1 /*
2  * This code implements the MD5 message-digest algorithm.
3  * The algorithm is due to Ron Rivest.  This code was
4  * written by Colin Plumb in 1993, no copyright is claimed.
5  * This code is in the public domain; do with it what you wish.
6  *
7  * Equivalent code is available from RSA Data Security, Inc.
8  * This code has been tested against that, and is equivalent,
9  * except that you don't need to include two pages of legalese
10  * with every copy.
11  *
12  * To compute the message digest of a chunk of bytes, declare an
13  * MD5Context structure, pass it to MD5Init, call MD5Update as
14  * needed on buffers full of bytes, and then call MD5Final, which
15  * will fill a supplied 16-byte array with the digest.
16  */
17 
18 #include <stdlib.h>
19 #include <stdio.h>
20 #include <assert.h>
21 #include <string.h>
22 #include <sys/types.h>
23 
24 #ifdef __FreeBSD__
25 #include <machine/endian.h>
26 #else
27 #include <endian.h>
28 #endif
29 #if __BYTE_ORDER == __BIG_ENDIAN
30 #define WORDS_BIGENDIAN
31 #endif
32 
33 #include "md5.h"
34 
35 #ifndef WORDS_BIGENDIAN
36 #define byteReverse(buf, len)	/* Nothing */
37 #else
38 void byteReverse(unsigned char *buf, unsigned longs);
39 
40 #ifndef ASM_MD5
41 /*
42  * Note: this code is harmless on little-endian machines.
43  */
44 
byteReverse(unsigned char * buf,unsigned longs)45 void byteReverse(unsigned char *buf, unsigned longs)
46 {
47     u32 t;
48     do {
49 	t = (u32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
50 	    ((unsigned) buf[1] << 8 | buf[0]);
51 	*(u32 *) buf = t;
52 	buf += 4;
53     } while (--longs);
54 }
55 #endif
56 #endif
57 
58 /*
59  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
60  * initialization constants.
61  */
MD5Init(struct MD5Context * ctx)62 void MD5Init(struct MD5Context *ctx)
63 {
64     ctx->buf[0] = 0x67452301;
65     ctx->buf[1] = 0xefcdab89;
66     ctx->buf[2] = 0x98badcfe;
67     ctx->buf[3] = 0x10325476;
68 
69     ctx->bits[0] = 0;
70     ctx->bits[1] = 0;
71 }
72 
73 /*
74  * Update context to reflect the concatenation of another buffer full
75  * of bytes.
76  */
MD5Update(struct MD5Context * ctx,unsigned char const * buf,unsigned len)77 void MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
78 {
79     u32 t;
80 
81     /* Update bitcount */
82 
83     t = ctx->bits[0];
84     if ((ctx->bits[0] = t + ((u32) len << 3)) < t)
85 	ctx->bits[1]++;		/* Carry from low to high */
86     ctx->bits[1] += len >> 29;
87 
88     t = (t >> 3) & 0x3f;	/* Bytes already in shsInfo->data */
89 
90     /* Handle any leading odd-sized chunks */
91 
92     if (t) {
93 	unsigned char *p = (unsigned char *) ctx->in + t;
94 
95 	t = 64 - t;
96 	if (len < t) {
97 	    memcpy(p, buf, len);
98 	    return;
99 	}
100 	memcpy(p, buf, t);
101 	byteReverse(ctx->in, 16);
102 	MD5Transform(ctx->buf, (u32 *) ctx->in);
103 	buf += t;
104 	len -= t;
105     }
106     /* Process data in 64-byte chunks */
107 
108     while (len >= 64) {
109 	memcpy(ctx->in, buf, 64);
110 	byteReverse(ctx->in, 16);
111 	MD5Transform(ctx->buf, (u32 *) ctx->in);
112 	buf += 64;
113 	len -= 64;
114     }
115 
116     /* Handle any remaining bytes of data. */
117 
118     memcpy(ctx->in, buf, len);
119 }
120 
121 /*
122  * Final wrapup - pad to 64-byte boundary with the bit pattern
123  * 1 0* (64-bit count of bits processed, MSB-first)
124  */
MD5Final(unsigned char digest[16],struct MD5Context * ctx)125 void MD5Final(unsigned char digest[16], struct MD5Context *ctx)
126 {
127     unsigned count;
128     unsigned char *p;
129 
130     /* Compute number of bytes mod 64 */
131     count = (ctx->bits[0] >> 3) & 0x3F;
132 
133     /* Set the first char of padding to 0x80.  This is safe since there is
134        always at least one byte free */
135     p = ctx->in + count;
136     *p++ = 0x80;
137 
138     /* Bytes of padding needed to make 64 bytes */
139     count = 64 - 1 - count;
140 
141     /* Pad out to 56 mod 64 */
142     if (count < 8) {
143 	/* Two lots of padding:  Pad the first block to 64 bytes */
144 	memset(p, 0, count);
145 	byteReverse(ctx->in, 16);
146 	MD5Transform(ctx->buf, (u32 *) ctx->in);
147 
148 	/* Now fill the next block with 56 bytes */
149 	memset(ctx->in, 0, 56);
150     } else {
151 	/* Pad block to 56 bytes */
152 	memset(p, 0, count - 8);
153     }
154     byteReverse(ctx->in, 14);
155 
156     /* Append length in bits and transform */
157     ((u32 *) ctx->in)[14] = ctx->bits[0];
158     ((u32 *) ctx->in)[15] = ctx->bits[1];
159 
160     MD5Transform(ctx->buf, (u32 *) ctx->in);
161     byteReverse((unsigned char *) ctx->buf, 4);
162     memcpy(digest, ctx->buf, 16);
163     memset(ctx, 0, sizeof(ctx));	/* In case it's sensitive */
164 }
165 
166 #ifndef ASM_MD5
167 
168 /* The four core functions - F1 is optimized somewhat */
169 
170 /* #define F1(x, y, z) (x & y | ~x & z) */
171 #define F1(x, y, z) (z ^ (x & (y ^ z)))
