1 /*****************************************************************************
2  * drms.c: DRMS
3  *****************************************************************************
4  * Copyright (C) 2004 VideoLAN
5  * $Id: drms.c,v 1.1 2005/07/22 01:14:52 twistedddx Exp $
6  *
7  * Authors: Jon Lech Johansen <jon-vl@nanocrew.net>
8  *          Sam Hocevar <sam@zoy.org>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111, USA.
23  *****************************************************************************/
24 
25 #include <stdlib.h>                                      /* malloc(), free() */
26 
27 #ifndef _WIN32
28 #include "config.h"
29 #endif
30 #include "mp4ffint.h"
31 
32 #ifdef ITUNES_DRM
33 
34 #ifdef _WIN32
35 #   include <io.h>
36 #   include <stdio.h>
37 #   include <sys/stat.h>
38 #   define PATH_MAX MAX_PATH
39 #else
40 #   include <stdio.h>
41 #endif
42 
43 #ifdef HAVE_ERRNO_H
44 #   include <errno.h>
45 #endif
46 
47 #ifdef _WIN32
48 #   include <tchar.h>
49 #   include <shlobj.h>
50 #   include <windows.h>
51 #endif
52 
53 #ifdef HAVE_SYS_STAT_H
54 #   include <sys/stat.h>
55 #endif
56 #ifdef HAVE_SYS_TYPES_H
57 #   include <sys/types.h>
58 #endif
59 
60 /* In Solaris (and perhaps others) PATH_MAX is in limits.h. */
61 #ifdef HAVE_LIMITS_H
62 #   include <limits.h>
63 #endif
64 
65 #ifdef HAVE_IOKIT_IOKITLIB_H
66 #   include <mach/mach.h>
67 #   include <IOKit/IOKitLib.h>
68 #   include <CoreFoundation/CFNumber.h>
69 #endif
70 
71 #ifdef HAVE_SYSFS_LIBSYSFS_H
72 #   include <sysfs/libsysfs.h>
73 #endif
74 
75 #include "drms.h"
76 #include "drmstables.h"
77 
78 /*****************************************************************************
79  * aes_s: AES keys structure
80  *****************************************************************************
81  * This structure stores a set of keys usable for encryption and decryption
82  * with the AES/Rijndael algorithm.
83  *****************************************************************************/
84 struct aes_s
85 {
86     uint32_t pp_enc_keys[ AES_KEY_COUNT + 1 ][ 4 ];
87     uint32_t pp_dec_keys[ AES_KEY_COUNT + 1 ][ 4 ];
88 };
89 
90 /*****************************************************************************
91  * md5_s: MD5 message structure
92  *****************************************************************************
93  * This structure stores the static information needed to compute an MD5
94  * hash. It has an extra data buffer to allow non-aligned writes.
95  *****************************************************************************/
96 struct md5_s
97 {
98     uint64_t i_bits;      /* Total written bits */
99     uint32_t p_digest[4]; /* The MD5 digest */
100     uint32_t p_data[16];  /* Buffer to cache non-aligned writes */
101 };
102 
103 /*****************************************************************************
104  * shuffle_s: shuffle structure
105  *****************************************************************************
106  * This structure stores the static information needed to shuffle data using
107  * a custom algorithm.
108  *****************************************************************************/
109 struct shuffle_s
110 {
111     uint32_t p_commands[ 20 ];
112     uint32_t p_bordel[ 16 ];
113 };
114 
115 /*****************************************************************************
116  * drms_s: DRMS structure
117  *****************************************************************************
118  * This structure stores the static information needed to decrypt DRMS data.
119  *****************************************************************************/
120 struct drms_s
121 {
122     uint32_t i_user;
123     uint32_t i_key;
124     uint8_t  p_iviv[ 16 ];
125     uint8_t *p_name;
126 
127     uint32_t p_key[ 4 ];
128     struct aes_s aes;
129 
130     char     psz_homedir[ PATH_MAX ];
131 };
132 
133 /*****************************************************************************
134  * Local prototypes
135  *****************************************************************************/
136 static void InitAES       ( struct aes_s *, uint32_t * );
137 static void DecryptAES    ( struct aes_s *, uint32_t *, const uint32_t * );
138 
139 static void InitMD5       ( struct md5_s * );
140 static void AddMD5        ( struct md5_s *, const uint8_t *, uint32_t );
141 static void EndMD5        ( struct md5_s * );
142 static void Digest        ( struct md5_s *, uint32_t * );
143 
144 static void InitShuffle   ( struct shuffle_s *, uint32_t * );
145 static void DoShuffle     ( struct shuffle_s *, uint32_t *, uint32_t );
146 
147 static int GetSystemKey   ( uint32_t *, uint32_t );
148 static int WriteUserKey   ( void *, uint32_t * );
149 static int ReadUserKey    ( void *, uint32_t * );
150 static int GetUserKey     ( void *, uint32_t * );
151 
152 static int GetSCIData     ( char *, uint32_t **, uint32_t * );
153 static int HashSystemInfo ( uint32_t * );
154 static int GetiPodID      ( int64_t * );
155 
156 #ifdef WORDS_BIGENDIAN
157 /*****************************************************************************
158  * Reverse: reverse byte order
159  *****************************************************************************/
Reverse(uint32_t * p_buffer,int n)160 static __inline void Reverse( uint32_t *p_buffer, int n )
161 {
162     int i;
163 
164     for( i = 0; i < n; i++ )
165     {
166         p_buffer[ i ] = GetDWLE(&p_buffer[ i ]);
167     }
168 }
169 #    define REVERSE( p, n ) Reverse( p, n )
170 #else
171 #    define REVERSE( p, n )
172 #endif
173 
174 /*****************************************************************************
175  * BlockXOR: XOR two 128 bit blocks
176  *****************************************************************************/
BlockXOR(uint32_t * p_dest,uint32_t * p_s1,uint32_t * p_s2)177 static __inline void BlockXOR( uint32_t *p_dest, uint32_t *p_s1, uint32_t *p_s2 )
178 {
