1 /*
2 **
3 ** File: fmopl.c -- software implementation of FM sound generator
4 **
5 ** Copyright (C) 1999 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
6 **
7 ** Version 0.36f
8 **
9 */
10 
11 /*
12 	preliminary :
13 	Problem :
14 	note:
15 */
16 
17 #ifdef HAVE_CONFIG_H
18 #include "config.h"
19 #endif
20 
21 #include <stdio.h>
22 #include <stdlib.h>
23 #include <string.h>
24 #include <stdarg.h>
25 #include <math.h>
26 //#include "driver.h"		/* use M.A.M.E. */
27 #include "fmopl.h"
28 
29 /* MPC - hacks */
30 #include "types.h"
31 #include "log.h"
32 
33 #ifndef PI
34 #define PI 3.14159265358979323846
35 #endif
36 
37 /* -------------------- preliminary define section --------------------- */
38 /* attack/decay rate time rate */
39 #define OPL_ARRATE     141280  /* RATE 4 =  2826.24ms @ 3.6MHz */
40 #define OPL_DRRATE    1956000  /* RATE 4 = 39280.64ms @ 3.6MHz */
41 
42 #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
43 
44 #define FREQ_BITS 24			/* frequency turn          */
45 
46 /* counter bits = 20 , octerve 7 */
47 #define FREQ_RATE   (1<<(FREQ_BITS-20))
48 #define TL_BITS    (FREQ_BITS+2)
49 
50 /* final output shift , limit minimum and maximum */
51 #define OPL_OUTSB   (TL_BITS+3-16)		/* OPL output final shift 16bit */
52 #define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
53 #define OPL_MINOUT (-(0x8000<<OPL_OUTSB))
54 
55 /* -------------------- quality selection --------------------- */
56 
57 /* sinwave entries */
58 /* used static memory = SIN_ENT * 4 (byte) */
59 #define SIN_ENT 2048
60 
61 /* output level entries (envelope,sinwave) */
62 /* envelope counter lower bits */
63 #define ENV_BITS 16
64 /* envelope output entries */
65 #define EG_ENT   4096
66 /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
67 /* used static  memory = EG_ENT*4 (byte)                     */
68 
69 #define EG_OFF   ((2*EG_ENT)<<ENV_BITS)  /* OFF          */
70 #define EG_DED   EG_OFF
71 #define EG_DST   (EG_ENT<<ENV_BITS)      /* DECAY  START */
72 #define EG_AED   EG_DST
73 #define EG_AST   0                       /* ATTACK START */
74 
75 #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step  */
76 
77 /* LFO table entries */
78 #define VIB_ENT 512
79 #define VIB_SHIFT (32-9)
80 #define AMS_ENT 512
81 #define AMS_SHIFT (32-9)
82 
83 #define VIB_RATE 256
84 
85 /* -------------------- local defines , macros --------------------- */
86 
87 /* register number to channel number , slot offset */
88 #define SLOT1 0
89 #define SLOT2 1
90 
91 /* envelope phase */
92 #define ENV_MOD_RR  0x00
93 #define ENV_MOD_DR  0x01
94 #define ENV_MOD_AR  0x02
95 
96 /* -------------------- tables --------------------- */
97 static const int slot_array[32]=
98 {
99 	 0, 2, 4, 1, 3, 5,-1,-1,
100 	 6, 8,10, 7, 9,11,-1,-1,
101 	12,14,16,13,15,17,-1,-1,
102 	-1,-1,-1,-1,-1,-1,-1,-1
103 };
104 
105 /* key scale level */
106 #define ML(x) ((UINT32)((x)*0.1875*2/EG_STEP))
107 static const UINT32 KSL_TABLE[8*16]=
108 {
109 	/* OCT 0 */
110 	 ML(0.000), ML(0.000), ML(0.000), ML(0.000),
111 	 ML(0.000), ML(0.000), ML(0.000), ML(0.000),
112 	 ML(0.000), ML(0.000), ML(0.000), ML(0.000),
113 	 ML(0.000), ML(0.000), ML(0.000), ML(0.000),
114 	/* OCT 1 */
115 	 ML(0.000), ML(0.000), ML(0.000), ML(0.000),
116 	 ML(0.000), ML(0.000), ML(0.000), ML(0.000),
117 	 ML(0.000), ML(0.750), ML(1.125), ML(1.500),
118 	 ML(1.875), ML(2.250), ML(2.625), ML(3.000),
119 	/* OCT 2 */
120 	 ML(0.000), ML(0.000), ML(0.000), ML(0.000),
121 	 ML(0.000), ML(1.125), ML(1.875), ML(2.625),
122 	 ML(3.000), ML(3.750), ML(4.125), ML(4.500),
123 	 ML(4.875), ML(5.250), ML(5.625), ML(6.000),
124 	/* OCT 3 */
125 	 ML(0.000), ML(0.000), ML(0.000), ML(1.875),
126 	 ML(3.000), ML(4.125), ML(4.875), ML(5.625),
127 	 ML(6.000), ML(6.750), ML(7.125), ML(7.500),
128 	 ML(7.875), ML(8.250), ML(8.625), ML(9.000),
129 	/* OCT 4 */
130 	 ML(0.000), ML(0.000), ML(3.000), ML(4.875),
131 	 ML(6.000), ML(7.125), ML(7.875), ML(8.625),
132 	 ML(9.000), ML(9.750),ML(10.125),ML(10.500),
133 	ML(10.875),ML(11.250),ML(11.625),ML(12.000),
134 	/* OCT 5 */
135 	 ML(0.000), ML(3.000), ML(6.000), ML(7.875),
136 	 ML(9.000),ML(10.125),ML(10.875),ML(11.625),
137 	ML(12.000),ML(12.750),ML(13.125),ML(13.500),
138 	ML(13.875),ML(14.250),ML(14.625),ML(15.000),
139 	/* OCT 6 */
140 	 ML(0.000), ML(6.000), ML(9.000),ML(10.875),
141 	ML(12.000),ML(13.125),ML(13.875),ML(14.625),
142 	ML(15.000),ML(15.750),ML(16.125),ML(16.500),
143 	ML(16.875),ML(17.250),ML(17.625),ML(18.000),
144 	/* OCT 7 */
145 	 ML(0.000), ML(9.000),ML(12.000),ML(13.875),
146 	ML(15.000),ML(16.125),ML(16.875),ML(17.625),
147 	ML(18.000),ML(18.750),ML(19.125),ML(19.500),
148 	ML(19.875),ML(20.250),ML(20.625),ML(21.000)
149 };
150 #undef ML
151 
152 /* sustain lebel table (3db per step) */
153 /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
154 #define SC(db) ((INT32) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST)
155 static const INT32 SL_TABLE[16]={
156  SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
157  SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
158 };
159 #undef SC
160 
161 #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
162 /* TotalLevel : 48 24 12  6  3 1.5 0.75 (dB) */
