1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2 /*
3 	Written 1998-2000 by Donald Becker.
4 
5 	Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 	send all bug reports to me, and not to Donald Becker, as this code
7 	has been heavily modified from Donald's original version.
8 
9 	This software may be used and distributed according to the terms of
10 	the GNU General Public License (GPL), incorporated herein by reference.
11 	Drivers based on or derived from this code fall under the GPL and must
12 	retain the authorship, copyright and license notice.  This file is not
13 	a complete program and may only be used when the entire operating
14 	system is licensed under the GPL.
15 
16 	The information below comes from Donald Becker's original driver:
17 
18 	The author may be reached as becker@scyld.com, or C/O
19 	Scyld Computing Corporation
20 	410 Severn Ave., Suite 210
21 	Annapolis MD 21403
22 
23 	Support and updates available at
24 	http://www.scyld.com/network/starfire.html
25 	[link no longer provides useful info -jgarzik]
26 
27 */
28 
29 #define DRV_NAME	"starfire"
30 
31 #include <linux/interrupt.h>
32 #include <linux/module.h>
33 #include <linux/kernel.h>
34 #include <linux/pci.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/init.h>
38 #include <linux/delay.h>
39 #include <linux/crc32.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <linux/mm.h>
44 #include <linux/firmware.h>
45 #include <asm/processor.h>		/* Processor type for cache alignment. */
46 #include <linux/uaccess.h>
47 #include <asm/io.h>
48 
49 /*
50  * The current frame processor firmware fails to checksum a fragment
51  * of length 1. If and when this is fixed, the #define below can be removed.
52  */
53 #define HAS_BROKEN_FIRMWARE
54 
55 /*
56  * If using the broken firmware, data must be padded to the next 32-bit boundary.
57  */
58 #ifdef HAS_BROKEN_FIRMWARE
59 #define PADDING_MASK 3
60 #endif
61 
62 /*
63  * Define this if using the driver with the zero-copy patch
64  */
65 #define ZEROCOPY
66 
67 #if IS_ENABLED(CONFIG_VLAN_8021Q)
68 #define VLAN_SUPPORT
69 #endif
70 
71 /* The user-configurable values.
72    These may be modified when a driver module is loaded.*/
73 
74 /* Used for tuning interrupt latency vs. overhead. */
75 static int intr_latency;
76 static int small_frames;
77 
78 static int debug = 1;			/* 1 normal messages, 0 quiet .. 7 verbose. */
79 static int max_interrupt_work = 20;
80 static int mtu;
81 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
82    The Starfire has a 512 element hash table based on the Ethernet CRC. */
83 static const int multicast_filter_limit = 512;
84 /* Whether to do TCP/UDP checksums in hardware */
85 static int enable_hw_cksum = 1;
86 
87 #define PKT_BUF_SZ	1536		/* Size of each temporary Rx buffer.*/
88 /*
89  * Set the copy breakpoint for the copy-only-tiny-frames scheme.
90  * Setting to > 1518 effectively disables this feature.
91  *
92  * NOTE:
93  * The ia64 doesn't allow for unaligned loads even of integers being
94  * misaligned on a 2 byte boundary. Thus always force copying of
95  * packets as the starfire doesn't allow for misaligned DMAs ;-(
96  * 23/10/2000 - Jes
97  *
98  * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
99  * at least, having unaligned frames leads to a rather serious performance
100  * penalty. -Ion
101  */
102 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
103 static int rx_copybreak = PKT_BUF_SZ;
104 #else
105 static int rx_copybreak /* = 0 */;
106 #endif
107 
108 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
109 #ifdef __sparc__
110 #define DMA_BURST_SIZE 64
111 #else
112 #define DMA_BURST_SIZE 128
113 #endif
114 
115 /* Operational parameters that are set at compile time. */
116 
117 /* The "native" ring sizes are either 256 or 2048.