179     int i;
180 
181     for( i = 0; i < 4; i++ )
182     {
183         p_dest[ i ] = p_s1[ i ] ^ p_s2[ i ];
184     }
185 }
186 
187 /*****************************************************************************
188  * drms_alloc: allocate a DRMS structure
189  *****************************************************************************/
drms_alloc(char * psz_homedir)190 void *drms_alloc( char *psz_homedir )
191 {
192     struct drms_s *p_drms;
193 
194     p_drms = malloc( sizeof(struct drms_s) );
195 
196     if( p_drms == NULL )
197     {
198         return NULL;
199     }
200 
201     memset( p_drms, 0, sizeof(struct drms_s) );
202 
203     strncpy( p_drms->psz_homedir, psz_homedir, PATH_MAX );
204     p_drms->psz_homedir[ PATH_MAX - 1 ] = '\0';
205 
206     return (void *)p_drms;
207 }
208 
209 /*****************************************************************************
210  * drms_free: free a previously allocated DRMS structure
211  *****************************************************************************/
drms_free(void * _p_drms)212 void drms_free( void *_p_drms )
213 {
214     struct drms_s *p_drms = (struct drms_s *)_p_drms;
215 
216     if( p_drms->p_name != NULL )
217     {
218         free( (void *)p_drms->p_name );
219     }
220 
221     free( p_drms );
222 }
223 
224 /*****************************************************************************
225  * drms_decrypt: unscramble a chunk of data
226  *****************************************************************************/
drms_decrypt(void * _p_drms,uint32_t * p_buffer,uint32_t i_bytes)227 void drms_decrypt( void *_p_drms, uint32_t *p_buffer, uint32_t i_bytes )
228 {
229     struct drms_s *p_drms = (struct drms_s *)_p_drms;
230     uint32_t p_key[ 4 ];
231     unsigned int i_blocks;
232 
233     /* AES is a block cypher, round down the byte count */
234     i_blocks = i_bytes / 16;
235     i_bytes = i_blocks * 16;
236 
237     /* Initialise the key */
238     memcpy( p_key, p_drms->p_key, 16 );
239 
240     /* Unscramble */
241     while( i_blocks-- )
242     {
243         uint32_t p_tmp[ 4 ];
244 
245         REVERSE( p_buffer, 4 );
246         DecryptAES( &p_drms->aes, p_tmp, p_buffer );
247         BlockXOR( p_tmp, p_key, p_tmp );
248 
249         /* Use the previous scrambled data as the key for next block */
250         memcpy( p_key, p_buffer, 16 );
251 
252         /* Copy unscrambled data back to the buffer */
253         memcpy( p_buffer, p_tmp, 16 );
254         REVERSE( p_buffer, 4 );
255 
256         p_buffer += 4;
257     }
258 }
259 
260 /*****************************************************************************
261  * drms_init: initialise a DRMS structure
262  *****************************************************************************/
drms_init(void * _p_drms,uint32_t i_type,uint8_t * p_info,uint32_t i_len)263 int drms_init( void *_p_drms, uint32_t i_type,
264                uint8_t *p_info, uint32_t i_len )
265 {
266     struct drms_s *p_drms = (struct drms_s *)_p_drms;
267     int i_ret = 0;
268 
269     switch( i_type )
270     {
271         case FOURCC_user:
272             if( i_len < sizeof(p_drms->i_user) )
273             {
274                 i_ret = -1;
275                 break;
276             }
277 
278             p_drms->i_user = U32_AT( p_info );
279             break;
280 
281         case FOURCC_key:
282             if( i_len < sizeof(p_drms->i_key) )
283             {
284                 i_ret = -1;
285                 break;
286             }
287 
288             p_drms->i_key = U32_AT( p_info );
289             break;
290 
291         case FOURCC_iviv:
292             if( i_len < sizeof(p_drms->p_key) )
293             {
294                 i_ret = -1;
295                 break;
296             }
297 
298             memcpy( p_drms->p_iviv, p_info, 16 );
299             break;
300 
301         case FOURCC_name:
302             p_drms->p_name = strdup( p_info );
303 
304             if( p_drms->p_name == NULL )
305             {
306                 i_ret = -1;
307             }
308             break;
309 
310         case FOURCC_priv:
311         {
312             uint32_t p_priv[ 64 ];
313             struct md5_s md5;
314 
315             if( i_len < 64 )
316             {
317                 i_ret = -1;
318                 break;
319             }
320 
321             InitMD5( &md5 );
322             AddMD5( &md5, p_drms->p_name, strlen( p_drms->p_name ) );
323             AddMD5( &md5, p_drms->p_iviv, 16 );
324             EndMD5( &md5 );
325 
326             if( GetUserKey( p_drms, p_drms->p_key ) )
327             {
328                 i_ret = -1;
329                 break;
330             }
331 
332             InitAES( &p_drms->aes, p_drms->p_key );
333 
334             memcpy( p_priv, p_info, 64 );
335             memcpy( p_drms->p_key, md5.p_digest, 16 );
336             drms_decrypt( p_drms, p_priv, 64 );
337             REVERSE( p_priv, 64 );
338 
339             if( p_priv[ 0 ] != 0x6e757469 ) /* itun */
340             {
341                 i_ret = -1;
342                 break;
343             }
344 
345             InitAES( &p_drms->aes, p_priv + 6 );
346             memcpy( p_drms->p_key, p_priv + 12, 16 );
347 
348             free( (void *)p_drms->p_name );
349             p_drms->p_name = NULL;
350         }
351         break;
352     }
353 
354     return i_ret;
355 }
356 
357 /* The following functions are local */
358 
359 /*****************************************************************************
360  * InitAES: initialise AES/Rijndael encryption/decryption tables
361  *****************************************************************************
362  * The Advanced Encryption Standard (AES) is described in RFC 3268
363  *****************************************************************************/
InitAES(struct aes_s * p_aes,uint32_t * p_key)364 static void InitAES( struct aes_s *p_aes, uint32_t *p_key )