163 /* TL_TABLE[ 0      to TL_MAX          ] : plus  section */
164 /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
165 static INT32 *TL_TABLE;
166 
167 /* pointers to TL_TABLE with sinwave output offset */
168 static INT32 **SIN_TABLE;
169 
170 /* LFO table */
171 static INT32 *AMS_TABLE;
172 static INT32 *VIB_TABLE;
173 
174 /* envelope output curve table */
175 /* attack + decay + OFF */
176 static INT32 ENV_CURVE[2*EG_ENT+1];
177 
178 /* multiple table */
179 #define ML(x) ((UINT32) (2*(x)))
180 static const UINT32 MUL_TABLE[16]= {
181 /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
182    ML(0.50), ML(1.00), ML(2.00), ML(3.00), ML(4.00), ML(5.00), ML(6.00), ML(7.00),
183    ML(8.00), ML(9.00),ML(10.00),ML(10.00),ML(12.00),ML(12.00),ML(15.00),ML(15.00)
184 };
185 #undef ML
186 
187 /* dummy attack / decay rate ( when rate == 0 ) */
188 static INT32 RATE_0[16]=
189 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
190 
191 /* -------------------- static state --------------------- */
192 
193 /* lock level of common table */
194 static int num_lock = 0;
195 
196 /* work table */
197 static void *cur_chip = NULL;	/* current chip point */
198 /* currenct chip state */
199 /* static FMSAMPLE  *bufL,*bufR; */
200 static OPL_CH *S_CH;
201 static OPL_CH *E_CH;
202 OPL_SLOT *SLOT7_1,*SLOT7_2,*SLOT8_1,*SLOT8_2;
203 
204 static INT32 outd[1];
205 static INT32 ams;
206 static INT32 vib;
207 INT32  *ams_table;
208 INT32  *vib_table;
209 static INT32 amsIncr;
210 static INT32 vibIncr;
211 static INT32 feedback2;		/* connect for SLOT 2 */
212 
213 /* log output level */
214 #define LOG_ERR  3      /* ERROR       */
215 #define LOG_WAR  2      /* WARNING     */
216 #define LOG_INF  1      /* INFORMATION */
217 
218 #define LOG_LEVEL LOG_INF
219 
220 //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
221 #define LOG(n,x) if( (n)>=LOG_LEVEL ) log_printf x
222 
223 /* --------------------- subroutines  --------------------- */
224 
Limit(int val,int max,int min)225 INLINE int Limit( int val, int max, int min ) {
226 	if ( val > max )
227 		val = max;
228 	else if ( val < min )
229 		val = min;
230 
231 	return val;
232 }
233 
234 /* status set and IRQ handling */
OPL_STATUS_SET(FM_OPL * OPL,int flag)235 INLINE void OPL_STATUS_SET(FM_OPL *OPL,int flag)
236 {
237 	/* set status flag */
238 	OPL->status |= flag;
239 	if(!(OPL->status & 0x80))
240 	{
241 		if(OPL->status & OPL->statusmask)
242 		{	/* IRQ on */
243 			OPL->status |= 0x80;
244 			/* callback user interrupt handler (IRQ is OFF to ON) */
245 			if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1);
246 		}
247 	}
248 }
249 
250 /* status reset and IRQ handling */
OPL_STATUS_RESET(FM_OPL * OPL,int flag)251 INLINE void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
252 {
253 	/* reset status flag */
254 	OPL->status &=~flag;
255 	if((OPL->status & 0x80))
256 	{
257 		if (!(OPL->status & OPL->statusmask) )
258 		{
259 			OPL->status &= 0x7f;
260 			/* callback user interrupt handler (IRQ is ON to OFF) */
261 			if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0);
262 		}
263 	}
264 }
265 
266 /* IRQ mask set */
OPL_STATUSMASK_SET(FM_OPL * OPL,int flag)267 INLINE void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
268 {
269 	OPL->statusmask = flag;
270 	/* IRQ handling check */
271 	OPL_STATUS_SET(OPL,0);
272 	OPL_STATUS_RESET(OPL,0);
273 }
274 
275 /* ----- key on  ----- */
OPL_KEYON(OPL_SLOT * SLOT)276 INLINE void OPL_KEYON(OPL_SLOT *SLOT)
277 {
278 	/* sin wave restart */
279 	SLOT->Cnt = 0;
280 	/* set attack */
281 	SLOT->evm = ENV_MOD_AR;
282 	SLOT->evs = SLOT->evsa;
283 	SLOT->evc = EG_AST;
284 	SLOT->eve = EG_AED;
285 }
286 /* ----- key off ----- */
OPL_KEYOFF(OPL_SLOT * SLOT)287 INLINE void OPL_KEYOFF(OPL_SLOT *SLOT)
288 {
289 	if( SLOT->evm > ENV_MOD_RR)
290 	{
291 		/* set envelope counter from envleope output */
292 		SLOT->evm = ENV_MOD_RR;
293 		if( !(SLOT->evc&EG_DST) )
294 			//SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
295 			SLOT->evc = EG_DST;
296 		SLOT->eve = EG_DED;
297 		SLOT->evs = SLOT->evsr;
298 	}
299 }
300 
301 /* ---------- calcrate Envelope Generator & Phase Generator ---------- */
302 /* return : envelope output */
OPL_CALC_SLOT(OPL_SLOT * SLOT)303 INLINE UINT32 OPL_CALC_SLOT( OPL_SLOT *SLOT )
304 {
305 	/* calcrate envelope generator */
306 	if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
307 	{
308 		switch( SLOT->evm ){
309 		case ENV_MOD_AR: /* ATTACK -> DECAY1 */
310 			/* next DR */
311 			SLOT->evm = ENV_MOD_DR;
312 			SLOT->evc = EG_DST;
313 			SLOT->eve = SLOT->SL;
314 			SLOT->evs = SLOT->evsd;
315 			break;
316 		case ENV_MOD_DR: /* DECAY -> SL or RR */
317 			SLOT->evc = SLOT->SL;
318 			SLOT->eve = EG_DED;
319 			if(SLOT->eg_typ)
320 			{
321 				SLOT->evs = 0;
322 			}
323 			else
324 			{
325 				SLOT->evm = ENV_MOD_RR;
326 				SLOT->evs = SLOT->evsr;
327 			}
328 			break;
329 		case ENV_MOD_RR: /* RR -> OFF */
330 			SLOT->evc = EG_OFF;
331 			SLOT->eve = EG_OFF+1;
332 			SLOT->evs = 0;
333 			break;
334 		}
335 	}
336 	/* calcrate envelope */
337 	return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
338 }
339 
340 /* set algorythm connection */
set_algorythm(OPL_CH * CH)341 static void set_algorythm( OPL_CH *CH)