118    However in some modes a descriptor may be marked to wrap the ring earlier.
119 */
120 #define RX_RING_SIZE	256
121 #define TX_RING_SIZE	32
122 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
123 #define DONE_Q_SIZE	1024
124 /* All queues must be aligned on a 256-byte boundary */
125 #define QUEUE_ALIGN	256
126 
127 #if RX_RING_SIZE > 256
128 #define RX_Q_ENTRIES Rx2048QEntries
129 #else
130 #define RX_Q_ENTRIES Rx256QEntries
131 #endif
132 
133 /* Operational parameters that usually are not changed. */
134 /* Time in jiffies before concluding the transmitter is hung. */
135 #define TX_TIMEOUT	(2 * HZ)
136 
137 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
138 /* 64-bit dma_addr_t */
139 #define ADDR_64BITS	/* This chip uses 64 bit addresses. */
140 #define netdrv_addr_t __le64
141 #define cpu_to_dma(x) cpu_to_le64(x)
142 #define dma_to_cpu(x) le64_to_cpu(x)
143 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
144 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
145 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
146 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
147 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
148 #else  /* 32-bit dma_addr_t */
149 #define netdrv_addr_t __le32
150 #define cpu_to_dma(x) cpu_to_le32(x)
151 #define dma_to_cpu(x) le32_to_cpu(x)
152 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
153 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
154 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
155 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
156 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
157 #endif
158 
159 #define skb_first_frag_len(skb)	skb_headlen(skb)
160 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
161 
162 /* Firmware names */
163 #define FIRMWARE_RX	"adaptec/starfire_rx.bin"
164 #define FIRMWARE_TX	"adaptec/starfire_tx.bin"
165 
166 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
167 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
168 MODULE_LICENSE("GPL");
169 MODULE_FIRMWARE(FIRMWARE_RX);
170 MODULE_FIRMWARE(FIRMWARE_TX);
171 
172 module_param(max_interrupt_work, int, 0);
173 module_param(mtu, int, 0);
174 module_param(debug, int, 0);
175 module_param(rx_copybreak, int, 0);
176 module_param(intr_latency, int, 0);
177 module_param(small_frames, int, 0);
178 module_param(enable_hw_cksum, int, 0);
179 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
180 MODULE_PARM_DESC(mtu, "MTU (all boards)");
181 MODULE_PARM_DESC(debug, "Debug level (0-6)");
182 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
183 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
184 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
185 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
186 
187 /*
188 				Theory of Operation
189 
190 I. Board Compatibility
191 
192 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
193 
194 II. Board-specific settings
195 
196 III. Driver operation
197 
198 IIIa. Ring buffers
199 
200 The Starfire hardware uses multiple fixed-size descriptor queues/rings.  The
201 ring sizes are set fixed by the hardware, but may optionally be wrapped
202 earlier by the END bit in the descriptor.
203 This driver uses that hardware queue size for the Rx ring, where a large
204 number of entries has no ill effect beyond increases the potential backlog.
205 The Tx ring is wrapped with the END bit, since a large hardware Tx queue
206 disables the queue layer priority ordering and we have no mechanism to
207 utilize the hardware two-level priority queue.  When modifying the
208 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
209 levels.
210 
211 IIIb/c. Transmit/Receive Structure
212 
213 See the Adaptec manual for the many possible structures, and options for
214 each structure.  There are far too many to document all of them here.
215 
216 For transmit this driver uses type 0/1 transmit descriptors (depending
217 on the 32/64 bitness of the architecture), and relies on automatic
218 minimum-length padding.  It does not use the completion queue
219 consumer index, but instead checks for non-zero status entries.
220 
221 For receive this driver uses type 2/3 receive descriptors.  The driver
222 allocates full frame size skbuffs for the Rx ring buffers, so all frames
223 should fit in a single descriptor.  The driver does not use the completion
224 queue consumer index, but instead checks for non-zero status entries.
225 
226 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
227 is allocated and the frame is copied to the new skbuff.  When the incoming
228 frame is larger, the skbuff is passed directly up the protocol stack.