365 {
366     unsigned int i, t;
367     uint32_t i_key, i_seed;
368 
369     memset( p_aes->pp_enc_keys[1], 0, 16 );
370     memcpy( p_aes->pp_enc_keys[0], p_key, 16 );
371 
372     /* Generate the key tables */
373     i_seed = p_aes->pp_enc_keys[ 0 ][ 3 ];
374 
375     for( i_key = 0; i_key < AES_KEY_COUNT; i_key++ )
376     {
377         uint32_t j;
378 
379         i_seed = AES_ROR( i_seed, 8 );
380 
381         j = p_aes_table[ i_key ];
382 
383         j ^= p_aes_encrypt[ (i_seed >> 24) & 0xff ]
384               ^ AES_ROR( p_aes_encrypt[ (i_seed >> 16) & 0xff ], 8 )
385               ^ AES_ROR( p_aes_encrypt[ (i_seed >> 8) & 0xff ], 16 )
386               ^ AES_ROR( p_aes_encrypt[ i_seed & 0xff ], 24 );
387 
388         j ^= p_aes->pp_enc_keys[ i_key ][ 0 ];
389         p_aes->pp_enc_keys[ i_key + 1 ][ 0 ] = j;
390         j ^= p_aes->pp_enc_keys[ i_key ][ 1 ];
391         p_aes->pp_enc_keys[ i_key + 1 ][ 1 ] = j;
392         j ^= p_aes->pp_enc_keys[ i_key ][ 2 ];
393         p_aes->pp_enc_keys[ i_key + 1 ][ 2 ] = j;
394         j ^= p_aes->pp_enc_keys[ i_key ][ 3 ];
395         p_aes->pp_enc_keys[ i_key + 1 ][ 3 ] = j;
396 
397         i_seed = j;
398     }
399 
400     memcpy( p_aes->pp_dec_keys[ 0 ],
401             p_aes->pp_enc_keys[ 0 ], 16 );
402 
403     for( i = 1; i < AES_KEY_COUNT; i++ )
404     {
405         for( t = 0; t < 4; t++ )
406         {
407             uint32_t j, k, l, m, n;
408 
409             j = p_aes->pp_enc_keys[ i ][ t ];
410 
411             k = (((j >> 7) & 0x01010101) * 27) ^ ((j & 0xff7f7f7f) << 1);
412             l = (((k >> 7) & 0x01010101) * 27) ^ ((k & 0xff7f7f7f) << 1);
413             m = (((l >> 7) & 0x01010101) * 27) ^ ((l & 0xff7f7f7f) << 1);
414 
415             j ^= m;
416 
417             n = AES_ROR( l ^ j, 16 ) ^ AES_ROR( k ^ j, 8 ) ^ AES_ROR( j, 24 );
418 
419             p_aes->pp_dec_keys[ i ][ t ] = k ^ l ^ m ^ n;
420         }
421     }
422 }
423 
424 /*****************************************************************************
425  * DecryptAES: decrypt an AES/Rijndael 128 bit block
426  *****************************************************************************/
DecryptAES(struct aes_s * p_aes,uint32_t * p_dest,const uint32_t * p_src)427 static void DecryptAES( struct aes_s *p_aes,
428                         uint32_t *p_dest, const uint32_t *p_src )
429 {
430     uint32_t p_wtxt[ 4 ]; /* Working cyphertext */
431     uint32_t p_tmp[ 4 ];
432     unsigned int i_round, t;
433 
434     for( t = 0; t < 4; t++ )
435     {
436         /* FIXME: are there any endianness issues here? */
437         p_wtxt[ t ] = p_src[ t ] ^ p_aes->pp_enc_keys[ AES_KEY_COUNT ][ t ];
438     }
439 
440     /* Rounds 0 - 8 */
441     for( i_round = 0; i_round < (AES_KEY_COUNT - 1); i_round++ )
442     {
443         for( t = 0; t < 4; t++ )
444         {
445             p_tmp[ t ] = AES_XOR_ROR( p_aes_itable, p_wtxt );
446         }
447 
448         for( t = 0; t < 4; t++ )
449         {
450             p_wtxt[ t ] = p_tmp[ t ]
451                     ^ p_aes->pp_dec_keys[ (AES_KEY_COUNT - 1) - i_round ][ t ];
452         }
453     }
454 
455     /* Final round (9) */
456     for( t = 0; t < 4; t++ )
457     {
458         p_dest[ t ] = AES_XOR_ROR( p_aes_decrypt, p_wtxt );
459         p_dest[ t ] ^= p_aes->pp_dec_keys[ 0 ][ t ];
460     }
461 }
462 
463 /*****************************************************************************
464  * InitMD5: initialise an MD5 message
465  *****************************************************************************
466  * The MD5 message-digest algorithm is described in RFC 1321
467  *****************************************************************************/
InitMD5(struct md5_s * p_md5)468 static void InitMD5( struct md5_s *p_md5 )
469 {
470     p_md5->p_digest[ 0 ] = 0x67452301;
471     p_md5->p_digest[ 1 ] = 0xefcdab89;
472     p_md5->p_digest[ 2 ] = 0x98badcfe;
473     p_md5->p_digest[ 3 ] = 0x10325476;
474 
475     memset( p_md5->p_data, 0, 64 );
476     p_md5->i_bits = 0;
477 }
478 
479 /*****************************************************************************
480  * AddMD5: add i_len bytes to an MD5 message
481  *****************************************************************************/
AddMD5(struct md5_s * p_md5,const uint8_t * p_src,uint32_t i_len)482 static void AddMD5( struct md5_s *p_md5, const uint8_t *p_src, uint32_t i_len )
483 {
484     unsigned int i_current; /* Current bytes in the spare buffer */
485     unsigned int i_offset = 0;
486 
487     i_current = (p_md5->i_bits / 8) & 63;
488 
489     p_md5->i_bits += 8 * i_len;
490 
491     /* If we can complete our spare buffer to 64 bytes, do it and add the
492      * resulting buffer to the MD5 message */
493     if( i_len >= (64 - i_current) )
494     {
495         memcpy( ((uint8_t *)p_md5->p_data) + i_current, p_src,
496                 (64 - i_current) );
497         Digest( p_md5, p_md5->p_data );
498 
499         i_offset += (64 - i_current);
500         i_len -= (64 - i_current);
501         i_current = 0;
502     }
503 
504     /* Add as many entire 64 bytes blocks as we can to the MD5 message */
505     while( i_len >= 64 )
506     {
507         uint32_t p_tmp[ 16 ];
508         memcpy( p_tmp, p_src + i_offset, 64 );
509         Digest( p_md5, p_tmp );
510         i_offset += 64;
511         i_len -= 64;
512     }
513 
514     /* Copy our remaining data to the message's spare buffer */
515     memcpy( ((uint8_t *)p_md5->p_data) + i_current, p_src + i_offset, i_len );
516 }
517 
518 /*****************************************************************************
519  * EndMD5: finish an MD5 message
520  *****************************************************************************
521  * This function adds adequate padding to the end of the message, and appends
522  * the bit count so that we end at a block boundary.