342 {
343 	INT32 *carrier = &outd[0];
344 	CH->connect1 = CH->CON ? carrier : &feedback2;
345 	CH->connect2 = carrier;
346 }
347 
348 /* ---------- frequency counter for operater update ---------- */
CALC_FCSLOT(OPL_CH * CH,OPL_SLOT * SLOT)349 INLINE void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
350 {
351 	int ksr;
352 
353 	/* frequency step counter */
354 	SLOT->Incr = CH->fc * SLOT->mul;
355 	ksr = CH->kcode >> SLOT->KSR;
356 
357 	if( SLOT->ksr != ksr )
358 	{
359 		SLOT->ksr = ksr;
360 		/* attack , decay rate recalcration */
361 		SLOT->evsa = SLOT->AR[ksr];
362 		SLOT->evsd = SLOT->DR[ksr];
363 		SLOT->evsr = SLOT->RR[ksr];
364 	}
365 	SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
366 }
367 
368 /* set multi,am,vib,EG-TYP,KSR,mul */
set_mul(FM_OPL * OPL,int slot,int v)369 INLINE void set_mul(FM_OPL *OPL,int slot,int v)
370 {
371 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
372 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
373 
374 	SLOT->mul    = MUL_TABLE[v&0x0f];
375 	SLOT->KSR    = (v&0x10) ? 0 : 2;
376 	SLOT->eg_typ = (v&0x20)>>5;
377 	SLOT->vib    = (v&0x40);
378 	SLOT->ams    = (v&0x80);
379 	CALC_FCSLOT(CH,SLOT);
380 }
381 
382 /* set ksl & tl */
set_ksl_tl(FM_OPL * OPL,int slot,int v)383 INLINE void set_ksl_tl(FM_OPL *OPL,int slot,int v)
384 {
385 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
386 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
387 	int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
388 
389 	SLOT->ksl = ksl ? 3-ksl : 31;
390 	SLOT->TL  = (INT32) (((v&0x3f)*(0.75/EG_STEP))); /* 0.75db step */
391 
392 	if( !(OPL->mode&0x80) )
393 	{	/* not CSM latch total level */
394 		SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
395 	}
396 }
397 
398 /* set attack rate & decay rate  */
set_ar_dr(FM_OPL * OPL,int slot,int v)399 INLINE void set_ar_dr(FM_OPL *OPL,int slot,int v)
400 {
401 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
402 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
403 	int ar = v>>4;
404 	int dr = v&0x0f;
405 
406 	SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
407 	SLOT->evsa = SLOT->AR[SLOT->ksr];
408 	if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;
409 
410 	SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
411 	SLOT->evsd = SLOT->DR[SLOT->ksr];
412 	if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
413 }
414 
415 /* set sustain level & release rate */
set_sl_rr(FM_OPL * OPL,int slot,int v)416 INLINE void set_sl_rr(FM_OPL *OPL,int slot,int v)
417 {
418 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
419 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
420 	int sl = v>>4;
421 	int rr = v & 0x0f;
422 
423 	SLOT->SL = SL_TABLE[sl];
424 	if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
425 	SLOT->RR = &OPL->DR_TABLE[rr<<2];
426 	SLOT->evsr = SLOT->RR[SLOT->ksr];
427 	if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
428 }
429 
430 /* operator output calcrator */
431 #define OP_OUT(slot,env,con)   slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
432 /* ---------- calcrate one of channel ---------- */
OPL_CALC_CH(OPL_CH * CH)433 INLINE void OPL_CALC_CH( OPL_CH *CH )
434 {
435 	UINT32 env_out;
436 	OPL_SLOT *SLOT;
437 
438 	feedback2 = 0;
439 	/* SLOT 1 */
440 	SLOT = &CH->SLOT[SLOT1];
441 	env_out=OPL_CALC_SLOT(SLOT);
442 	if( env_out < EG_ENT-1 )
443 	{
444 		/* PG */
445 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
446 		else          SLOT->Cnt += SLOT->Incr;
447 		/* connectoion */
448 		if(CH->FB)
449 		{
450 			int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
451 			CH->op1_out[1] = CH->op1_out[0];
452 			*CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
453 		}
454 		else
455 		{
456 			*CH->connect1 += OP_OUT(SLOT,env_out,0);
457 		}
458 	}else
459 	{
460 		CH->op1_out[1] = CH->op1_out[0];
461 		CH->op1_out[0] = 0;
462 	}
463 	/* SLOT 2 */
464 	SLOT = &CH->SLOT[SLOT2];
465 	env_out=OPL_CALC_SLOT(SLOT);
466 	if( env_out < EG_ENT-1 )
467 	{
468 		/* PG */
469 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
470 		else          SLOT->Cnt += SLOT->Incr;
471 		/* connectoion */
472 		outd[0] += OP_OUT(SLOT,env_out, feedback2);
473 	}
474 }
475 
476 /* ---------- calcrate rythm block ---------- */
477 #define WHITE_NOISE_db 6.0
OPL_CALC_RH(OPL_CH * CH)478 INLINE void OPL_CALC_RH( OPL_CH *CH )
479 {
480 	UINT32 env_tam,env_sd,env_top,env_hh;
481 	int whitenoise = (rand()&1)*((int)(WHITE_NOISE_db/EG_STEP));
482 	INT32 tone8;
483 
484 	OPL_SLOT *SLOT;
485 	int env_out;
486 
487 	/* BD : same as FM serial mode and output level is large */
488 	feedback2 = 0;
489 	/* SLOT 1 */
490 	SLOT = &CH[6].SLOT[SLOT1];
491 	env_out=OPL_CALC_SLOT(SLOT);
492 	if( env_out < EG_ENT-1 )
493 	{
494 		/* PG */
495 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
496 		else          SLOT->Cnt += SLOT->Incr;
497 		/* connectoion */
498 		if(CH[6].FB)
499 		{
500 			int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
501 			CH[6].op1_out[1] = CH[6].op1_out[0];
502 			feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
503 		}
504 		else
505 		{
506 			feedback2 = OP_OUT(SLOT,env_out,0);
507 		}
508 	}else
509 	{
