 
module_exit_section(const char * name)2817 bool __weak module_exit_section(const char *name)
2818 {
2819 	return strstarts(name, ".exit");
2820 }
2821 
2822 #ifdef CONFIG_DEBUG_KMEMLEAK
kmemleak_load_module(const struct module * mod,const struct load_info * info)2823 static void kmemleak_load_module(const struct module *mod,
2824 				 const struct load_info *info)
2825 {
2826 	unsigned int i;
2827 
2828 	/* only scan the sections containing data */
2829 	kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2830 
2831 	for (i = 1; i < info->hdr->e_shnum; i++) {
2832 		/* Scan all writable sections that's not executable */
2833 		if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2834 		    !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2835 		    (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2836 			continue;
2837 
2838 		kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2839 				   info->sechdrs[i].sh_size, GFP_KERNEL);
2840 	}
2841 }
2842 #else
kmemleak_load_module(const struct module * mod,const struct load_info * info)2843 static inline void kmemleak_load_module(const struct module *mod,
2844 					const struct load_info *info)
2845 {
2846 }
2847 #endif
2848 
2849 #ifdef CONFIG_MODULE_SIG
module_sig_check(struct load_info * info,int flags)2850 static int module_sig_check(struct load_info *info, int flags)
2851 {
2852 	int err = -ENODATA;
2853 	const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2854 	const char *reason;
2855 	const void *mod = info->hdr;
2856 
2857 	/*
2858 	 * Require flags == 0, as a module with version information
2859 	 * removed is no longer the module that was signed
2860 	 */
2861 	if (flags == 0 &&
2862 	    info->len > markerlen &&
2863 	    memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2864 		/* We truncate the module to discard the signature */
2865 		info->len -= markerlen;
2866 		err = mod_verify_sig(mod, info);
2867 		if (!err) {
2868 			info->sig_ok = true;
2869 			return 0;
2870 		}
2871 	}
2872 
2873 	/*
2874 	 * We don't permit modules to be loaded into the trusted kernels
2875 	 * without a valid signature on them, but if we're not enforcing,
2876 	 * certain errors are non-fatal.
2877 	 */
2878 	switch (err) {
2879 	case -ENODATA:
2880 		reason = "unsigned module";
2881 		break;
2882 	case -ENOPKG:
2883 		reason = "module with unsupported crypto";
2884 		break;
2885 	case -ENOKEY:
2886 		reason = "module with unavailable key";
2887 		break;
2888 
2889 	default:
2890 		/*
2891 		 * All other errors are fatal, including lack of memory,
2892 		 * unparseable signatures, and signature check failures --
2893 		 * even if signatures aren't required.
2894 		 */
2895 		return err;
2896 	}
2897 
2898 	if (is_module_sig_enforced()) {
2899 		pr_notice("Loading of %s is rejected\n", reason);
2900 		return -EKEYREJECTED;
2901 	}
2902 
2903 	return security_locked_down(LOCKDOWN_MODULE_SIGNATURE);
2904 }
2905 #else /* !CONFIG_MODULE_SIG */
module_sig_check(struct load_info * info,int flags)2906 static int module_sig_check(struct load_info *info, int flags)
2907 {
2908 	return 0;
2909 }
2910 #endif /* !CONFIG_MODULE_SIG */
2911 
validate_section_offset(struct load_info * info,Elf_Shdr * shdr)2912 static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr)
2913 {
2914 	unsigned long secend;
2915 
2916 	/*
2917 	 * Check for both overflow and offset/size being
2918 	 * too large.
2919 	 */
2920 	secend = shdr->sh_offset + shdr->sh_size;
2921 	if (secend < shdr->sh_offset || secend > info->len)
2922 		return -ENOEXEC;
2923 
2924 	return 0;
2925 }
2926 
2927 /*
2928  * Sanity checks against invalid binaries, wrong arch, weird elf version.
2929  *
2930  * Also do basic validity checks against section offsets and sizes, the
2931  * section name string table, and the indices used for it (sh_name).
2932  */
elf_validity_check(struct load_info * info)2933 static int elf_validity_check(struct load_info *info)
2934 {
2935 	unsigned int i;
2936 	Elf_Shdr *shdr, *strhdr;
2937 	int err;
2938 
2939 	if (info->len < sizeof(*(info->hdr)))
2940 		return -ENOEXEC;
2941 
2942 	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2943 	    || info->hdr->e_type != ET_REL
2944 	    || !elf_check_arch(info->hdr)
2945 	    || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2946 		return -ENOEXEC;
2947 
2948 	/*
2949 	 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
2950 	 * known and small. So e_shnum * sizeof(Elf_Shdr)
2951 	 * will not overflow unsigned long on any platform.
2952 	 */
2953 	if (info->hdr->e_shoff >= info->len
2954 	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2955 		info->len - info->hdr->e_shoff))
2956 		return -ENOEXEC;
2957 
2958 	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2959 
2960 	/*
2961 	 * Verify if the section name table index is valid.
2962 	 */
2963 	if (info->hdr->e_shstrndx == SHN_UNDEF
2964 	    || info->hdr->e_shstrndx >= info->hdr->e_shnum)
2965 		return -ENOEXEC;
2966 
2967 	strhdr = &info->sechdrs[info->hdr->e_shstrndx];
2968 	err = validate_section_offset(info, strhdr);
2969 	if (err < 0)
2970 		return err;
2971 
2972 	/*
2973 	 * The section name table must be NUL-terminated, as required
2974 	 * by the spec. This makes strcmp and pr_* calls that access
2975 	 * strings in the section safe.
2976 	 */
2977 	info->secstrings = (void *)info->hdr + strhdr->sh_offset;
2978 	if (info->secstrings[strhdr->sh_size - 1] != '\0')
2979 		return -ENOEXEC;
2980 
2981 	/*
2982 	 * The code assumes that section 0 has a length of zero and
2983 	 * an addr of zero, so check for it.
2984 	 */
2985 	if (info->sechdrs[0].sh_type != SHT_NULL
2986 	    || info->sechdrs[0].sh_size != 0
2987 	    || info->sechdrs[0].sh_addr != 0)
2988 		return -ENOEXEC;
2989 
2990 	for (i = 1; i < info->hdr->e_shnum; i++) {
2991 		shdr = &info->sechdrs[i];
2992 		switch (shdr->sh_type) {
2993 		case SHT_NULL:
2994 		case SHT_NOBITS:
2995 			continue;
2996 		case SHT_SYMTAB:
2997 			if (shdr->sh_link == SHN_UNDEF
2998 			    || shdr->sh_link >= info->hdr->e_shnum)
2999 				return -ENOEXEC;
3000 			fallthrough;
3001 		default:
3002 			err = validate_section_offset(info, shdr);
3003 			if (err < 0) {
3004 				pr_err("Invalid ELF section in module (section %u type %u)\n",
3005 					i, shdr->sh_type);
3006 				return err;
3007 			}
3008 
3009 			if (shdr->sh_flags & SHF_ALLOC) {
3010 				if (shdr->sh_name >= strhdr->sh_size) {
3011 					pr_err("Invalid ELF section name in module (section %u type %u)\n",
3012 					       i, shdr->sh_type);
3013 					return -ENOEXEC;
3014 				}
3015 			}
3016 			break;
3017 		}
3018 	}
3019 
3020 	return 0;
3021 }
3022 
3023 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
3024 
copy_chunked_from_user(void * dst,const void __user * usrc,unsigned long len)3025 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
3026 {
3027 	do {
3028 		unsigned long n = min(len, COPY_CHUNK_SIZE);
3029 
3030 		if (copy_from_user(dst, usrc, n) != 0)
3031 			return -EFAULT;
3032 		cond_resched();
3033 		dst += n;
3034 		usrc += n;
3035 		len -= n;
3036 	} while (len);
3037 	return 0;
3038 }
3039 
3040 #ifdef CONFIG_LIVEPATCH
check_modinfo_livepatch(struct module * mod,struct load_info * info)3041 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
3042 {
3043 	if (get_modinfo(info, "livepatch")) {
3044 		mod->klp = true;
3045 		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
3046 		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
3047 			       mod->name);
3048 	}
3049 
3050 	return 0;
3051 }
3052 #else /* !CONFIG_LIVEPATCH */
check_modinfo_livepatch(struct module * mod,struct load_info * info)3053 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
3054 {
3055 	if (get_modinfo(info, "livepatch")) {
3056 		pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
3057 		       mod->name);
3058 		return -ENOEXEC;
3059 	}
3060 
3061 	return 0;
3062 }
3063 #endif /* CONFIG_LIVEPATCH */
3064 
check_modinfo_retpoline(struct module * mod,struct load_info * info)3065 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
3066 {
3067 	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
3068 		return;
3069 
3070 	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
3071 		mod->name);
3072 }
3073 
3074 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)3075 static int copy_module_from_user(const void __user *umod, unsigned long len,
3076 				  struct load_info *info)
3077 {
3078 	int err;
3079 
3080 	info->len = len;
3081 	if (info->len < sizeof(*(info->hdr)))
3082 		return -ENOEXEC;
3083 
3084 	err = security_kernel_load_data(LOADING_MODULE, true);
3085 	if (err)
3086 		return err;
3087 
3088 	/* Suck in entire file: we'll want most of it. */
3089 	info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
3090 	if (!info->hdr)
3091 		return -ENOMEM;
3092 
3093 	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
3094 		err = -EFAULT;
3095 		goto out;
3096 	}
3097 
3098 	err = security_kernel_post_load_data((char *)info->hdr, info->len,
3099 					     LOADING_MODULE, "init_module");
3100 out:
3101 	if (err)
3102 		vfree(info->hdr);
3103 
3104 	return err;
3105 }
3106 
free_copy(struct load_info * info)3107 static void free_copy(struct load_info *info)
3108 {
3109 	vfree(info->hdr);
3110 }
3111 
rewrite_section_headers(struct load_info * info,int flags)3112 static int rewrite_section_headers(struct load_info *info, int flags)
3113 {
3114 	unsigned int i;
3115 
3116 	/* This should always be true, but let's be sure. */
3117 	info->sechdrs[0].sh_addr = 0;
3118 
3119 	for (i = 1; i < info->hdr->e_shnum; i++) {
3120 		Elf_Shdr *shdr = &info->sechdrs[i];
3121 
3122 		/*
3123 		 * Mark all sections sh_addr with their address in the
3124 		 * temporary image.