523  *****************************************************************************/
EndMD5(struct md5_s * p_md5)524 static void EndMD5( struct md5_s *p_md5 )
525 {
526     unsigned int i_current;
527 
528     i_current = (p_md5->i_bits / 8) & 63;
529 
530     /* Append 0x80 to our buffer. No boundary check because the temporary
531      * buffer cannot be full, otherwise AddMD5 would have emptied it. */
532     ((uint8_t *)p_md5->p_data)[ i_current++ ] = 0x80;
533 
534     /* If less than 8 bytes are available at the end of the block, complete
535      * this 64 bytes block with zeros and add it to the message. We'll add
536      * our length at the end of the next block. */
537     if( i_current > 56 )
538     {
539         memset( ((uint8_t *)p_md5->p_data) + i_current, 0, (64 - i_current) );
540         Digest( p_md5, p_md5->p_data );
541         i_current = 0;
542     }
543 
544     /* Fill the unused space in our last block with zeroes and put the
545      * message length at the end. */
546     memset( ((uint8_t *)p_md5->p_data) + i_current, 0, (56 - i_current) );
547     p_md5->p_data[ 14 ] = p_md5->i_bits & 0xffffffff;
548     p_md5->p_data[ 15 ] = (p_md5->i_bits >> 32);
549     REVERSE( &p_md5->p_data[ 14 ], 2 );
550 
551     Digest( p_md5, p_md5->p_data );
552 }
553 
554 #define F1( x, y, z ) ((z) ^ ((x) & ((y) ^ (z))))
555 #define F2( x, y, z ) F1((z), (x), (y))
556 #define F3( x, y, z ) ((x) ^ (y) ^ (z))
557 #define F4( x, y, z ) ((y) ^ ((x) | ~(z)))
558 
559 #define MD5_DO( f, w, x, y, z, data, s ) \
560     ( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )
561 
562 /*****************************************************************************
563  * Digest: update the MD5 digest with 64 bytes of data
564  *****************************************************************************/
Digest(struct md5_s * p_md5,uint32_t * p_input)565 static void Digest( struct md5_s *p_md5, uint32_t *p_input )
566 {
567     uint32_t a, b, c, d;
568 
569     REVERSE( p_input, 16 );
570 
571     a = p_md5->p_digest[ 0 ];
572     b = p_md5->p_digest[ 1 ];
573     c = p_md5->p_digest[ 2 ];
574     d = p_md5->p_digest[ 3 ];
575 
576     MD5_DO( F1, a, b, c, d, p_input[  0 ] + 0xd76aa478,  7 );
577     MD5_DO( F1, d, a, b, c, p_input[  1 ] + 0xe8c7b756, 12 );
578     MD5_DO( F1, c, d, a, b, p_input[  2 ] + 0x242070db, 17 );
579     MD5_DO( F1, b, c, d, a, p_input[  3 ] + 0xc1bdceee, 22 );
580     MD5_DO( F1, a, b, c, d, p_input[  4 ] + 0xf57c0faf,  7 );
581     MD5_DO( F1, d, a, b, c, p_input[  5 ] + 0x4787c62a, 12 );
582     MD5_DO( F1, c, d, a, b, p_input[  6 ] + 0xa8304613, 17 );
583     MD5_DO( F1, b, c, d, a, p_input[  7 ] + 0xfd469501, 22 );
584     MD5_DO( F1, a, b, c, d, p_input[  8 ] + 0x698098d8,  7 );
585     MD5_DO( F1, d, a, b, c, p_input[  9 ] + 0x8b44f7af, 12 );
586     MD5_DO( F1, c, d, a, b, p_input[ 10 ] + 0xffff5bb1, 17 );
587     MD5_DO( F1, b, c, d, a, p_input[ 11 ] + 0x895cd7be, 22 );
588     MD5_DO( F1, a, b, c, d, p_input[ 12 ] + 0x6b901122,  7 );
589     MD5_DO( F1, d, a, b, c, p_input[ 13 ] + 0xfd987193, 12 );
590     MD5_DO( F1, c, d, a, b, p_input[ 14 ] + 0xa679438e, 17 );
591     MD5_DO( F1, b, c, d, a, p_input[ 15 ] + 0x49b40821, 22 );
592 
593     MD5_DO( F2, a, b, c, d, p_input[  1 ] + 0xf61e2562,  5 );
594     MD5_DO( F2, d, a, b, c, p_input[  6 ] + 0xc040b340,  9 );
595     MD5_DO( F2, c, d, a, b, p_input[ 11 ] + 0x265e5a51, 14 );
596     MD5_DO( F2, b, c, d, a, p_input[  0 ] + 0xe9b6c7aa, 20 );
597     MD5_DO( F2, a, b, c, d, p_input[  5 ] + 0xd62f105d,  5 );
598     MD5_DO( F2, d, a, b, c, p_input[ 10 ] + 0x02441453,  9 );
599     MD5_DO( F2, c, d, a, b, p_input[ 15 ] + 0xd8a1e681, 14 );
600     MD5_DO( F2, b, c, d, a, p_input[  4 ] + 0xe7d3fbc8, 20 );
601     MD5_DO( F2, a, b, c, d, p_input[  9 ] + 0x21e1cde6,  5 );
602     MD5_DO( F2, d, a, b, c, p_input[ 14 ] + 0xc33707d6,  9 );
603     MD5_DO( F2, c, d, a, b, p_input[  3 ] + 0xf4d50d87, 14 );
604     MD5_DO( F2, b, c, d, a, p_input[  8 ] + 0x455a14ed, 20 );
605     MD5_DO( F2, a, b, c, d, p_input[ 13 ] + 0xa9e3e905,  5 );
606     MD5_DO( F2, d, a, b, c, p_input[  2 ] + 0xfcefa3f8,  9 );
607     MD5_DO( F2, c, d, a, b, p_input[  7 ] + 0x676f02d9, 14 );
608     MD5_DO( F2, b, c, d, a, p_input[ 12 ] + 0x8d2a4c8a, 20 );
609 
610     MD5_DO( F3, a, b, c, d, p_input[  5 ] + 0xfffa3942,  4 );
611     MD5_DO( F3, d, a, b, c, p_input[  8 ] + 0x8771f681, 11 );
612     MD5_DO( F3, c, d, a, b, p_input[ 11 ] + 0x6d9d6122, 16 );
613     MD5_DO( F3, b, c, d, a, p_input[ 14 ] + 0xfde5380c, 23 );
614     MD5_DO( F3, a, b, c, d, p_input[  1 ] + 0xa4beea44,  4 );
615     MD5_DO( F3, d, a, b, c, p_input[  4 ] + 0x4bdecfa9, 11 );
616     MD5_DO( F3, c, d, a, b, p_input[  7 ] + 0xf6bb4b60, 16 );
617     MD5_DO( F3, b, c, d, a, p_input[ 10 ] + 0xbebfbc70, 23 );
618     MD5_DO( F3, a, b, c, d, p_input[ 13 ] + 0x289b7ec6,  4 );
619     MD5_DO( F3, d, a, b, c, p_input[  0 ] + 0xeaa127fa, 11 );
620     MD5_DO( F3, c, d, a, b, p_input[  3 ] + 0xd4ef3085, 16 );
621     MD5_DO( F3, b, c, d, a, p_input[  6 ] + 0x04881d05, 23 );
622     MD5_DO( F3, a, b, c, d, p_input[  9 ] + 0xd9d4d039,  4 );
623     MD5_DO( F3, d, a, b, c, p_input[ 12 ] + 0xe6db99e5, 11 );
624     MD5_DO( F3, c, d, a, b, p_input[ 15 ] + 0x1fa27cf8, 16 );
625     MD5_DO( F3, b, c, d, a, p_input[  2 ] + 0xc4ac5665, 23 );
626 
627     MD5_DO( F4, a, b, c, d, p_input[  0 ] + 0xf4292244,  6 );
628     MD5_DO( F4, d, a, b, c, p_input[  7 ] + 0x432aff97, 10 );
629     MD5_DO( F4, c, d, a, b, p_input[ 14 ] + 0xab9423a7, 15 );
630     MD5_DO( F4, b, c, d, a, p_input[  5 ] + 0xfc93a039, 21 );
631     MD5_DO( F4, a, b, c, d, p_input[ 12 ] + 0x655b59c3,  6 );
632     MD5_DO( F4, d, a, b, c, p_input[  3 ] + 0x8f0ccc92, 10 );
633     MD5_DO( F4, c, d, a, b, p_input[ 10 ] + 0xffeff47d, 15 );
634     MD5_DO( F4, b, c, d, a, p_input[  1 ] + 0x85845dd1, 21 );
635     MD5_DO( F4, a, b, c, d, p_input[  8 ] + 0x6fa87e4f,  6 );
636     MD5_DO( F4, d, a, b, c, p_input[ 15 ] + 0xfe2ce6e0, 10 );
637     MD5_DO( F4, c, d, a, b, p_input[  6 ] + 0xa3014314, 15 );
638     MD5_DO( F4, b, c, d, a, p_input[ 13 ] + 0x4e0811a1, 21 );
639     MD5_DO( F4, a, b, c, d, p_input[  4 ] + 0xf7537e82,  6 );
640     MD5_DO( F4, d, a, b, c, p_input[ 11 ] + 0xbd3af235, 10 );
641     MD5_DO( F4, c, d, a, b, p_input[  2 ] + 0x2ad7d2bb, 15 );
642     MD5_DO( F4, b, c, d, a, p_input[  9 ] + 0xeb86d391, 21 );
643 
644     p_md5->p_digest[ 0 ] += a;
645     p_md5->p_digest[ 1 ] += b;
646     p_md5->p_digest[ 2 ] += c;
647     p_md5->p_digest[ 3 ] += d;
648 }
649 
650 /*****************************************************************************
651  * InitShuffle: initialise a shuffle structure
652  *****************************************************************************
653  * This function initialises tables in the p_shuffle structure that will be
654  * used later by DoShuffle. The only external parameter is p_sys_key.