510 		feedback2 = 0;
511 		CH[6].op1_out[1] = CH[6].op1_out[0];
512 		CH[6].op1_out[0] = 0;
513 	}
514 	/* SLOT 2 */
515 	SLOT = &CH[6].SLOT[SLOT2];
516 	env_out=OPL_CALC_SLOT(SLOT);
517 	if( env_out < EG_ENT-1 )
518 	{
519 		/* PG */
520 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
521 		else          SLOT->Cnt += SLOT->Incr;
522 		/* connectoion */
523 		outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
524 	}
525 
526 	// SD  (17) = mul14[fnum7] + white noise
527 	// TAM (15) = mul15[fnum8]
528 	// TOP (18) = fnum6(mul18[fnum8]+whitenoise)
529 	// HH  (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
530 	env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
531 	env_tam=OPL_CALC_SLOT(SLOT8_1);
532 	env_top=OPL_CALC_SLOT(SLOT8_2);
533 	env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;
534 
535 	/* PG */
536 	if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
537 	else             SLOT7_1->Cnt += 2*SLOT7_1->Incr;
538 	if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
539 	else             SLOT7_2->Cnt += (CH[7].fc*8);
540 	if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
541 	else             SLOT8_1->Cnt += SLOT8_1->Incr;
542 	if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
543 	else             SLOT8_2->Cnt += (CH[8].fc*48);
544 
545 	tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
546 
547 	/* SD */
548 	if( env_sd < EG_ENT-1 )
549 		outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
550 	/* TAM */
551 	if( env_tam < EG_ENT-1 )
552 		outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
553 	/* TOP-CY */
554 	if( env_top < EG_ENT-1 )
555 		outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
556 	/* HH */
557 	if( env_hh  < EG_ENT-1 )
558 		outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
559 }
560 
561 /* ----------- initialize time tabls ----------- */
init_timetables(FM_OPL * OPL,int ARRATE,int DRRATE)562 static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
563 {
564 	int i;
565 	double rate;
566 
567 	/* make attack rate & decay rate tables */
568 	for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
569 	for (i = 4;i <= 60;i++){
570 		rate  = OPL->freqbase;						/* frequency rate */
571 		if( i < 60 ) rate *= 1.0+(i&3)*0.25;		/* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
572 		rate *= 1<<((i>>2)-1);						/* b2-5 : shift bit */
573 		rate *= (double)(EG_ENT<<ENV_BITS);
574 		OPL->AR_TABLE[i] = (INT32) (rate / ARRATE);
575 		OPL->DR_TABLE[i] = (INT32) (rate / DRRATE);
576 	}
577 	for (i = 60;i < 76;i++)
578 	{
579 		OPL->AR_TABLE[i] = EG_AED-1;
580 		OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
581 	}
582 #if 0
583 	for (i = 0;i < 64 ;i++){	/* make for overflow area */
584 		LOG(LOG_WAR,("rate %2d , ar %f ms , dr %f ms \n",i,
585 			((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
586 			((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
587 	}
588 #endif
589 }
590 
591 /* ---------- generic table initialize ---------- */
OPLOpenTable(void)592 static int OPLOpenTable( void )
593 {
594 	int s,t;
595 	double rate;
596 	int i,j;
597 	double pom;
598 
599 	/* allocate dynamic tables */
600 	if( (TL_TABLE = malloc(TL_MAX*2*sizeof(INT32))) == NULL)
601 		return 0;
602 	if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(INT32 *))) == NULL)
603 	{
604 		free(TL_TABLE);
605 		return 0;
606 	}
607 	if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(INT32))) == NULL)
608 	{
609 		free(TL_TABLE);
610 		free(SIN_TABLE);
611 		return 0;
612 	}
613 	if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(INT32))) == NULL)
614 	{
615 		free(TL_TABLE);
616 		free(SIN_TABLE);
617 		free(AMS_TABLE);
618 		return 0;
619 	}
620 	/* make total level table */
621 	for (t = 0;t < EG_ENT-1 ;t++){
622 		rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20);	/* dB -> voltage */
623 		TL_TABLE[       t] =  (int)rate;
624 		TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
625 /*		LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
626 	}
627 	/* fill volume off area */
628 	for ( t = EG_ENT-1; t < TL_MAX ;t++){
629 		TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
630 	}
631 
632 	/* make sinwave table (total level offet) */
633 	/* degree 0 = degree 180                   = off */
634 	SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2]         = &TL_TABLE[EG_ENT-1];
635 	for (s = 1;s <= SIN_ENT/4;s++){
636 		pom = sin(2*PI*s/SIN_ENT); /* sin     */
637 		pom = 20*log10(1/pom);	   /* decibel */
638 		j = (int) (pom / EG_STEP);         /* TL_TABLE steps */
639 
640         /* degree 0   -  90    , degree 180 -  90 : plus section */
641 		SIN_TABLE[          s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
642         /* degree 180 - 270    , degree 360 - 270 : minus section */
643 		SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT  -s] = &TL_TABLE[TL_MAX+j];
644 /*		LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
645 	}
646 	for (s = 0;s < SIN_ENT;s++)
647 	{
648 		SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
649 		SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
650 		SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
651 	}
652 
653 	/* envelope counter -> envelope output table */