229 Buffers consumed this way are replaced by newly allocated skbuffs in a later
230 phase of receive.
231 
232 A notable aspect of operation is that unaligned buffers are not permitted by
233 the Starfire hardware.  Thus the IP header at offset 14 in an ethernet frame
234 isn't longword aligned, which may cause problems on some machine
235 e.g. Alphas and IA64. For these architectures, the driver is forced to copy
236 the frame into a new skbuff unconditionally. Copied frames are put into the
237 skbuff at an offset of "+2", thus 16-byte aligning the IP header.
238 
239 IIId. Synchronization
240 
241 The driver runs as two independent, single-threaded flows of control.  One
242 is the send-packet routine, which enforces single-threaded use by the
243 dev->tbusy flag.  The other thread is the interrupt handler, which is single
244 threaded by the hardware and interrupt handling software.
245 
246 The send packet thread has partial control over the Tx ring and the netif_queue
247 status. If the number of free Tx slots in the ring falls below a certain number
248 (currently hardcoded to 4), it signals the upper layer to stop the queue.
249 
250 The interrupt handler has exclusive control over the Rx ring and records stats
251 from the Tx ring.  After reaping the stats, it marks the Tx queue entry as
252 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
253 number of free Tx slow is above the threshold, it signals the upper layer to
254 restart the queue.
255 
256 IV. Notes
257 
258 IVb. References
259 
260 The Adaptec Starfire manuals, available only from Adaptec.
261 http://www.scyld.com/expert/100mbps.html
262 http://www.scyld.com/expert/NWay.html
263 
264 IVc. Errata
265 
266 - StopOnPerr is broken, don't enable
267 - Hardware ethernet padding exposes random data, perform software padding
268   instead (unverified -- works correctly for all the hardware I have)
269 
270 */
271 
272 
273 
274 enum chip_capability_flags {CanHaveMII=1, };
275 
276 enum chipset {
277 	CH_6915 = 0,
278 };
279 
280 static const struct pci_device_id starfire_pci_tbl[] = {
281 	{ PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
282 	{ 0, }
283 };
284 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
285 
286 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
287 static const struct chip_info {
288 	const char *name;
289 	int drv_flags;
290 } netdrv_tbl[] = {
291 	{ "Adaptec Starfire 6915", CanHaveMII },
292 };
293 
294 
295 /* Offsets to the device registers.
296    Unlike software-only systems, device drivers interact with complex hardware.
297    It's not useful to define symbolic names for every register bit in the
298    device.  The name can only partially document the semantics and make
299    the driver longer and more difficult to read.
300    In general, only the important configuration values or bits changed
301    multiple times should be defined symbolically.
302 */
303 enum register_offsets {
304 	PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
305 	IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
306 	MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
307 	GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
308 	TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
309 	TxRingHiAddr=0x5009C,		/* 64 bit address extension. */
310 	TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
311 	TxThreshold=0x500B0,
312 	CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
313 	RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
314 	CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
315 	RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
316 	RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
317 	TxMode=0x55000, VlanType=0x55064,
318 	PerfFilterTable=0x56000, HashTable=0x56100,
319 	TxGfpMem=0x58000, RxGfpMem=0x5a000,
320 };
321 
322 /*
323  * Bits in the interrupt status/mask registers.
324  * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
325  * enables all the interrupt sources that are or'ed into those status bits.
