1 /*
2  * Copyright(c) 2015 - 2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/firmware.h>
49 #include <linux/mutex.h>
50 #include <linux/module.h>
51 #include <linux/delay.h>
52 #include <linux/crc32.h>
53 
54 #include "hfi.h"
55 #include "trace.h"
56 
57 /*
58  * Make it easy to toggle firmware file name and if it gets loaded by
59  * editing the following. This may be something we do while in development
60  * but not necessarily something a user would ever need to use.
61  */
62 #define DEFAULT_FW_8051_NAME_FPGA "hfi_dc8051.bin"
63 #define DEFAULT_FW_8051_NAME_ASIC "hfi1_dc8051.fw"
64 #define DEFAULT_FW_FABRIC_NAME "hfi1_fabric.fw"
65 #define DEFAULT_FW_SBUS_NAME "hfi1_sbus.fw"
66 #define DEFAULT_FW_PCIE_NAME "hfi1_pcie.fw"
67 #define ALT_FW_8051_NAME_ASIC "hfi1_dc8051_d.fw"
68 #define ALT_FW_FABRIC_NAME "hfi1_fabric_d.fw"
69 #define ALT_FW_SBUS_NAME "hfi1_sbus_d.fw"
70 #define ALT_FW_PCIE_NAME "hfi1_pcie_d.fw"
71 
72 MODULE_FIRMWARE(DEFAULT_FW_8051_NAME_ASIC);
73 MODULE_FIRMWARE(DEFAULT_FW_FABRIC_NAME);
74 MODULE_FIRMWARE(DEFAULT_FW_SBUS_NAME);
75 MODULE_FIRMWARE(DEFAULT_FW_PCIE_NAME);
76 
77 static uint fw_8051_load = 1;
78 static uint fw_fabric_serdes_load = 1;
79 static uint fw_pcie_serdes_load = 1;
80 static uint fw_sbus_load = 1;
81 
82 /* Firmware file names get set in hfi1_firmware_init() based on the above */
83 static char *fw_8051_name;
84 static char *fw_fabric_serdes_name;
85 static char *fw_sbus_name;
86 static char *fw_pcie_serdes_name;
87 
88 #define SBUS_MAX_POLL_COUNT 100
89 #define SBUS_COUNTER(reg, name) \
90 	(((reg) >> ASIC_STS_SBUS_COUNTERS_##name##_CNT_SHIFT) & \
91 	 ASIC_STS_SBUS_COUNTERS_##name##_CNT_MASK)
92 
93 /*
94  * Firmware security header.
95  */
96 struct css_header {
97 	u32 module_type;
98 	u32 header_len;
99 	u32 header_version;
100 	u32 module_id;
101 	u32 module_vendor;
102 	u32 date;		/* BCD yyyymmdd */
103 	u32 size;		/* in DWORDs */
104 	u32 key_size;		/* in DWORDs */
105 	u32 modulus_size;	/* in DWORDs */
106 	u32 exponent_size;	/* in DWORDs */
107 	u32 reserved[22];
108 };
109 
110 /* expected field values */
111 #define CSS_MODULE_TYPE	   0x00000006
112 #define CSS_HEADER_LEN	   0x000000a1
113 #define CSS_HEADER_VERSION 0x00010000
114 #define CSS_MODULE_VENDOR  0x00008086
115 
116 #define KEY_SIZE      256
117 #define MU_SIZE		8
118 #define EXPONENT_SIZE	4
119 
120 /* size of platform configuration partition */
121 #define MAX_PLATFORM_CONFIG_FILE_SIZE 4096
122 
123 /* size of file of plaform configuration encoded in format version 4 */
124 #define PLATFORM_CONFIG_FORMAT_4_FILE_SIZE 528
125 
126 /* the file itself */
127 struct firmware_file {
128 	struct css_header css_header;
129 	u8 modulus[KEY_SIZE];
130 	u8 exponent[EXPONENT_SIZE];
131 	u8 signature[KEY_SIZE];
132 	u8 firmware[];
133 };
134 
135 struct augmented_firmware_file {
136 	struct css_header css_header;
137 	u8 modulus[KEY_SIZE];
138 	u8 exponent[EXPONENT_SIZE];
139 	u8 signature[KEY_SIZE];
140 	u8 r2[KEY_SIZE];
141 	u8 mu[MU_SIZE];
142 	u8 firmware[];
143 };
144 
145 /* augmented file size difference */
146 #define AUGMENT_SIZE (sizeof(struct augmented_firmware_file) - \
147 						sizeof(struct firmware_file))
148 
149 struct firmware_details {
150 	/* Linux core piece */
151 	const struct firmware *fw;
152 
153 	struct css_header *css_header;
154 	u8 *firmware_ptr;		/* pointer to binary data */
155 	u32 firmware_len;		/* length in bytes */
156 	u8 *modulus;			/* pointer to the modulus */
157 	u8 *exponent;			/* pointer to the exponent */
158 	u8 *signature;			/* pointer to the signature */
159 	u8 *r2;				/* pointer to r2 */
160 	u8 *mu;				/* pointer to mu */
161 	struct augmented_firmware_file dummy_header;
162 };
163 
164 /*
165  * The mutex protects fw_state, fw_err, and all of the firmware_details
166  * variables.
167  */
168 static DEFINE_MUTEX(fw_mutex);
169 enum fw_state {
170 	FW_EMPTY,
171 	FW_TRY,
172 	FW_FINAL,
173 	FW_ERR
174 };
175 
176 static enum fw_state fw_state = FW_EMPTY;
177 static int fw_err;
178 static struct firmware_details fw_8051;
179 static struct firmware_details fw_fabric;
180 static struct firmware_details fw_pcie;
181 static struct firmware_details fw_sbus;
182 
183 /* flags for turn_off_spicos() */
184 #define SPICO_SBUS   0x1
185 #define SPICO_FABRIC 0x2
186 #define ENABLE_SPICO_SMASK 0x1
187 
188 /* security block commands */
189 #define RSA_CMD_INIT  0x1
190 #define RSA_CMD_START 0x2
191 
192 /* security block status */
193 #define RSA_STATUS_IDLE   0x0
194 #define RSA_STATUS_ACTIVE 0x1
195 #define RSA_STATUS_DONE   0x2
196 #define RSA_STATUS_FAILED 0x3
197 
198 /* RSA engine timeout, in ms */
199 #define RSA_ENGINE_TIMEOUT 100 /* ms */
200 
201 /* hardware mutex timeout, in ms */
202 #define HM_TIMEOUT 10 /* ms */
203 
204 /* 8051 memory access timeout, in us */
205 #define DC8051_ACCESS_TIMEOUT 100 /* us */
206 
207 /* the number of fabric SerDes on the SBus */
208 #define NUM_FABRIC_SERDES 4
209 
210 /* ASIC_STS_SBUS_RESULT.RESULT_CODE value */
211 #define SBUS_READ_COMPLETE 0x4
212 
213 /* SBus fabric SerDes addresses, one set per HFI */
214 static const u8 fabric_serdes_addrs[2][NUM_FABRIC_SERDES] = {
215 	{ 0x01, 0x02, 0x03, 0x04 },
216 	{ 0x28, 0x29, 0x2a, 0x2b }
217 };
218 
219 /* SBus PCIe SerDes addresses, one set per HFI */
220 static const u8 pcie_serdes_addrs[2][NUM_PCIE_SERDES] = {
221 	{ 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16,
222 	  0x18, 0x1a, 0x1c, 0x1e, 0x20, 0x22, 0x24, 0x26 },
223 	{ 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d,
224 	  0x3f, 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d }
225 };
226 
227 /* SBus PCIe PCS addresses, one set per HFI */
228 const u8 pcie_pcs_addrs[2][NUM_PCIE_SERDES] = {
229 	{ 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17,
230 	  0x19, 0x1b, 0x1d, 0x1f, 0x21, 0x23, 0x25, 0x27 },
231 	{ 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
232 	  0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e }
233 };
234 
235 /* SBus fabric SerDes broadcast addresses, one per HFI */
236 static const u8 fabric_serdes_broadcast[2] = { 0xe4, 0xe5 };
237 static const u8 all_fabric_serdes_broadcast = 0xe1;
238 
239 /* SBus PCIe SerDes broadcast addresses, one per HFI */
240 const u8 pcie_serdes_broadcast[2] = { 0xe2, 0xe3 };
241 static const u8 all_pcie_serdes_broadcast = 0xe0;
242 
243 static const u32 platform_config_table_limits[PLATFORM_CONFIG_TABLE_MAX] = {
244 	0,
245 	SYSTEM_TABLE_MAX,
246 	PORT_TABLE_MAX,
247 	RX_PRESET_TABLE_MAX,
248 	TX_PRESET_TABLE_MAX,
249 	QSFP_ATTEN_TABLE_MAX,
250 	VARIABLE_SETTINGS_TABLE_MAX
251 };
252 
253 /* forwards */
254 static void dispose_one_firmware(struct firmware_details *fdet);
255 static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
256 				       struct firmware_details *fdet);
257 static void dump_fw_version(struct hfi1_devdata *dd);
258 
259 /*
260  * Read a single 64-bit value from 8051 data memory.
261  *
262  * Expects:
263  * o caller to have already set up data read, no auto increment
264  * o caller to turn off read enable when finished
265  *
266  * The address argument is a byte offset.  Bits 0:2 in the address are
267  * ignored - i.e. the hardware will always do aligned 8-byte reads as if
268  * the lower bits are zero.
269  *
270  * Return 0 on success, -ENXIO on a read error (timeout).
271  */
__read_8051_data(struct hfi1_devdata * dd,u32 addr,u64 * result)272 static int __read_8051_data(struct hfi1_devdata *dd, u32 addr, u64 *result)
273 {
274 	u64 reg;
275 	int count;
276 
277 	/* step 1: set the address, clear enable */
278 	reg = (addr & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
279 			<< DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT;
280 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
281 	/* step 2: enable */
282 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL,
283 		  reg | DC_DC8051_CFG_RAM_ACCESS_CTRL_READ_ENA_SMASK);
284 
285 	/* wait until ACCESS_COMPLETED is set */
286 	count = 0;
287 	while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
288 		    & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
289 		    == 0) {
290 		count++;
291 		if (count > DC8051_ACCESS_TIMEOUT) {
292 			dd_dev_err(dd, "timeout reading 8051 data\n");
293 			return -ENXIO;
294 		}
295 		ndelay(10);
296 	}
297 
298 	/* gather the data */
299 	*result = read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_RD_DATA);
300 
301 	return 0;
302 }
303 
304 /*
305  * Read 8051 data starting at addr, for len bytes.  Will read in 8-byte chunks.
306  * Return 0 on success, -errno on error.
307  */
read_8051_data(struct hfi1_devdata * dd,u32 addr,u32 len,u64 * result)308 int read_8051_data(struct hfi1_devdata *dd, u32 addr, u32 len, u64 *result)
309 {
310 	unsigned long flags;
311 	u32 done;
312 	int ret = 0;
313 
314 	spin_lock_irqsave(&dd->dc8051_memlock, flags);
315 
316 	/* data read set-up, no auto-increment */
317 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
318 
319 	for (done = 0; done < len; addr += 8, done += 8, result++) {
320 		ret = __read_8051_data(dd, addr, result);
321 		if (ret)
322 			break;
323 	}
324 
325 	/* turn off read enable */
326 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
327 
328 	spin_unlock_irqrestore(&dd->dc8051_memlock, flags);
329 
330 	return ret;
331 }
332 
333 /*
334  * Write data or code to the 8051 code or data RAM.