654 	for (i=0; i<EG_ENT; i++)
655 	{
656 		/* ATTACK curve */
657 		pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
658 		/* if( pom >= EG_ENT ) pom = EG_ENT-1; */
659 		ENV_CURVE[i] = (int)pom;
660 		/* DECAY ,RELEASE curve */
661 		ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
662 	}
663 	/* off */
664 	ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
665 	/* make LFO ams table */
666 	for (i=0; i<AMS_ENT; i++)
667 	{
668 		pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */
669 		AMS_TABLE[i]         = (INT32) ((1.0/EG_STEP)*pom); /* 1dB   */
670 		AMS_TABLE[AMS_ENT+i] = (INT32) ((4.8/EG_STEP)*pom); /* 4.8dB */
671 	}
672 	/* make LFO vibrate table */
673 	for (i=0; i<VIB_ENT; i++)
674 	{
675 		/* 100cent = 1seminote = 6% ?? */
676 		pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */
677 		VIB_TABLE[i]         = VIB_RATE + (INT32) (pom*0.07); /* +- 7cent */
678 		VIB_TABLE[VIB_ENT+i] = VIB_RATE + (INT32) (pom*0.14); /* +-14cent */
679 		/* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
680 	}
681 	return 1;
682 }
683 
684 
OPLCloseTable(void)685 static void OPLCloseTable( void )
686 {
687 	free(TL_TABLE);
688 	free(SIN_TABLE);
689 	free(AMS_TABLE);
690 	free(VIB_TABLE);
691 }
692 
693 /* CSM Key Controll */
CSMKeyControll(OPL_CH * CH)694 INLINE void CSMKeyControll(OPL_CH *CH)
695 {
696 	OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
697 	OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
698 	/* all key off */
699 	OPL_KEYOFF(slot1);
700 	OPL_KEYOFF(slot2);
701 	/* total level latch */
702 	slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
703 	slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
704 	/* key on */
705 	CH->op1_out[0] = CH->op1_out[1] = 0;
706 	OPL_KEYON(slot1);
707 	OPL_KEYON(slot2);
708 }
709 
710 /* ---------- opl initialize ---------- */
OPL_initalize(FM_OPL * OPL)711 static void OPL_initalize(FM_OPL *OPL)
712 {
713 	int fn;
714 
715 	/* frequency base */
716 	OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72  : 0;
717 	/* Timer base time */
718 	OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
719 	/* make time tables */
720 	init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
721 	/* make fnumber -> increment counter table */
722 	for( fn=0 ; fn < 1024 ; fn++ )
723 	{
724 		OPL->FN_TABLE[fn] = (UINT32) (OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2);
725 	}
726 	/* LFO freq.table */
727 	OPL->amsIncr = (INT32) (OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0);
728 	OPL->vibIncr = (INT32) (OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0);
729 }
730 
731 /* ---------- write a OPL registers ---------- */
OPLWriteReg(FM_OPL * OPL,int r,int v)732 static void OPLWriteReg(FM_OPL *OPL, int r, int v)
733 {
734 	OPL_CH *CH;
735 	int slot;
736 	unsigned int block_fnum;
737 
738 	switch(r&0xe0)
739 	{
740 	case 0x00: /* 00-1f:controll */
741 		switch(r&0x1f)
742 		{
743 		case 0x01:
744 			/* wave selector enable */
745 			if(OPL->type&OPL_TYPE_WAVESEL)
746 			{
747 				OPL->wavesel = v&0x20;
748 				if(!OPL->wavesel)
749 				{
750 					/* preset compatible mode */
751 					int c;
752 					for(c=0;c<OPL->max_ch;c++)
753 					{
754 						OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
755 						OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
756 					}
757 				}
758 			}
759 			return;
760 		case 0x02:	/* Timer 1 */
761 			OPL->T[0] = (256-v)*4;
762 			break;
763 		case 0x03:	/* Timer 2 */
764 			OPL->T[1] = (256-v)*16;
765 			return;
766 		case 0x04:	/* IRQ clear / mask and Timer enable */
767 			if(v&0x80)
768 			{	/* IRQ flag clear */
769 				OPL_STATUS_RESET(OPL,0x7f);
770 			}
771 			else
772 			{	/* set IRQ mask ,timer enable*/
773 				UINT8 st1 = v&1;
774 				UINT8 st2 = (v>>1)&1;
775 				/* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
776 				OPL_STATUS_RESET(OPL,v&0x78);
777 				OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
778 				/* timer 2 */
779 				if(OPL->st[1] != st2)
780 				{
781 					double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
782 					OPL->st[1] = st2;
783 					if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval);
784 				}
785 				/* timer 1 */
786 				if(OPL->st[0] != st1)
787 				{
788 					double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
789 					OPL->st[0] = st1;
790 					if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval);
791 				}
792 			}
793 			return;
794 #if BUILD_Y8950
795 		case 0x06:		/* Key Board OUT */
796 			if(OPL->type&OPL_TYPE_KEYBOARD)
797 			{
798 				if(OPL->keyboardhandler_w)
799 					OPL->keyboardhandler_w(OPL->keyboard_param,v);
800 				else
801 					LOG(LOG_WAR,("OPL:write unmapped KEYBOARD port\n"));
802 			}
803 			return;
804 		case 0x07:	/* DELTA-T controll : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */
805 			if(OPL->type&OPL_TYPE_ADPCM)
806 				YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
807 			return;
808 		case 0x08:	/* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */
809 			OPL->mode = v;
810 			v&=0x1f;	/* for DELTA-T unit */
811 		case 0x09:		/* START ADD */
812 		case 0x0a:
813 		case 0x0b:		/* STOP ADD  */
814 		case 0x0c:
815 		case 0x0d:		/* PRESCALE   */
816 		case 0x0e:
817 		case 0x0f:		/* ADPCM data */
818 		case 0x10: 		/* DELTA-N    */
819 		case 0x11: 		/* DELTA-N    */
820 		case 0x12: 		/* EG-CTRL    */
821 			if(OPL->type&OPL_TYPE_ADPCM)
822 				YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
823 			return;
824 #if 0
825 		case 0x15:		/* DAC data    */
826 		case 0x16:
827 		case 0x17:		/* SHIFT    */
828 			return;
829 		case 0x18:		/* I/O CTRL (Direction) */
830 			if(OPL->type&OPL_TYPE_IO)
831 				OPL->portDirection = v&0x0f;
832 			return;
833 		case 0x19:		/* I/O DATA */
834 			if(OPL->type&OPL_TYPE_IO)
835 			{
836 				OPL->portLatch = v;
837 				if(OPL->porthandler_w)
838 					OPL->porthandler_w(OPL->port_param,v&OPL->portDirection);
839 			}
840 			return;
841 		case 0x1a:		/* PCM data */
842 			return;
843 #endif
844 #endif
845 		}
846 		break;
847 	case 0x20:	/* am,vib,ksr,eg type,mul */
848 		slot = slot_array[r&0x1f];
849 		if(slot == -1) return;
850 		set_mul(OPL,slot,v);
851 		return;
852 	case 0x40:
853 		slot = slot_array[r&0x1f];
854 		if(slot == -1) return;
855 		set_ksl_tl(OPL,slot,v);
856 		return;
857 	case 0x60:
858 		slot = slot_array[r&0x1f];
859 		if(slot == -1) return;
860 		set_ar_dr(OPL,slot,v);
861 		return;
862 	case 0x80:
863 		slot = slot_array[r&0x1f];
864 		if(slot == -1) return;
865 		set_sl_rr(OPL,slot,v);
866 		return;
867 	case 0xa0:
868 		switch(r)
869 		{
870 		case 0xbd:
871 			/* amsep,vibdep,r,bd,sd,tom,tc,hh */
872 			{
873 			UINT8 rkey = OPL->rythm^v;
874 			OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
875 			OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
876 			OPL->rythm  = v&0x3f;
877 			if(OPL->rythm&0x20)
878 			{
879 #if 0
880 				usrintf_showmessage("OPL Rythm mode select");
881 #endif
882 				/* BD key on/off */
883 				if(rkey&0x10)
884 				{
885 					if(v&0x10)
886 					{
887 						OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
888 						OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
889 						OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
890 					}
891 					else
892 					{
893 						OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
894 						OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
895 					}
896 				}
897 				/* SD key on/off */
898 				if(rkey&0x08)
899 				{
900 					if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
901 					else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
902 				}/* TAM key on/off */
903 				if(rkey&0x04)
904 				{
905 					if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
906 					else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
907 				}
908 				/* TOP-CY key on/off */
909 				if(rkey&0x02)
910 				{
911 					if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
912 					else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
913 				}
914 				/* HH key on/off */
915 				if(rkey&0x01)
916 				{
917 					if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
918 					else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
919 				}
920 			}
921 			}
922 			return;
923 		}
924 		/* keyon,block,fnum */
925 		if( (r&0x0f) > 8) return;
926 		CH = &OPL->P_CH[r&0x0f];
927 		if(!(r&0x10))
928 		{	/* a0-a8 */
929 			block_fnum  = (CH->block_fnum&0x1f00) | v;
930 		}
931 		else
932 		{	/* b0-b8 */
933 			int keyon = (v>>5)&1;
934 			block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
935 			if(CH->keyon != keyon)
936 			{
937 				if( (CH->keyon=keyon) )
938 				{
939 					CH->op1_out[0] = CH->op1_out[1] = 0;
940 					OPL_KEYON(&CH->SLOT[SLOT1]);
941 					OPL_KEYON(&CH->SLOT[SLOT2]);
942 				}
943 				else
944 				{
945 					OPL_KEYOFF(&CH->SLOT[SLOT1]);
946 					OPL_KEYOFF(&CH->SLOT[SLOT2]);
947 				}
948 			}
949 		}
950 		/* update */
951 		if(CH->block_fnum != block_fnum)
952 		{
953 			int blockRv = 7-(block_fnum>>10);
954 			int fnum   = block_fnum&0x3ff;
955 			CH->block_fnum = block_fnum;
956 
957 			CH->ksl_base = KSL_TABLE[block_fnum>>6];
958 			CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
959 			CH->kcode = CH->block_fnum>>9;
960 			if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
961 			CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
962 			CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
963 		}
964 		return;
965 	case 0xc0:
966 		/* FB,C */
967 		if( (r&0x0f) > 8) return;
968 		CH = &OPL->P_CH[r&0x0f];
969 		{
970 		int feedback = (v>>1)&7;
971 		CH->FB   = feedback ? (8+1) - feedback : 0;
972 		CH->CON = v&1;
973 		set_algorythm(CH);
974 		}
975 		return;
976 	case 0xe0: /* wave type */
977 		slot = slot_array[r&0x1f];
978 		if(slot == -1) return;
979 		CH = &OPL->P_CH[slot/2];
980 		if(OPL->wavesel)
981 		{
982 			/* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
983 			CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
984 		}
985 		return;
986 	}
987 }
988 
989 /* lock/unlock for common table */
OPL_LockTable(void)990 static int OPL_LockTable(void)
991 {
992 	num_lock++;
993 	if(num_lock>1) return 0;
994 	/* first time */
995 	cur_chip = NULL;
996 	/* allocate total level table (128kb space) */
997 	if( !OPLOpenTable() )
998 	{
999 		num_lock--;
1000 		return -1;
1001 	}
1002 	return 0;
1003 }
1004 