326  */
327 enum intr_status_bits {
328 	IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
329 	IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
330 	IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
331 	IntrTxComplQLow=0x200000, IntrPCI=0x100000,
332 	IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
333 	IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
334 	IntrNormalSummary=0x8000, IntrTxDone=0x4000,
335 	IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
336 	IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
337 	IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
338 	IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
339 	IntrNoTxCsum=0x20, IntrTxBadID=0x10,
340 	IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
341 	IntrTxGfp=0x02, IntrPCIPad=0x01,
342 	/* not quite bits */
343 	IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
344 	IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
345 	IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
346 };
347 
348 /* Bits in the RxFilterMode register. */
349 enum rx_mode_bits {
350 	AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
351 	AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
352 	PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
353 	WakeupOnGFP=0x0800,
354 };
355 
356 /* Bits in the TxMode register */
357 enum tx_mode_bits {
358 	MiiSoftReset=0x8000, MIILoopback=0x4000,
359 	TxFlowEnable=0x0800, RxFlowEnable=0x0400,
360 	PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
361 };
362 
363 /* Bits in the TxDescCtrl register. */
364 enum tx_ctrl_bits {
365 	TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
366 	TxDescSpace128=0x30, TxDescSpace256=0x40,
367 	TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
368 	TxDescType3=0x03, TxDescType4=0x04,
369 	TxNoDMACompletion=0x08,
370 	TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
371 	TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
372 	TxDMABurstSizeShift=8,
373 };
374 
375 /* Bits in the RxDescQCtrl register. */
376 enum rx_ctrl_bits {
377 	RxBufferLenShift=16, RxMinDescrThreshShift=0,
378 	RxPrefetchMode=0x8000, RxVariableQ=0x2000,
379 	Rx2048QEntries=0x4000, Rx256QEntries=0,
380 	RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
381 	RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
382 	RxDescSpace4=0x000, RxDescSpace8=0x100,
383 	RxDescSpace16=0x200, RxDescSpace32=0x300,
384 	RxDescSpace64=0x400, RxDescSpace128=0x500,
385 	RxConsumerWrEn=0x80,
386 };
387 
388 /* Bits in the RxDMACtrl register. */
389 enum rx_dmactrl_bits {
390 	RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
391 	RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
392 	RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
393 	RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
394 	RxChecksumRejectTCPOnly=0x01000000,
395 	RxCompletionQ2Enable=0x800000,
396 	RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
397 	RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
398 	RxDMAQ2NonIP=0x400000,
399 	RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
400 	RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
401 	RxBurstSizeShift=0,
402 };
403 
404 /* Bits in the RxCompletionAddr register */
405 enum rx_compl_bits {
406 	RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
407 	RxComplProducerWrEn=0x40,
408 	RxComplType0=0x00, RxComplType1=0x10,
409 	RxComplType2=0x20, RxComplType3=0x30,
410 	RxComplThreshShift=0,
411 };
412 
413 /* Bits in the TxCompletionAddr register */
414 enum tx_compl_bits {
415 	TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