335  */
write_8051(struct hfi1_devdata * dd,int code,u32 start,const u8 * data,u32 len)336 static int write_8051(struct hfi1_devdata *dd, int code, u32 start,
337 		      const u8 *data, u32 len)
338 {
339 	u64 reg;
340 	u32 offset;
341 	int aligned, count;
342 
343 	/* check alignment */
344 	aligned = ((unsigned long)data & 0x7) == 0;
345 
346 	/* write set-up */
347 	reg = (code ? DC_DC8051_CFG_RAM_ACCESS_SETUP_RAM_SEL_SMASK : 0ull)
348 		| DC_DC8051_CFG_RAM_ACCESS_SETUP_AUTO_INCR_ADDR_SMASK;
349 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, reg);
350 
351 	reg = ((start & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
352 			<< DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT)
353 		| DC_DC8051_CFG_RAM_ACCESS_CTRL_WRITE_ENA_SMASK;
354 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
355 
356 	/* write */
357 	for (offset = 0; offset < len; offset += 8) {
358 		int bytes = len - offset;
359 
360 		if (bytes < 8) {
361 			reg = 0;
362 			memcpy(&reg, &data[offset], bytes);
363 		} else if (aligned) {
364 			reg = *(u64 *)&data[offset];
365 		} else {
366 			memcpy(&reg, &data[offset], 8);
367 		}
368 		write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_WR_DATA, reg);
369 
370 		/* wait until ACCESS_COMPLETED is set */
371 		count = 0;
372 		while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
373 		    & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
374 		    == 0) {
375 			count++;
376 			if (count > DC8051_ACCESS_TIMEOUT) {
377 				dd_dev_err(dd, "timeout writing 8051 data\n");
378 				return -ENXIO;
379 			}
380 			udelay(1);
381 		}
382 	}
383 
384 	/* turn off write access, auto increment (also sets to data access) */
385 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
386 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
387 
388 	return 0;
389 }
390 
391 /* return 0 if values match, non-zero and complain otherwise */
invalid_header(struct hfi1_devdata * dd,const char * what,u32 actual,u32 expected)392 static int invalid_header(struct hfi1_devdata *dd, const char *what,
393 			  u32 actual, u32 expected)
394 {
395 	if (actual == expected)
396 		return 0;
397 
398 	dd_dev_err(dd,
399 		   "invalid firmware header field %s: expected 0x%x, actual 0x%x\n",
400 		   what, expected, actual);
401 	return 1;
402 }
403 
404 /*
405  * Verify that the static fields in the CSS header match.
406  */
verify_css_header(struct hfi1_devdata * dd,struct css_header * css)407 static int verify_css_header(struct hfi1_devdata *dd, struct css_header *css)
408 {
409 	/* verify CSS header fields (most sizes are in DW, so add /4) */
410 	if (invalid_header(dd, "module_type", css->module_type,
411 			   CSS_MODULE_TYPE) ||
412 	    invalid_header(dd, "header_len", css->header_len,
413 			   (sizeof(struct firmware_file) / 4)) ||
414 	    invalid_header(dd, "header_version", css->header_version,
415 			   CSS_HEADER_VERSION) ||
416 	    invalid_header(dd, "module_vendor", css->module_vendor,
417 			   CSS_MODULE_VENDOR) ||
418 	    invalid_header(dd, "key_size", css->key_size, KEY_SIZE / 4) ||
419 	    invalid_header(dd, "modulus_size", css->modulus_size,
420 			   KEY_SIZE / 4) ||
421 	    invalid_header(dd, "exponent_size", css->exponent_size,
422 			   EXPONENT_SIZE / 4)) {
423 		return -EINVAL;
424 	}
425 	return 0;
426 }
427 
428 /*
429  * Make sure there are at least some bytes after the prefix.
430  */
payload_check(struct hfi1_devdata * dd,const char * name,long file_size,long prefix_size)431 static int payload_check(struct hfi1_devdata *dd, const char *name,
432 			 long file_size, long prefix_size)
433 {
434 	/* make sure we have some payload */
435 	if (prefix_size >= file_size) {
436 		dd_dev_err(dd,
437 			   "firmware \"%s\", size %ld, must be larger than %ld bytes\n",
438 			   name, file_size, prefix_size);
439 		return -EINVAL;
440 	}
441 
442 	return 0;
443 }
444 
445 /*
446  * Request the firmware from the system.  Extract the pieces and fill in
447  * fdet.  If successful, the caller will need to call dispose_one_firmware().
448  * Returns 0 on success, -ERRNO on error.
449  */
obtain_one_firmware(struct hfi1_devdata * dd,const char * name,struct firmware_details * fdet)450 static int obtain_one_firmware(struct hfi1_devdata *dd, const char *name,
451 			       struct firmware_details *fdet)
452 {
453 	struct css_header *css;
454 	int ret;
455 
456 	memset(fdet, 0, sizeof(*fdet));
457 
458 	ret = request_firmware(&fdet->fw, name, &dd->pcidev->dev);
459 	if (ret) {
460 		dd_dev_warn(dd, "cannot find firmware \"%s\", err %d\n",
461 			    name, ret);
462 		return ret;
463 	}
464 
465 	/* verify the firmware */
466 	if (fdet->fw->size < sizeof(struct css_header)) {
467 		dd_dev_err(dd, "firmware \"%s\" is too small\n", name);
468 		ret = -EINVAL;
469 		goto done;
470 	}
471 	css = (struct css_header *)fdet->fw->data;
472 
473 	hfi1_cdbg(FIRMWARE, "Firmware %s details:", name);
474 	hfi1_cdbg(FIRMWARE, "file size: 0x%lx bytes", fdet->fw->size);
475 	hfi1_cdbg(FIRMWARE, "CSS structure:");
476 	hfi1_cdbg(FIRMWARE, "  module_type    0x%x", css->module_type);
477 	hfi1_cdbg(FIRMWARE, "  header_len     0x%03x (0x%03x bytes)",
478 		  css->header_len, 4 * css->header_len);
479 	hfi1_cdbg(FIRMWARE, "  header_version 0x%x", css->header_version);
480 	hfi1_cdbg(FIRMWARE, "  module_id      0x%x", css->module_id);
481 	hfi1_cdbg(FIRMWARE, "  module_vendor  0x%x", css->module_vendor);
482 	hfi1_cdbg(FIRMWARE, "  date           0x%x", css->date);
483 	hfi1_cdbg(FIRMWARE, "  size           0x%03x (0x%03x bytes)",
484 		  css->size, 4 * css->size);
485 	hfi1_cdbg(FIRMWARE, "  key_size       0x%03x (0x%03x bytes)",
486 		  css->key_size, 4 * css->key_size);
487 	hfi1_cdbg(FIRMWARE, "  modulus_size   0x%03x (0x%03x bytes)",
488 		  css->modulus_size, 4 * css->modulus_size);
489 	hfi1_cdbg(FIRMWARE, "  exponent_size  0x%03x (0x%03x bytes)",
490 		  css->exponent_size, 4 * css->exponent_size);
491 	hfi1_cdbg(FIRMWARE, "firmware size: 0x%lx bytes",
492 		  fdet->fw->size - sizeof(struct firmware_file));
493 
494 	/*
495 	 * If the file does not have a valid CSS header, fail.
496 	 * Otherwise, check the CSS size field for an expected size.
497 	 * The augmented file has r2 and mu inserted after the header
498 	 * was generated, so there will be a known difference between
499 	 * the CSS header size and the actual file size.  Use this
500 	 * difference to identify an augmented file.
501 	 *
502 	 * Note: css->size is in DWORDs, multiply by 4 to get bytes.
503 	 */
504 	ret = verify_css_header(dd, css);
505 	if (ret) {
506 		dd_dev_info(dd, "Invalid CSS header for \"%s\"\n", name);
507 	} else if ((css->size * 4) == fdet->fw->size) {
508 		/* non-augmented firmware file */
509 		struct firmware_file *ff = (struct firmware_file *)
510 							fdet->fw->data;
511 
512 		/* make sure there are bytes in the payload */
513 		ret = payload_check(dd, name, fdet->fw->size,
514 				    sizeof(struct firmware_file));
515 		if (ret == 0) {
516 			fdet->css_header = css;
517 			fdet->modulus = ff->modulus;
518 			fdet->exponent = ff->exponent;
519 			fdet->signature = ff->signature;
520 			fdet->r2 = fdet->dummy_header.r2; /* use dummy space */
521 			fdet->mu = fdet->dummy_header.mu; /* use dummy space */
522 			fdet->firmware_ptr = ff->firmware;
523 			fdet->firmware_len = fdet->fw->size -
524 						sizeof(struct firmware_file);
525 			/*
526 			 * Header does not include r2 and mu - generate here.
527 			 * For now, fail.
528 			 */
529 			dd_dev_err(dd, "driver is unable to validate firmware without r2 and mu (not in firmware file)\n");
530 			ret = -EINVAL;
531 		}
532 	} else if ((css->size * 4) + AUGMENT_SIZE == fdet->fw->size) {
533 		/* augmented firmware file */
534 		struct augmented_firmware_file *aff =
535 			(struct augmented_firmware_file *)fdet->fw->data;
536 
537 		/* make sure there are bytes in the payload */
538 		ret = payload_check(dd, name, fdet->fw->size,
539 				    sizeof(struct augmented_firmware_file));
540 		if (ret == 0) {
541 			fdet->css_header = css;
542 			fdet->modulus = aff->modulus;
543 			fdet->exponent = aff->exponent;
544 			fdet->signature = aff->signature;
545 			fdet->r2 = aff->r2;
546 			fdet->mu = aff->mu;
547 			fdet->firmware_ptr = aff->firmware;
548 			fdet->firmware_len = fdet->fw->size -
549 					sizeof(struct augmented_firmware_file);
550 		}
551 	} else {
552 		/* css->size check failed */
553 		dd_dev_err(dd,
554 			   "invalid firmware header field size: expected 0x%lx or 0x%lx, actual 0x%x\n",
555 			   fdet->fw->size / 4,
556 			   (fdet->fw->size - AUGMENT_SIZE) / 4,
557 			   css->size);
558 
559 		ret = -EINVAL;
560 	}
561 
562 done:
563 	/* if returning an error, clean up after ourselves */
564 	if (ret)
565 		dispose_one_firmware(fdet);
566 	return ret;
567 }
568 
dispose_one_firmware(struct firmware_details * fdet)569 static void dispose_one_firmware(struct firmware_details *fdet)
570 {
571 	release_firmware(fdet->fw);
572 	/* erase all previous information */
573 	memset(fdet, 0, sizeof(*fdet));
574 }
575 
576 /*
577  * Obtain the 4 firmwares from the OS.  All must be obtained at once or not
578  * at all.  If called with the firmware state in FW_TRY, use alternate names.
579  * On exit, this routine will have set the firmware state to one of FW_TRY,
580  * FW_FINAL, or FW_ERR.
581  *
582  * Must be holding fw_mutex.
583  */
__obtain_firmware(struct hfi1_devdata * dd)584 static void __obtain_firmware(struct hfi1_devdata *dd)
585 {
586 	int err = 0;
587 
588 	if (fw_state == FW_FINAL)	/* nothing more to obtain */
589 		return;
590 	if (fw_state == FW_ERR)		/* already in error */
591 		return;
592 
593 	/* fw_state is FW_EMPTY or FW_TRY */
594 retry:
595 	if (fw_state == FW_TRY) {
596 		/*
597 		 * We tried the original and it failed.  Move to the
598 		 * alternate.
599 		 */
600 		dd_dev_warn(dd, "using alternate firmware names\n");
601 		/*
602 		 * Let others run.  Some systems, when missing firmware, does
603 		 * something that holds for 30 seconds.  If we do that twice
604 		 * in a row it triggers task blocked warning.