3125 		 */
3126 		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
3127 
3128 	}
3129 
3130 	/* Track but don't keep modinfo and version sections. */
3131 	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
3132 	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
3133 
3134 	return 0;
3135 }
3136 
3137 /*
3138  * Set up our basic convenience variables (pointers to section headers,
3139  * search for module section index etc), and do some basic section
3140  * verification.
3141  *
3142  * Set info->mod to the temporary copy of the module in info->hdr. The final one
3143  * will be allocated in move_module().
3144  */
setup_load_info(struct load_info * info,int flags)3145 static int setup_load_info(struct load_info *info, int flags)
3146 {
3147 	unsigned int i;
3148 
3149 	/* Try to find a name early so we can log errors with a module name */
3150 	info->index.info = find_sec(info, ".modinfo");
3151 	if (info->index.info)
3152 		info->name = get_modinfo(info, "name");
3153 
3154 	/* Find internal symbols and strings. */
3155 	for (i = 1; i < info->hdr->e_shnum; i++) {
3156 		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
3157 			info->index.sym = i;
3158 			info->index.str = info->sechdrs[i].sh_link;
3159 			info->strtab = (char *)info->hdr
3160 				+ info->sechdrs[info->index.str].sh_offset;
3161 			break;
3162 		}
3163 	}
3164 
3165 	if (info->index.sym == 0) {
3166 		pr_warn("%s: module has no symbols (stripped?)\n",
3167 			info->name ?: "(missing .modinfo section or name field)");
3168 		return -ENOEXEC;
3169 	}
3170 
3171 	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
3172 	if (!info->index.mod) {
3173 		pr_warn("%s: No module found in object\n",
3174 			info->name ?: "(missing .modinfo section or name field)");
3175 		return -ENOEXEC;
3176 	}
3177 	/* This is temporary: point mod into copy of data. */
3178 	info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
3179 
3180 	/*
3181 	 * If we didn't load the .modinfo 'name' field earlier, fall back to
3182 	 * on-disk struct mod 'name' field.
3183 	 */
3184 	if (!info->name)
3185 		info->name = info->mod->name;
3186 
3187 	if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
3188 		info->index.vers = 0; /* Pretend no __versions section! */
3189 	else
3190 		info->index.vers = find_sec(info, "__versions");
3191 
3192 	info->index.pcpu = find_pcpusec(info);
3193 
3194 	return 0;
3195 }
3196 
check_modinfo(struct module * mod,struct load_info * info,int flags)3197 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3198 {
3199 	const char *modmagic = get_modinfo(info, "vermagic");
3200 	int err;
3201 
3202 	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3203 		modmagic = NULL;
3204 
3205 	/* This is allowed: modprobe --force will invalidate it. */
3206 	if (!modmagic) {
3207 		err = try_to_force_load(mod, "bad vermagic");
3208 		if (err)
3209 			return err;
3210 	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3211 		pr_err("%s: version magic '%s' should be '%s'\n",
3212 		       info->name, modmagic, vermagic);
3213 		return -ENOEXEC;
3214 	}
3215 
3216 	if (!get_modinfo(info, "intree")) {
3217 		if (!test_taint(TAINT_OOT_MODULE))
3218 			pr_warn("%s: loading out-of-tree module taints kernel.\n",
3219 				mod->name);
3220 		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3221 	}
3222 
3223 	check_modinfo_retpoline(mod, info);
3224 
3225 	if (get_modinfo(info, "staging")) {
3226 		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3227 		pr_warn("%s: module is from the staging directory, the quality "
3228 			"is unknown, you have been warned.\n", mod->name);
3229 	}
3230 
3231 	err = check_modinfo_livepatch(mod, info);
3232 	if (err)
3233 		return err;
3234 
3235 	/* Set up license info based on the info section */
3236 	set_license(mod, get_modinfo(info, "license"));
3237 
3238 	return 0;
3239 }
3240 
find_module_sections(struct module * mod,struct load_info * info)3241 static int find_module_sections(struct module *mod, struct load_info *info)
3242 {
3243 	mod->kp = section_objs(info, "__param",
3244 			       sizeof(*mod->kp), &mod->num_kp);
3245 	mod->syms = section_objs(info, "__ksymtab",
3246 				 sizeof(*mod->syms), &mod->num_syms);
3247 	mod->crcs = section_addr(info, "__kcrctab");
3248 	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3249 				     sizeof(*mod->gpl_syms),
3250 				     &mod->num_gpl_syms);
3251 	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3252 
3253 #ifdef CONFIG_CONSTRUCTORS
3254 	mod->ctors = section_objs(info, ".ctors",
3255 				  sizeof(*mod->ctors), &mod->num_ctors);
3256 	if (!mod->ctors)
3257 		mod->ctors = section_objs(info, ".init_array",
3258 				sizeof(*mod->ctors), &mod->num_ctors);
3259 	else if (find_sec(info, ".init_array")) {
3260 		/*
3261 		 * This shouldn't happen with same compiler and binutils
3262 		 * building all parts of the module.
