1 /*
2  * This files includes a straightforward (to be) optimized JPEG encoder for
3  * the YUV422 format, based on mjpeg code from ffmpeg.
4  *
5  * For an excellent introduction to the JPEG format, see:
6  * http://www.ece.purdue.edu/~bouman/grad-labs/lab8/pdf/lab.pdf
7  *
8  * Copyright (C) 2005 Rik Snel <rsnel@cube.dyndns.org>
9  * - based on vd_lavc.c by A'rpi (C) 2002-2003
10  * - parts from ffmpeg Copyright (c) 2000-2003 Fabrice Bellard
11  *
12  * This file is part of MPlayer.
13  *
14  * MPlayer is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * MPlayer is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License along
25  * with MPlayer; if not, write to the Free Software Foundation, Inc.,
26  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
27  */
28 
29 /**
30  * \file
31  *
32  * \brief Does mjpeg encoding as required by the zrmjpeg filter as well
33  * as by the zr video driver.
34  */
35 
36 #include <stdio.h>
37 #include <stdlib.h>
38 #include <string.h>
39 #include <inttypes.h>
40 
41 #include "config.h"
42 #include "libavutil/avstring.h"
43 #include "av_helpers.h"
44 #include "mp_msg.h"
45 #include "img_format.h"
46 #include "mp_image.h"
47 #include "vf.h"
48 
49 /* We need this #define because we need ../libavcodec/common.h to #define
50  * be2me_32, otherwise the linker will complain that it doesn't exist */
51 #define HAVE_AV_CONFIG_H
52 #include "libavcodec/avcodec.h"
53 #include "libavcodec/mjpegenc.h"
54 
55 #undef malloc
56 #undef free
57 #undef av_strcasecmp
58 
59 /* some convenient #define's, is this portable enough? */
60 /// Printout  with vf_zrmjpeg: prefix at VERBOSE level
61 #define VERBOSE(...) mp_msg(MSGT_DECVIDEO, MSGL_V, "vf_zrmjpeg: " __VA_ARGS__)
62 /// Printout with vf_zrmjpeg: prefix at ERROR level
63 #define ERROR(...) mp_msg(MSGT_DECVIDEO, MSGL_ERR, "vf_zrmjpeg: " __VA_ARGS__)
64 /// Printout with vf_zrmjpeg: prefix at WARNING level
65 #define WARNING(...) mp_msg(MSGT_DECVIDEO, MSGL_WARN, \
66 		"vf_zrmjpeg: " __VA_ARGS__)
67 
68 /// The get_pixels() routine to use. The real routine comes from dsputil
69 static void (*get_pixels)(int16_t *restrict block, const uint8_t *pixels, int line_size);
70 
71 /* Begin excessive code duplication ************************************/
72 /* Code coming from mpegvideo.c and mjpeg.c in ../libavcodec ***********/
73 
74 /// copy of the table in mpegvideo.c
75 static const unsigned short aanscales[64] = {
76 	/**< precomputed values scaled up by 14 bits */
77 	16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
78 	22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
79 	21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
80 	19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
81 	16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
82 	12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
83 	8867,  12299, 11585, 10426,  8867,  6967,  4799,  2446,
84 	4520,   6270,  5906,  5315,  4520,  3552,  2446,  1247
85 };
86 
87 /// Precompute DCT quantizing matrix
88 /**
89  * This routine will precompute the combined DCT matrix with qscale
90  * and DCT renorm needed by the MPEG encoder here. It is basically the
91  * same as the routine with the same name in mpegvideo.c, except for
92  * some coefficient changes. The matrix will be computed in two variations,
93  * depending on the DCT version used. The second used by the MMX version of DCT.
94  *
95  * \param s MpegEncContext pointer
96  * \param qmat[OUT] pointer to where the matrix is stored
97  * \param qmat16[OUT] pointer to where matrix for MMX is stored.
98  *		  This matrix is not permutated
99  *                and second 64 entries are bias
100  * \param quant_matrix[IN] the quantizion matrix to use
101  * \param bias bias for the quantizer
102  * \param qmin minimum qscale value to set up for
103  * \param qmax maximum qscale value to set up for
104  *
105  * Only rows between qmin and qmax will be populated in the matrix.
106  * In this MJPEG encoder, only the value 8 for qscale is used.