605 		 */
606 		cond_resched();
607 		if (fw_8051_load)
608 			dispose_one_firmware(&fw_8051);
609 		if (fw_fabric_serdes_load)
610 			dispose_one_firmware(&fw_fabric);
611 		if (fw_sbus_load)
612 			dispose_one_firmware(&fw_sbus);
613 		if (fw_pcie_serdes_load)
614 			dispose_one_firmware(&fw_pcie);
615 		fw_8051_name = ALT_FW_8051_NAME_ASIC;
616 		fw_fabric_serdes_name = ALT_FW_FABRIC_NAME;
617 		fw_sbus_name = ALT_FW_SBUS_NAME;
618 		fw_pcie_serdes_name = ALT_FW_PCIE_NAME;
619 
620 		/*
621 		 * Add a delay before obtaining and loading debug firmware.
622 		 * Authorization will fail if the delay between firmware
623 		 * authorization events is shorter than 50us. Add 100us to
624 		 * make a delay time safe.
625 		 */
626 		usleep_range(100, 120);
627 	}
628 
629 	if (fw_sbus_load) {
630 		err = obtain_one_firmware(dd, fw_sbus_name, &fw_sbus);
631 		if (err)
632 			goto done;
633 	}
634 
635 	if (fw_pcie_serdes_load) {
636 		err = obtain_one_firmware(dd, fw_pcie_serdes_name, &fw_pcie);
637 		if (err)
638 			goto done;
639 	}
640 
641 	if (fw_fabric_serdes_load) {
642 		err = obtain_one_firmware(dd, fw_fabric_serdes_name,
643 					  &fw_fabric);
644 		if (err)
645 			goto done;
646 	}
647 
648 	if (fw_8051_load) {
649 		err = obtain_one_firmware(dd, fw_8051_name, &fw_8051);
650 		if (err)
651 			goto done;
652 	}
653 
654 done:
655 	if (err) {
656 		/* oops, had problems obtaining a firmware */
657 		if (fw_state == FW_EMPTY && dd->icode == ICODE_RTL_SILICON) {
658 			/* retry with alternate (RTL only) */
659 			fw_state = FW_TRY;
660 			goto retry;
661 		}
662 		dd_dev_err(dd, "unable to obtain working firmware\n");
663 		fw_state = FW_ERR;
664 		fw_err = -ENOENT;
665 	} else {
666 		/* success */
667 		if (fw_state == FW_EMPTY &&
668 		    dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
669 			fw_state = FW_TRY;	/* may retry later */
670 		else
671 			fw_state = FW_FINAL;	/* cannot try again */
672 	}
673 }
674 
675 /*
676  * Called by all HFIs when loading their firmware - i.e. device probe time.
677  * The first one will do the actual firmware load.  Use a mutex to resolve
678  * any possible race condition.
679  *
680  * The call to this routine cannot be moved to driver load because the kernel
681  * call request_firmware() requires a device which is only available after
682  * the first device probe.
683  */
obtain_firmware(struct hfi1_devdata * dd)684 static int obtain_firmware(struct hfi1_devdata *dd)
685 {
686 	unsigned long timeout;
687 
688 	mutex_lock(&fw_mutex);
689 
690 	/* 40s delay due to long delay on missing firmware on some systems */
691 	timeout = jiffies + msecs_to_jiffies(40000);
692 	while (fw_state == FW_TRY) {
693 		/*
694 		 * Another device is trying the firmware.  Wait until it
695 		 * decides what works (or not).
696 		 */
697 		if (time_after(jiffies, timeout)) {
698 			/* waited too long */
699 			dd_dev_err(dd, "Timeout waiting for firmware try");
700 			fw_state = FW_ERR;
701 			fw_err = -ETIMEDOUT;
702 			break;
703 		}
704 		mutex_unlock(&fw_mutex);
705 		msleep(20);	/* arbitrary delay */
706 		mutex_lock(&fw_mutex);
707 	}
708 	/* not in FW_TRY state */
709 
710 	/* set fw_state to FW_TRY, FW_FINAL, or FW_ERR, and fw_err */
711 	if (fw_state == FW_EMPTY)
712 		__obtain_firmware(dd);
713 
714 	mutex_unlock(&fw_mutex);
715 	return fw_err;
716 }
717 
718 /*
719  * Called when the driver unloads.  The timing is asymmetric with its
720  * counterpart, obtain_firmware().  If called at device remove time,
721  * then it is conceivable that another device could probe while the
722  * firmware is being disposed.  The mutexes can be moved to do that
723  * safely, but then the firmware would be requested from the OS multiple
724  * times.
725  *
726  * No mutex is needed as the driver is unloading and there cannot be any
727  * other callers.
728  */
dispose_firmware(void)729 void dispose_firmware(void)
730 {
731 	dispose_one_firmware(&fw_8051);
732 	dispose_one_firmware(&fw_fabric);
733 	dispose_one_firmware(&fw_pcie);
734 	dispose_one_firmware(&fw_sbus);
735 
736 	/* retain the error state, otherwise revert to empty */
737 	if (fw_state != FW_ERR)
738 		fw_state = FW_EMPTY;
739 }
740 
741 /*
742  * Called with the result of a firmware download.
743  *
744  * Return 1 to retry loading the firmware, 0 to stop.
745  */
retry_firmware(struct hfi1_devdata * dd,int load_result)746 static int retry_firmware(struct hfi1_devdata *dd, int load_result)
747 {
748 	int retry;
749 
750 	mutex_lock(&fw_mutex);
751 
752 	if (load_result == 0) {
753 		/*
754 		 * The load succeeded, so expect all others to do the same.
755 		 * Do not retry again.
756 		 */
757 		if (fw_state == FW_TRY)
758 			fw_state = FW_FINAL;
759 		retry = 0;	/* do NOT retry */
760 	} else if (fw_state == FW_TRY) {
761 		/* load failed, obtain alternate firmware */
762 		__obtain_firmware(dd);
763 		retry = (fw_state == FW_FINAL);
764 	} else {
765 		/* else in FW_FINAL or FW_ERR, no retry in either case */
766 		retry = 0;
767 	}
768 
769 	mutex_unlock(&fw_mutex);
770 	return retry;
771 }
772 
773 /*
774  * Write a block of data to a given array CSR.  All calls will be in
775  * multiples of 8 bytes.
776  */
write_rsa_data(struct hfi1_devdata * dd,int what,const u8 * data,int nbytes)777 static void write_rsa_data(struct hfi1_devdata *dd, int what,
778 			   const u8 *data, int nbytes)
779 {
780 	int qw_size = nbytes / 8;
781 	int i;
782 
783 	if (((unsigned long)data & 0x7) == 0) {
784 		/* aligned */
785 		u64 *ptr = (u64 *)data;
786 
787 		for (i = 0; i < qw_size; i++, ptr++)
788 			write_csr(dd, what + (8 * i), *ptr);
789 	} else {
790 		/* not aligned */
791 		for (i = 0; i < qw_size; i++, data += 8) {
792 			u64 value;
793 
794 			memcpy(&value, data, 8);
795 			write_csr(dd, what + (8 * i), value);
796 		}
797 	}
798 }
799 
800 /*
801  * Write a block of data to a given CSR as a stream of writes.  All calls will
802  * be in multiples of 8 bytes.
803  */
write_streamed_rsa_data(struct hfi1_devdata * dd,int what,const u8 * data,int nbytes)804 static void write_streamed_rsa_data(struct hfi1_devdata *dd, int what,
805 				    const u8 *data, int nbytes)
806 {
807 	u64 *ptr = (u64 *)data;
808 	int qw_size = nbytes / 8;
809 
810 	for (; qw_size > 0; qw_size--, ptr++)
811 		write_csr(dd, what, *ptr);
812 }
813 
814 /*
815  * Download the signature and start the RSA mechanism.  Wait for
816  * RSA_ENGINE_TIMEOUT before giving up.
817  */
run_rsa(struct hfi1_devdata * dd,const char * who,const u8 * signature)818 static int run_rsa(struct hfi1_devdata *dd, const char *who,
819 		   const u8 *signature)
820 {
821 	unsigned long timeout;
822 	u64 reg;
823 	u32 status;
824 	int ret = 0;
825 
826 	/* write the signature */
827 	write_rsa_data(dd, MISC_CFG_RSA_SIGNATURE, signature, KEY_SIZE);
828 
829 	/* initialize RSA */
830 	write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_INIT);
831 
832 	/*
833 	 * Make sure the engine is idle and insert a delay between the two
834 	 * writes to MISC_CFG_RSA_CMD.
835 	 */
836 	status = (read_csr(dd, MISC_CFG_FW_CTRL)
837 			   & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
838 			     >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
839 	if (status != RSA_STATUS_IDLE) {
840 		dd_dev_err(dd, "%s security engine not idle - giving up\n",
841 			   who);
842 		return -EBUSY;
843 	}
844 
845 	/* start RSA */
846 	write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_START);
847 
848 	/*
849 	 * Look for the result.
850 	 *
851 	 * The RSA engine is hooked up to two MISC errors.  The driver
852 	 * masks these errors as they do not respond to the standard
853 	 * error "clear down" mechanism.  Look for these errors here and
854 	 * clear them when possible.  This routine will exit with the
855 	 * errors of the current run still set.
856 	 *
857 	 * MISC_FW_AUTH_FAILED_ERR
858 	 *	Firmware authorization failed.  This can be cleared by
859 	 *	re-initializing the RSA engine, then clearing the status bit.
860 	 *	Do not re-init the RSA angine immediately after a successful
861 	 *	run - this will reset the current authorization.
862 	 *
863 	 * MISC_KEY_MISMATCH_ERR
864 	 *	Key does not match.  The only way to clear this is to load
865 	 *	a matching key then clear the status bit.  If this error
866 	 *	is raised, it will persist outside of this routine until a
867 	 *	matching key is loaded.
868 	 */
869 	timeout = msecs_to_jiffies(RSA_ENGINE_TIMEOUT) + jiffies;
870 	while (1) {
871 		status = (read_csr(dd, MISC_CFG_FW_CTRL)
872 			   & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
873 			     >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
874 
875 		if (status == RSA_STATUS_IDLE) {
876 			/* should not happen */
877 			dd_dev_err(dd, "%s firmware security bad idle state\n",
878 				   who);
879 			ret = -EINVAL;
880 			break;
881 		} else if (status == RSA_STATUS_DONE) {
882 			/* finished successfully */
883 			break;
884 		} else if (status == RSA_STATUS_FAILED) {
885 			/* finished unsuccessfully */
886 			ret = -EINVAL;
887 			break;
888 		}
889 		/* else still active */
890 
891 		if (time_after(jiffies, timeout)) {
892 			/*
893 			 * Timed out while active.  We can't reset the engine
894 			 * if it is stuck active, but run through the
895 			 * error code to see what error bits are set.
896 			 */
897 			dd_dev_err(dd, "%s firmware security time out\n", who);
898 			ret = -ETIMEDOUT;
899 			break;
900 		}
901 
902 		msleep(20);
903 	}
904 
905 	/*
906 	 * Arrive here on success or failure.  Clear all RSA engine
907 	 * errors.  All current errors will stick - the RSA logic is keeping
908 	 * error high.  All previous errors will clear - the RSA logic
909 	 * is not keeping the error high.
910 	 */
911 	write_csr(dd, MISC_ERR_CLEAR,
912 		  MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK |
913 		  MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK);
914 	/*
915 	 * All that is left are the current errors.  Print warnings on
916 	 * authorization failure details, if any.  Firmware authorization
917 	 * can be retried, so these are only warnings.