655  *****************************************************************************/
InitShuffle(struct shuffle_s * p_shuffle,uint32_t * p_sys_key)656 static void InitShuffle( struct shuffle_s *p_shuffle, uint32_t *p_sys_key )
657 {
658     char p_secret1[] = "Tv!*";
659     static char const p_secret2[] = "v8rhvsaAvOKMFfUH%798=[;."
660                                     "f8677680a634ba87fnOIf)(*";
661     unsigned int i;
662 
663     /* Fill p_commands using the key and a secret seed */
664     for( i = 0; i < 20; i++ )
665     {
666         struct md5_s md5;
667         int32_t i_hash;
668 
669         InitMD5( &md5 );
670         AddMD5( &md5, (uint8_t *)p_sys_key, 16 );
671         AddMD5( &md5, (uint8_t *)p_secret1, 4 );
672         EndMD5( &md5 );
673 
674         p_secret1[ 3 ]++;
675 
676         REVERSE( md5.p_digest, 1 );
677         i_hash = ((int32_t)U32_AT(md5.p_digest)) % 1024;
678 
679         p_shuffle->p_commands[ i ] = i_hash < 0 ? i_hash * -1 : i_hash;
680     }
681 
682     /* Fill p_bordel with completely meaningless initial values. */
683     for( i = 0; i < 4; i++ )
684     {
685         p_shuffle->p_bordel[ 4 * i ] = U32_AT(p_sys_key + i);
686         memcpy( p_shuffle->p_bordel + 4 * i + 1, p_secret2 + 12 * i, 12 );
687         REVERSE( p_shuffle->p_bordel + 4 * i + 1, 3 );
688     }
689 }
690 
691 /*****************************************************************************
692  * DoShuffle: shuffle buffer
693  *****************************************************************************
694  * This is so ugly and uses so many MD5 checksums that it is most certainly
695  * one-way, though why it needs to be so complicated is beyond me.
696  *****************************************************************************/
DoShuffle(struct shuffle_s * p_shuffle,uint32_t * p_buffer,uint32_t i_size)697 static void DoShuffle( struct shuffle_s *p_shuffle,
698                        uint32_t *p_buffer, uint32_t i_size )
699 {
700     struct md5_s md5;
701     uint32_t p_big_bordel[ 16 ];
702     uint32_t *p_bordel = p_shuffle->p_bordel;
703     unsigned int i;
704 
705     /* Using the MD5 hash of a memory block is probably not one-way enough
706      * for the iTunes people. This function randomises p_bordel depending on
707      * the values in p_commands to make things even more messy in p_bordel. */
708     for( i = 0; i < 20; i++ )
709     {
710         uint8_t i_command, i_index;
711 
712         if( !p_shuffle->p_commands[ i ] )
713         {
714             continue;
715         }
716 
717         i_command = (p_shuffle->p_commands[ i ] & 0x300) >> 8;
718         i_index = p_shuffle->p_commands[ i ] & 0xff;
719 
720         switch( i_command )
721         {
722         case 0x3:
723             p_bordel[ i_index & 0xf ] = p_bordel[ i_index >> 4 ]
724                                       + p_bordel[ ((i_index + 0x10) >> 4) & 0xf ];
725             break;
726         case 0x2:
727             p_bordel[ i_index >> 4 ] ^= p_shuffle_xor[ 0xff - i_index ];
728             break;
729         case 0x1:
730             p_bordel[ i_index >> 4 ] -= p_shuffle_sub[ 0xff - i_index ];
731             break;
732         default:
733             p_bordel[ i_index >> 4 ] += p_shuffle_add[ 0xff - i_index ];
734             break;
735         }
736     }
737 
738     /* Convert our newly randomised p_bordel to big endianness and take
739      * its MD5 hash. */
740     InitMD5( &md5 );
741     for( i = 0; i < 16; i++ )
742     {
743         p_big_bordel[ i ] = U32_AT(p_bordel + i);
744     }
745     AddMD5( &md5, (uint8_t *)p_big_bordel, 64 );
746     EndMD5( &md5 );
747 
748     /* XOR our buffer with the computed checksum */
749     for( i = 0; i < i_size; i++ )
750     {
751         p_buffer[ i ] ^= md5.p_digest[ i ];
752     }
753 }
754 
755 /*****************************************************************************
756  * GetSystemKey: get the system key
757  *****************************************************************************
758  * Compute the system key from various system information, see HashSystemInfo.