416 	TxComplProducerWrEn=0x40,
417 	TxComplIntrStatus=0x20,
418 	CommonQueueMode=0x10,
419 	TxComplThreshShift=0,
420 };
421 
422 /* Bits in the GenCtrl register */
423 enum gen_ctrl_bits {
424 	RxEnable=0x05, TxEnable=0x0a,
425 	RxGFPEnable=0x10, TxGFPEnable=0x20,
426 };
427 
428 /* Bits in the IntrTimerCtrl register */
429 enum intr_ctrl_bits {
430 	Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
431 	SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
432 	IntrLatencyMask=0x1f,
433 };
434 
435 /* The Rx and Tx buffer descriptors. */
436 struct starfire_rx_desc {
437 	netdrv_addr_t rxaddr;
438 };
439 enum rx_desc_bits {
440 	RxDescValid=1, RxDescEndRing=2,
441 };
442 
443 /* Completion queue entry. */
444 struct short_rx_done_desc {
445 	__le32 status;			/* Low 16 bits is length. */
446 };
447 struct basic_rx_done_desc {
448 	__le32 status;			/* Low 16 bits is length. */
449 	__le16 vlanid;
450 	__le16 status2;
451 };
452 struct csum_rx_done_desc {
453 	__le32 status;			/* Low 16 bits is length. */
454 	__le16 csum;			/* Partial checksum */
455 	__le16 status2;
456 };
457 struct full_rx_done_desc {
458 	__le32 status;			/* Low 16 bits is length. */
459 	__le16 status3;
460 	__le16 status2;
461 	__le16 vlanid;
462 	__le16 csum;			/* partial checksum */
463 	__le32 timestamp;
464 };
465 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
466 #ifdef VLAN_SUPPORT
467 typedef struct full_rx_done_desc rx_done_desc;
468 #define RxComplType RxComplType3
469 #else  /* not VLAN_SUPPORT */
470 typedef struct csum_rx_done_desc rx_done_desc;
471 #define RxComplType RxComplType2
472 #endif /* not VLAN_SUPPORT */
473 
474 enum rx_done_bits {
475 	RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
476 };
477 
478 /* Type 1 Tx descriptor. */
479 struct starfire_tx_desc_1 {
480 	__le32 status;			/* Upper bits are status, lower 16 length. */
481 	__le32 addr;
482 };
483 
484 /* Type 2 Tx descriptor. */
485 struct starfire_tx_desc_2 {
486 	__le32 status;			/* Upper bits are status, lower 16 length. */
487 	__le32 reserved;
488 	__le64 addr;
489 };
490 
491 #ifdef ADDR_64BITS
492 typedef struct starfire_tx_desc_2 starfire_tx_desc;
493 #define TX_DESC_TYPE TxDescType2
494 #else  /* not ADDR_64BITS */
495 typedef struct starfire_tx_desc_1 starfire_tx_desc;
496 #define TX_DESC_TYPE TxDescType1
497 #endif /* not ADDR_64BITS */
498 #define TX_DESC_SPACING TxDescSpaceUnlim
499 
500 enum tx_desc_bits {
501 	TxDescID=0xB0000000,
502 	TxCRCEn=0x01000000, TxDescIntr=0x08000000,
503 	TxRingWrap=0x04000000, TxCalTCP=0x02000000,
504 };
505 struct tx_done_desc {
506 	__le32 status;			/* timestamp, index. */
507 #if 0
508 	__le32 intrstatus;		/* interrupt status */
509 #endif
510 };
511 
512 struct rx_ring_info {
513 	struct sk_buff *skb;
514 	dma_addr_t mapping;
515 };
516 struct tx_ring_info {
517 	struct sk_buff *skb;
518 	dma_addr_t mapping;
519 	unsigned int used_slots;
520 };
521 
522 #define PHY_CNT		2
523 struct netdev_private {
524 	/* Descriptor rings first for alignment. */
525 	struct starfire_rx_desc *rx_ring;
526 	starfire_tx_desc *tx_ring;
527 	dma_addr_t rx_ring_dma;
528 	dma_addr_t tx_ring_dma;
529 	/* The addresses of rx/tx-in-place skbuffs. */
530 	struct rx_ring_info rx_info[RX_RING_SIZE];
531 	struct tx_ring_info tx_info[TX_RING_SIZE];
532 	/* Pointers to completion queues (full pages). */
533 	rx_done_desc *rx_done_q;
534 	dma_addr_t rx_done_q_dma;
535 	unsigned int rx_done;
536 	struct tx_done_desc *tx_done_q;
537 	dma_addr_t tx_done_q_dma;
538 	unsigned int tx_done;
539 	struct napi_struct napi;
540 	struct net_device *dev;
541 	struct pci_dev *pci_dev;