107  */
convert_matrix(MpegEncContext * s,int (* qmat)[64],uint16_t (* qmat16)[2][64],const uint16_t * quant_matrix,int bias,int qmin,int qmax)108 static void convert_matrix(MpegEncContext *s, int (*qmat)[64],
109 		uint16_t (*qmat16)[2][64], const uint16_t *quant_matrix,
110 		int bias, int qmin, int qmax) {
111 	int qscale;
112 
113 	for(qscale = qmin; qscale <= qmax; qscale++) {
114 		int i;
115 		if (s->dsp.fdct == ff_jpeg_fdct_islow_8) {
116 			for (i = 0; i < 64; i++) {
117 				const int j = s->dsp.idct_permutation[i];
118 /* 16 <= qscale * quant_matrix[i] <= 7905
119  * 19952         <= aanscales[i] * qscale * quant_matrix[i]      <= 249205026
120  * (1<<36)/19952 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i])
121  *                                                       >= (1<<36)/249205026
122  * 3444240       >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i])  >= 275 */
123 				qmat[qscale][i] = (int)((UINT64_C(1) <<
124 					(QMAT_SHIFT-3))/
125 					(qscale*quant_matrix[j]));
126 			}
127 		} else if (s->dsp.fdct == ff_fdct_ifast) {
128 			for (i = 0; i < 64; i++) {
129 				const int j = s->dsp.idct_permutation[i];
130 /* 16 <= qscale * quant_matrix[i] <= 7905
131  * 19952         <= aanscales[i] * qscale * quant_matrix[i]      <= 249205026
132  * (1<<36)/19952 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i])
133  *                                                       >= (1<<36)/249205026
134  * 3444240       >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i])  >= 275 */
135 				qmat[qscale][i] = (int)((UINT64_C(1) <<
136 					(QMAT_SHIFT + 11))/(aanscales[i]
137 					*qscale * quant_matrix[j]));
138 			}
139 		} else {
140 			for (i = 0; i < 64; i++) {
141 				const int j = s->dsp.idct_permutation[i];
142 /* We can safely assume that 16 <= quant_matrix[i] <= 255
143  * So 16           <= qscale * quant_matrix[i]             <= 7905
144  * so (1<<19) / 16 >= (1<<19) / (qscale * quant_matrix[i]) >= (1<<19) / 7905
145  * so 32768        >= (1<<19) / (qscale * quant_matrix[i]) >= 67 */
146 				qmat[qscale][i] = (int)((UINT64_C(1) <<
147 						QMAT_SHIFT_MMX) / (qscale
148 							*quant_matrix[j]));
149 				qmat16[qscale][0][i] = (1 << QMAT_SHIFT_MMX)
150 						/(qscale * quant_matrix[j]);
151 
152 				if (qmat16[qscale][0][i] == 0 ||
153 						qmat16[qscale][0][i] == 128*256)
154 					qmat16[qscale][0][i]=128*256-1;
155 				qmat16[qscale][1][i]=ROUNDED_DIV(bias
156 						<<(16-QUANT_BIAS_SHIFT),
157 						qmat16[qscale][0][i]);
158 			}
159 		}
160 	}
161 }
162 
163 /// Emit the DC value into a MJPEG code sream
164 /**
165  * This routine is only intended to be used from encode_block
166  *
167  * \param s pointer to MpegEncContext structure
168  * \param val the DC value to emit
169  * \param huff_size pointer to huffman code size array
170  * \param huff_code pointer to the code array corresponding to \a huff_size
171  *
172  * This routine is a clone of mjpeg_encode_dc
173  */
encode_dc(MpegEncContext * s,int val,uint8_t * huff_size,uint16_t * huff_code)174 static inline void encode_dc(MpegEncContext *s, int val,
175 		uint8_t *huff_size, uint16_t *huff_code) {
176 	int mant, nbits;
177 
178 	if (val == 0) {
179 		put_bits(&s->pb, huff_size[0], huff_code[0]);
180 	} else {
181 		mant = val;
182 		if (val < 0) {
183 			val = -val;
184 			mant--;
185 		}
186 		nbits= av_log2_16bit(val) + 1;
187 		put_bits(&s->pb, huff_size[nbits], huff_code[nbits]);
188 		put_bits(&s->pb, nbits, mant & ((1 << nbits) - 1));
189 	}
190 }
191 
192 /// Huffman encode and emit one DCT block into the MJPEG code stream
193 /**
194  * \param s pointer to MpegEncContext structure
195  * \param block pointer to the DCT block to emit
196  * \param n
197  *
198  * This routine is a duplicate of encode_block in mjpeg.c
199  */
encode_block(MpegEncContext * s,int16_t * block,int n)200 static void encode_block(MpegEncContext *s, int16_t *block, int n) {
201 	int mant, nbits, code, i, j;
202 	int component, dc, run, last_index, val;
203 	MJpegContext *m = s->mjpeg_ctx;
204 	uint8_t *huff_size_ac;
205 	uint16_t *huff_code_ac;
206 
207 	/* DC coef */
208 	component = (n <= 3 ? 0 : n - 4 + 1);
209 	dc = block[0]; /* overflow is impossible */
210 	val = dc - s->last_dc[component];
211 	if (n < 4) {
212 		encode_dc(s, val, m->huff_size_dc_luminance,
213 				m->huff_code_dc_luminance);
214 		huff_size_ac = m->huff_size_ac_luminance;
215 		huff_code_ac = m->huff_code_ac_luminance;
216 	} else {
217 		encode_dc(s, val, m->huff_size_dc_chrominance,
218 				m->huff_code_dc_chrominance);
219 		huff_size_ac = m->huff_size_ac_chrominance;
220 		huff_code_ac = m->huff_code_ac_chrominance;
221 	}
222 	s->last_dc[component] = dc;
223 
224 	/* AC coefs */
225 
226 	run = 0;
227 	last_index = s->block_last_index[n];
228 	for (i = 1; i <= last_index; i++) {
229 		j = s->intra_scantable.permutated[i];
230 		val = block[j];
231 		if (val == 0) run++;
232 		else {
233 			while (run >= 16) {
234 				put_bits(&s->pb, huff_size_ac[0xf0],
235 						huff_code_ac[0xf0]);
236 				run -= 16;
237 			}
238 			mant = val;
239 			if (val < 0) {
240 				val = -val;
241 				mant--;
242 			}
243 
244 			nbits= av_log2_16bit(val) + 1;
245 			code = (run << 4) | nbits;
246 
247 			put_bits(&s->pb, huff_size_ac[code],
248 					huff_code_ac[code]);
249 			put_bits(&s->pb, nbits, mant & ((1 << nbits) - 1));
250 			run = 0;
251 		}
252 	}
253 
254 	/* output EOB only if not already 64 values */
255 	if (last_index < 63 || run != 0)
256 		put_bits(&s->pb, huff_size_ac[0], huff_code_ac[0]);
257 }
258 
259 /// clip overflowing DCT coefficients
260 /**
261  * If the computed DCT coefficients in a block overflow, this routine
262  * will go through them and clip them to be in the valid range.