759  *****************************************************************************/
GetSystemKey(uint32_t * p_sys_key,uint32_t b_ipod)760 static int GetSystemKey( uint32_t *p_sys_key, uint32_t b_ipod )
761 {
762     static char const p_secret1[ 8 ] = "YuaFlafu";
763     static char const p_secret2[ 8 ] = "zPif98ga";
764     struct md5_s md5;
765     int64_t i_ipod_id;
766     uint32_t p_system_hash[ 4 ];
767 
768     /* Compute the MD5 hash of our system info */
769     if( ( !b_ipod && HashSystemInfo( p_system_hash ) ) ||
770         (  b_ipod && GetiPodID( &i_ipod_id ) ) )
771     {
772         return -1;
773     }
774 
775     /* Combine our system info hash with additional secret data. The resulting
776      * MD5 hash will be our system key. */
777     InitMD5( &md5 );
778     AddMD5( &md5, p_secret1, 8 );
779 
780     if( !b_ipod )
781     {
782         AddMD5( &md5, (uint8_t *)p_system_hash, 6 );
783         AddMD5( &md5, (uint8_t *)p_system_hash, 6 );
784         AddMD5( &md5, (uint8_t *)p_system_hash, 6 );
785         AddMD5( &md5, p_secret2, 8 );
786     }
787     else
788     {
789         i_ipod_id = U64_AT(&i_ipod_id);
790         AddMD5( &md5, (uint8_t *)&i_ipod_id, sizeof(i_ipod_id) );
791         AddMD5( &md5, (uint8_t *)&i_ipod_id, sizeof(i_ipod_id) );
792         AddMD5( &md5, (uint8_t *)&i_ipod_id, sizeof(i_ipod_id) );
793     }
794 
795     EndMD5( &md5 );
796 
797     memcpy( p_sys_key, md5.p_digest, 16 );
798 
799     return 0;
800 }
801 
802 #ifdef _WIN32
803 #   define DRMS_DIRNAME "drms"
804 #else
805 #   define DRMS_DIRNAME ".drms"
806 #endif
807 
808 /*****************************************************************************
809  * WriteUserKey: write the user key to hard disk
810  *****************************************************************************
811  * Write the user key to the hard disk so that it can be reused later or used
812  * on operating systems other than Win32.
813  *****************************************************************************/
WriteUserKey(void * _p_drms,uint32_t * p_user_key)814 static int WriteUserKey( void *_p_drms, uint32_t *p_user_key )
815 {
816     struct drms_s *p_drms = (struct drms_s *)_p_drms;
817     FILE *file;
818     int i_ret = -1;
819     char psz_path[ PATH_MAX ];
820 
821     sprintf( psz_path, /* PATH_MAX - 1, */
822               "%s/" DRMS_DIRNAME, p_drms->psz_homedir );
823 
824 #if defined( HAVE_ERRNO_H )
825 #   if defined( _WIN32 )
826     if( !mkdir( psz_path ) || errno == EEXIST )
827 #   else
828     if( !mkdir( psz_path, 0755 ) || errno == EEXIST )
829 #   endif
830 #else
831     if( !mkdir( psz_path ) )
832 #endif
833     {
834         sprintf( psz_path, /*PATH_MAX - 1,*/ "%s/" DRMS_DIRNAME "/%08X.%03d",
835                   p_drms->psz_homedir, p_drms->i_user, p_drms->i_key );
836 
837         file = fopen( psz_path, "w" );
838         if( file != NULL )
839         {
840             i_ret = fwrite( p_user_key, sizeof(uint32_t),
841                             4, file ) == 4 ? 0 : -1;
842             fclose( file );
843         }
844     }
845 
846     return i_ret;
847 }
848 
849 /*****************************************************************************
850  * ReadUserKey: read the user key from hard disk
851  *****************************************************************************
852  * Retrieve the user key from the hard disk if available.
853  *****************************************************************************/
ReadUserKey(void * _p_drms,uint32_t * p_user_key)854 static int ReadUserKey( void *_p_drms, uint32_t *p_user_key )
855 {
856     struct drms_s *p_drms = (struct drms_s *)_p_drms;
857     FILE *file;
858     int i_ret = -1;
859     char psz_path[ PATH_MAX ];
860 
861     sprintf( psz_path, /*PATH_MAX - 1,*/
862               "%s/" DRMS_DIRNAME "/%08X.%03d", p_drms->psz_homedir,
863               p_drms->i_user, p_drms->i_key );
864 
865     file = fopen( psz_path, "r" );
866     if( file != NULL )
867     {
868         i_ret = fread( p_user_key, sizeof(uint32_t),
869                        4, file ) == 4 ? 0 : -1;
870         fclose( file );
871     }
872 
873     return i_ret;
874 }
875 
876 /*****************************************************************************
877  * GetUserKey: get the user key
878  *****************************************************************************
879  * Retrieve the user key from the hard disk if available, otherwise generate
880  * it from the system key. If the key could be successfully generated, write
881  * it to the hard disk for future use.
882  *****************************************************************************/
GetUserKey(void * _p_drms,uint32_t * p_user_key)883 static int GetUserKey( void *_p_drms, uint32_t *p_user_key )
884 {
885     static char const p_secret[] = "mUfnpognadfgf873";
886     struct drms_s *p_drms = (struct drms_s *)_p_drms;
887     struct aes_s aes;
888     struct shuffle_s shuffle;
889     uint32_t i, y;
890     uint32_t *p_sci_data;
891     uint32_t i_user, i_key;
892     uint32_t p_sys_key[ 4 ];
893     uint32_t i_sci_size, i_blocks, i_remaining;
894     uint32_t *p_sci0, *p_sci1, *p_buffer;
895     uint32_t p_sci_key[ 4 ];
896     char *psz_ipod;
897     int i_ret = -1;
898 
899     if( !ReadUserKey( p_drms, p_user_key ) )
900     {
901         REVERSE( p_user_key, 4 );
902         return 0;
903     }
904 
905     psz_ipod = getenv( "IPOD" );
906 
907     if( GetSystemKey( p_sys_key, psz_ipod ? 1 : 0 ) )
908     {
909         return -1;
910     }
911 
912     if( GetSCIData( psz_ipod, &p_sci_data, &i_sci_size ) )
913     {
914         return -1;
915     }
916 
917     /* Phase 1: unscramble the SCI data using the system key and shuffle
918      *          it using DoShuffle(). */
919 
920     /* Skip the first 4 bytes (some sort of header). Decrypt the rest. */
921     i_blocks = (i_sci_size - 4) / 16;
922     i_remaining = (i_sci_size - 4) - (i_blocks * 16);
923     p_buffer = p_sci_data + 1;
924 
925     /* Decrypt and shuffle our data at the same time */
926     InitAES( &aes, p_sys_key );
927     REVERSE( p_sys_key, 4 );
928     InitShuffle( &shuffle, p_sys_key );
929 
930     memcpy( p_sci_key, p_secret, 16 );
931     REVERSE( p_sci_key, 4 );
932 