918 	 */
919 	reg = read_csr(dd, MISC_ERR_STATUS);
920 	if (ret) {
921 		if (reg & MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK)
922 			dd_dev_warn(dd, "%s firmware authorization failed\n",
923 				    who);
924 		if (reg & MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK)
925 			dd_dev_warn(dd, "%s firmware key mismatch\n", who);
926 	}
927 
928 	return ret;
929 }
930 
load_security_variables(struct hfi1_devdata * dd,struct firmware_details * fdet)931 static void load_security_variables(struct hfi1_devdata *dd,
932 				    struct firmware_details *fdet)
933 {
934 	/* Security variables a.  Write the modulus */
935 	write_rsa_data(dd, MISC_CFG_RSA_MODULUS, fdet->modulus, KEY_SIZE);
936 	/* Security variables b.  Write the r2 */
937 	write_rsa_data(dd, MISC_CFG_RSA_R2, fdet->r2, KEY_SIZE);
938 	/* Security variables c.  Write the mu */
939 	write_rsa_data(dd, MISC_CFG_RSA_MU, fdet->mu, MU_SIZE);
940 	/* Security variables d.  Write the header */
941 	write_streamed_rsa_data(dd, MISC_CFG_SHA_PRELOAD,
942 				(u8 *)fdet->css_header,
943 				sizeof(struct css_header));
944 }
945 
946 /* return the 8051 firmware state */
get_firmware_state(struct hfi1_devdata * dd)947 static inline u32 get_firmware_state(struct hfi1_devdata *dd)
948 {
949 	u64 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
950 
951 	return (reg >> DC_DC8051_STS_CUR_STATE_FIRMWARE_SHIFT)
952 				& DC_DC8051_STS_CUR_STATE_FIRMWARE_MASK;
953 }
954 
955 /*
956  * Wait until the firmware is up and ready to take host requests.
957  * Return 0 on success, -ETIMEDOUT on timeout.
958  */
wait_fm_ready(struct hfi1_devdata * dd,u32 mstimeout)959 int wait_fm_ready(struct hfi1_devdata *dd, u32 mstimeout)
960 {
961 	unsigned long timeout;
962 
963 	/* in the simulator, the fake 8051 is always ready */
964 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
965 		return 0;
966 
967 	timeout = msecs_to_jiffies(mstimeout) + jiffies;
968 	while (1) {
969 		if (get_firmware_state(dd) == 0xa0)	/* ready */
970 			return 0;
971 		if (time_after(jiffies, timeout))	/* timed out */
972 			return -ETIMEDOUT;
973 		usleep_range(1950, 2050); /* sleep 2ms-ish */
974 	}
975 }
976 
977 /*
978  * Load the 8051 firmware.
979  */
load_8051_firmware(struct hfi1_devdata * dd,struct firmware_details * fdet)980 static int load_8051_firmware(struct hfi1_devdata *dd,
981 			      struct firmware_details *fdet)
982 {
983 	u64 reg;
984 	int ret;
985 	u8 ver_major;
986 	u8 ver_minor;
987 	u8 ver_patch;
988 
989 	/*
990 	 * DC Reset sequence
991 	 * Load DC 8051 firmware
992 	 */
993 	/*
994 	 * DC reset step 1: Reset DC8051
995 	 */
996 	reg = DC_DC8051_CFG_RST_M8051W_SMASK
997 		| DC_DC8051_CFG_RST_CRAM_SMASK
998 		| DC_DC8051_CFG_RST_DRAM_SMASK
999 		| DC_DC8051_CFG_RST_IRAM_SMASK
1000 		| DC_DC8051_CFG_RST_SFR_SMASK;
1001 	write_csr(dd, DC_DC8051_CFG_RST, reg);
1002 
1003 	/*
1004 	 * DC reset step 2 (optional): Load 8051 data memory with link
1005 	 * configuration
1006 	 */
1007 
1008 	/*
1009 	 * DC reset step 3: Load DC8051 firmware
1010 	 */
1011 	/* release all but the core reset */
1012 	reg = DC_DC8051_CFG_RST_M8051W_SMASK;
1013 	write_csr(dd, DC_DC8051_CFG_RST, reg);
1014 
1015 	/* Firmware load step 1 */
1016 	load_security_variables(dd, fdet);
1017 
1018 	/*
1019 	 * Firmware load step 2.  Clear MISC_CFG_FW_CTRL.FW_8051_LOADED
1020 	 */
1021 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
1022 
1023 	/* Firmware load steps 3-5 */
1024 	ret = write_8051(dd, 1/*code*/, 0, fdet->firmware_ptr,
1025 			 fdet->firmware_len);
1026 	if (ret)
1027 		return ret;
1028 
1029 	/*
1030 	 * DC reset step 4. Host starts the DC8051 firmware
1031 	 */
1032 	/*
1033 	 * Firmware load step 6.  Set MISC_CFG_FW_CTRL.FW_8051_LOADED
1034 	 */
1035 	write_csr(dd, MISC_CFG_FW_CTRL, MISC_CFG_FW_CTRL_FW_8051_LOADED_SMASK);
1036 
1037 	/* Firmware load steps 7-10 */
1038 	ret = run_rsa(dd, "8051", fdet->signature);
1039 	if (ret)
1040 		return ret;
1041 
1042 	/* clear all reset bits, releasing the 8051 */
1043 	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
1044 
1045 	/*
1046 	 * DC reset step 5. Wait for firmware to be ready to accept host
1047 	 * requests.
1048 	 */
1049 	ret = wait_fm_ready(dd, TIMEOUT_8051_START);
1050 	if (ret) { /* timed out */
1051 		dd_dev_err(dd, "8051 start timeout, current state 0x%x\n",
1052 			   get_firmware_state(dd));
1053 		return -ETIMEDOUT;
1054 	}
1055 
1056 	read_misc_status(dd, &ver_major, &ver_minor, &ver_patch);
1057 	dd_dev_info(dd, "8051 firmware version %d.%d.%d\n",
1058 		    (int)ver_major, (int)ver_minor, (int)ver_patch);
1059 	dd->dc8051_ver = dc8051_ver(ver_major, ver_minor, ver_patch);
1060 	ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
1061 	if (ret != HCMD_SUCCESS) {
1062 		dd_dev_err(dd,
1063 			   "Failed to set host interface version, return 0x%x\n",
1064 			   ret);
1065 		return -EIO;
1066 	}
1067 
1068 	return 0;
1069 }
1070 
1071 /*
1072  * Write the SBus request register
1073  *
1074  * No need for masking - the arguments are sized exactly.
1075  */
sbus_request(struct hfi1_devdata * dd,u8 receiver_addr,u8 data_addr,u8 command,u32 data_in)1076 void sbus_request(struct hfi1_devdata *dd,
1077 		  u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1078 {
1079 	write_csr(dd, ASIC_CFG_SBUS_REQUEST,
1080 		  ((u64)data_in << ASIC_CFG_SBUS_REQUEST_DATA_IN_SHIFT) |
1081 		  ((u64)command << ASIC_CFG_SBUS_REQUEST_COMMAND_SHIFT) |
1082 		  ((u64)data_addr << ASIC_CFG_SBUS_REQUEST_DATA_ADDR_SHIFT) |
1083 		  ((u64)receiver_addr <<
1084 		   ASIC_CFG_SBUS_REQUEST_RECEIVER_ADDR_SHIFT));
1085 }
1086 
1087 /*
1088  * Read a value from the SBus.
1089  *
1090  * Requires the caller to be in fast mode
1091  */
sbus_read(struct hfi1_devdata * dd,u8 receiver_addr,u8 data_addr,u32 data_in)1092 static u32 sbus_read(struct hfi1_devdata *dd, u8 receiver_addr, u8 data_addr,
1093 		     u32 data_in)
1094 {
1095 	u64 reg;
1096 	int retries;
1097 	int success = 0;
1098 	u32 result = 0;
1099 	u32 result_code = 0;
1100 
1101 	sbus_request(dd, receiver_addr, data_addr, READ_SBUS_RECEIVER, data_in);
1102 
1103 	for (retries = 0; retries < 100; retries++) {
1104 		usleep_range(1000, 1200); /* arbitrary */
1105 		reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1106 		result_code = (reg >> ASIC_STS_SBUS_RESULT_RESULT_CODE_SHIFT)
1107 				& ASIC_STS_SBUS_RESULT_RESULT_CODE_MASK;
1108 		if (result_code != SBUS_READ_COMPLETE)
1109 			continue;
1110 
1111 		success = 1;
1112 		result = (reg >> ASIC_STS_SBUS_RESULT_DATA_OUT_SHIFT)
1113 			   & ASIC_STS_SBUS_RESULT_DATA_OUT_MASK;
1114 		break;
1115 	}
1116 
1117 	if (!success) {
1118 		dd_dev_err(dd, "%s: read failed, result code 0x%x\n", __func__,
1119 			   result_code);
1120 	}
1121 
1122 	return result;
1123 }
1124 
1125 /*
1126  * Turn off the SBus and fabric serdes spicos.
1127  *
1128  * + Must be called with Sbus fast mode turned on.
1129  * + Must be called after fabric serdes broadcast is set up.
1130  * + Must be called before the 8051 is loaded - assumes 8051 is not loaded
1131  *   when using MISC_CFG_FW_CTRL.
1132  */
turn_off_spicos(struct hfi1_devdata * dd,int flags)1133 static void turn_off_spicos(struct hfi1_devdata *dd, int flags)
1134 {
1135 	/* only needed on A0 */
1136 	if (!is_ax(dd))
1137 		return;
1138 
1139 	dd_dev_info(dd, "Turning off spicos:%s%s\n",
1140 		    flags & SPICO_SBUS ? " SBus" : "",
1141 		    flags & SPICO_FABRIC ? " fabric" : "");
1142 
1143 	write_csr(dd, MISC_CFG_FW_CTRL, ENABLE_SPICO_SMASK);
1144 	/* disable SBus spico */
1145 	if (flags & SPICO_SBUS)
1146 		sbus_request(dd, SBUS_MASTER_BROADCAST, 0x01,
1147 			     WRITE_SBUS_RECEIVER, 0x00000040);
1148 
1149 	/* disable the fabric serdes spicos */
1150 	if (flags & SPICO_FABRIC)
1151 		sbus_request(dd, fabric_serdes_broadcast[dd->hfi1_id],
1152 			     0x07, WRITE_SBUS_RECEIVER, 0x00000000);
1153 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
1154 }
1155 
1156 /*
1157  * Reset all of the fabric serdes for this HFI in preparation to take the
1158  * link to Polling.
1159  *
1160  * To do a reset, we need to write to to the serdes registers.  Unfortunately,
1161  * the fabric serdes download to the other HFI on the ASIC will have turned
1162  * off the firmware validation on this HFI.  This means we can't write to the
1163  * registers to reset the serdes.  Work around this by performing a complete
1164  * re-download and validation of the fabric serdes firmware.  This, as a
1165  * by-product, will reset the serdes.  NOTE: the re-download requires that
1166  * the 8051 be in the Offline state.  I.e. not actively trying to use the
1167  * serdes.  This routine is called at the point where the link is Offline and
1168  * is getting ready to go to Polling.
1169  */
fabric_serdes_reset(struct hfi1_devdata * dd)1170 void fabric_serdes_reset(struct hfi1_devdata *dd)
1171 {
1172 	int ret;
1173 
1174 	if (!fw_fabric_serdes_load)
1175 		return;
1176 
1177 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1178 	if (ret) {
1179 		dd_dev_err(dd,
1180 			   "Cannot acquire SBus resource to reset fabric SerDes - perhaps you should reboot\n");
1181 		return;
1182 	}
1183 	set_sbus_fast_mode(dd);
1184 
1185 	if (is_ax(dd)) {
1186 		/* A0 serdes do not work with a re-download */
1187 		u8 ra = fabric_serdes_broadcast[dd->hfi1_id];
1188 
1189 		/* place SerDes in reset and disable SPICO */
1190 		sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1191 		/* wait 100 refclk cycles @ 156.25MHz => 640ns */
1192 		udelay(1);
1193 		/* remove SerDes reset */
1194 		sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1195 		/* turn SPICO enable on */
1196 		sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1197 	} else {
1198 		turn_off_spicos(dd, SPICO_FABRIC);
1199 		/*
1200 		 * No need for firmware retry - what to download has already
1201 		 * been decided.