263  *
264  * \param s pointer to MpegEncContext
265  * \param block pointer to DCT block to process
266  * \param last_index index of the last non-zero coefficient in block
267  *
268  * The max and min level, which are clipped to, are stored in
269  * s->min_qcoeff and s->max_qcoeff respectively.
270  */
clip_coeffs(MpegEncContext * s,int16_t * block,int last_index)271 static inline void clip_coeffs(MpegEncContext *s, int16_t *block,
272 		int last_index) {
273 	int i;
274 	const int maxlevel= s->max_qcoeff;
275 	const int minlevel= s->min_qcoeff;
276 
277 	for (i = 0; i <= last_index; i++) {
278 		const int j = s->intra_scantable.permutated[i];
279 		int level = block[j];
280 
281 		if (level > maxlevel) level=maxlevel;
282 		else if(level < minlevel) level=minlevel;
283 		block[j]= level;
284 	}
285 }
286 
287 /* End excessive code duplication **************************************/
288 
289 typedef struct {
290 	struct MpegEncContext *s;
291 	int cheap_upsample;
292 	int bw;
293 	int y_rs;
294 	int u_rs;
295 	int v_rs;
296 } jpeg_enc_t;
297 
298 // Huffman encode and emit one MCU of MJPEG code
299 /**
300  * \param j pointer to jpeg_enc_t structure
301  *
302  * This function huffman encodes one MCU, and emits the
303  * resulting bitstream into the MJPEG code that is currently worked on.
304  *
305  * this function is a reproduction of the one in mjpeg, it includes two
306  * changes, it allows for black&white encoding (it skips the U and V
307  * macroblocks and it outputs the huffman code for 'no change' (dc) and
308  * 'all zero' (ac)) and it takes 4 macroblocks (422) instead of 6 (420)
309  */
zr_mjpeg_encode_mb(jpeg_enc_t * j)310 static av_always_inline void zr_mjpeg_encode_mb(jpeg_enc_t *j) {
311 
312 	MJpegContext *m = j->s->mjpeg_ctx;
313 
314 	encode_block(j->s, j->s->block[0], 0);
315 	encode_block(j->s, j->s->block[1], 1);
316 	if (j->bw) {
317 		/* U */
318 		put_bits(&j->s->pb, m->huff_size_dc_chrominance[0],
319 				m->huff_code_dc_chrominance[0]);
320 		put_bits(&j->s->pb, m->huff_size_ac_chrominance[0],
321 				m->huff_code_ac_chrominance[0]);
322 		/* V */
323 		put_bits(&j->s->pb, m->huff_size_dc_chrominance[0],
324 				m->huff_code_dc_chrominance[0]);
325 		put_bits(&j->s->pb, m->huff_size_ac_chrominance[0],
326 				m->huff_code_ac_chrominance[0]);
327 	} else {
328 		/* we trick encode_block here so that it uses
329 		 * chrominance huffman tables instead of luminance ones
330 		 * (see the effect of second argument of encode_block) */
331 		encode_block(j->s, j->s->block[2], 4);
332 		encode_block(j->s, j->s->block[3], 5);
333 	}
334 }
335 
336 /// Fill one DCT MCU from planar storage
337 /**
338  * This routine will convert one MCU from YUYV planar storage into 4
339  * DCT macro blocks, converting from 8-bit format in the planar
340  * storage to 16-bit format used in the DCT.
341  *
342  * \param j pointer to jpeg_enc structure, and also storage for DCT macro blocks
343  * \param x pixel x-coordinate for the first pixel
344  * \param y pixel y-coordinate for the first pixel
345  * \param y_data pointer to the Y plane
346  * \param u_data pointer to the U plane
347  * \param v_data pointer to the V plane
348  */
fill_block(jpeg_enc_t * j,int x,int y,unsigned char * y_data,unsigned char * u_data,unsigned char * v_data)349 static av_always_inline void fill_block(jpeg_enc_t *j, int x, int y,
350 		unsigned char *y_data, unsigned char *u_data,
351 		unsigned char *v_data)
352 {
353 	int i, k;
354 	short int *dest;
355 	unsigned char *source;
356 
357 	// The first Y, Y0
358 	get_pixels(j->s->block[0], y*8*j->y_rs + 16*x + y_data, j->y_rs);
359 	// The second Y, Y1
360 	get_pixels(j->s->block[1], y*8*j->y_rs + 16*x + 8 + y_data, j->y_rs);
361 
362 	if (!j->bw && j->cheap_upsample) {
363 		source = y * 4 * j->u_rs + 8*x + u_data;
364 		dest = j->s->block[2];
365 		for (i = 0; i < 4; i++) {
366 			for (k = 0; k < 8; k++) {
367 				dest[k] = source[k];   // First row
368 				dest[k+8] = source[k]; // Duplicate to next row
369 
370 			}
371 			dest += 16;
372 			source += j->u_rs;
373 		}
374 		source = y * 4 * j->v_rs + 8*x + v_data;
375 		dest = j->s->block[3];
376 		for (i = 0; i < 4; i++) {
377 			for (k = 0; k < 8; k++) {
378 				dest[k] = source[k];
379 				dest[k+8] = source[k];
380 			}
381 			dest += 16;
382 			source += j->u_rs;
383 		}
384 	} else if (!j->bw && !j->cheap_upsample) {
385 		// U
386 		get_pixels(j->s->block[2], y*8*j->u_rs + 8*x + u_data, j->u_rs);
387 		// V
388 		get_pixels(j->s->block[3], y*8*j->v_rs + 8*x + v_data, j->v_rs);
389 	}
390 }
391 
392 /**
393  * \brief initialize mjpeg encoder
394  *
395  * This routine is to set up the parameters and initialize the mjpeg encoder.