3263 		 */
3264 		pr_warn("%s: has both .ctors and .init_array.\n",
3265 		       mod->name);
3266 		return -EINVAL;
3267 	}
3268 #endif
3269 
3270 	mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
3271 						&mod->noinstr_text_size);
3272 
3273 #ifdef CONFIG_TRACEPOINTS
3274 	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3275 					     sizeof(*mod->tracepoints_ptrs),
3276 					     &mod->num_tracepoints);
3277 #endif
3278 #ifdef CONFIG_TREE_SRCU
3279 	mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
3280 					     sizeof(*mod->srcu_struct_ptrs),
3281 					     &mod->num_srcu_structs);
3282 #endif
3283 #ifdef CONFIG_BPF_EVENTS
3284 	mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
3285 					   sizeof(*mod->bpf_raw_events),
3286 					   &mod->num_bpf_raw_events);
3287 #endif
3288 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3289 	mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
3290 #endif
3291 #ifdef CONFIG_JUMP_LABEL
3292 	mod->jump_entries = section_objs(info, "__jump_table",
3293 					sizeof(*mod->jump_entries),
3294 					&mod->num_jump_entries);
3295 #endif
3296 #ifdef CONFIG_EVENT_TRACING
3297 	mod->trace_events = section_objs(info, "_ftrace_events",
3298 					 sizeof(*mod->trace_events),
3299 					 &mod->num_trace_events);
3300 	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3301 					sizeof(*mod->trace_evals),
3302 					&mod->num_trace_evals);
3303 #endif
3304 #ifdef CONFIG_TRACING
3305 	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3306 					 sizeof(*mod->trace_bprintk_fmt_start),
3307 					 &mod->num_trace_bprintk_fmt);
3308 #endif
3309 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
3310 	/* sechdrs[0].sh_size is always zero */
3311 	mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
3312 					     sizeof(*mod->ftrace_callsites),
3313 					     &mod->num_ftrace_callsites);
3314 #endif
3315 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
3316 	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
3317 					    sizeof(*mod->ei_funcs),
3318 					    &mod->num_ei_funcs);
3319 #endif
3320 #ifdef CONFIG_KPROBES
3321 	mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
3322 						&mod->kprobes_text_size);
3323 	mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
3324 						sizeof(unsigned long),
3325 						&mod->num_kprobe_blacklist);
3326 #endif
3327 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
3328 	mod->static_call_sites = section_objs(info, ".static_call_sites",
3329 					      sizeof(*mod->static_call_sites),
3330 					      &mod->num_static_call_sites);
3331 #endif
3332 	mod->extable = section_objs(info, "__ex_table",
3333 				    sizeof(*mod->extable), &mod->num_exentries);
3334 
3335 	if (section_addr(info, "__obsparm"))
3336 		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3337 
3338 	info->debug = section_objs(info, "__dyndbg",
3339 				   sizeof(*info->debug), &info->num_debug);
3340 
3341 	return 0;
3342 }
3343 
move_module(struct module * mod,struct load_info * info)3344 static int move_module(struct module *mod, struct load_info *info)
3345 {
3346 	int i;
3347 	void *ptr;
3348 
3349 	/* Do the allocs. */
3350 	ptr = module_alloc(mod->core_layout.size);
3351 	/*
3352 	 * The pointer to this block is stored in the module structure
3353 	 * which is inside the block. Just mark it as not being a
3354 	 * leak.
3355 	 */
3356 	kmemleak_not_leak(ptr);
3357 	if (!ptr)
3358 		return -ENOMEM;
3359 
3360 	memset(ptr, 0, mod->core_layout.size);
3361 	mod->core_layout.base = ptr;
3362 
3363 	if (mod->init_layout.size) {
3364 		ptr = module_alloc(mod->init_layout.size);
3365 		/*
3366 		 * The pointer to this block is stored in the module structure
3367 		 * which is inside the block. This block doesn't need to be
3368 		 * scanned as it contains data and code that will be freed
3369 		 * after the module is initialized.
3370 		 */
3371 		kmemleak_ignore(ptr);
3372 		if (!ptr) {
3373 			module_memfree(mod->core_layout.base);
3374 			return -ENOMEM;
3375 		}
3376 		memset(ptr, 0, mod->init_layout.size);
3377 		mod->init_layout.base = ptr;
3378 	} else
3379 		mod->init_layout.base = NULL;
3380 
3381 	/* Transfer each section which specifies SHF_ALLOC */
3382 	pr_debug("final section addresses:\n");
3383 	for (i = 0; i < info->hdr->e_shnum; i++) {
3384 		void *dest;
3385 		Elf_Shdr *shdr = &info->sechdrs[i];
3386 
3387 		if (!(shdr->sh_flags & SHF_ALLOC))
3388 			continue;
3389 
3390 		if (shdr->sh_entsize & INIT_OFFSET_MASK)
3391 			dest = mod->init_layout.base
3392 				+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3393 		else
3394 			dest = mod->core_layout.base + shdr->sh_entsize;
3395 
3396 		if (shdr->sh_type != SHT_NOBITS)
3397 			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3398 		/* Update sh_addr to point to copy in image. */
3399 		shdr->sh_addr = (unsigned long)dest;
3400 		pr_debug("\t0x%lx %s\n",
3401 			 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3402 	}
3403 
3404 	return 0;
3405 }
3406 
check_module_license_and_versions(struct module * mod)3407 static int check_module_license_and_versions(struct module *mod)
3408 {
3409 	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3410 
3411 	/*
3412 	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3413 	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3414 	 * using GPL-only symbols it needs.
3415 	 */
3416 	if (strcmp(mod->name, "ndiswrapper") == 0)
3417 		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3418 
3419 	/* driverloader was caught wrongly pretending to be under GPL */
3420 	if (strcmp(mod->name, "driverloader") == 0)
3421 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3422 				 LOCKDEP_NOW_UNRELIABLE);
3423 
3424 	/* lve claims to be GPL but upstream won't provide source */
3425 	if (strcmp(mod->name, "lve") == 0)
3426 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3427 				 LOCKDEP_NOW_UNRELIABLE);
3428 
3429 	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3430 		pr_warn("%s: module license taints kernel.\n", mod->name);
3431 
3432 #ifdef CONFIG_MODVERSIONS
3433 	if ((mod->num_syms && !mod->crcs) ||
3434 	    (mod->num_gpl_syms && !mod->gpl_crcs)) {
3435 		return try_to_force_load(mod,
3436 					 "no versions for exported symbols");
3437 	}
3438 #endif
3439 	return 0;
3440 }
3441 
flush_module_icache(const struct module * mod)3442 static void flush_module_icache(const struct module *mod)
3443 {
3444 	/*
3445 	 * Flush the instruction cache, since we've played with text.
3446 	 * Do it before processing of module parameters, so the module
3447 	 * can provide parameter accessor functions of its own.
3448 	 */
3449 	if (mod->init_layout.base)
3450 		flush_icache_range((unsigned long)mod->init_layout.base,
3451 				   (unsigned long)mod->init_layout.base
3452 				   + mod->init_layout.size);
3453 	flush_icache_range((unsigned long)mod->core_layout.base,
3454 			   (unsigned long)mod->core_layout.base + mod->core_layout.size);
3455 }
3456 
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)3457 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3458 				     Elf_Shdr *sechdrs,
3459 				     char *secstrings,
3460 				     struct module *mod)
3461 {
3462 	return 0;
3463 }
3464 
3465 /* module_blacklist is a comma-separated list of module names */
3466 static char *module_blacklist;
blacklisted(const char * module_name)3467 static bool blacklisted(const char *module_name)
3468 {
3469 	const char *p;
3470 	size_t len;
3471 
3472 	if (!module_blacklist)
3473 		return false;
3474 
3475 	for (p = module_blacklist; *p; p += len) {
3476 		len = strcspn(p, ",");
3477 		if (strlen(module_name) == len && !memcmp(module_name, p, len))
3478 			return true;
3479 		if (p[len] == ',')
3480 			len++;
3481 	}
3482 	return false;
3483 }
3484 core_param(module_blacklist, module_blacklist, charp, 0400);
3485 
layout_and_allocate(struct load_info * info,int flags)3486 static struct module *layout_and_allocate(struct load_info *info, int flags)
3487 {
3488 	struct module *mod;
3489 	unsigned int ndx;
3490 	int err;
3491 
3492 	err = check_modinfo(info->mod, info, flags);
3493 	if (err)
3494 		return ERR_PTR(err);
3495 
3496 	/* Allow arches to frob section contents and sizes.  */
3497 	err = module_frob_arch_sections(info->hdr, info->sechdrs,
3498 					info->secstrings, info->mod);
3499 	if (err < 0)
3500 		return ERR_PTR(err);
3501 
3502 	err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
3503 					  info->secstrings, info->mod);
3504 	if (err < 0)
3505 		return ERR_PTR(err);
3506 
3507 	/* We will do a special allocation for per-cpu sections later. */
3508 	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3509 
3510 	/*
3511 	 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3512 	 * layout_sections() can put it in the right place.
3513 	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3514 	 */
3515 	ndx = find_sec(info, ".data..ro_after_init");
3516 	if (ndx)
3517 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3518 	/*
3519 	 * Mark the __jump_table section as ro_after_init as well: these data
3520 	 * structures are never modified, with the exception of entries that
3521 	 * refer to code in the __init section, which are annotated as such
3522 	 * at module load time.
3523 	 */
3524 	ndx = find_sec(info, "__jump_table");
3525 	if (ndx)
3526 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3527 
3528 	/*
3529 	 * Determine total sizes, and put offsets in sh_entsize.  For now
3530 	 * this is done generically; there doesn't appear to be any
3531 	 * special cases for the architectures.