1202 		 * No need to pay attention to the load return - the only
1203 		 * failure is a validation failure, which has already been
1204 		 * checked by the initial download.
1205 		 */
1206 		(void)load_fabric_serdes_firmware(dd, &fw_fabric);
1207 	}
1208 
1209 	clear_sbus_fast_mode(dd);
1210 	release_chip_resource(dd, CR_SBUS);
1211 }
1212 
1213 /* Access to the SBus in this routine should probably be serialized */
sbus_request_slow(struct hfi1_devdata * dd,u8 receiver_addr,u8 data_addr,u8 command,u32 data_in)1214 int sbus_request_slow(struct hfi1_devdata *dd,
1215 		      u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1216 {
1217 	u64 reg, count = 0;
1218 
1219 	/* make sure fast mode is clear */
1220 	clear_sbus_fast_mode(dd);
1221 
1222 	sbus_request(dd, receiver_addr, data_addr, command, data_in);
1223 	write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1224 		  ASIC_CFG_SBUS_EXECUTE_EXECUTE_SMASK);
1225 	/* Wait for both DONE and RCV_DATA_VALID to go high */
1226 	reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1227 	while (!((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1228 		 (reg & ASIC_STS_SBUS_RESULT_RCV_DATA_VALID_SMASK))) {
1229 		if (count++ >= SBUS_MAX_POLL_COUNT) {
1230 			u64 counts = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1231 			/*
1232 			 * If the loop has timed out, we are OK if DONE bit
1233 			 * is set and RCV_DATA_VALID and EXECUTE counters
1234 			 * are the same. If not, we cannot proceed.
1235 			 */
1236 			if ((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1237 			    (SBUS_COUNTER(counts, RCV_DATA_VALID) ==
1238 			     SBUS_COUNTER(counts, EXECUTE)))
1239 				break;
1240 			return -ETIMEDOUT;
1241 		}
1242 		udelay(1);
1243 		reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1244 	}
1245 	count = 0;
1246 	write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1247 	/* Wait for DONE to clear after EXECUTE is cleared */
1248 	reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1249 	while (reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) {
1250 		if (count++ >= SBUS_MAX_POLL_COUNT)
1251 			return -ETIME;
1252 		udelay(1);
1253 		reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1254 	}
1255 	return 0;
1256 }
1257 
load_fabric_serdes_firmware(struct hfi1_devdata * dd,struct firmware_details * fdet)1258 static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
1259 				       struct firmware_details *fdet)
1260 {
1261 	int i, err;
1262 	const u8 ra = fabric_serdes_broadcast[dd->hfi1_id]; /* receiver addr */
1263 
1264 	dd_dev_info(dd, "Downloading fabric firmware\n");
1265 
1266 	/* step 1: load security variables */
1267 	load_security_variables(dd, fdet);
1268 	/* step 2: place SerDes in reset and disable SPICO */
1269 	sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1270 	/* wait 100 refclk cycles @ 156.25MHz => 640ns */
1271 	udelay(1);
1272 	/* step 3:  remove SerDes reset */
1273 	sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1274 	/* step 4: assert IMEM override */
1275 	sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x40000000);
1276 	/* step 5: download SerDes machine code */
1277 	for (i = 0; i < fdet->firmware_len; i += 4) {
1278 		sbus_request(dd, ra, 0x0a, WRITE_SBUS_RECEIVER,
1279 			     *(u32 *)&fdet->firmware_ptr[i]);
1280 	}
1281 	/* step 6: IMEM override off */
1282 	sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x00000000);
1283 	/* step 7: turn ECC on */
1284 	sbus_request(dd, ra, 0x0b, WRITE_SBUS_RECEIVER, 0x000c0000);
1285 
1286 	/* steps 8-11: run the RSA engine */
1287 	err = run_rsa(dd, "fabric serdes", fdet->signature);
1288 	if (err)
1289 		return err;
1290 
1291 	/* step 12: turn SPICO enable on */
1292 	sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1293 	/* step 13: enable core hardware interrupts */
1294 	sbus_request(dd, ra, 0x08, WRITE_SBUS_RECEIVER, 0x00000000);
1295 
1296 	return 0;
1297 }
1298 
load_sbus_firmware(struct hfi1_devdata * dd,struct firmware_details * fdet)1299 static int load_sbus_firmware(struct hfi1_devdata *dd,
1300 			      struct firmware_details *fdet)
1301 {
1302 	int i, err;
1303 	const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1304 
1305 	dd_dev_info(dd, "Downloading SBus firmware\n");
1306 
1307 	/* step 1: load security variables */
1308 	load_security_variables(dd, fdet);
1309 	/* step 2: place SPICO into reset and enable off */
1310 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x000000c0);
1311 	/* step 3: remove reset, enable off, IMEM_CNTRL_EN on */
1312 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000240);
1313 	/* step 4: set starting IMEM address for burst download */
1314 	sbus_request(dd, ra, 0x03, WRITE_SBUS_RECEIVER, 0x80000000);
1315 	/* step 5: download the SBus Master machine code */
1316 	for (i = 0; i < fdet->firmware_len; i += 4) {
1317 		sbus_request(dd, ra, 0x14, WRITE_SBUS_RECEIVER,
1318 			     *(u32 *)&fdet->firmware_ptr[i]);
1319 	}
1320 	/* step 6: set IMEM_CNTL_EN off */
1321 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000040);
1322 	/* step 7: turn ECC on */
1323 	sbus_request(dd, ra, 0x16, WRITE_SBUS_RECEIVER, 0x000c0000);
1324 
1325 	/* steps 8-11: run the RSA engine */
1326 	err = run_rsa(dd, "SBus", fdet->signature);
1327 	if (err)
1328 		return err;
1329 
1330 	/* step 12: set SPICO_ENABLE on */
1331 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1332 
1333 	return 0;
1334 }
1335 
load_pcie_serdes_firmware(struct hfi1_devdata * dd,struct firmware_details * fdet)1336 static int load_pcie_serdes_firmware(struct hfi1_devdata *dd,
1337 				     struct firmware_details *fdet)
1338 {
1339 	int i;
1340 	const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1341 
1342 	dd_dev_info(dd, "Downloading PCIe firmware\n");
1343 
1344 	/* step 1: load security variables */
1345 	load_security_variables(dd, fdet);
1346 	/* step 2: assert single step (halts the SBus Master spico) */
1347 	sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000001);
1348 	/* step 3: enable XDMEM access */
1349 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000d40);
1350 	/* step 4: load firmware into SBus Master XDMEM */
1351 	/*
1352 	 * NOTE: the dmem address, write_en, and wdata are all pre-packed,
1353 	 * we only need to pick up the bytes and write them
1354 	 */
1355 	for (i = 0; i < fdet->firmware_len; i += 4) {
1356 		sbus_request(dd, ra, 0x04, WRITE_SBUS_RECEIVER,
1357 			     *(u32 *)&fdet->firmware_ptr[i]);
1358 	}
1359 	/* step 5: disable XDMEM access */
1360 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1361 	/* step 6: allow SBus Spico to run */
1362 	sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000000);
1363 
1364 	/*
1365 	 * steps 7-11: run RSA, if it succeeds, firmware is available to
1366 	 * be swapped
1367 	 */
1368 	return run_rsa(dd, "PCIe serdes", fdet->signature);
1369 }
1370 
1371 /*
1372  * Set the given broadcast values on the given list of devices.
1373  */
set_serdes_broadcast(struct hfi1_devdata * dd,u8 bg1,u8 bg2,const u8 * addrs,int count)1374 static void set_serdes_broadcast(struct hfi1_devdata *dd, u8 bg1, u8 bg2,
1375 				 const u8 *addrs, int count)
1376 {
1377 	while (--count >= 0) {
1378 		/*
1379 		 * Set BROADCAST_GROUP_1 and BROADCAST_GROUP_2, leave
1380 		 * defaults for everything else.  Do not read-modify-write,
1381 		 * per instruction from the manufacturer.
1382 		 *
1383 		 * Register 0xfd:
1384 		 *	bits    what
1385 		 *	-----	---------------------------------
1386 		 *	  0	IGNORE_BROADCAST  (default 0)
1387 		 *	11:4	BROADCAST_GROUP_1 (default 0xff)
1388 		 *	23:16	BROADCAST_GROUP_2 (default 0xff)
1389 		 */
1390 		sbus_request(dd, addrs[count], 0xfd, WRITE_SBUS_RECEIVER,
1391 			     (u32)bg1 << 4 | (u32)bg2 << 16);
1392 	}
1393 }
1394 
acquire_hw_mutex(struct hfi1_devdata * dd)1395 int acquire_hw_mutex(struct hfi1_devdata *dd)
1396 {
1397 	unsigned long timeout;
1398 	int try = 0;
1399 	u8 mask = 1 << dd->hfi1_id;
1400 	u8 user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1401 
1402 	if (user == mask) {
1403 		dd_dev_info(dd,
1404 			    "Hardware mutex already acquired, mutex mask %u\n",
1405 			    (u32)mask);
1406 		return 0;
1407 	}
1408 
1409 retry:
1410 	timeout = msecs_to_jiffies(HM_TIMEOUT) + jiffies;
1411 	while (1) {
1412 		write_csr(dd, ASIC_CFG_MUTEX, mask);
1413 		user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1414 		if (user == mask)
1415 			return 0; /* success */
1416 		if (time_after(jiffies, timeout))
1417 			break; /* timed out */
1418 		msleep(20);
1419 	}
1420 
1421 	/* timed out */
1422 	dd_dev_err(dd,
1423 		   "Unable to acquire hardware mutex, mutex mask %u, my mask %u (%s)\n",
1424 		   (u32)user, (u32)mask, (try == 0) ? "retrying" : "giving up");
1425 
1426 	if (try == 0) {
1427 		/* break mutex and retry */
1428 		write_csr(dd, ASIC_CFG_MUTEX, 0);
1429 		try++;
1430 		goto retry;
1431 	}
1432 
1433 	return -EBUSY;
1434 }
1435 
release_hw_mutex(struct hfi1_devdata * dd)1436 void release_hw_mutex(struct hfi1_devdata *dd)
1437 {
1438 	u8 mask = 1 << dd->hfi1_id;
1439 	u8 user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1440 
1441 	if (user != mask)
1442 		dd_dev_warn(dd,
1443 			    "Unable to release hardware mutex, mutex mask %u, my mask %u\n",
1444 			    (u32)user, (u32)mask);
1445 	else
1446 		write_csr(dd, ASIC_CFG_MUTEX, 0);
1447 }
1448 
1449 /* return the given resource bit(s) as a mask for the given HFI */
resource_mask(u32 hfi1_id,u32 resource)1450 static inline u64 resource_mask(u32 hfi1_id, u32 resource)
1451 {
1452 	return ((u64)resource) << (hfi1_id ? CR_DYN_SHIFT : 0);
1453 }
1454 
fail_mutex_acquire_message(struct hfi1_devdata * dd,const char * func)1455 static void fail_mutex_acquire_message(struct hfi1_devdata *dd,
1456 				       const char *func)
1457 {
1458 	dd_dev_err(dd,
1459 		   "%s: hardware mutex stuck - suggest rebooting the machine\n",
1460 		   func);
1461 }
1462 
1463 /*
1464  * Acquire access to a chip resource.