933     while( i_blocks-- )
934     {
935         uint32_t p_tmp[ 4 ];
936 
937         REVERSE( p_buffer, 4 );
938         DecryptAES( &aes, p_tmp, p_buffer );
939         BlockXOR( p_tmp, p_sci_key, p_tmp );
940 
941         /* Use the previous scrambled data as the key for next block */
942         memcpy( p_sci_key, p_buffer, 16 );
943 
944         /* Shuffle the decrypted data using a custom routine */
945         DoShuffle( &shuffle, p_tmp, 4 );
946 
947         /* Copy this block back to p_buffer */
948         memcpy( p_buffer, p_tmp, 16 );
949 
950         p_buffer += 4;
951     }
952 
953     if( i_remaining >= 4 )
954     {
955         i_remaining /= 4;
956         REVERSE( p_buffer, i_remaining );
957         DoShuffle( &shuffle, p_buffer, i_remaining );
958     }
959 
960     /* Phase 2: look for the user key in the generated data. I must admit I
961      *          do not understand what is going on here, because it almost
962      *          looks like we are browsing data that makes sense, even though
963      *          the DoShuffle() part made it completely meaningless. */
964 
965     y = 0;
966     REVERSE( p_sci_data + 5, 1 );
967     i = U32_AT( p_sci_data + 5 );
968     i_sci_size -= 22 * sizeof(uint32_t);
969     p_sci1 = p_sci_data + 22;
970     p_sci0 = NULL;
971 
972     while( i_sci_size >= 20 && i > 0 )
973     {
974         if( p_sci0 == NULL )
975         {
976             i_sci_size -= 18 * sizeof(uint32_t);
977             if( i_sci_size < 20 )
978             {
979                 break;
980             }
981 
982             p_sci0 = p_sci1;
983             REVERSE( p_sci1 + 17, 1 );
984             y = U32_AT( p_sci1 + 17 );
985             p_sci1 += 18;
986         }
987 
988         if( !y )
989         {
990             i--;
991             p_sci0 = NULL;
992             continue;
993         }
994 
995         i_user = U32_AT( p_sci0 );
996         i_key = U32_AT( p_sci1 );
997         REVERSE( &i_user, 1 );
998         REVERSE( &i_key, 1 );
999         if( i_user == p_drms->i_user && ( ( i_key == p_drms->i_key ) ||
1000             ( !p_drms->i_key && ( p_sci1 == (p_sci0 + 18) ) ) ) )
1001         {
1002             memcpy( p_user_key, p_sci1 + 1, 16 );
1003             REVERSE( p_sci1 + 1, 4 );
1004             WriteUserKey( p_drms, p_sci1 + 1 );
1005             i_ret = 0;
1006             break;
1007         }
1008 
1009         y--;
1010         p_sci1 += 5;
1011         i_sci_size -= 5 * sizeof(uint32_t);
1012     }
1013 
1014     free( p_sci_data );
1015 
1016     return i_ret;
1017 }
1018 
1019 /*****************************************************************************
1020  * GetSCIData: get SCI data from "SC Info.sidb"
1021  *****************************************************************************
1022  * Read SCI data from "\Apple Computer\iTunes\SC Info\SC Info.sidb"
1023  *****************************************************************************/
GetSCIData(char * psz_ipod,uint32_t ** pp_sci,uint32_t * pi_sci_size)1024 static int GetSCIData( char *psz_ipod, uint32_t **pp_sci,
1025                        uint32_t *pi_sci_size )
1026 {
1027     FILE *file;
1028     char *psz_path = NULL;
1029     char p_tmp[ PATH_MAX ];
1030     int i_ret = -1;
1031 
1032     if( psz_ipod == NULL )
1033     {
1034 //TODO: fix this at some point
1035 #ifdef FORFUTUREADDION_WIN32
1036         char *p_filename = "\\Apple Computer\\iTunes\\SC Info\\SC Info.sidb";
1037         typedef HRESULT (WINAPI *SHGETFOLDERPATH)( HWND, int, HANDLE, DWORD,
1038                                                    LPSTR );
1039         HINSTANCE shfolder_dll = NULL;
1040         SHGETFOLDERPATH dSHGetFolderPath = NULL;
1041 
1042         if( ( shfolder_dll = LoadLibrary( _T("SHFolder.dll") ) ) != NULL )
1043         {
1044             dSHGetFolderPath =
1045                 (SHGETFOLDERPATH)GetProcAddress( shfolder_dll,
1046                                                  _T("SHGetFolderPathA") );
1047         }
1048 
1049         if( dSHGetFolderPath != NULL &&
1050             SUCCEEDED( dSHGetFolderPath( NULL, /*CSIDL_COMMON_APPDATA*/ 0x0023,
1051                                          NULL, 0, p_tmp ) ) )
1052         {
1053             strncat( p_tmp, p_filename, min( strlen( p_filename ),
1054                      (sizeof(p_tmp)/sizeof(p_tmp[0]) - 1) -
1055                      strlen( p_tmp ) ) );
1056             psz_path = p_tmp;
1057         }
1058 
1059         if( shfolder_dll != NULL )
1060         {
1061             FreeLibrary( shfolder_dll );
1062         }
1063 #endif
1064     }
1065     else
1066     {
1067 #define ISCINFO "iSCInfo"
1068         if( strstr( psz_ipod, ISCINFO ) == NULL )
1069         {
1070             sprintf( p_tmp, /*sizeof(p_tmp)/sizeof(p_tmp[0]) - 1,*/
1071                       "%s/iPod_Control/iTunes/" ISCINFO, psz_ipod );
1072             psz_path = p_tmp;
1073         }
1074         else
1075         {
1076             psz_path = psz_ipod;
1077         }
1078     }
1079 
1080     if( psz_path == NULL )
1081     {
1082         return -1;
1083     }
1084 
1085     file = fopen( psz_path, "r" );
1086     if( file != NULL )
1087     {
1088         struct stat st;
1089 
1090         if( !fstat( fileno( file ), &st ) )
1091         {
1092             *pp_sci = malloc( st.st_size );
1093             if( *pp_sci != NULL )
1094             {
1095                 if( fread( *pp_sci, 1, st.st_size,
1096                            file ) == (size_t)st.st_size )
1097                 {
1098                     *pi_sci_size = st.st_size;
1099                     i_ret = 0;
1100                 }
1101                 else
1102                 {
1103                     free( (void *)*pp_sci );
1104                     *pp_sci = NULL;
1105                 }
1106             }
1107         }
1108 
1109         fclose( file );
1110     }
1111 
1112     return i_ret;
1113 }
1114 
1115 /*****************************************************************************
1116  * HashSystemInfo: hash system information
1117  *****************************************************************************
1118  * This function computes the MD5 hash of the C: hard drive serial number,
1119  * BIOS version, CPU type and Windows version.