3532 	 */
3533 	layout_sections(info->mod, info);
3534 	layout_symtab(info->mod, info);
3535 
3536 	/* Allocate and move to the final place */
3537 	err = move_module(info->mod, info);
3538 	if (err)
3539 		return ERR_PTR(err);
3540 
3541 	/* Module has been copied to its final place now: return it. */
3542 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3543 	kmemleak_load_module(mod, info);
3544 	return mod;
3545 }
3546 
3547 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)3548 static void module_deallocate(struct module *mod, struct load_info *info)
3549 {
3550 	percpu_modfree(mod);
3551 	module_arch_freeing_init(mod);
3552 	module_memfree(mod->init_layout.base);
3553 	module_memfree(mod->core_layout.base);
3554 }
3555 
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)3556 int __weak module_finalize(const Elf_Ehdr *hdr,
3557 			   const Elf_Shdr *sechdrs,
3558 			   struct module *me)
3559 {
3560 	return 0;
3561 }
3562 
post_relocation(struct module * mod,const struct load_info * info)3563 static int post_relocation(struct module *mod, const struct load_info *info)
3564 {
3565 	/* Sort exception table now relocations are done. */
3566 	sort_extable(mod->extable, mod->extable + mod->num_exentries);
3567 
3568 	/* Copy relocated percpu area over. */
3569 	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3570 		       info->sechdrs[info->index.pcpu].sh_size);
3571 
3572 	/* Setup kallsyms-specific fields. */
3573 	add_kallsyms(mod, info);
3574 
3575 	/* Arch-specific module finalizing. */
3576 	return module_finalize(info->hdr, info->sechdrs, mod);
3577 }
3578 
3579 /* Is this module of this name done loading?  No locks held. */
finished_loading(const char * name)3580 static bool finished_loading(const char *name)
3581 {
3582 	struct module *mod;
3583 	bool ret;
3584 
3585 	/*
3586 	 * The module_mutex should not be a heavily contended lock;
3587 	 * if we get the occasional sleep here, we'll go an extra iteration
3588 	 * in the wait_event_interruptible(), which is harmless.
3589 	 */
3590 	sched_annotate_sleep();
3591 	mutex_lock(&module_mutex);
3592 	mod = find_module_all(name, strlen(name), true);
3593 	ret = !mod || mod->state == MODULE_STATE_LIVE;
3594 	mutex_unlock(&module_mutex);
3595 
3596 	return ret;
3597 }
3598 
3599 /* Call module constructors. */
do_mod_ctors(struct module * mod)3600 static void do_mod_ctors(struct module *mod)
3601 {
3602 #ifdef CONFIG_CONSTRUCTORS
3603 	unsigned long i;
3604 
3605 	for (i = 0; i < mod->num_ctors; i++)
3606 		mod->ctors[i]();
3607 #endif
3608 }
3609 
3610 /* For freeing module_init on success, in case kallsyms traversing */
3611 struct mod_initfree {
3612 	struct llist_node node;
3613 	void *module_init;
3614 };
3615 
do_free_init(struct work_struct * w)3616 static void do_free_init(struct work_struct *w)
3617 {
3618 	struct llist_node *pos, *n, *list;
3619 	struct mod_initfree *initfree;
3620 
3621 	list = llist_del_all(&init_free_list);
3622 
3623 	synchronize_rcu();
3624 
3625 	llist_for_each_safe(pos, n, list) {
3626 		initfree = container_of(pos, struct mod_initfree, node);
3627 		module_memfree(initfree->module_init);
3628 		kfree(initfree);
3629 	}
3630 }
3631 
3632 /*
3633  * This is where the real work happens.
3634  *
3635  * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3636  * helper command 'lx-symbols'.
3637  */
do_init_module(struct module * mod)3638 static noinline int do_init_module(struct module *mod)
3639 {
3640 	int ret = 0;
3641 	struct mod_initfree *freeinit;
3642 
3643 	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3644 	if (!freeinit) {
3645 		ret = -ENOMEM;
3646 		goto fail;
3647 	}
3648 	freeinit->module_init = mod->init_layout.base;
3649 
3650 	/*
3651 	 * We want to find out whether @mod uses async during init.  Clear
3652 	 * PF_USED_ASYNC.  async_schedule*() will set it.
3653 	 */
3654 	current->flags &= ~PF_USED_ASYNC;
3655 
3656 	do_mod_ctors(mod);
3657 	/* Start the module */
3658 	if (mod->init != NULL)
3659 		ret = do_one_initcall(mod->init);
3660 	if (ret < 0) {
3661 		goto fail_free_freeinit;
3662 	}
3663 	if (ret > 0) {
3664 		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3665 			"follow 0/-E convention\n"
3666 			"%s: loading module anyway...\n",
3667 			__func__, mod->name, ret, __func__);
3668 		dump_stack();
3669 	}
3670 
3671 	/* Now it's a first class citizen! */
3672 	mod->state = MODULE_STATE_LIVE;
3673 	blocking_notifier_call_chain(&module_notify_list,
3674 				     MODULE_STATE_LIVE, mod);
3675 
3676 	/* Delay uevent until module has finished its init routine */
3677 	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
3678 
3679 	/*
3680 	 * We need to finish all async code before the module init sequence
3681 	 * is done.  This has potential to deadlock.  For example, a newly
3682 	 * detected block device can trigger request_module() of the
3683 	 * default iosched from async probing task.  Once userland helper
3684 	 * reaches here, async_synchronize_full() will wait on the async
3685 	 * task waiting on request_module() and deadlock.
3686 	 *
3687 	 * This deadlock is avoided by perfomring async_synchronize_full()
3688 	 * iff module init queued any async jobs.  This isn't a full
3689 	 * solution as it will deadlock the same if module loading from
3690 	 * async jobs nests more than once; however, due to the various
3691 	 * constraints, this hack seems to be the best option for now.
3692 	 * Please refer to the following thread for details.
3693 	 *
3694 	 * http://thread.gmane.org/gmane.linux.kernel/1420814
3695 	 */
3696 	if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3697 		async_synchronize_full();
3698 
3699 	ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
3700 			mod->init_layout.size);
3701 	mutex_lock(&module_mutex);
3702 	/* Drop initial reference. */
3703 	module_put(mod);
3704 	trim_init_extable(mod);
3705 #ifdef CONFIG_KALLSYMS
3706 	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
3707 	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3708 #endif
3709 	module_enable_ro(mod, true);
3710 	mod_tree_remove_init(mod);
3711 	module_arch_freeing_init(mod);
3712 	mod->init_layout.base = NULL;
3713 	mod->init_layout.size = 0;
3714 	mod->init_layout.ro_size = 0;
3715 	mod->init_layout.ro_after_init_size = 0;
3716 	mod->init_layout.text_size = 0;
3717 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3718 	/* .BTF is not SHF_ALLOC and will get removed, so sanitize pointer */
3719 	mod->btf_data = NULL;
3720 #endif
3721 	/*
3722 	 * We want to free module_init, but be aware that kallsyms may be
3723 	 * walking this with preempt disabled.  In all the failure paths, we
3724 	 * call synchronize_rcu(), but we don't want to slow down the success
3725 	 * path. module_memfree() cannot be called in an interrupt, so do the
3726 	 * work and call synchronize_rcu() in a work queue.
3727 	 *
3728 	 * Note that module_alloc() on most architectures creates W+X page
3729 	 * mappings which won't be cleaned up until do_free_init() runs.  Any
3730 	 * code such as mark_rodata_ro() which depends on those mappings to
3731 	 * be cleaned up needs to sync with the queued work - ie
3732 	 * rcu_barrier()
3733 	 */
3734 	if (llist_add(&freeinit->node, &init_free_list))
3735 		schedule_work(&init_free_wq);
3736 
3737 	mutex_unlock(&module_mutex);
3738 	wake_up_all(&module_wq);
3739 
3740 	return 0;
3741 
3742 fail_free_freeinit:
3743 	kfree(freeinit);
3744 fail:
3745 	/* Try to protect us from buggy refcounters. */
3746 	mod->state = MODULE_STATE_GOING;
3747 	synchronize_rcu();
3748 	module_put(mod);
3749 	blocking_notifier_call_chain(&module_notify_list,
3750 				     MODULE_STATE_GOING, mod);
3751 	klp_module_going(mod);
3752 	ftrace_release_mod(mod);
3753 	free_module(mod);
3754 	wake_up_all(&module_wq);
3755 	return ret;
3756 }
3757 
may_init_module(void)3758 static int may_init_module(void)
3759 {
3760 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3761 		return -EPERM;
3762 
3763 	return 0;
3764 }
3765 
3766 /*
3767  * We try to place it in the list now to make sure it's unique before
3768  * we dedicate too many resources.  In particular, temporary percpu
3769  * memory exhaustion.