1465  *
1466  * Return 0 on success, -EBUSY if resource busy, -EIO if mutex acquire failed.
1467  */
__acquire_chip_resource(struct hfi1_devdata * dd,u32 resource)1468 static int __acquire_chip_resource(struct hfi1_devdata *dd, u32 resource)
1469 {
1470 	u64 scratch0, all_bits, my_bit;
1471 	int ret;
1472 
1473 	if (resource & CR_DYN_MASK) {
1474 		/* a dynamic resource is in use if either HFI has set the bit */
1475 		if (dd->pcidev->device == PCI_DEVICE_ID_INTEL0 &&
1476 		    (resource & (CR_I2C1 | CR_I2C2))) {
1477 			/* discrete devices must serialize across both chains */
1478 			all_bits = resource_mask(0, CR_I2C1 | CR_I2C2) |
1479 					resource_mask(1, CR_I2C1 | CR_I2C2);
1480 		} else {
1481 			all_bits = resource_mask(0, resource) |
1482 						resource_mask(1, resource);
1483 		}
1484 		my_bit = resource_mask(dd->hfi1_id, resource);
1485 	} else {
1486 		/* non-dynamic resources are not split between HFIs */
1487 		all_bits = resource;
1488 		my_bit = resource;
1489 	}
1490 
1491 	/* lock against other callers within the driver wanting a resource */
1492 	mutex_lock(&dd->asic_data->asic_resource_mutex);
1493 
1494 	ret = acquire_hw_mutex(dd);
1495 	if (ret) {
1496 		fail_mutex_acquire_message(dd, __func__);
1497 		ret = -EIO;
1498 		goto done;
1499 	}
1500 
1501 	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1502 	if (scratch0 & all_bits) {
1503 		ret = -EBUSY;
1504 	} else {
1505 		write_csr(dd, ASIC_CFG_SCRATCH, scratch0 | my_bit);
1506 		/* force write to be visible to other HFI on another OS */
1507 		(void)read_csr(dd, ASIC_CFG_SCRATCH);
1508 	}
1509 
1510 	release_hw_mutex(dd);
1511 
1512 done:
1513 	mutex_unlock(&dd->asic_data->asic_resource_mutex);
1514 	return ret;
1515 }
1516 
1517 /*
1518  * Acquire access to a chip resource, wait up to mswait milliseconds for
1519  * the resource to become available.
1520  *
1521  * Return 0 on success, -EBUSY if busy (even after wait), -EIO if mutex
1522  * acquire failed.
1523  */
acquire_chip_resource(struct hfi1_devdata * dd,u32 resource,u32 mswait)1524 int acquire_chip_resource(struct hfi1_devdata *dd, u32 resource, u32 mswait)
1525 {
1526 	unsigned long timeout;
1527 	int ret;
1528 
1529 	timeout = jiffies + msecs_to_jiffies(mswait);
1530 	while (1) {
1531 		ret = __acquire_chip_resource(dd, resource);
1532 		if (ret != -EBUSY)
1533 			return ret;
1534 		/* resource is busy, check our timeout */
1535 		if (time_after_eq(jiffies, timeout))
1536 			return -EBUSY;
1537 		usleep_range(80, 120);	/* arbitrary delay */
1538 	}
1539 }
1540 
1541 /*
1542  * Release access to a chip resource
1543  */
release_chip_resource(struct hfi1_devdata * dd,u32 resource)1544 void release_chip_resource(struct hfi1_devdata *dd, u32 resource)
1545 {
1546 	u64 scratch0, bit;
1547 
1548 	/* only dynamic resources should ever be cleared */
1549 	if (!(resource & CR_DYN_MASK)) {
1550 		dd_dev_err(dd, "%s: invalid resource 0x%x\n", __func__,
1551 			   resource);
1552 		return;
1553 	}
1554 	bit = resource_mask(dd->hfi1_id, resource);
1555 
1556 	/* lock against other callers within the driver wanting a resource */
1557 	mutex_lock(&dd->asic_data->asic_resource_mutex);
1558 
1559 	if (acquire_hw_mutex(dd)) {
1560 		fail_mutex_acquire_message(dd, __func__);
1561 		goto done;
1562 	}
1563 
1564 	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1565 	if ((scratch0 & bit) != 0) {
1566 		scratch0 &= ~bit;
1567 		write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1568 		/* force write to be visible to other HFI on another OS */
1569 		(void)read_csr(dd, ASIC_CFG_SCRATCH);
1570 	} else {
1571 		dd_dev_warn(dd, "%s: id %d, resource 0x%x: bit not set\n",
1572 			    __func__, dd->hfi1_id, resource);
1573 	}
1574 
1575 	release_hw_mutex(dd);
1576 
1577 done:
1578 	mutex_unlock(&dd->asic_data->asic_resource_mutex);
1579 }
1580 
1581 /*
1582  * Return true if resource is set, false otherwise.  Print a warning
1583  * if not set and a function is supplied.
1584  */
check_chip_resource(struct hfi1_devdata * dd,u32 resource,const char * func)1585 bool check_chip_resource(struct hfi1_devdata *dd, u32 resource,
1586 			 const char *func)
1587 {
1588 	u64 scratch0, bit;
1589 
1590 	if (resource & CR_DYN_MASK)
1591 		bit = resource_mask(dd->hfi1_id, resource);
1592 	else
1593 		bit = resource;
1594 
1595 	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1596 	if ((scratch0 & bit) == 0) {
1597 		if (func)
1598 			dd_dev_warn(dd,
1599 				    "%s: id %d, resource 0x%x, not acquired!\n",
1600 				    func, dd->hfi1_id, resource);
1601 		return false;
1602 	}
1603 	return true;
1604 }
1605 
clear_chip_resources(struct hfi1_devdata * dd,const char * func)1606 static void clear_chip_resources(struct hfi1_devdata *dd, const char *func)
1607 {
1608 	u64 scratch0;
1609 
1610 	/* lock against other callers within the driver wanting a resource */
1611 	mutex_lock(&dd->asic_data->asic_resource_mutex);
1612 
1613 	if (acquire_hw_mutex(dd)) {
1614 		fail_mutex_acquire_message(dd, func);
1615 		goto done;
1616 	}
1617 
1618 	/* clear all dynamic access bits for this HFI */
1619 	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1620 	scratch0 &= ~resource_mask(dd->hfi1_id, CR_DYN_MASK);
1621 	write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1622 	/* force write to be visible to other HFI on another OS */
1623 	(void)read_csr(dd, ASIC_CFG_SCRATCH);
1624 
1625 	release_hw_mutex(dd);
1626 
1627 done:
1628 	mutex_unlock(&dd->asic_data->asic_resource_mutex);
1629 }
1630 
init_chip_resources(struct hfi1_devdata * dd)1631 void init_chip_resources(struct hfi1_devdata *dd)
1632 {
1633 	/* clear any holds left by us */
1634 	clear_chip_resources(dd, __func__);
1635 }
1636 
finish_chip_resources(struct hfi1_devdata * dd)1637 void finish_chip_resources(struct hfi1_devdata *dd)
1638 {
1639 	/* clear any holds left by us */
1640 	clear_chip_resources(dd, __func__);
1641 }
1642 
set_sbus_fast_mode(struct hfi1_devdata * dd)1643 void set_sbus_fast_mode(struct hfi1_devdata *dd)
1644 {
1645 	write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1646 		  ASIC_CFG_SBUS_EXECUTE_FAST_MODE_SMASK);
1647 }
1648 
clear_sbus_fast_mode(struct hfi1_devdata * dd)1649 void clear_sbus_fast_mode(struct hfi1_devdata *dd)
1650 {
1651 	u64 reg, count = 0;
1652 
1653 	reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1654 	while (SBUS_COUNTER(reg, EXECUTE) !=
1655 	       SBUS_COUNTER(reg, RCV_DATA_VALID)) {
1656 		if (count++ >= SBUS_MAX_POLL_COUNT)
1657 			break;
1658 		udelay(1);
1659 		reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1660 	}
1661 	write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1662 }
1663 
load_firmware(struct hfi1_devdata * dd)1664 int load_firmware(struct hfi1_devdata *dd)
1665 {
1666 	int ret;
1667 
1668 	if (fw_fabric_serdes_load) {
1669 		ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1670 		if (ret)
1671 			return ret;
1672 
1673 		set_sbus_fast_mode(dd);
1674 
1675 		set_serdes_broadcast(dd, all_fabric_serdes_broadcast,
1676 				     fabric_serdes_broadcast[dd->hfi1_id],
1677 				     fabric_serdes_addrs[dd->hfi1_id],
1678 				     NUM_FABRIC_SERDES);
1679 		turn_off_spicos(dd, SPICO_FABRIC);
1680 		do {
1681 			ret = load_fabric_serdes_firmware(dd, &fw_fabric);
1682 		} while (retry_firmware(dd, ret));
1683 
1684 		clear_sbus_fast_mode(dd);
1685 		release_chip_resource(dd, CR_SBUS);
1686 		if (ret)
1687 			return ret;
1688 	}
1689 
1690 	if (fw_8051_load) {
1691 		do {
1692 			ret = load_8051_firmware(dd, &fw_8051);
1693 		} while (retry_firmware(dd, ret));
1694 		if (ret)
1695 			return ret;
1696 	}
1697 
1698 	dump_fw_version(dd);
1699 	return 0;
1700 }
1701 
hfi1_firmware_init(struct hfi1_devdata * dd)1702 int hfi1_firmware_init(struct hfi1_devdata *dd)
1703 {
1704 	/* only RTL can use these */
1705 	if (dd->icode != ICODE_RTL_SILICON) {
1706 		fw_fabric_serdes_load = 0;
1707 		fw_pcie_serdes_load = 0;
1708 		fw_sbus_load = 0;
1709 	}
1710 
1711 	/* no 8051 or QSFP on simulator */
1712 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
1713 		fw_8051_load = 0;
1714 
1715 	if (!fw_8051_name) {
1716 		if (dd->icode == ICODE_RTL_SILICON)
1717 			fw_8051_name = DEFAULT_FW_8051_NAME_ASIC;
1718 		else
1719 			fw_8051_name = DEFAULT_FW_8051_NAME_FPGA;
1720 	}
1721 	if (!fw_fabric_serdes_name)
1722 		fw_fabric_serdes_name = DEFAULT_FW_FABRIC_NAME;
1723 	if (!fw_sbus_name)
1724 		fw_sbus_name = DEFAULT_FW_SBUS_NAME;
1725 	if (!fw_pcie_serdes_name)
1726 		fw_pcie_serdes_name = DEFAULT_FW_PCIE_NAME;
1727 
1728 	return obtain_firmware(dd);
1729 }
1730 
1731 /*
1732  * This function is a helper function for parse_platform_config(...) and
1733  * does not check for validity of the platform configuration cache
1734  * (because we know it is invalid as we are building up the cache).