542 #ifdef VLAN_SUPPORT
543 	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
544 #endif
545 	void *queue_mem;
546 	dma_addr_t queue_mem_dma;
547 	size_t queue_mem_size;
548 
549 	/* Frequently used values: keep some adjacent for cache effect. */
550 	spinlock_t lock;
551 	unsigned int cur_rx, dirty_rx;	/* Producer/consumer ring indices */
552 	unsigned int cur_tx, dirty_tx, reap_tx;
553 	unsigned int rx_buf_sz;		/* Based on MTU+slack. */
554 	/* These values keep track of the transceiver/media in use. */
555 	int speed100;			/* Set if speed == 100MBit. */
556 	u32 tx_mode;
557 	u32 intr_timer_ctrl;
558 	u8 tx_threshold;
559 	/* MII transceiver section. */
560 	struct mii_if_info mii_if;		/* MII lib hooks/info */
561 	int phy_cnt;			/* MII device addresses. */
562 	unsigned char phys[PHY_CNT];	/* MII device addresses. */
563 	void __iomem *base;
564 };
565 
566 
567 static int	mdio_read(struct net_device *dev, int phy_id, int location);
568 static void	mdio_write(struct net_device *dev, int phy_id, int location, int value);
569 static int	netdev_open(struct net_device *dev);
570 static void	check_duplex(struct net_device *dev);
571 static void	tx_timeout(struct net_device *dev, unsigned int txqueue);
572 static void	init_ring(struct net_device *dev);
573 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
574 static irqreturn_t intr_handler(int irq, void *dev_instance);
575 static void	netdev_error(struct net_device *dev, int intr_status);
576 static int	__netdev_rx(struct net_device *dev, int *quota);
577 static int	netdev_poll(struct napi_struct *napi, int budget);
578 static void	refill_rx_ring(struct net_device *dev);
579 static void	netdev_error(struct net_device *dev, int intr_status);
580 static void	set_rx_mode(struct net_device *dev);
581 static struct net_device_stats *get_stats(struct net_device *dev);
582 static int	netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
583 static int	netdev_close(struct net_device *dev);
584 static void	netdev_media_change(struct net_device *dev);
585 static const struct ethtool_ops ethtool_ops;
586 
587 
588 #ifdef VLAN_SUPPORT
netdev_vlan_rx_add_vid(struct net_device * dev,__be16 proto,u16 vid)589 static int netdev_vlan_rx_add_vid(struct net_device *dev,
590 				  __be16 proto, u16 vid)
591 {
592 	struct netdev_private *np = netdev_priv(dev);
593 
594 	spin_lock(&np->lock);
595 	if (debug > 1)
596 		printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
597 	set_bit(vid, np->active_vlans);
598 	set_rx_mode(dev);
599 	spin_unlock(&np->lock);
600 
601 	return 0;
602 }
603 
netdev_vlan_rx_kill_vid(struct net_device * dev,__be16 proto,u16 vid)604 static int netdev_vlan_rx_kill_vid(struct net_device *dev,
605 				   __be16 proto, u16 vid)
606 {
607 	struct netdev_private *np = netdev_priv(dev);
608 
609 	spin_lock(&np->lock);
610 	if (debug > 1)
611 		printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
612 	clear_bit(vid, np->active_vlans);
613 	set_rx_mode(dev);
614 	spin_unlock(&np->lock);
615 
616 	return 0;
617 }
618 #endif /* VLAN_SUPPORT */
619 
620 
621 static const struct net_device_ops netdev_ops = {
622 	.ndo_open		= netdev_open,
623 	.ndo_stop		= netdev_close,
624 	.ndo_start_xmit		= start_tx,
625 	.ndo_tx_timeout		= tx_timeout,
626 	.ndo_get_stats		= get_stats,
627 	.ndo_set_rx_mode	= set_rx_mode,
628 	.ndo_do_ioctl		= netdev_ioctl,
629 	.ndo_set_mac_address	= eth_mac_addr,
630 	.ndo_validate_addr	= eth_validate_addr,
631 #ifdef VLAN_SUPPORT
632 	.ndo_vlan_rx_add_vid	= netdev_vlan_rx_add_vid,
633 	.ndo_vlan_rx_kill_vid	= netdev_vlan_rx_kill_vid,
634 #endif
635 };
636 