172 #define F2(x, y, z) F1(z, x, y)
173 #define F3(x, y, z) (x ^ y ^ z)
174 #define F4(x, y, z) (y ^ (x | ~z))
175 
176 /* This is the central step in the MD5 algorithm. */
177 #define MD5STEP(f, w, x, y, z, data, s) \
178 	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )
179 
180 /*
181  * The core of the MD5 algorithm, this alters an existing MD5 hash to
182  * reflect the addition of 16 longwords of new data.  MD5Update blocks
183  * the data and converts bytes into longwords for this routine.
184  */
MD5Transform(u32 buf[4],u32 const in[16])185 void MD5Transform(u32 buf[4], u32 const in[16])
186 {
187     register u32 a, b, c, d;
188 
189     a = buf[0];
190     b = buf[1];
191     c = buf[2];
192     d = buf[3];
193 
194     MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
195     MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
196     MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
197     MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
198     MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
199     MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
200     MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
201     MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
202     MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
203     MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
204     MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
205     MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
206     MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
207     MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
208     MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
209     MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
210 
211     MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
212     MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
213     MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
214     MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
215     MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
216     MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
217     MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
218     MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
219     MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
220     MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
221     MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
222     MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
223     MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
224     MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
225     MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
226     MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
227 
228     MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
229     MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
230     MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
231     MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
232     MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
233     MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
234     MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
235     MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
236     MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
237     MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
238     MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
239     MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
240     MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
241     MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
242     MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
243     MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
244 
245     MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
246     MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
247     MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
248     MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
249     MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
250     MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
251     MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
252     MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
253     MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
254     MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
255     MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
256     MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
257     MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
258     MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
259     MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
260     MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
261 
262     buf[0] += a;
263     buf[1] += b;
264     buf[2] += c;
265     buf[3] += d;
266 }
267 
268 #endif
269