396  * It does all the initializations needed of lower level routines.
397  * The formats accepted by this encoder is YUV422P and YUV420
398  *
399  * \param w width in pixels of the image to encode, must be a multiple of 16
400  * \param h height in pixels of the image to encode, must be a multiple of 8
401  * \param y_rsize size of each plane row Y component
402  * \param y_rsize size of each plane row U component
403  * \param v_rsize size of each plane row V component
404  * \param cu "cheap upsample". Set to 0 for YUV422 format, 1 for YUV420 format
405  *           when set to 1, the encoder will assume that there is only half th
406  *           number of rows of chroma information, and every chroma row is
407  *           duplicated.
408  * \param q quality parameter for the mjpeg encode. Between 1 and 20 where 1
409  *	    is best quality and 20 is the worst quality.
410  * \param b monochrome flag. When set to 1, the mjpeg output is monochrome.
411  *          In that case, the colour information is omitted, and actually the
412  *          colour planes are not touched.
413  *
414  * \returns an appropriately set up jpeg_enc_t structure
415  *
416  * The actual plane buffer addreses are passed by jpeg_enc_frame().
417  *
418  * The encoder doesn't know anything about interlacing, the halve height
419  * needs to be passed and the double rowstride. Which field gets encoded
420  * is decided by what buffers are passed to mjpeg_encode_frame()
421  */
jpeg_enc_init(int w,int h,int y_rsize,int u_rsize,int v_rsize,int cu,int q,int b)422 static jpeg_enc_t *jpeg_enc_init(int w, int h, int y_rsize,
423 			  int u_rsize, int v_rsize,
424 		int cu, int q, int b) {
425 	jpeg_enc_t *j;
426 	int i = 0;
427 	VERBOSE("JPEG encoder init: %dx%d %d %d %d cu=%d q=%d bw=%d\n",
428 			w, h, y_rsize, u_rsize, v_rsize, cu, q, b);
429 
430 	j = av_mallocz(sizeof(jpeg_enc_t));
431 	if (j == NULL) return NULL;
432 
433 	j->s = av_mallocz(sizeof(MpegEncContext));
434 	if (j->s == NULL) {
435 		av_free(j);
436 		return NULL;
437 	}
438 
439 	/* info on how to access the pixels */
440 	j->y_rs = y_rsize;
441 	j->u_rs = u_rsize;
442 	j->v_rs = v_rsize;
443 
444 	j->s->width = w;		// image width and height
445 	j->s->height = h;
446 	j->s->qscale = q;		// Encoding quality
447 
448 	j->s->out_format = FMT_MJPEG;
449 	j->s->intra_only = 1;		// Generate only intra pictures for jpeg
450 	j->s->encoding = 1;		// Set mode to encode
451 	j->s->pict_type = AV_PICTURE_TYPE_I;
452 	j->s->y_dc_scale = 8;
453 	j->s->c_dc_scale = 8;
454 
455 	/*
456 	 * This sets up the MCU (Minimal Code Unit) number
457 	 * of appearances of the various component
458 	 * for the SOF0 table in the generated MJPEG.
459 	 * The values are not used for anything else.
460 	 * The current setup is simply YUV422, with two horizontal Y components
461 	 * for every UV component.
462 	 */
463 	//FIXME j->s->mjpeg_write_tables = 1;	// setup to write tables
464 	j->s->mjpeg_vsample[0] = 1;	// 1 appearance of Y vertically
465 	j->s->mjpeg_vsample[1] = 1;	// 1 appearance of U vertically
466 	j->s->mjpeg_vsample[2] = 1;	// 1 appearance of V vertically
467 	j->s->mjpeg_hsample[0] = 2;	// 2 appearances of Y horizontally
468 	j->s->mjpeg_hsample[1] = 1;	// 1 appearance of U horizontally
469 	j->s->mjpeg_hsample[2] = 1;	// 1 appearance of V horizontally
470 
471 	j->cheap_upsample = cu;
472 	j->bw = b;
473 
474 	init_avcodec();
475 
476 	// Build mjpeg huffman code tables, setting up j->s->mjpeg_ctx
477 	if (ff_mjpeg_encode_init(j->s) < 0) {
478 		av_free(j->s);
479 		av_free(j);
480 		return NULL;
481 	}
482 
483 	/* alloc bogus avctx to keep MPV_common_init from segfaulting */
484 	j->s->avctx = avcodec_alloc_context();
485 	if (j->s->avctx == NULL) {
486 		av_free(j->s);
487 		av_free(j);
488 		return NULL;
489 	}
490 
491 	// Set some a minimum amount of default values that are needed
492 	// Indicates that we should generated normal MJPEG
493 	j->s->avctx->codec_id = AV_CODEC_ID_MJPEG;
494 	// Which DCT method to use. AUTO will select the fastest one
495 	j->s->avctx->dct_algo = FF_DCT_AUTO;
496 	j->s->intra_quant_bias= 1<<(QUANT_BIAS_SHIFT-1); //(a + x/2)/x
497 	// indicate we 'decode' to jpeg 4:2:2
498 	j->s->avctx->pix_fmt = AV_PIX_FMT_YUVJ422P;
499 
500 	j->s->avctx->thread_count = 1;
501 
502 	/* make MPV_common_init allocate important buffers, like s->block
503 	 * Also initializes dsputil */
504 	if (ff_MPV_common_init(j->s) < 0) {
505 		av_free(j->s);
506 		av_free(j);
507 		return NULL;
508 	}
509 
510 	/* correct the value for sc->mb_height. MPV_common_init put other
511 	 * values there */
512 	j->s->mb_height = j->s->height/8;
513 	j->s->mb_intra = 1;
514 
515 	// Init q matrix
516 	j->s->intra_matrix[0] = ff_mpeg1_default_intra_matrix[0];
517 	for (i = 1; i < 64; i++)
518 		j->s->intra_matrix[i] = av_clip_uint8(
519 			(ff_mpeg1_default_intra_matrix[i]*j->s->qscale) >> 3);
520 
521 	// precompute matrix
522 	convert_matrix(j->s, j->s->q_intra_matrix, j->s->q_intra_matrix16,
523 			j->s->intra_matrix, j->s->intra_quant_bias, 8, 8);
524 
525 	/* Pick up the selection of the optimal get_pixels() routine
526 	 * to use, which was done in  MPV_common_init() */
527 	get_pixels = j->s->dsp.get_pixels;
528 
529 	return j;
530 }
531 
532 /**
533  * \brief mjpeg encode an image
534  *
535  * This routine will take a 3-plane YUV422 image and encoded it with MJPEG
536  * base line format, as suitable as input for the Zoran hardare MJPEG chips.