3770  */
add_unformed_module(struct module * mod)3771 static int add_unformed_module(struct module *mod)
3772 {
3773 	int err;
3774 	struct module *old;
3775 
3776 	mod->state = MODULE_STATE_UNFORMED;
3777 
3778 again:
3779 	mutex_lock(&module_mutex);
3780 	old = find_module_all(mod->name, strlen(mod->name), true);
3781 	if (old != NULL) {
3782 		if (old->state != MODULE_STATE_LIVE) {
3783 			/* Wait in case it fails to load. */
3784 			mutex_unlock(&module_mutex);
3785 			err = wait_event_interruptible(module_wq,
3786 					       finished_loading(mod->name));
3787 			if (err)
3788 				goto out_unlocked;
3789 			goto again;
3790 		}
3791 		err = -EEXIST;
3792 		goto out;
3793 	}
3794 	mod_update_bounds(mod);
3795 	list_add_rcu(&mod->list, &modules);
3796 	mod_tree_insert(mod);
3797 	err = 0;
3798 
3799 out:
3800 	mutex_unlock(&module_mutex);
3801 out_unlocked:
3802 	return err;
3803 }
3804 
complete_formation(struct module * mod,struct load_info * info)3805 static int complete_formation(struct module *mod, struct load_info *info)
3806 {
3807 	int err;
3808 
3809 	mutex_lock(&module_mutex);
3810 
3811 	/* Find duplicate symbols (must be called under lock). */
3812 	err = verify_exported_symbols(mod);
3813 	if (err < 0)
3814 		goto out;
3815 
3816 	/* This relies on module_mutex for list integrity. */
3817 	module_bug_finalize(info->hdr, info->sechdrs, mod);
3818 
3819 	module_enable_ro(mod, false);
3820 	module_enable_nx(mod);
3821 	module_enable_x(mod);
3822 
3823 	/*
3824 	 * Mark state as coming so strong_try_module_get() ignores us,
3825 	 * but kallsyms etc. can see us.
3826 	 */
3827 	mod->state = MODULE_STATE_COMING;
3828 	mutex_unlock(&module_mutex);
3829 
3830 	return 0;
3831 
3832 out:
3833 	mutex_unlock(&module_mutex);
3834 	return err;
3835 }
3836 
prepare_coming_module(struct module * mod)3837 static int prepare_coming_module(struct module *mod)
3838 {
3839 	int err;
3840 
3841 	ftrace_module_enable(mod);
3842 	err = klp_module_coming(mod);
3843 	if (err)
3844 		return err;
3845 
3846 	err = blocking_notifier_call_chain_robust(&module_notify_list,
3847 			MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3848 	err = notifier_to_errno(err);
3849 	if (err)
3850 		klp_module_going(mod);
3851 
3852 	return err;
3853 }
3854 
unknown_module_param_cb(char * param,char * val,const char * modname,void * arg)3855 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3856 				   void *arg)
3857 {
3858 	struct module *mod = arg;
3859 	int ret;
3860 
3861 	if (strcmp(param, "async_probe") == 0) {
3862 		mod->async_probe_requested = true;
3863 		return 0;
3864 	}
3865 
3866 	/* Check for magic 'dyndbg' arg */
3867 	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3868 	if (ret != 0)
3869 		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3870 	return 0;
3871 }
3872 
3873 static void cfi_init(struct module *mod);
3874 
3875 /*
3876  * Allocate and load the module: note that size of section 0 is always
3877  * zero, and we rely on this for optional sections.
3878  */
load_module(struct load_info * info,const char __user * uargs,int flags)3879 static int load_module(struct load_info *info, const char __user *uargs,
3880 		       int flags)
3881 {
3882 	struct module *mod;
3883 	long err = 0;
3884 	char *after_dashes;
3885 
3886 	/*
3887 	 * Do the signature check (if any) first. All that
3888 	 * the signature check needs is info->len, it does
3889 	 * not need any of the section info. That can be
3890 	 * set up later. This will minimize the chances
3891 	 * of a corrupt module causing problems before
3892 	 * we even get to the signature check.
3893 	 *
3894 	 * The check will also adjust info->len by stripping
3895 	 * off the sig length at the end of the module, making
3896 	 * checks against info->len more correct.
3897 	 */
3898 	err = module_sig_check(info, flags);
3899 	if (err)
3900 		goto free_copy;
3901 
3902 	/*
3903 	 * Do basic sanity checks against the ELF header and
3904 	 * sections.
3905 	 */
3906 	err = elf_validity_check(info);
3907 	if (err) {
3908 		pr_err("Module has invalid ELF structures\n");
3909 		goto free_copy;
3910 	}
3911 
3912 	/*
3913 	 * Everything checks out, so set up the section info
3914 	 * in the info structure.
3915 	 */
3916 	err = setup_load_info(info, flags);
3917 	if (err)
3918 		goto free_copy;
3919 
3920 	/*
3921 	 * Now that we know we have the correct module name, check
3922 	 * if it's blacklisted.
3923 	 */
3924 	if (blacklisted(info->name)) {
3925 		err = -EPERM;
3926 		pr_err("Module %s is blacklisted\n", info->name);
3927 		goto free_copy;
3928 	}
3929 
3930 	err = rewrite_section_headers(info, flags);
3931 	if (err)
3932 		goto free_copy;
3933 
3934 	/* Check module struct version now, before we try to use module. */
3935 	if (!check_modstruct_version(info, info->mod)) {
3936 		err = -ENOEXEC;
3937 		goto free_copy;
3938 	}
3939 
3940 	/* Figure out module layout, and allocate all the memory. */
3941 	mod = layout_and_allocate(info, flags);
3942 	if (IS_ERR(mod)) {
3943 		err = PTR_ERR(mod);
3944 		goto free_copy;
3945 	}
3946 
3947 	audit_log_kern_module(mod->name);
3948 
3949 	/* Reserve our place in the list. */
3950 	err = add_unformed_module(mod);
3951 	if (err)
3952 		goto free_module;
3953 
3954 #ifdef CONFIG_MODULE_SIG
3955 	mod->sig_ok = info->sig_ok;
3956 	if (!mod->sig_ok) {
3957 		pr_notice_once("%s: module verification failed: signature "
3958 			       "and/or required key missing - tainting "
3959 			       "kernel\n", mod->name);
3960 		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3961 	}
3962 #endif
3963 
3964 	/* To avoid stressing percpu allocator, do this once we're unique. */
3965 	err = percpu_modalloc(mod, info);
3966 	if (err)
3967 		goto unlink_mod;
3968 
3969 	/* Now module is in final location, initialize linked lists, etc. */
3970 	err = module_unload_init(mod);
3971 	if (err)
3972 		goto unlink_mod;
3973 
3974 	init_param_lock(mod);
3975 
3976 	/*
3977 	 * Now we've got everything in the final locations, we can
3978 	 * find optional sections.