1120  *****************************************************************************/
HashSystemInfo(uint32_t * p_system_hash)1121 static int HashSystemInfo( uint32_t *p_system_hash )
1122 {
1123     struct md5_s md5;
1124     int i_ret = 0;
1125 
1126 #ifdef _WIN32
1127     HKEY i_key;
1128     unsigned int i;
1129     DWORD i_size;
1130     DWORD i_serial;
1131     LPBYTE p_reg_buf;
1132 
1133     static LPCTSTR p_reg_keys[ 3 ][ 2 ] =
1134     {
1135         {
1136             _T("HARDWARE\\DESCRIPTION\\System"),
1137             _T("SystemBiosVersion")
1138         },
1139 
1140         {
1141             _T("HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0"),
1142             _T("ProcessorNameString")
1143         },
1144 
1145         {
1146             _T("SOFTWARE\\Microsoft\\Windows\\CurrentVersion"),
1147             _T("ProductId")
1148         }
1149     };
1150 
1151     InitMD5( &md5 );
1152 
1153     AddMD5( &md5, "cache-control", 13 );
1154     AddMD5( &md5, "Ethernet", 8 );
1155 
1156     GetVolumeInformation( _T("C:\\"), NULL, 0, &i_serial,
1157                           NULL, NULL, NULL, 0 );
1158     AddMD5( &md5, (uint8_t *)&i_serial, 4 );
1159 
1160     for( i = 0; i < sizeof(p_reg_keys) / sizeof(p_reg_keys[ 0 ]); i++ )
1161     {
1162         if( RegOpenKeyEx( HKEY_LOCAL_MACHINE, p_reg_keys[ i ][ 0 ],
1163                           0, KEY_READ, &i_key ) != ERROR_SUCCESS )
1164         {
1165             continue;
1166         }
1167 
1168         if( RegQueryValueEx( i_key, p_reg_keys[ i ][ 1 ],
1169                              NULL, NULL, NULL, &i_size ) != ERROR_SUCCESS )
1170         {
1171             RegCloseKey( i_key );
1172             continue;
1173         }
1174 
1175         p_reg_buf = malloc( i_size );
1176 
1177         if( p_reg_buf != NULL )
1178         {
1179             if( RegQueryValueEx( i_key, p_reg_keys[ i ][ 1 ],
1180                                  NULL, NULL, p_reg_buf,
1181                                  &i_size ) == ERROR_SUCCESS )
1182             {
1183                 AddMD5( &md5, (uint8_t *)p_reg_buf, i_size );
1184             }
1185 
1186             free( p_reg_buf );
1187         }
1188 
1189         RegCloseKey( i_key );
1190     }
1191 
1192 #else
1193     InitMD5( &md5 );
1194     i_ret = -1;
1195 #endif
1196 
1197     EndMD5( &md5 );
1198     memcpy( p_system_hash, md5.p_digest, 16 );
1199 
1200     return i_ret;
1201 }
1202 
1203 /*****************************************************************************
1204  * GetiPodID: Get iPod ID
1205  *****************************************************************************
1206  * This function gets the iPod ID.
1207  *****************************************************************************/
GetiPodID(int64_t * p_ipod_id)1208 static int GetiPodID( int64_t *p_ipod_id )
1209 {
1210     int i_ret = -1;
1211 
1212 #define PROD_NAME   "iPod"
1213 #define VENDOR_NAME "Apple Computer, Inc."
1214 
1215     char *psz_ipod_id = getenv( "IPODID" );
1216     if( psz_ipod_id != NULL )
1217     {
1218 #ifndef _WIN32
1219         *p_ipod_id = strtoll( psz_ipod_id, NULL, 16 );
1220 #else
1221         *p_ipod_id = strtol( psz_ipod_id, NULL, 16 );
1222 #endif
1223         return 0;
1224     }
1225 
1226 #ifdef HAVE_IOKIT_IOKITLIB_H
1227     CFTypeRef value;
1228     mach_port_t port;
1229     io_object_t device;
1230     io_iterator_t iterator;
1231     CFMutableDictionaryRef matching_dic;
1232 
1233     if( IOMasterPort( MACH_PORT_NULL, &port ) == KERN_SUCCESS )
1234     {
1235         if( ( matching_dic = IOServiceMatching( "IOFireWireUnit" ) ) != NULL )
1236         {
1237             CFDictionarySetValue( matching_dic,
1238                                   CFSTR("FireWire Vendor Name"),
1239                                   CFSTR(VENDOR_NAME) );
1240             CFDictionarySetValue( matching_dic,
1241                                   CFSTR("FireWire Product Name"),
1242                                   CFSTR(PROD_NAME) );
1243 
1244             if( IOServiceGetMatchingServices( port, matching_dic,
1245                                               &iterator ) == KERN_SUCCESS )
1246             {
1247                 while( ( device = IOIteratorNext( iterator ) ) != NULL )
1248                 {
1249                     value = IORegistryEntryCreateCFProperty( device,
1250                         CFSTR("GUID"), kCFAllocatorDefault, kNilOptions );
1251 
1252                     if( value != NULL )
1253                     {
1254                         if( CFGetTypeID( value ) == CFNumberGetTypeID() )
1255                         {
1256                             int64_t i_ipod_id;
1257                             CFNumberGetValue( (CFNumberRef)value,
1258                                               kCFNumberLongLongType,
1259                                               &i_ipod_id );
1260                             *p_ipod_id = i_ipod_id;
1261                             i_ret = 0;
1262                         }
1263 
1264                         CFRelease( value );
1265                     }
1266 
1267                     IOObjectRelease( device );
1268 
1269                     if( !i_ret ) break;
1270                 }
1271 
1272                 IOObjectRelease( iterator );
1273             }
1274         }
1275 
1276         mach_port_deallocate( mach_task_self(), port );
1277     }
1278 
1279 #elif HAVE_SYSFS_LIBSYSFS_H
1280     struct sysfs_bus *bus = NULL;
1281     struct dlist *devlist = NULL;
1282     struct dlist *attributes = NULL;
1283     struct sysfs_device *curdev = NULL;
1284     struct sysfs_attribute *curattr = NULL;
1285 
1286     bus = sysfs_open_bus( "ieee1394" );
1287     if( bus != NULL )
1288     {
1289         devlist = sysfs_get_bus_devices( bus );
1290         if( devlist != NULL )
1291         {
1292             dlist_for_each_data( devlist, curdev, struct sysfs_device )
1293             {
1294                 attributes = sysfs_get_device_attributes( curdev );
1295                 if( attributes != NULL )
1296                 {
1297                     dlist_for_each_data( attributes, curattr,
1298                                          struct sysfs_attribute )
1299                     {
1300                         if( ( strcmp( curattr->name, "model_name" ) == 0 ) &&
1301                             ( strncmp( curattr->value, PROD_NAME,
1302                                        sizeof(PROD_NAME) ) == 0 ) )
1303                         {
1304                             *p_ipod_id = strtoll( curdev->name, NULL, 16 );
1305                             i_ret = 0;
1306                             break;
1307                         }
1308                     }
1309                 }
1310 
1311                 if( !i_ret ) break;
1312             }
1313         }
1314 
1315         sysfs_close_bus( bus );
1316     }
1317 #endif
1318 
1319     return i_ret;
1320 }
1321 
1322 #endif
1323