537  *
538  * It requires that the \a j parameter points the structure set up by the
539  * jpeg_enc_init() routine.
540  *
541  * \param j pointer to jpeg_enc_t structure as created by jpeg_enc_init()
542  * \param y_data pointer to Y component plane, packed one byte/pixel
543  * \param u_data pointer to U component plane, packed one byte per every
544  *		 other pixel
545  * \param v_data pointer to V component plane, packed one byte per every
546  *		 other pixel
547  * \param bufr pointer to the buffer where the mjpeg encoded code is stored
548  *
549  * \returns the number of bytes stored into \a bufr
550  *
551  * If \a j->s->mjpeg_write_tables is set, it will also emit the mjpeg tables,
552  * otherwise it will just emit the data. The \a j->s->mjpeg_write_tables
553  * variable will be reset to 0 by the routine.
554  */
jpeg_enc_frame(jpeg_enc_t * j,uint8_t * y_data,uint8_t * u_data,uint8_t * v_data,uint8_t * bufr)555 static int jpeg_enc_frame(jpeg_enc_t *j, uint8_t *y_data,
556 		   uint8_t *u_data, uint8_t *v_data, uint8_t *bufr) {
557 	int mb_x, mb_y, overflow;
558 	/* initialize the buffer */
559 
560 	init_put_bits(&j->s->pb, bufr, 1024*256);
561 
562 	// Emit the mjpeg header blocks
563 	ff_mjpeg_encode_picture_header(j->s);
564 
565 	j->s->header_bits = put_bits_count(&j->s->pb);
566 
567 	j->s->last_dc[0] = 128;
568 	j->s->last_dc[1] = 128;
569 	j->s->last_dc[2] = 128;
570 
571 	for (mb_y = 0; mb_y < j->s->mb_height; mb_y++) {
572 		for (mb_x = 0; mb_x < j->s->mb_width; mb_x++) {
573 			/*
574 			 * Fill one DCT block (8x8 pixels) from
575 			 * 2 Y macroblocks and one U and one V
576 			 */
577 			fill_block(j, mb_x, mb_y, y_data, u_data, v_data);
578 			emms_c(); /* is this really needed? */
579 
580 			j->s->block_last_index[0] =
581 				j->s->dct_quantize(j->s, j->s->block[0],
582 						0, 8, &overflow);
583 			if (overflow) clip_coeffs(j->s, j->s->block[0],
584 					j->s->block_last_index[0]);
585 			j->s->block_last_index[1] =
586 				j->s->dct_quantize(j->s, j->s->block[1],
587 						1, 8, &overflow);
588 			if (overflow) clip_coeffs(j->s, j->s->block[1],
589 					j->s->block_last_index[1]);
590 
591 			if (!j->bw) {
592 				j->s->block_last_index[4] =
593 					j->s->dct_quantize(j->s, j->s->block[2],
594 							4, 8, &overflow);
595 				if (overflow) clip_coeffs(j->s, j->s->block[2],
596 						j->s->block_last_index[2]);
597 				j->s->block_last_index[5] =
598 					j->s->dct_quantize(j->s, j->s->block[3],
599 							5, 8, &overflow);
600 				if (overflow) clip_coeffs(j->s, j->s->block[3],
601 						j->s->block_last_index[3]);
602 			}
603 			zr_mjpeg_encode_mb(j);
604 		}
605 	}
606 	emms_c();
607 	ff_mjpeg_encode_picture_trailer(j->s);
608 	flush_put_bits(&j->s->pb);
609 
610 	//FIXME
611 	//if (j->s->mjpeg_write_tables == 1)
612 	//	j->s->mjpeg_write_tables = 0;
613 
614 	return put_bits_ptr(&(j->s->pb)) - j->s->pb.buf;
615 }
616 
617 /// the real uninit routine
618 /**
619  * This is the real routine that does the uninit of the ZRMJPEG filter
620  *
621  * \param j pointer to jpeg_enc structure
622  */
jpeg_enc_uninit(jpeg_enc_t * j)623 static void jpeg_enc_uninit(jpeg_enc_t *j) {
624 	ff_mjpeg_encode_close(j->s);
625 	av_free(j->s);
626 	av_free(j);
627 }
628 
629 /// Private structure for ZRMJPEG filter
630 struct vf_priv_s {
631 	jpeg_enc_t *j;
632 	unsigned char buf[256*1024];
633 	int bw, fd, hdec, vdec;
634 	int fields;
635 	int y_stride;
636 	int c_stride;
637 	int quality;
638 	int maxwidth;
639 	int maxheight;
640 };
641 
642 /// vf CONFIGURE entry point for the ZRMJPEG filter
643 /**
644  * \param vf video filter instance pointer
645  * \param width image source width in pixels
646  * \param height image source height in pixels
647  * \param d_width width of requested window, just a hint
648  * \param d_height height of requested window, just a hint
649  * \param flags vf filter flags
650  * \param outfmt
651  *
652  * \returns returns 0 on error
653  *
654  * This routine will make the necessary hardware-related decisions for
655  * the ZRMJPEG filter, do the initialization of the MJPEG encoder, and
656  * then select one of the ZRJMJPEGIT or ZRMJPEGNI filters and then
657  * arrange to dispatch to the config() entry pointer for the one
658  * selected.