3979 	 */
3980 	err = find_module_sections(mod, info);
3981 	if (err)
3982 		goto free_unload;
3983 
3984 	err = check_module_license_and_versions(mod);
3985 	if (err)
3986 		goto free_unload;
3987 
3988 	/* Set up MODINFO_ATTR fields */
3989 	setup_modinfo(mod, info);
3990 
3991 	/* Fix up syms, so that st_value is a pointer to location. */
3992 	err = simplify_symbols(mod, info);
3993 	if (err < 0)
3994 		goto free_modinfo;
3995 
3996 	err = apply_relocations(mod, info);
3997 	if (err < 0)
3998 		goto free_modinfo;
3999 
4000 	err = post_relocation(mod, info);
4001 	if (err < 0)
4002 		goto free_modinfo;
4003 
4004 	flush_module_icache(mod);
4005 
4006 	/* Setup CFI for the module. */
4007 	cfi_init(mod);
4008 
4009 	/* Now copy in args */
4010 	mod->args = strndup_user(uargs, ~0UL >> 1);
4011 	if (IS_ERR(mod->args)) {
4012 		err = PTR_ERR(mod->args);
4013 		goto free_arch_cleanup;
4014 	}
4015 
4016 	dynamic_debug_setup(mod, info->debug, info->num_debug);
4017 
4018 	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
4019 	ftrace_module_init(mod);
4020 
4021 	/* Finally it's fully formed, ready to start executing. */
4022 	err = complete_formation(mod, info);
4023 	if (err)
4024 		goto ddebug_cleanup;
4025 
4026 	err = prepare_coming_module(mod);
4027 	if (err)
4028 		goto bug_cleanup;
4029 
4030 	/* Module is ready to execute: parsing args may do that. */
4031 	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
4032 				  -32768, 32767, mod,
4033 				  unknown_module_param_cb);
4034 	if (IS_ERR(after_dashes)) {
4035 		err = PTR_ERR(after_dashes);
4036 		goto coming_cleanup;
4037 	} else if (after_dashes) {
4038 		pr_warn("%s: parameters '%s' after `--' ignored\n",
4039 		       mod->name, after_dashes);
4040 	}
4041 
4042 	/* Link in to sysfs. */
4043 	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
4044 	if (err < 0)
4045 		goto coming_cleanup;
4046 
4047 	if (is_livepatch_module(mod)) {
4048 		err = copy_module_elf(mod, info);
4049 		if (err < 0)
4050 			goto sysfs_cleanup;
4051 	}
4052 
4053 	/* Get rid of temporary copy. */
4054 	free_copy(info);
4055 
4056 	/* Done! */
4057 	trace_module_load(mod);
4058 
4059 	return do_init_module(mod);
4060 
4061  sysfs_cleanup:
4062 	mod_sysfs_teardown(mod);
4063  coming_cleanup:
4064 	mod->state = MODULE_STATE_GOING;
4065 	destroy_params(mod->kp, mod->num_kp);
4066 	blocking_notifier_call_chain(&module_notify_list,
4067 				     MODULE_STATE_GOING, mod);
4068 	klp_module_going(mod);
4069  bug_cleanup:
4070 	mod->state = MODULE_STATE_GOING;
4071 	/* module_bug_cleanup needs module_mutex protection */
4072 	mutex_lock(&module_mutex);
4073 	module_bug_cleanup(mod);
4074 	mutex_unlock(&module_mutex);
4075 
4076  ddebug_cleanup:
4077 	ftrace_release_mod(mod);
4078 	dynamic_debug_remove(mod, info->debug);
4079 	synchronize_rcu();
4080 	kfree(mod->args);
4081  free_arch_cleanup:
4082 	cfi_cleanup(mod);
4083 	module_arch_cleanup(mod);
4084  free_modinfo:
4085 	free_modinfo(mod);
4086  free_unload:
4087 	module_unload_free(mod);
4088  unlink_mod:
4089 	mutex_lock(&module_mutex);
4090 	/* Unlink carefully: kallsyms could be walking list. */
4091 	list_del_rcu(&mod->list);
4092 	mod_tree_remove(mod);
4093 	wake_up_all(&module_wq);
4094 	/* Wait for RCU-sched synchronizing before releasing mod->list. */
4095 	synchronize_rcu();
4096 	mutex_unlock(&module_mutex);
4097  free_module:
4098 	/* Free lock-classes; relies on the preceding sync_rcu() */
4099 	lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
4100 
4101 	module_deallocate(mod, info);
4102  free_copy:
4103 	free_copy(info);
4104 	return err;
4105 }
4106 
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)4107 SYSCALL_DEFINE3(init_module, void __user *, umod,
4108 		unsigned long, len, const char __user *, uargs)
4109 {
4110 	int err;
4111 	struct load_info info = { };
4112 
4113 	err = may_init_module();
4114 	if (err)
4115 		return err;
4116 
4117 	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
4118 	       umod, len, uargs);
4119 
4120 	err = copy_module_from_user(umod, len, &info);
4121 	if (err)
4122 		return err;
4123 
4124 	return load_module(&info, uargs, 0);
4125 }
4126 
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)4127 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
4128 {
4129 	struct load_info info = { };
4130 	void *hdr = NULL;
4131 	int err;
4132 
4133 	err = may_init_module();
4134 	if (err)
4135 		return err;
4136 
4137 	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
4138 
4139 	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
4140 		      |MODULE_INIT_IGNORE_VERMAGIC))
4141 		return -EINVAL;
4142 
4143 	err = kernel_read_file_from_fd(fd, 0, &hdr, INT_MAX, NULL,
4144 				       READING_MODULE);
4145 	if (err < 0)
4146 		return err;
4147 	info.hdr = hdr;
4148 	info.len = err;
4149 
4150 	return load_module(&info, uargs, flags);
4151 }
4152 
within(unsigned long addr,void * start,unsigned long size)4153 static inline int within(unsigned long addr, void *start, unsigned long size)
4154 {
4155 	return ((void *)addr >= start && (void *)addr < start + size);
4156 }
4157 
4158 #ifdef CONFIG_KALLSYMS
4159 /*
4160  * This ignores the intensely annoying "mapping symbols" found
4161  * in ARM ELF files: $a, $t and $d.
4162  */
is_arm_mapping_symbol(const char * str)4163 static inline int is_arm_mapping_symbol(const char *str)
4164 {
4165 	if (str[0] == '.' && str[1] == 'L')
4166 		return true;
4167 	return str[0] == '$' && strchr("axtd", str[1])
4168 	       && (str[2] == '\0' || str[2] == '.');
4169 }
4170 
kallsyms_symbol_name(struct mod_kallsyms * kallsyms,unsigned int symnum)4171 static const char *kallsyms_symbol_name(struct mod_kallsyms *kallsyms, unsigned int symnum)
4172 {
4173 	return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
4174 }
4175 
4176 /*
4177  * Given a module and address, find the corresponding symbol and return its name
4178  * while providing its size and offset if needed.
4179  */
find_kallsyms_symbol(struct module * mod,unsigned long addr,unsigned long * size,unsigned long * offset)4180 static const char *find_kallsyms_symbol(struct module *mod,
4181 					unsigned long addr,
4182 					unsigned long *size,
4183 					unsigned long *offset)
4184 {
4185 	unsigned int i, best = 0;
4186 	unsigned long nextval, bestval;
4187 	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4188 
4189 	/* At worse, next value is at end of module */
4190 	if (within_module_init(addr, mod))
4191 		nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
4192 	else
4193 		nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
4194 
4195 	bestval = kallsyms_symbol_value(&kallsyms->symtab[best]);
4196 
4197 	/*
4198 	 * Scan for closest preceding symbol, and next symbol. (ELF
4199 	 * starts real symbols at 1).
4200 	 */
4201 	for (i = 1; i < kallsyms->num_symtab; i++) {
4202 		const Elf_Sym *sym = &kallsyms->symtab[i];
4203 		unsigned long thisval = kallsyms_symbol_value(sym);
4204 
4205 		if (sym->st_shndx == SHN_UNDEF)
4206 			continue;
4207 
4208 		/*
4209 		 * We ignore unnamed symbols: they're uninformative
4210 		 * and inserted at a whim.
4211 		 */
4212 		if (*kallsyms_symbol_name(kallsyms, i) == '\0'
4213 		    || is_arm_mapping_symbol(kallsyms_symbol_name(kallsyms, i)))
4214 			continue;
4215 
4216 		if (thisval <= addr && thisval > bestval) {
4217 			best = i;
4218 			bestval = thisval;
4219 		}
4220 		if (thisval > addr && thisval < nextval)
4221 			nextval = thisval;
4222 	}
4223 
4224 	if (!best)
4225 		return NULL;
4226 
4227 	if (size)
4228 		*size = nextval - bestval;
4229 	if (offset)
4230 		*offset = addr - bestval;
4231 
4232 	return kallsyms_symbol_name(kallsyms, best);
4233 }
4234 
dereference_module_function_descriptor(struct module * mod,void * ptr)4235 void * __weak dereference_module_function_descriptor(struct module *mod,
4236 						     void *ptr)
4237 {
4238 	return ptr;
4239 }
4240 
4241 /*
4242  * For kallsyms to ask for address resolution.  NULL means not found.  Careful
4243  * not to lock to avoid deadlock on oopses, simply disable preemption.