1735  * As such, this should not be called from anywhere other than
1736  * parse_platform_config
1737  */
check_meta_version(struct hfi1_devdata * dd,u32 * system_table)1738 static int check_meta_version(struct hfi1_devdata *dd, u32 *system_table)
1739 {
1740 	u32 meta_ver, meta_ver_meta, ver_start, ver_len, mask;
1741 	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1742 
1743 	if (!system_table)
1744 		return -EINVAL;
1745 
1746 	meta_ver_meta =
1747 	*(pcfgcache->config_tables[PLATFORM_CONFIG_SYSTEM_TABLE].table_metadata
1748 	+ SYSTEM_TABLE_META_VERSION);
1749 
1750 	mask = ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
1751 	ver_start = meta_ver_meta & mask;
1752 
1753 	meta_ver_meta >>= METADATA_TABLE_FIELD_LEN_SHIFT;
1754 
1755 	mask = ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
1756 	ver_len = meta_ver_meta & mask;
1757 
1758 	ver_start /= 8;
1759 	meta_ver = *((u8 *)system_table + ver_start) & ((1 << ver_len) - 1);
1760 
1761 	if (meta_ver < 4) {
1762 		dd_dev_info(
1763 			dd, "%s:Please update platform config\n", __func__);
1764 		return -EINVAL;
1765 	}
1766 	return 0;
1767 }
1768 
parse_platform_config(struct hfi1_devdata * dd)1769 int parse_platform_config(struct hfi1_devdata *dd)
1770 {
1771 	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1772 	struct hfi1_pportdata *ppd = dd->pport;
1773 	u32 *ptr = NULL;
1774 	u32 header1 = 0, header2 = 0, magic_num = 0, crc = 0, file_length = 0;
1775 	u32 record_idx = 0, table_type = 0, table_length_dwords = 0;
1776 	int ret = -EINVAL; /* assume failure */
1777 
1778 	/*
1779 	 * For integrated devices that did not fall back to the default file,
1780 	 * the SI tuning information for active channels is acquired from the
1781 	 * scratch register bitmap, thus there is no platform config to parse.
1782 	 * Skip parsing in these situations.
1783 	 */
1784 	if (ppd->config_from_scratch)
1785 		return 0;
1786 
1787 	if (!dd->platform_config.data) {
1788 		dd_dev_err(dd, "%s: Missing config file\n", __func__);
1789 		goto bail;
1790 	}
1791 	ptr = (u32 *)dd->platform_config.data;
1792 
1793 	magic_num = *ptr;
1794 	ptr++;
1795 	if (magic_num != PLATFORM_CONFIG_MAGIC_NUM) {
1796 		dd_dev_err(dd, "%s: Bad config file\n", __func__);
1797 		goto bail;
1798 	}
1799 
1800 	/* Field is file size in DWORDs */
1801 	file_length = (*ptr) * 4;
1802 
1803 	/*
1804 	 * Length can't be larger than partition size. Assume platform
1805 	 * config format version 4 is being used. Interpret the file size
1806 	 * field as header instead by not moving the pointer.
1807 	 */
1808 	if (file_length > MAX_PLATFORM_CONFIG_FILE_SIZE) {
1809 		dd_dev_info(dd,
1810 			    "%s:File length out of bounds, using alternative format\n",
1811 			    __func__);
1812 		file_length = PLATFORM_CONFIG_FORMAT_4_FILE_SIZE;
1813 	} else {
1814 		ptr++;
1815 	}
1816 
1817 	if (file_length > dd->platform_config.size) {
1818 		dd_dev_info(dd, "%s:File claims to be larger than read size\n",
1819 			    __func__);
1820 		goto bail;
1821 	} else if (file_length < dd->platform_config.size) {
1822 		dd_dev_info(dd,
1823 			    "%s:File claims to be smaller than read size, continuing\n",
1824 			    __func__);
1825 	}
1826 	/* exactly equal, perfection */
1827 
1828 	/*
1829 	 * In both cases where we proceed, using the self-reported file length
1830 	 * is the safer option. In case of old format a predefined value is
1831 	 * being used.
1832 	 */
1833 	while (ptr < (u32 *)(dd->platform_config.data + file_length)) {
1834 		header1 = *ptr;
1835 		header2 = *(ptr + 1);
1836 		if (header1 != ~header2) {
1837 			dd_dev_err(dd, "%s: Failed validation at offset %ld\n",
1838 				   __func__, (ptr - (u32 *)
1839 					      dd->platform_config.data));
1840 			goto bail;
1841 		}
1842 
1843 		record_idx = *ptr &
1844 			((1 << PLATFORM_CONFIG_HEADER_RECORD_IDX_LEN_BITS) - 1);
1845 
1846 		table_length_dwords = (*ptr >>
1847 				PLATFORM_CONFIG_HEADER_TABLE_LENGTH_SHIFT) &
1848 		      ((1 << PLATFORM_CONFIG_HEADER_TABLE_LENGTH_LEN_BITS) - 1);
1849 
1850 		table_type = (*ptr >> PLATFORM_CONFIG_HEADER_TABLE_TYPE_SHIFT) &
1851 			((1 << PLATFORM_CONFIG_HEADER_TABLE_TYPE_LEN_BITS) - 1);
1852 
1853 		/* Done with this set of headers */
1854 		ptr += 2;
1855 
1856 		if (record_idx) {
1857 			/* data table */
1858 			switch (table_type) {
1859 			case PLATFORM_CONFIG_SYSTEM_TABLE:
1860 				pcfgcache->config_tables[table_type].num_table =
1861 									1;
1862 				ret = check_meta_version(dd, ptr);
1863 				if (ret)
1864 					goto bail;
1865 				break;
1866 			case PLATFORM_CONFIG_PORT_TABLE:
1867 				pcfgcache->config_tables[table_type].num_table =
1868 									2;
1869 				break;
1870 			case PLATFORM_CONFIG_RX_PRESET_TABLE:
1871 			case PLATFORM_CONFIG_TX_PRESET_TABLE:
1872 			case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1873 			case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1874 				pcfgcache->config_tables[table_type].num_table =
1875 							table_length_dwords;
1876 				break;
1877 			default:
1878 				dd_dev_err(dd,
1879 					   "%s: Unknown data table %d, offset %ld\n",
1880 					   __func__, table_type,
1881 					   (ptr - (u32 *)
1882 					    dd->platform_config.data));
1883 				goto bail; /* We don't trust this file now */
1884 			}
1885 			pcfgcache->config_tables[table_type].table = ptr;
1886 		} else {
1887 			/* metadata table */
1888 			switch (table_type) {
1889 			case PLATFORM_CONFIG_SYSTEM_TABLE:
1890 			case PLATFORM_CONFIG_PORT_TABLE:
1891 			case PLATFORM_CONFIG_RX_PRESET_TABLE:
1892 			case PLATFORM_CONFIG_TX_PRESET_TABLE:
1893 			case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1894 			case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1895 				break;
1896 			default:
1897 				dd_dev_err(dd,
1898 					   "%s: Unknown meta table %d, offset %ld\n",
1899 					   __func__, table_type,
1900 					   (ptr -
1901 					    (u32 *)dd->platform_config.data));
1902 				goto bail; /* We don't trust this file now */
1903 			}
1904 			pcfgcache->config_tables[table_type].table_metadata =
1905 									ptr;
1906 		}
1907 
1908 		/* Calculate and check table crc */
1909 		crc = crc32_le(~(u32)0, (unsigned char const *)ptr,
1910 			       (table_length_dwords * 4));
1911 		crc ^= ~(u32)0;
1912 
1913 		/* Jump the table */
1914 		ptr += table_length_dwords;
1915 		if (crc != *ptr) {
1916 			dd_dev_err(dd, "%s: Failed CRC check at offset %ld\n",
1917 				   __func__, (ptr -
1918 				   (u32 *)dd->platform_config.data));
1919 			ret = -EINVAL;
1920 			goto bail;
1921 		}
1922 		/* Jump the CRC DWORD */
1923 		ptr++;
1924 	}
1925 
1926 	pcfgcache->cache_valid = 1;
1927 	return 0;
1928 bail:
1929 	memset(pcfgcache, 0, sizeof(struct platform_config_cache));
1930 	return ret;
1931 }
1932 
get_integrated_platform_config_field(struct hfi1_devdata * dd,enum platform_config_table_type_encoding table_type,int field_index,u32 * data)1933 static void get_integrated_platform_config_field(
1934 		struct hfi1_devdata *dd,
1935 		enum platform_config_table_type_encoding table_type,
1936 		int field_index, u32 *data)
1937 {
1938 	struct hfi1_pportdata *ppd = dd->pport;
1939 	u8 *cache = ppd->qsfp_info.cache;
1940 	u32 tx_preset = 0;
1941 
1942 	switch (table_type) {
1943 	case PLATFORM_CONFIG_SYSTEM_TABLE:
1944 		if (field_index == SYSTEM_TABLE_QSFP_POWER_CLASS_MAX)
1945 			*data = ppd->max_power_class;
1946 		else if (field_index == SYSTEM_TABLE_QSFP_ATTENUATION_DEFAULT_25G)
1947 			*data = ppd->default_atten;
1948 		break;
1949 	case PLATFORM_CONFIG_PORT_TABLE:
1950 		if (field_index == PORT_TABLE_PORT_TYPE)
1951 			*data = ppd->port_type;
1952 		else if (field_index == PORT_TABLE_LOCAL_ATTEN_25G)
1953 			*data = ppd->local_atten;
1954 		else if (field_index == PORT_TABLE_REMOTE_ATTEN_25G)
1955 			*data = ppd->remote_atten;
1956 		break;
1957 	case PLATFORM_CONFIG_RX_PRESET_TABLE:
1958 		if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR_APPLY)
1959 			*data = (ppd->rx_preset & QSFP_RX_CDR_APPLY_SMASK) >>
1960 				QSFP_RX_CDR_APPLY_SHIFT;
1961 		else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP_APPLY)
1962 			*data = (ppd->rx_preset & QSFP_RX_EMP_APPLY_SMASK) >>
1963 				QSFP_RX_EMP_APPLY_SHIFT;
1964 		else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP_APPLY)
1965 			*data = (ppd->rx_preset & QSFP_RX_AMP_APPLY_SMASK) >>
1966 				QSFP_RX_AMP_APPLY_SHIFT;
1967 		else if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR)
1968 			*data = (ppd->rx_preset & QSFP_RX_CDR_SMASK) >>
1969 				QSFP_RX_CDR_SHIFT;
1970 		else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP)
1971 			*data = (ppd->rx_preset & QSFP_RX_EMP_SMASK) >>
1972 				QSFP_RX_EMP_SHIFT;
1973 		else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP)
1974 			*data = (ppd->rx_preset & QSFP_RX_AMP_SMASK) >>
1975 				QSFP_RX_AMP_SHIFT;
1976 		break;
1977 	case PLATFORM_CONFIG_TX_PRESET_TABLE:
1978 		if (cache[QSFP_EQ_INFO_OFFS] & 0x4)
1979 			tx_preset = ppd->tx_preset_eq;
1980 		else
1981 			tx_preset = ppd->tx_preset_noeq;
1982 		if (field_index == TX_PRESET_TABLE_PRECUR)
1983 			*data = (tx_preset & TX_PRECUR_SMASK) >>
1984 				TX_PRECUR_SHIFT;
1985 		else if (field_index == TX_PRESET_TABLE_ATTN)
1986 			*data = (tx_preset & TX_ATTN_SMASK) >>
1987 				TX_ATTN_SHIFT;
1988 		else if (field_index == TX_PRESET_TABLE_POSTCUR)
1989 			*data = (tx_preset & TX_POSTCUR_SMASK) >>
1990 				TX_POSTCUR_SHIFT;
1991 		else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR_APPLY)
1992 			*data = (tx_preset & QSFP_TX_CDR_APPLY_SMASK) >>
1993 				QSFP_TX_CDR_APPLY_SHIFT;
1994 		else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ_APPLY)
1995 			*data = (tx_preset & QSFP_TX_EQ_APPLY_SMASK) >>
1996 				QSFP_TX_EQ_APPLY_SHIFT;
1997 		else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR)
1998 			*data = (tx_preset & QSFP_TX_CDR_SMASK) >>
1999 				QSFP_TX_CDR_SHIFT;
2000 		else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ)
2001 			*data = (tx_preset & QSFP_TX_EQ_SMASK) >>
2002 				QSFP_TX_EQ_SHIFT;
2003 		break;
2004 	case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
2005 	case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
2006 	default:
2007 		break;
2008 	}
2009 }
2010 
get_platform_fw_field_metadata(struct hfi1_devdata * dd,int table,int field,u32 * field_len_bits,u32 * field_start_bits)2011 static int get_platform_fw_field_metadata(struct hfi1_devdata *dd, int table,
2012 					  int field, u32 *field_len_bits,
2013 					  u32 *field_start_bits)
2014 {
2015 	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
2016 	u32 *src_ptr = NULL;
2017 
2018 	if (!pcfgcache->cache_valid)
2019 		return -EINVAL;
2020 
2021 	switch (table) {
2022 	case PLATFORM_CONFIG_SYSTEM_TABLE:
2023 	case PLATFORM_CONFIG_PORT_TABLE:
2024 	case PLATFORM_CONFIG_RX_PRESET_TABLE:
2025 	case PLATFORM_CONFIG_TX_PRESET_TABLE:
2026 	case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
2027 	case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
2028 		if (field && field < platform_config_table_limits[table])
2029 			src_ptr =
2030 			pcfgcache->config_tables[table].table_metadata + field;
2031 		break;
2032 	default:
2033 		dd_dev_info(dd, "%s: Unknown table\n", __func__);
2034 		break;
2035 	}
2036 
2037 	if (!src_ptr)
2038 		return -EINVAL;
2039 
2040 	if (field_start_bits)
2041 		*field_start_bits = *src_ptr &
2042 		      ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
2043 
2044 	if (field_len_bits)
2045 		*field_len_bits = (*src_ptr >> METADATA_TABLE_FIELD_LEN_SHIFT)
2046 		       & ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
2047 
2048 	return 0;
2049 }
2050 
2051 /* This is the central interface to getting data out of the platform config
2052  * file. It depends on parse_platform_config() having populated the
2053  * platform_config_cache in hfi1_devdata, and checks the cache_valid member to
2054  * validate the sanity of the cache.