659  */
config(struct vf_instance * vf,int width,int height,int d_width,int d_height,unsigned int flags,unsigned int outfmt)660 static int config(struct vf_instance *vf, int width, int height, int d_width,
661 		int d_height, unsigned int flags, unsigned int outfmt){
662 	struct vf_priv_s *priv = vf->priv;
663 	float aspect_decision;
664 	int stretchx, stretchy, err = 0, maxstretchx = 4;
665 	priv->fields = 1;
666 
667 	VERBOSE("config() called\n");
668 
669 	if (priv->j) {
670 		VERBOSE("re-configuring, resetting JPEG encoder\n");
671 		jpeg_enc_uninit(priv->j);
672 		priv->j = NULL;
673 	}
674 
675 	aspect_decision = ((float)d_width/(float)d_height)/
676 		((float)width/(float)height);
677 
678 	if (aspect_decision > 1.8 && aspect_decision < 2.2) {
679 		VERBOSE("should correct aspect by stretching x times 2, %d %d\n", 2*width, priv->maxwidth);
680 		if (2*width <= priv->maxwidth) {
681 			d_width = 2*width;
682 			d_height = height;
683 			maxstretchx = 2;
684 		} else {
685 			WARNING("unable to correct aspect by stretching, because resulting X will be too large, aspect correction by decimating y not yet implemented\n");
686 			d_width = width;
687 			d_height = height;
688 		}
689 		/* prestretch movie */
690 	} else {
691 		/* uncorrecting output for now */
692 		d_width = width;
693 		d_height = height;
694 	}
695 	/* make the scaling decision
696 	 * we are capable of stretching the image in the horizontal
697 	 * direction by factors 1, 2 and 4
698 	 * we can stretch the image in the vertical direction by a
699 	 * factor of 1 and 2 AND we must decide about interlacing */
700 	if (d_width > priv->maxwidth/2 || height > priv->maxheight/2
701 			|| maxstretchx == 1) {
702 		stretchx = 1;
703 		stretchy = 1;
704 		priv->fields = 2;
705 		if (priv->vdec == 2) {
706 			priv->fields = 1;
707 		} else if (priv->vdec == 4) {
708 			priv->fields = 1;
709 			stretchy = 2;
710 		}
711 		if (priv->hdec > maxstretchx) {
712 			if (priv->fd) {
713 				WARNING("horizontal decimation too high, "
714 						"changing to %d (use fd to keep"
715 						" hdec=%d)\n",
716 						maxstretchx, priv->hdec);
717 				priv->hdec = maxstretchx;
718 			}
719 		}
720 		stretchx = priv->hdec;
721 	} else if (d_width > priv->maxwidth/4 ||
722 			height > priv->maxheight/4 ||
723 			maxstretchx == 2) {
724 		stretchx = 2;
725 		stretchy = 1;
726 		priv->fields = 1;
727 		if (priv->vdec == 2) {
728 			stretchy = 2;
729 		} else if (priv->vdec == 4) {
730 			if (!priv->fd) {
731 				WARNING("vertical decimation too high, "
732 						"changing to 2 (use fd to keep "
733 						"vdec=4)\n");
734 				priv->vdec = 2;
735 			}
736 			stretchy = 2;
737 		}
738 		if (priv->hdec == 2) {
739 			stretchx = 4;
740 		} else if (priv->hdec == 4) {
741 			if (priv->fd) {
742 				WARNING("horizontal decimation too high, "
743 						"changing to 2 (use fd to keep "
744 						"hdec=4)\n");
745 				priv->hdec = 2;
746 			}
747 			stretchx = 4;
748 		}
749 	} else {
750 		/* output image is maximally stretched */
751 		stretchx = 4;
752 		stretchy = 2;
753 		priv->fields = 1;
754 		if (priv->vdec != 1 && !priv->fd) {
755 			WARNING("vertical decimation too high, changing to 1 "
756 					"(use fd to keep vdec=%d)\n",
757 					priv->vdec);
758 			priv->vdec = 1;
759 		}
760 		if (priv->hdec != 1 && !priv->fd) {
761 			WARNING("horizontal decimation too high, changing to 1 (use fd to keep hdec=%d)\n", priv->hdec);
762 			priv->hdec = 1;
763 		}
764 	}
765 
766 	VERBOSE("generated JPEG's %dx%s%d%s, stretched to %dx%d\n",
767 			width/priv->hdec, (priv->fields == 2) ? "(" : "",
768 			height/(priv->vdec*priv->fields),
769 			(priv->fields == 2) ? "x2)" : "",
770 			(width/priv->hdec)*stretchx,
771 			(height/(priv->vdec*priv->fields))*
772 			stretchy*priv->fields);
773 
774 