OPL_UnLockTable(void)1005 static void OPL_UnLockTable(void)
1006 {
1007 	if(num_lock) num_lock--;
1008 	if(num_lock) return;
1009 	/* last time */
1010 	cur_chip = NULL;
1011 	OPLCloseTable();
1012 }
1013 
1014 #if (BUILD_YM3812 || BUILD_YM3526)
1015 /*******************************************************************************/
1016 /*		YM3812 local section                                                   */
1017 /*******************************************************************************/
1018 
1019 /* ---------- update one of chip ----------- */
YM3812UpdateOne(FM_OPL * OPL,INT16 * buffer,int length)1020 void YM3812UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1021 {
1022     int i;
1023 	int data;
1024 	FMSAMPLE *buf = buffer;
1025 	UINT32 amsCnt  = OPL->amsCnt;
1026 	UINT32 vibCnt  = OPL->vibCnt;
1027 	UINT8 rythm = OPL->rythm&0x20;
1028 	OPL_CH *CH,*R_CH;
1029 
1030 	if( (void *)OPL != cur_chip ){
1031 		cur_chip = (void *)OPL;
1032 		/* channel pointers */
1033 		S_CH = OPL->P_CH;
1034 		E_CH = &S_CH[9];
1035 		/* rythm slot */
1036 		SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1037 		SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1038 		SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1039 		SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1040 		/* LFO state */
1041 		amsIncr = OPL->amsIncr;
1042 		vibIncr = OPL->vibIncr;
1043 		ams_table = OPL->ams_table;
1044 		vib_table = OPL->vib_table;
1045 	}
1046 	R_CH = rythm ? &S_CH[6] : E_CH;
1047     for( i=0; i < length ; i++ )
1048 	{
1049 		/*            channel A         channel B         channel C      */
1050 		/* LFO */
1051 		ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1052 		vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1053 		outd[0] = 0;
1054 		/* FM part */
1055 		for(CH=S_CH ; CH < R_CH ; CH++)
1056 			OPL_CALC_CH(CH);
1057 		/* Rythn part */
1058 		if(rythm)
1059 			OPL_CALC_RH(S_CH);
1060 		/* limit check */
1061 		data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1062 		/* store to sound buffer */
1063 		buf[i] = data >> OPL_OUTSB;
1064 	}
1065 
1066 	OPL->amsCnt = amsCnt;
1067 	OPL->vibCnt = vibCnt;
1068 }
1069 #endif /* (BUILD_YM3812 || BUILD_YM3526) */
1070 
1071 #if BUILD_Y8950
1072 
Y8950UpdateOne(FM_OPL * OPL,INT16 * buffer,int length)1073 void Y8950UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1074 {
1075     int i;
1076 	int data;
1077 	FMSAMPLE *buf = buffer;
1078 	UINT32 amsCnt  = OPL->amsCnt;
1079 	UINT32 vibCnt  = OPL->vibCnt;
1080 	UINT8 rythm = OPL->rythm&0x20;
1081 	OPL_CH *CH,*R_CH;
1082 	YM_DELTAT *DELTAT = OPL->deltat;
1083 
1084 	/* setup DELTA-T unit */
1085 	YM_DELTAT_DECODE_PRESET(DELTAT);
1086 
1087 	if( (void *)OPL != cur_chip ){
1088 		cur_chip = (void *)OPL;
1089 		/* channel pointers */
1090 		S_CH = OPL->P_CH;
1091 		E_CH = &S_CH[9];
1092 		/* rythm slot */
1093 		SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1094 		SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1095 		SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1096 		SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1097 		/* LFO state */
1098 		amsIncr = OPL->amsIncr;
1099 		vibIncr = OPL->vibIncr;
1100 		ams_table = OPL->ams_table;
1101 		vib_table = OPL->vib_table;
1102 	}
1103 	R_CH = rythm ? &S_CH[6] : E_CH;
1104     for( i=0; i < length ; i++ )
1105 	{
1106 		/*            channel A         channel B         channel C      */
1107 		/* LFO */
1108 		ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1109 		vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1110 		outd[0] = 0;
1111 		/* deltaT ADPCM */
1112 		if( DELTAT->flag )
1113 			YM_DELTAT_ADPCM_CALC(DELTAT);
1114 		/* FM part */
1115 		for(CH=S_CH ; CH < R_CH ; CH++)
1116 			OPL_CALC_CH(CH);
1117 		/* Rythn part */
1118 		if(rythm)
1119 			OPL_CALC_RH(S_CH);
1120 		/* limit check */
1121 		data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1122 		/* store to sound buffer */
1123 		buf[i] = data >> OPL_OUTSB;
1124 	}
1125 	OPL->amsCnt = amsCnt;
1126 	OPL->vibCnt = vibCnt;
1127 	/* deltaT START flag */
1128 	if( !DELTAT->flag )
1129 		OPL->status &= 0xfe;
1130 }
1131 #endif
1132 
1133 /* ---------- reset one of chip ---------- */
OPLResetChip(FM_OPL * OPL)1134 void OPLResetChip(FM_OPL *OPL)
1135 {
1136 	int c,s;
1137 	int i;
1138 
1139 	/* reset chip */
1140 	OPL->mode   = 0;	/* normal mode */
1141 	OPL_STATUS_RESET(OPL,0x7f);
1142 	/* reset with register write */
1143 	OPLWriteReg(OPL,0x01,0); /* wabesel disable */
1144 	OPLWriteReg(OPL,0x02,0); /* Timer1 */
1145 	OPLWriteReg(OPL,0x03,0); /* Timer2 */
1146 	OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
1147 	for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
1148 	/* reset OPerator paramater */
1149 	for( c = 0 ; c < OPL->max_ch ; c++ )
1150 	{
1151 		OPL_CH *CH = &OPL->P_CH[c];
1152 		/* OPL->P_CH[c].PAN = OPN_CENTER; */
1153 		for(s = 0 ; s < 2 ; s++ )
1154 		{
1155 			/* wave table */
1156 			CH->SLOT[s].wavetable = &SIN_TABLE[0];
1157 			/* CH->SLOT[s].evm = ENV_MOD_RR; */
1158 			CH->SLOT[s].evc = EG_OFF;
1159 			CH->SLOT[s].eve = EG_OFF+1;
1160 			CH->SLOT[s].evs = 0;
1161 		}
1162 	}
1163 #if BUILD_Y8950
1164 	if(OPL->type&OPL_TYPE_ADPCM)
1165 	{