2055  *
2056  * The non-obvious parameters:
2057  * @table_index: Acts as a look up key into which instance of the tables the
2058  * relevant field is fetched from.
2059  *
2060  * This applies to the data tables that have multiple instances. The port table
2061  * is an exception to this rule as each HFI only has one port and thus the
2062  * relevant table can be distinguished by hfi_id.
2063  *
2064  * @data: pointer to memory that will be populated with the field requested.
2065  * @len: length of memory pointed by @data in bytes.
2066  */
get_platform_config_field(struct hfi1_devdata * dd,enum platform_config_table_type_encoding table_type,int table_index,int field_index,u32 * data,u32 len)2067 int get_platform_config_field(struct hfi1_devdata *dd,
2068 			      enum platform_config_table_type_encoding
2069 			      table_type, int table_index, int field_index,
2070 			      u32 *data, u32 len)
2071 {
2072 	int ret = 0, wlen = 0, seek = 0;
2073 	u32 field_len_bits = 0, field_start_bits = 0, *src_ptr = NULL;
2074 	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
2075 	struct hfi1_pportdata *ppd = dd->pport;
2076 
2077 	if (data)
2078 		memset(data, 0, len);
2079 	else
2080 		return -EINVAL;
2081 
2082 	if (ppd->config_from_scratch) {
2083 		/*
2084 		 * Use saved configuration from ppd for integrated platforms
2085 		 */
2086 		get_integrated_platform_config_field(dd, table_type,
2087 						     field_index, data);
2088 		return 0;
2089 	}
2090 
2091 	ret = get_platform_fw_field_metadata(dd, table_type, field_index,
2092 					     &field_len_bits,
2093 					     &field_start_bits);
2094 	if (ret)
2095 		return -EINVAL;
2096 
2097 	/* Convert length to bits */
2098 	len *= 8;
2099 
2100 	/* Our metadata function checked cache_valid and field_index for us */
2101 	switch (table_type) {
2102 	case PLATFORM_CONFIG_SYSTEM_TABLE:
2103 		src_ptr = pcfgcache->config_tables[table_type].table;
2104 
2105 		if (field_index != SYSTEM_TABLE_QSFP_POWER_CLASS_MAX) {
2106 			if (len < field_len_bits)
2107 				return -EINVAL;
2108 
2109 			seek = field_start_bits / 8;
2110 			wlen = field_len_bits / 8;
2111 
2112 			src_ptr = (u32 *)((u8 *)src_ptr + seek);
2113 
2114 			/*
2115 			 * We expect the field to be byte aligned and whole byte
2116 			 * lengths if we are here
2117 			 */
2118 			memcpy(data, src_ptr, wlen);
2119 			return 0;
2120 		}
2121 		break;
2122 	case PLATFORM_CONFIG_PORT_TABLE:
2123 		/* Port table is 4 DWORDS */
2124 		src_ptr = dd->hfi1_id ?
2125 			pcfgcache->config_tables[table_type].table + 4 :
2126 			pcfgcache->config_tables[table_type].table;
2127 		break;
2128 	case PLATFORM_CONFIG_RX_PRESET_TABLE:
2129 	case PLATFORM_CONFIG_TX_PRESET_TABLE:
2130 	case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
2131 	case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
2132 		src_ptr = pcfgcache->config_tables[table_type].table;
2133 
2134 		if (table_index <
2135 			pcfgcache->config_tables[table_type].num_table)
2136 			src_ptr += table_index;
2137 		else
2138 			src_ptr = NULL;
2139 		break;
2140 	default:
2141 		dd_dev_info(dd, "%s: Unknown table\n", __func__);
2142 		break;
2143 	}
2144 
2145 	if (!src_ptr || len < field_len_bits)
2146 		return -EINVAL;
2147 
2148 	src_ptr += (field_start_bits / 32);
2149 	*data = (*src_ptr >> (field_start_bits % 32)) &
2150 			((1 << field_len_bits) - 1);
2151 
2152 	return 0;
2153 }
2154 
2155 /*
2156  * Download the firmware needed for the Gen3 PCIe SerDes.  An update
2157  * to the SBus firmware is needed before updating the PCIe firmware.
2158  *
2159  * Note: caller must be holding the SBus resource.
2160  */
load_pcie_firmware(struct hfi1_devdata * dd)2161 int load_pcie_firmware(struct hfi1_devdata *dd)
2162 {
2163 	int ret = 0;
2164 
2165 	/* both firmware loads below use the SBus */
2166 	set_sbus_fast_mode(dd);
2167 
2168 	if (fw_sbus_load) {
2169 		turn_off_spicos(dd, SPICO_SBUS);
2170 		do {
2171 			ret = load_sbus_firmware(dd, &fw_sbus);
2172 		} while (retry_firmware(dd, ret));
2173 		if (ret)
2174 			goto done;
2175 	}
2176 
2177 	if (fw_pcie_serdes_load) {
2178 		dd_dev_info(dd, "Setting PCIe SerDes broadcast\n");
2179 		set_serdes_broadcast(dd, all_pcie_serdes_broadcast,
2180 				     pcie_serdes_broadcast[dd->hfi1_id],
2181 				     pcie_serdes_addrs[dd->hfi1_id],
2182 				     NUM_PCIE_SERDES);
2183 		do {
2184 			ret = load_pcie_serdes_firmware(dd, &fw_pcie);
2185 		} while (retry_firmware(dd, ret));
2186 		if (ret)
2187 			goto done;
2188 	}
2189 
2190 done:
2191 	clear_sbus_fast_mode(dd);
2192 
2193 	return ret;
2194 }
2195 
2196 /*
2197  * Read the GUID from the hardware, store it in dd.
2198  */
read_guid(struct hfi1_devdata * dd)2199 void read_guid(struct hfi1_devdata *dd)
2200 {
2201 	/* Take the DC out of reset to get a valid GUID value */
2202 	write_csr(dd, CCE_DC_CTRL, 0);
2203 	(void)read_csr(dd, CCE_DC_CTRL);
2204 
2205 	dd->base_guid = read_csr(dd, DC_DC8051_CFG_LOCAL_GUID);
2206 	dd_dev_info(dd, "GUID %llx",
2207 		    (unsigned long long)dd->base_guid);
2208 }
2209 
2210 /* read and display firmware version info */
dump_fw_version(struct hfi1_devdata * dd)2211 static void dump_fw_version(struct hfi1_devdata *dd)
2212 {
2213 	u32 pcie_vers[NUM_PCIE_SERDES];
2214 	u32 fabric_vers[NUM_FABRIC_SERDES];
2215 	u32 sbus_vers;
2216 	int i;
2217 	int all_same;
2218 	int ret;
2219 	u8 rcv_addr;
2220 
2221 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
2222 	if (ret) {
2223 		dd_dev_err(dd, "Unable to acquire SBus to read firmware versions\n");
2224 		return;
2225 	}
2226 
2227 	/* set fast mode */
2228 	set_sbus_fast_mode(dd);
2229 
2230 	/* read version for SBus Master */
2231 	sbus_request(dd, SBUS_MASTER_BROADCAST, 0x02, WRITE_SBUS_RECEIVER, 0);
2232 	sbus_request(dd, SBUS_MASTER_BROADCAST, 0x07, WRITE_SBUS_RECEIVER, 0x1);
2233 	/* wait for interrupt to be processed */
2234 	usleep_range(10000, 11000);
2235 	sbus_vers = sbus_read(dd, SBUS_MASTER_BROADCAST, 0x08, 0x1);
2236 	dd_dev_info(dd, "SBus Master firmware version 0x%08x\n", sbus_vers);
2237 
2238 	/* read version for PCIe SerDes */
2239 	all_same = 1;
2240 	pcie_vers[0] = 0;
2241 	for (i = 0; i < NUM_PCIE_SERDES; i++) {
2242 		rcv_addr = pcie_serdes_addrs[dd->hfi1_id][i];
2243 		sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
2244 		/* wait for interrupt to be processed */
2245 		usleep_range(10000, 11000);
2246 		pcie_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
2247 		if (i > 0 && pcie_vers[0] != pcie_vers[i])
2248 			all_same = 0;
2249 	}
2250 
2251 	if (all_same) {
2252 		dd_dev_info(dd, "PCIe SerDes firmware version 0x%x\n",
2253 			    pcie_vers[0]);
2254 	} else {
2255 		dd_dev_warn(dd, "PCIe SerDes do not have the same firmware version\n");
2256 		for (i = 0; i < NUM_PCIE_SERDES; i++) {
2257 			dd_dev_info(dd,
2258 				    "PCIe SerDes lane %d firmware version 0x%x\n",
2259 				    i, pcie_vers[i]);
2260 		}
2261 	}
2262 
2263 	/* read version for fabric SerDes */
2264 	all_same = 1;
2265 	fabric_vers[0] = 0;
2266 	for (i = 0; i < NUM_FABRIC_SERDES; i++) {
2267 		rcv_addr = fabric_serdes_addrs[dd->hfi1_id][i];
2268 		sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
2269 		/* wait for interrupt to be processed */
2270 		usleep_range(10000, 11000);
2271 		fabric_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
2272 		if (i > 0 && fabric_vers[0] != fabric_vers[i])
2273 			all_same = 0;
2274 	}
2275 
2276 	if (all_same) {
2277 		dd_dev_info(dd, "Fabric SerDes firmware version 0x%x\n",
2278 			    fabric_vers[0]);
2279 	} else {
2280 		dd_dev_warn(dd, "Fabric SerDes do not have the same firmware version\n");
2281 		for (i = 0; i < NUM_FABRIC_SERDES; i++) {
2282 			dd_dev_info(dd,
2283 				    "Fabric SerDes lane %d firmware version 0x%x\n",
2284 				    i, fabric_vers[i]);
2285 		}
2286 	}
2287 
2288 	clear_sbus_fast_mode(dd);
2289 	release_chip_resource(dd, CR_SBUS);
2290 }
2291