775 	if ((width/priv->hdec)*stretchx > priv->maxwidth ||
776 			(height/(priv->vdec*priv->fields))*
777 			 stretchy*priv->fields  > priv->maxheight) {
778 		ERROR("output dimensions too large (%dx%d), max (%dx%d) "
779 				"insert crop to fix\n",
780 				(width/priv->hdec)*stretchx,
781 				(height/(priv->vdec*priv->fields))*
782 				stretchy*priv->fields,
783 				priv->maxwidth, priv->maxheight);
784 		err = 1;
785 	}
786 
787 	if (width%(16*priv->hdec) != 0) {
788 		ERROR("width must be a multiple of 16*hdec (%d), use expand\n",
789 				priv->hdec*16);
790 		err = 1;
791 	}
792 
793 	if (height%(8*priv->fields*priv->vdec) != 0) {
794 		ERROR("height must be a multiple of 8*fields*vdec (%d),"
795 				" use expand\n", priv->vdec*priv->fields*8);
796 		err = 1;
797 	}
798 
799 	if (err) return 0;
800 
801 	priv->y_stride = width;
802 	priv->c_stride = width/2;
803 	priv->j = jpeg_enc_init(width, height/priv->fields,
804 				priv->fields*priv->y_stride,
805 				priv->fields*priv->c_stride,
806 				priv->fields*priv->c_stride,
807 				1, priv->quality, priv->bw);
808 
809 	if (!priv->j) return 0;
810 	return vf_next_config(vf, width, height, d_width, d_height, flags,
811 		(priv->fields == 2) ? IMGFMT_ZRMJPEGIT : IMGFMT_ZRMJPEGNI);
812 }
813 
814 /// put_image entrypoint for the ZRMJPEG vf filter
815 /***
816  * \param vf pointer to vf_instance
817  * \param mpi pointer to mp_image_t structure
818  * \param pts
819  */
put_image(struct vf_instance * vf,mp_image_t * mpi,double pts,double endpts)820 static int put_image(struct vf_instance *vf, mp_image_t *mpi, double pts, double endpts){
821 	struct vf_priv_s *priv = vf->priv;
822 	int size = 0;
823 	int i;
824 	mp_image_t* dmpi;
825 	for (i = 0; i < priv->fields; i++)
826 		size += jpeg_enc_frame(priv->j,
827 				mpi->planes[0] + i*priv->y_stride,
828 				mpi->planes[1] + i*priv->c_stride,
829 				mpi->planes[2] + i*priv->c_stride,
830 				priv->buf + size);
831 
832 	dmpi = vf_get_image(vf->next, IMGFMT_ZRMJPEGNI,
833 			MP_IMGTYPE_EXPORT, 0, mpi->w, mpi->h);
834 	dmpi->planes[0] = (uint8_t*)priv->buf;
835 	dmpi->planes[1] = (uint8_t*)size;
836 	return vf_next_put_image(vf, dmpi, pts, endpts);
837 }
838 
839 /// query_format entrypoint for the ZRMJPEG vf filter
840 /***
841  * \param vf pointer to vf_instance
842  * \param fmt image format to query for
843  *
844  * \returns 0 if image format in fmt is not supported
845  *
846  * Given the image format specified by \a fmt, this routine is called
847  * to ask if the format is supported or not.
848  */
query_format(struct vf_instance * vf,unsigned int fmt)849 static int query_format(struct vf_instance *vf, unsigned int fmt){
850 	VERBOSE("query_format() called\n");
851 
852 	switch (fmt) {
853 		case IMGFMT_YV12:
854 		case IMGFMT_YUY2:
855 			/* strictly speaking the output format of
856 			 * this filter will be known after config(),
857 			 * but everything that supports IMGFMT_ZRMJPEGNI
858 			 * should also support all other IMGFMT_ZRMJPEG* */
859 			return vf_next_query_format(vf, IMGFMT_ZRMJPEGNI);
860 	}
861 
862 	return 0;
863 }
864 
865 /// vf UNINIT entry point for the ZRMJPEG filter
866 /**
867  * \param vf pointer to the vf instance structure
868  */
uninit(vf_instance_t * vf)869 static void uninit(vf_instance_t *vf) {
870 	struct vf_priv_s *priv = vf->priv;
871 	VERBOSE("uninit() called\n");
872 	if (priv->j) jpeg_enc_uninit(priv->j);
873 	free(priv);
874 }
875 
876 /// vf OPEN entry point for the ZRMJPEG filter
877 /**
878  * \param vf pointer to the vf instance structure
879  * \param args the argument list string for the -vf zrmjpeg command
880  *
881  * \returns 0 for error, 1 for success
882  *
883  * This routine will do some basic initialization of local structures etc.,
884  * and then parse the command line arguments specific for the ZRMJPEG filter.