4244  */
module_address_lookup(unsigned long addr,unsigned long * size,unsigned long * offset,char ** modname,char * namebuf)4245 const char *module_address_lookup(unsigned long addr,
4246 			    unsigned long *size,
4247 			    unsigned long *offset,
4248 			    char **modname,
4249 			    char *namebuf)
4250 {
4251 	const char *ret = NULL;
4252 	struct module *mod;
4253 
4254 	preempt_disable();
4255 	mod = __module_address(addr);
4256 	if (mod) {
4257 		if (modname)
4258 			*modname = mod->name;
4259 
4260 		ret = find_kallsyms_symbol(mod, addr, size, offset);
4261 	}
4262 	/* Make a copy in here where it's safe */
4263 	if (ret) {
4264 		strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
4265 		ret = namebuf;
4266 	}
4267 	preempt_enable();
4268 
4269 	return ret;
4270 }
4271 
lookup_module_symbol_name(unsigned long addr,char * symname)4272 int lookup_module_symbol_name(unsigned long addr, char *symname)
4273 {
4274 	struct module *mod;
4275 
4276 	preempt_disable();
4277 	list_for_each_entry_rcu(mod, &modules, list) {
4278 		if (mod->state == MODULE_STATE_UNFORMED)
4279 			continue;
4280 		if (within_module(addr, mod)) {
4281 			const char *sym;
4282 
4283 			sym = find_kallsyms_symbol(mod, addr, NULL, NULL);
4284 			if (!sym)
4285 				goto out;
4286 
4287 			strlcpy(symname, sym, KSYM_NAME_LEN);
4288 			preempt_enable();
4289 			return 0;
4290 		}
4291 	}
4292 out:
4293 	preempt_enable();
4294 	return -ERANGE;
4295 }
4296 
lookup_module_symbol_attrs(unsigned long addr,unsigned long * size,unsigned long * offset,char * modname,char * name)4297 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4298 			unsigned long *offset, char *modname, char *name)
4299 {
4300 	struct module *mod;
4301 
4302 	preempt_disable();
4303 	list_for_each_entry_rcu(mod, &modules, list) {
4304 		if (mod->state == MODULE_STATE_UNFORMED)
4305 			continue;
4306 		if (within_module(addr, mod)) {
4307 			const char *sym;
4308 
4309 			sym = find_kallsyms_symbol(mod, addr, size, offset);
4310 			if (!sym)
4311 				goto out;
4312 			if (modname)
4313 				strlcpy(modname, mod->name, MODULE_NAME_LEN);
4314 			if (name)
4315 				strlcpy(name, sym, KSYM_NAME_LEN);
4316 			preempt_enable();
4317 			return 0;
4318 		}
4319 	}
4320 out:
4321 	preempt_enable();
4322 	return -ERANGE;
4323 }
4324 
module_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * name,char * module_name,int * exported)4325 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4326 			char *name, char *module_name, int *exported)
4327 {
4328 	struct module *mod;
4329 
4330 	preempt_disable();
4331 	list_for_each_entry_rcu(mod, &modules, list) {
4332 		struct mod_kallsyms *kallsyms;
4333 
4334 		if (mod->state == MODULE_STATE_UNFORMED)
4335 			continue;
4336 		kallsyms = rcu_dereference_sched(mod->kallsyms);
4337 		if (symnum < kallsyms->num_symtab) {
4338 			const Elf_Sym *sym = &kallsyms->symtab[symnum];
4339 
4340 			*value = kallsyms_symbol_value(sym);
4341 			*type = kallsyms->typetab[symnum];
4342 			strlcpy(name, kallsyms_symbol_name(kallsyms, symnum), KSYM_NAME_LEN);
4343 			strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4344 			*exported = is_exported(name, *value, mod);
4345 			preempt_enable();
4346 			return 0;
4347 		}
4348 		symnum -= kallsyms->num_symtab;
4349 	}
4350 	preempt_enable();
4351 	return -ERANGE;
4352 }
4353 
4354 /* Given a module and name of symbol, find and return the symbol's value */
find_kallsyms_symbol_value(struct module * mod,const char * name)4355 static unsigned long find_kallsyms_symbol_value(struct module *mod, const char *name)
4356 {
4357 	unsigned int i;
4358 	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4359 
4360 	for (i = 0; i < kallsyms->num_symtab; i++) {
4361 		const Elf_Sym *sym = &kallsyms->symtab[i];
4362 
4363 		if (strcmp(name, kallsyms_symbol_name(kallsyms, i)) == 0 &&
4364 		    sym->st_shndx != SHN_UNDEF)
4365 			return kallsyms_symbol_value(sym);
4366 	}
4367 	return 0;
4368 }
4369 
4370 /* Look for this name: can be of form module:name. */
module_kallsyms_lookup_name(const char * name)4371 unsigned long module_kallsyms_lookup_name(const char *name)
4372 {
4373 	struct module *mod;
4374 	char *colon;
4375 	unsigned long ret = 0;
4376 
4377 	/* Don't lock: we're in enough trouble already. */
4378 	preempt_disable();
4379 	if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4380 		if ((mod = find_module_all(name, colon - name, false)) != NULL)
4381 			ret = find_kallsyms_symbol_value(mod, colon+1);
4382 	} else {
4383 		list_for_each_entry_rcu(mod, &modules, list) {
4384 			if (mod->state == MODULE_STATE_UNFORMED)
4385 				continue;
4386 			if ((ret = find_kallsyms_symbol_value(mod, name)) != 0)
4387 				break;
4388 		}
4389 	}
4390 	preempt_enable();
4391 	return ret;
4392 }
4393 
4394 #ifdef CONFIG_LIVEPATCH
module_kallsyms_on_each_symbol(int (* fn)(void *,const char *,struct module *,unsigned long),void * data)4395 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4396 					     struct module *, unsigned long),
4397 				   void *data)
4398 {
4399 	struct module *mod;
4400 	unsigned int i;
4401 	int ret = 0;
4402 
4403 	mutex_lock(&module_mutex);
4404 	list_for_each_entry(mod, &modules, list) {
4405 		/* We hold module_mutex: no need for rcu_dereference_sched */
4406 		struct mod_kallsyms *kallsyms = mod->kallsyms;
4407 
4408 		if (mod->state == MODULE_STATE_UNFORMED)
4409 			continue;
4410 		for (i = 0; i < kallsyms->num_symtab; i++) {
4411 			const Elf_Sym *sym = &kallsyms->symtab[i];
4412 
4413 			if (sym->st_shndx == SHN_UNDEF)
4414 				continue;
4415 
4416 			ret = fn(data, kallsyms_symbol_name(kallsyms, i),
4417 				 mod, kallsyms_symbol_value(sym));
4418 			if (ret != 0)
4419 				break;
4420 		}
4421 	}
4422 	mutex_unlock(&module_mutex);
4423 	return ret;
4424 }
4425 #endif /* CONFIG_LIVEPATCH */
4426 #endif /* CONFIG_KALLSYMS */
4427 
cfi_init(struct module * mod)4428 static void cfi_init(struct module *mod)
4429 {
4430 #ifdef CONFIG_CFI_CLANG
4431 	initcall_t *init;
4432 	exitcall_t *exit;
4433 
4434 	rcu_read_lock_sched();
4435 	mod->cfi_check = (cfi_check_fn)
4436 		find_kallsyms_symbol_value(mod, "__cfi_check");
4437 	init = (initcall_t *)
4438 		find_kallsyms_symbol_value(mod, "__cfi_jt_init_module");
4439 	exit = (exitcall_t *)
4440 		find_kallsyms_symbol_value(mod, "__cfi_jt_cleanup_module");
4441 	rcu_read_unlock_sched();
4442 
4443 	/* Fix init/exit functions to point to the CFI jump table */
4444 	if (init)
4445 		mod->init = *init;
4446 	if (exit)
4447 		mod->exit = *exit;
4448 
4449 	cfi_module_add(mod, module_addr_min);
4450 #endif
4451 }
4452 
cfi_cleanup(struct module * mod)4453 static void cfi_cleanup(struct module *mod)
4454 {
4455 #ifdef CONFIG_CFI_CLANG
4456 	cfi_module_remove(mod, module_addr_min);
4457 #endif
4458 }
4459 
4460 /* Maximum number of characters written by module_flags() */
4461 #define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4462 
4463 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
module_flags(struct module * mod,char * buf)4464 static char *module_flags(struct module *mod, char *buf)
4465 {
4466 	int bx = 0;
4467 
4468 	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4469 	if (mod->taints ||
4470 	    mod->state == MODULE_STATE_GOING ||
4471 	    mod->state == MODULE_STATE_COMING) {
4472 		buf[bx++] = '(';
4473 		bx += module_flags_taint(mod, buf + bx);
4474 		/* Show a - for module-is-being-unloaded */
4475 		if (mod->state == MODULE_STATE_GOING)
4476 			buf[bx++] = '-';
4477 		/* Show a + for module-is-being-loaded */
4478 		if (mod->state == MODULE_STATE_COMING)
4479 			buf[bx++] = '+';
4480 		buf[bx++] = ')';
4481 	}
4482 	buf[bx] = '\0';
4483 
4484 	return buf;
4485 }
4486 
4487 #ifdef CONFIG_PROC_FS
4488 /* Called by the /proc file system to return a list of modules. */
m_start(struct seq_file * m,loff_t * pos)4489 static void *m_start(struct seq_file *m, loff_t *pos)
4490 {
4491 	mutex_lock(&module_mutex);
4492 	return seq_list_start(&modules, *pos);
4493 }
4494 
m_next(struct seq_file * m,void * p,loff_t * pos)4495 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4496 {
4497 	return seq_list_next(p, &modules, pos);
4498 }
4499 
m_stop(struct seq_file * m,void * p)4500 static void m_stop(struct seq_file *m, void *p)
4501 {
4502 	mutex_unlock(&module_mutex);
4503 }
4504 
m_show(struct seq_file * m,void * p)4505 static int m_show(struct seq_file *m, void *p)
4506 {
4507 	struct module *mod = list_entry(p, struct module, list);
4508 	char buf[MODULE_FLAGS_BUF_SIZE];
4509 	void *value;
4510 
4511 	/* We always ignore unformed modules. */
4512 	if (mod->state == MODULE_STATE_UNFORMED)
4513 		return 0;
4514 
4515 	seq_printf(m, "%s %u",
4516 		   mod->name, mod->init_layout.size + mod->core_layout.size);
4517 	print_unload_info(m, mod);
4518 
4519 	/* Informative for users. */
4520 	seq_printf(m, " %s",
4521 		   mod->state == MODULE_STATE_GOING ? "Unloading" :
4522 		   mod->state == MODULE_STATE_COMING ? "Loading" :
4523 		   "Live");
4524 	/* Used by oprofile and other similar tools. */
4525 	value = m->private ? NULL : mod->core_layout.base;
4526 	seq_printf(m, " 0x%px", value);
4527 
4528 	/* Taints info */
4529 	if (mod->taints)
4530 		seq_printf(m, " %s", module_flags(mod, buf));
4531 
4532 	seq_puts(m, "\n");
4533 	return 0;
4534 }
4535 
4536 /*
4537  * Format: modulename size refcount deps address
4538  *
4539  * Where refcount is a number or -, and deps is a comma-separated list
4540  * of depends or -.