1166 		YM_DELTAT *DELTAT = OPL->deltat;
1167 
1168 		DELTAT->freqbase = OPL->freqbase;
1169 		DELTAT->output_pointer = outd;
1170 		DELTAT->portshift = 5;
1171 		DELTAT->output_range = DELTAT_MIXING_LEVEL<<TL_BITS;
1172 		YM_DELTAT_ADPCM_Reset(DELTAT,0);
1173 	}
1174 #endif
1175 }
1176 
1177 /* ----------  Create one of vietual YM3812 ----------       */
1178 /* 'rate'  is sampling rate and 'bufsiz' is the size of the  */
OPLCreate(int type,int clock,int rate)1179 FM_OPL *OPLCreate(int type, int clock, int rate)
1180 {
1181 	char *ptr;
1182 	FM_OPL *OPL;
1183 	int state_size;
1184 	int max_ch = 9; /* normaly 9 channels */
1185 
1186 	if( OPL_LockTable() ==-1) return NULL;
1187 	/* allocate OPL state space */
1188 	state_size  = sizeof(FM_OPL);
1189 	state_size += sizeof(OPL_CH)*max_ch;
1190 #if BUILD_Y8950
1191 	if(type&OPL_TYPE_ADPCM) state_size+= sizeof(YM_DELTAT);
1192 #endif
1193 	/* allocate memory block */
1194 	ptr = malloc(state_size);
1195 	if(ptr==NULL) return NULL;
1196 	/* clear */
1197 	memset(ptr,0,state_size);
1198 	OPL        = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
1199 	OPL->P_CH  = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
1200 #if BUILD_Y8950
1201 	if(type&OPL_TYPE_ADPCM) OPL->deltat = (YM_DELTAT *)ptr; ptr+=sizeof(YM_DELTAT);
1202 #endif
1203 	/* set channel state pointer */
1204 	OPL->type  = type;
1205 	OPL->clock = clock;
1206 	OPL->rate  = rate;
1207 	OPL->max_ch = max_ch;
1208 	/* init grobal tables */
1209 	OPL_initalize(OPL);
1210 	/* reset chip */
1211 	OPLResetChip(OPL);
1212 	return OPL;
1213 }
1214 
1215 /* ----------  Destroy one of vietual YM3812 ----------       */
OPLDestroy(FM_OPL * OPL)1216 void OPLDestroy(FM_OPL *OPL)
1217 {
1218 	OPL_UnLockTable();
1219 	free(OPL);
1220 }
1221 
1222 /* ----------  Option handlers ----------       */
1223 
OPLSetTimerHandler(FM_OPL * OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset)1224 void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset)
1225 {
1226 	OPL->TimerHandler   = TimerHandler;
1227 	OPL->TimerParam = channelOffset;
1228 }
OPLSetIRQHandler(FM_OPL * OPL,OPL_IRQHANDLER IRQHandler,int param)1229 void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param)
1230 {
1231 	OPL->IRQHandler     = IRQHandler;
1232 	OPL->IRQParam = param;
1233 }
OPLSetUpdateHandler(FM_OPL * OPL,OPL_UPDATEHANDLER UpdateHandler,int param)1234 void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param)
1235 {
1236 	OPL->UpdateHandler = UpdateHandler;
1237 	OPL->UpdateParam = param;
1238 }
1239 #if BUILD_Y8950
OPLSetPortHandler(FM_OPL * OPL,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param)1240 void OPLSetPortHandler(FM_OPL *OPL,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param)
1241 {
1242 	OPL->porthandler_w = PortHandler_w;
1243 	OPL->porthandler_r = PortHandler_r;
1244 	OPL->port_param = param;
1245 }
1246 
OPLSetKeyboardHandler(FM_OPL * OPL,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param)1247 void OPLSetKeyboardHandler(FM_OPL *OPL,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param)
1248 {
1249 	OPL->keyboardhandler_w = KeyboardHandler_w;
1250 	OPL->keyboardhandler_r = KeyboardHandler_r;
1251 	OPL->keyboard_param = param;
1252 }
1253 #endif
1254 /* ---------- YM3812 I/O interface ---------- */
OPLWrite(FM_OPL * OPL,int a,int v)1255 int OPLWrite(FM_OPL *OPL,int a,int v)
1256 {
1257 	if( !(a&1) )
1258 	{	/* address port */
1259 		OPL->address = v & 0xff;
1260 	}
1261 	else
1262 	{	/* data port */
1263 		if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1264 		OPLWriteReg(OPL,OPL->address,v);
1265 	}
1266 	return OPL->status>>7;
1267 }
1268 
OPLRead(FM_OPL * OPL,int a)1269 unsigned char OPLRead(FM_OPL *OPL,int a)
1270 {
1271 	if( !(a&1) )
1272 	{	/* status port */
1273 		return OPL->status & (OPL->statusmask|0x80);
1274 	}
1275 	/* data port */
1276 	switch(OPL->address)
1277 	{
1278 	case 0x05: /* KeyBoard IN */
1279 		if(OPL->type&OPL_TYPE_KEYBOARD)
1280 		{
1281 			if(OPL->keyboardhandler_r)
1282 				return OPL->keyboardhandler_r(OPL->keyboard_param);
1283 			else
1284 				LOG(LOG_WAR,("OPL:read unmapped KEYBOARD port\n"));
1285 		}
1286 		return 0;
1287 #if 0
1288 	case 0x0f: /* ADPCM-DATA  */
1289 		return 0;
1290 #endif
1291 	case 0x19: /* I/O DATA    */
1292 		if(OPL->type&OPL_TYPE_IO)
1293 		{
1294 			if(OPL->porthandler_r)
1295 				return OPL->porthandler_r(OPL->port_param);
1296 			else
1297 				LOG(LOG_WAR,("OPL:read unmapped I/O port\n"));
1298 		}
1299 		return 0;
1300 	case 0x1a: /* PCM-DATA    */
1301 		return 0;
1302 	}
1303 	return 0;
1304 }
1305 
OPLTimerOver(FM_OPL * OPL,int c)1306 int OPLTimerOver(FM_OPL *OPL,int c)
1307 {
1308 	if( c )
1309 	{	/* Timer B */
1310 		OPL_STATUS_SET(OPL,0x20);
1311 	}
1312 	else
1313 	{	/* Timer A */
1314 		OPL_STATUS_SET(OPL,0x40);
1315 		/* CSM mode key,TL controll */
1316 		if( OPL->mode & 0x80 )
1317 		{	/* CSM mode total level latch and auto key on */
1318 			int ch;
1319 			if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1320 			for(ch=0;ch<9;ch++)
1321 				CSMKeyControll( &OPL->P_CH[ch] );
1322 		}
1323 	}
1324 	/* reload timer */
1325 	if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase);
1326 	return OPL->status>>7;
1327 }
1328