885  */
vf_open(vf_instance_t * vf,char * args)886 static int vf_open(vf_instance_t *vf, char *args){
887 	struct vf_priv_s *priv;
888 	VERBOSE("vf_open() called: args=\"%s\"\n", args);
889 
890 	vf->config = config;
891 	vf->put_image = put_image;
892 	vf->query_format = query_format;
893 	vf->uninit = uninit;
894 
895 	priv = vf->priv = calloc(sizeof(*priv), 1);
896 	if (!vf->priv) {
897 		ERROR("out of memory error\n");
898 		return 0;
899 	}
900 
901 	/* maximum displayable size by zoran card, these defaults
902 	 * are for my own zoran card in PAL mode, these can be changed
903 	 * by filter options. But... in an ideal world these values would
904 	 * be queried from the vo device itself... */
905 	priv->maxwidth = 768;
906 	priv->maxheight = 576;
907 
908 	priv->quality = 2;
909 	priv->hdec = 1;
910 	priv->vdec = 1;
911 
912 	init_avcodec();
913 
914 	if (args) {
915 		char *arg, *tmp, *ptr, junk;
916 		int last = 0, input;
917 
918 		/* save arguments, to be able to safely modify them */
919 		arg = strdup(args);
920 		if (!arg) {
921 			ERROR("out of memory, this is bad\n");
922 			return 0;
923 		}
924 
925 		tmp = ptr = arg;
926 		do {
927 			while (*tmp != ':' && *tmp) tmp++;
928 			if (*tmp == ':') *tmp++ = '\0';
929 			else last = 1;
930 			VERBOSE("processing filter option \"%s\"\n", ptr);
931 			/* These options deal with the maximum output
932 			 * resolution of the zoran card. These should
933 			 * be queried from the vo device, but it is currently
934 			 * too difficult, so the user should tell the filter */
935 			if (!strncmp("maxheight=", ptr, 10)) {
936 				if (sscanf(ptr+10, "%d%c", &input, &junk) != 1)
937 						ERROR(
938 		"error parsing parameter to \"maxheight=\", \"%s\", ignoring\n"
939 								, ptr + 10);
940 				else {
941 					priv->maxheight = input;
942 					VERBOSE("setting maxheight to %d\n",
943 							priv->maxheight);
944 				}
945 			} else if (!strncmp("quality=", ptr, 8)) {
946 				if (sscanf(ptr+8, "%d%c", &input, &junk) != 1)
947 					ERROR(
948 		"error parsing parameter to \"quality=\", \"%s\", ignoring\n"
949 								, ptr + 8);
950 				else if (input < 1 || input > 20)
951 					ERROR(
952 		"parameter to \"quality=\" out of range (1..20), %d\n", input);
953 				else {
954 					priv->quality = input;
955 					VERBOSE("setting JPEG quality to %d\n",
956 							priv->quality);
957 				}
958 			} else if (!strncmp("maxwidth=", ptr, 9)) {
959 				if (sscanf(ptr+9, "%d%c", &input, &junk) != 1)
960 					ERROR(
961 		"error parsing parameter to \"maxwidth=\", \"%s\", ignoring\n"
962 								, ptr + 9);
963 				else {
964 					priv->maxwidth = input;
965 					VERBOSE("setting maxwidth to %d\n",
966 							priv->maxwidth);
967 				}
968 			} else if (!strncmp("hdec=", ptr, 5)) {
969 				if (sscanf(ptr+5, "%d%c", &input, &junk) != 1)
970 					ERROR(
971 		"error parsing parameter to \"hdec=\", \"%s\", ignoring\n"
972 								, ptr + 9);
973 				else if (input != 1 && input != 2 && input != 4)
974 					ERROR(
975 		"illegal parameter to \"hdec=\", %d, should be 1, 2 or 4",
976 								input);
977 				else {
978 					priv->hdec = input;
979 					VERBOSE(
980 		"setting horizontal decimation to %d\n", priv->maxwidth);
981 				}
982 			} else if (!strncmp("vdec=", ptr, 5)) {
983 				if (sscanf(ptr+5, "%d%c", &input, &junk) != 1)
984 					ERROR(
985 		"error parsing parameter to \"vdec=\", \"%s\", ignoring\n"
986 								, ptr + 9);
987 				else if (input != 1 && input != 2 && input != 4)
988 					ERROR(
989 		"illegal parameter to \"vdec=\", %d, should be 1, 2 or 4",
990 								input);
991 				else {
992 					priv->vdec = input;
993 					VERBOSE(
994 			"setting vertical decimation to %d\n", priv->maxwidth);
995 				}
996 			} else if (!av_strcasecmp("dc10+-PAL", ptr) ||
997 					!av_strcasecmp("dc10-PAL", ptr)) {
998 				priv->maxwidth = 768;
999 				priv->maxheight = 576;
1000 				VERBOSE("setting DC10(+) PAL profile\n");
1001 			} else if (!av_strcasecmp("fd", ptr)) {
1002 				priv->fd = 1;
1003 				VERBOSE("forcing decimation\n");
1004 			} else if (!av_strcasecmp("nofd", ptr)) {
1005 				priv->fd = 0;
1006 				VERBOSE("decimate only if beautiful\n");
1007 			} else if (!av_strcasecmp("bw", ptr)) {
1008 				priv->bw = 1;
1009 				VERBOSE("setting black and white encoding\n");
1010 			} else if (!av_strcasecmp("color", ptr)) {
1011 				priv->bw = 0;
1012 				VERBOSE("setting color encoding\n");
1013 			} else if (!av_strcasecmp("dc10+-NTSC", ptr) ||
1014 					!av_strcasecmp("dc10-NTSC", ptr)) {
1015 				priv->maxwidth = 640;
1016 				priv->maxheight = 480;
1017 				VERBOSE("setting DC10(+) NTSC profile\n");
1018 			} else if (!av_strcasecmp("buz-PAL", ptr) ||
1019 					!av_strcasecmp("lml33-PAL", ptr)) {
1020 				priv->maxwidth = 720;
1021 				priv->maxheight = 576;
1022 				VERBOSE("setting buz/lml33 PAL profile\n");
1023 			} else if (!av_strcasecmp("buz-NTSC", ptr) ||
1024 					!av_strcasecmp("lml33-NTSC", ptr)) {
1025 				priv->maxwidth = 720;
1026 				priv->maxheight = 480;
1027 				VERBOSE("setting buz/lml33 NTSC profile\n");
1028 			} else {
1029 				WARNING("ignoring unknown filter option "
1030 						"\"%s\", or missing argument\n",
1031 						ptr);
1032 			}
1033 			ptr = tmp;
1034 		} while (!last);
1035 
1036 		free(arg);
1037 	}
1038 
1039 
1040 	return 1;
1041 }
1042 
1043 const vf_info_t vf_info_zrmjpeg = {
1044     "realtime zoran MJPEG encoding",
1045     "zrmjpeg",
1046     "Rik Snel",
1047     "",
1048     vf_open,
1049     NULL
1050 };
1051