4541  */
4542 static const struct seq_operations modules_op = {
4543 	.start	= m_start,
4544 	.next	= m_next,
4545 	.stop	= m_stop,
4546 	.show	= m_show
4547 };
4548 
4549 /*
4550  * This also sets the "private" pointer to non-NULL if the
4551  * kernel pointers should be hidden (so you can just test
4552  * "m->private" to see if you should keep the values private).
4553  *
4554  * We use the same logic as for /proc/kallsyms.
4555  */
modules_open(struct inode * inode,struct file * file)4556 static int modules_open(struct inode *inode, struct file *file)
4557 {
4558 	int err = seq_open(file, &modules_op);
4559 
4560 	if (!err) {
4561 		struct seq_file *m = file->private_data;
4562 		m->private = kallsyms_show_value(file->f_cred) ? NULL : (void *)8ul;
4563 	}
4564 
4565 	return err;
4566 }
4567 
4568 static const struct proc_ops modules_proc_ops = {
4569 	.proc_flags	= PROC_ENTRY_PERMANENT,
4570 	.proc_open	= modules_open,
4571 	.proc_read	= seq_read,
4572 	.proc_lseek	= seq_lseek,
4573 	.proc_release	= seq_release,
4574 };
4575 
proc_modules_init(void)4576 static int __init proc_modules_init(void)
4577 {
4578 	proc_create("modules", 0, NULL, &modules_proc_ops);
4579 	return 0;
4580 }
4581 module_init(proc_modules_init);
4582 #endif
4583 
4584 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)4585 const struct exception_table_entry *search_module_extables(unsigned long addr)
4586 {
4587 	const struct exception_table_entry *e = NULL;
4588 	struct module *mod;
4589 
4590 	preempt_disable();
4591 	mod = __module_address(addr);
4592 	if (!mod)
4593 		goto out;
4594 
4595 	if (!mod->num_exentries)
4596 		goto out;
4597 
4598 	e = search_extable(mod->extable,
4599 			   mod->num_exentries,
4600 			   addr);
4601 out:
4602 	preempt_enable();
4603 
4604 	/*
4605 	 * Now, if we found one, we are running inside it now, hence
4606 	 * we cannot unload the module, hence no refcnt needed.
4607 	 */
4608 	return e;
4609 }
4610 
4611 /**
4612  * is_module_address() - is this address inside a module?
4613  * @addr: the address to check.
4614  *
4615  * See is_module_text_address() if you simply want to see if the address
4616  * is code (not data).
4617  */
is_module_address(unsigned long addr)4618 bool is_module_address(unsigned long addr)
4619 {
4620 	bool ret;
4621 
4622 	preempt_disable();
4623 	ret = __module_address(addr) != NULL;
4624 	preempt_enable();
4625 
4626 	return ret;
4627 }
4628 
4629 /**
4630  * __module_address() - get the module which contains an address.
4631  * @addr: the address.
4632  *
4633  * Must be called with preempt disabled or module mutex held so that
4634  * module doesn't get freed during this.
4635  */
__module_address(unsigned long addr)4636 struct module *__module_address(unsigned long addr)
4637 {
4638 	struct module *mod;
4639 
4640 	if (addr < module_addr_min || addr > module_addr_max)
4641 		return NULL;
4642 
4643 	module_assert_mutex_or_preempt();
4644 
4645 	mod = mod_find(addr);
4646 	if (mod) {
4647 		BUG_ON(!within_module(addr, mod));
4648 		if (mod->state == MODULE_STATE_UNFORMED)
4649 			mod = NULL;
4650 	}
4651 	return mod;
4652 }
4653 
4654 /**
4655  * is_module_text_address() - is this address inside module code?
4656  * @addr: the address to check.
4657  *
4658  * See is_module_address() if you simply want to see if the address is
4659  * anywhere in a module.  See kernel_text_address() for testing if an
4660  * address corresponds to kernel or module code.
4661  */
is_module_text_address(unsigned long addr)4662 bool is_module_text_address(unsigned long addr)
4663 {
4664 	bool ret;
4665 
4666 	preempt_disable();
4667 	ret = __module_text_address(addr) != NULL;
4668 	preempt_enable();
4669 
4670 	return ret;
4671 }
4672 
4673 /**
4674  * __module_text_address() - get the module whose code contains an address.
4675  * @addr: the address.
4676  *
4677  * Must be called with preempt disabled or module mutex held so that
4678  * module doesn't get freed during this.
4679  */
__module_text_address(unsigned long addr)4680 struct module *__module_text_address(unsigned long addr)
4681 {
4682 	struct module *mod = __module_address(addr);
4683 	if (mod) {
4684 		/* Make sure it's within the text section. */
4685 		if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4686 		    && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4687 			mod = NULL;
4688 	}
4689 	return mod;
4690 }
4691 
4692 /* Don't grab lock, we're oopsing. */
print_modules(void)4693 void print_modules(void)
4694 {
4695 	struct module *mod;
4696 	char buf[MODULE_FLAGS_BUF_SIZE];
4697 
4698 	printk(KERN_DEFAULT "Modules linked in:");
4699 	/* Most callers should already have preempt disabled, but make sure */
4700 	preempt_disable();
4701 	list_for_each_entry_rcu(mod, &modules, list) {
4702 		if (mod->state == MODULE_STATE_UNFORMED)
4703 			continue;
4704 		pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4705 	}
4706 	preempt_enable();
4707 	if (last_unloaded_module[0])
4708 		pr_cont(" [last unloaded: %s]", last_unloaded_module);
4709 	pr_cont("\n");
4710 }
4711 
4712 #ifdef CONFIG_MODVERSIONS
4713 /*
4714  * Generate the signature for all relevant module structures here.
4715  * If these change, we don't want to try to parse the module.
4716  */
module_layout(struct module * mod,struct modversion_info * ver,struct kernel_param * kp,struct kernel_symbol * ks,struct tracepoint * const * tp)4717 void module_layout(struct module *mod,
4718 		   struct modversion_info *ver,
4719 		   struct kernel_param *kp,
4720 		   struct kernel_symbol *ks,
4721 		   struct tracepoint * const *tp)
4722 {
4723 }
4724 EXPORT_SYMBOL(module_layout);
4725 #endif
4726