starfire_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)637 static int starfire_init_one(struct pci_dev *pdev,
638 			     const struct pci_device_id *ent)
639 {
640 	struct device *d = &pdev->dev;
641 	struct netdev_private *np;
642 	int i, irq, chip_idx = ent->driver_data;
643 	struct net_device *dev;
644 	long ioaddr;
645 	void __iomem *base;
646 	int drv_flags, io_size;
647 	int boguscnt;
648 
649 	if (pci_enable_device (pdev))
650 		return -EIO;
651 
652 	ioaddr = pci_resource_start(pdev, 0);
653 	io_size = pci_resource_len(pdev, 0);
654 	if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
655 		dev_err(d, "no PCI MEM resources, aborting\n");
656 		return -ENODEV;
657 	}
658 
659 	dev = alloc_etherdev(sizeof(*np));
660 	if (!dev)
661 		return -ENOMEM;
662 
663 	SET_NETDEV_DEV(dev, &pdev->dev);
664 
665 	irq = pdev->irq;
666 
667 	if (pci_request_regions (pdev, DRV_NAME)) {
668 		dev_err(d, "cannot reserve PCI resources, aborting\n");
669 		goto err_out_free_netdev;
670 	}
671 
672 	base = ioremap(ioaddr, io_size);
673 	if (!base) {
674 		dev_err(d, "cannot remap %#x @ %#lx, aborting\n",
675 			io_size, ioaddr);
676 		goto err_out_free_res;
677 	}
678 
679 	pci_set_master(pdev);
680 
681 	/* enable MWI -- it vastly improves Rx performance on sparc64 */
682 	pci_try_set_mwi(pdev);
683 
684 #ifdef ZEROCOPY
685 	/* Starfire can do TCP/UDP checksumming */
686 	if (enable_hw_cksum)
687 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
688 #endif /* ZEROCOPY */
689 
690 #ifdef VLAN_SUPPORT
691 	dev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
692 #endif /* VLAN_RX_KILL_VID */
693 #ifdef ADDR_64BITS
694 	dev->features |= NETIF_F_HIGHDMA;
695 #endif /* ADDR_64BITS */
696 
697 	/* Serial EEPROM reads are hidden by the hardware. */
698 	for (i = 0; i < 6; i++)
699 		dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
700 
701 #if ! defined(final_version) /* Dump the EEPROM contents during development. */
702 	if (debug > 4)
703 		for (i = 0; i < 0x20; i++)
704 			printk("%2.2x%s",
705 			       (unsigned int)readb(base + EEPROMCtrl + i),
706 			       i % 16 != 15 ? " " : "\n");
707 #endif
708 
709 	/* Issue soft reset */
710 	writel(MiiSoftReset, base + TxMode);
711 	udelay(1000);
712 	writel(0, base + TxMode);
713 
714 	/* Reset the chip to erase previous misconfiguration. */
715 	writel(1, base + PCIDeviceConfig);
716 	boguscnt = 1000;
717 	while (--boguscnt > 0) {
718 		udelay(10);
719 		if ((readl(base + PCIDeviceConfig) & 1) == 0)
720 			break;
721 	}
722 	if (boguscnt == 0)
723 		printk("%s: chipset reset never completed!\n", dev->name);
724 	/* wait a little longer */
725 	udelay(1000);
726 
727 	np = netdev_priv(dev);
728 	np->dev = dev;
729 	np->base = base;
730 	spin_lock_init(&np->lock);
731 	pci_set_drvdata(pdev, dev);
732 
733 	np->pci_dev = pdev;
734 
735 	np->mii_if.dev = dev;
736 	np->mii_if.mdio_read = mdio_read;
737 	np->mii_if.mdio_write = mdio_write;
738 	np->mii_if.phy_id_mask = 0x1f;
739 	np->mii_if.reg_num_mask = 0x1f;
740 
741 	drv_flags = netdrv_tbl[chip_idx].drv_flags;
742 
743 	np->speed100 = 1;
744 
745 	/* timer resolution is 128 * 0.8us */
746 	np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
747 		Timer10X | EnableIntrMasking;
748 
749 	if (small_frames > 0) {
750 		np->intr_timer_ctrl |= SmallFrameBypass;
751 		switch (small_frames) {
752 		case 1 ... 64:
753 			np->intr_timer_ctrl |= SmallFrame64;
754 			break;
755 		case 65 ... 128:
756 			np->intr_timer_ctrl |= SmallFrame128;
757 			break;
758 		case 129 ... 256:
759 			np->intr_timer_ctrl |= SmallFrame256;
760 			break;
761 		default:
762 			np->intr_timer_ctrl |= SmallFrame512;
763 			if (small_frames > 512)
764 				printk("Adjusting small_frames down to 512\n");
765 			break;
766 		}
767 	}
768 
769 	dev->netdev_ops = &netdev_ops;
770 	dev->watchdog_timeo = TX_TIMEOUT;
771 	dev->ethtool_ops = &ethtool_ops;
772 
773 	netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
774 
775 	if (mtu)
776 		dev->mtu = mtu;
777 
778 	if (register_netdev(dev))
779 		goto err_out_cleardev;
780 
781 	printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
782 	       dev->name, netdrv_tbl[chip_idx].name, base,
783 	       dev->dev_addr, irq);
784 
785 	if (drv_flags & CanHaveMII) {
786 		int phy, phy_idx = 0;
787 		int mii_status;
788 		for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
789 			mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
790 			msleep(100);
791 			boguscnt = 1000;
792 			while (--boguscnt > 0)
793 				if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
794 					break;
795 			if (boguscnt == 0) {
796 				printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
797 				continue;
798 			}
799 			mii_status = mdio_read(dev, phy, MII_BMSR);
800 			if (mii_status != 0) {
801 				np->phys[phy_idx++] = phy;
802 				np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
803 				printk(KERN_INFO "%s: MII PHY found at address %d, status "
804 					   "%#4.4x advertising %#4.4x.\n",
805 					   dev->name, phy, mii_status, np->mii_if.advertising);
806 				/* there can be only one PHY on-board */
807 				break;
808 			}
809 		}
810 		np->phy_cnt = phy_idx;
811 		if (np->phy_cnt > 0)
812 			np->mii_if.phy_id = np->phys[0];
813 		else
814 			memset(&np->mii_if, 0, sizeof(np->mii_if));
815 	}
816 
817 	printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
818 	       dev->name, enable_hw_cksum ? "enabled" : "disabled");
819 	return 0;
820 
821 err_out_cleardev:
822 	iounmap(base);
823 err_out_free_res:
824 	pci_release_regions (pdev);
825 err_out_free_netdev:
826 	free_netdev(dev);
827 	return -ENODEV;
828 }
829 
830 
831 /* Read the MII Management Data I/O (MDIO) interfaces. */
mdio_read(struct net_device * dev,int phy_id,int location)832 static int mdio_read(struct net_device *dev, int phy_id, int location)
833 {
834 	struct netdev_private *np = netdev_priv(dev);
835 	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
836 	int result, boguscnt=1000;
837 	/* ??? Should we add a busy-wait here? */
838 	do {
839 		result = readl(mdio_addr);
840 	} while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
841 	if (boguscnt == 0)
842 		return 0;
843 	if ((result & 0xffff) == 0xffff)
844 		return 0;
845 	return result & 0xffff;
846 }
847 
848 
mdio_write(struct net_device * dev,int phy_id,int location,int value)849 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
850 {
851 	struct netdev_private *np = netdev_priv(dev);
852 	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
853 	writel(value, mdio_addr);
854 	/* The busy-wait will occur before a read. */
855 }
856 
857 
netdev_open(struct net_device * dev)858 static int netdev_open(struct net_device *dev)
859 {
860 	const struct firmware *fw_rx, *fw_tx;
861 	const __be32 *fw_rx_data, *fw_tx_data;
862 	struct netdev_private *np = netdev_priv(dev);
863 	void __iomem *ioaddr = np->base;
864 	const int irq = np->pci_dev->irq;
865 	int i, retval;
866 	size_t tx_size, rx_size;
867 	size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
868 
869 	/* Do we ever need to reset the chip??? */
870 
871 	retval = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
872 	if (retval)
873 		return retval;
874 
875 	/* Disable the Rx and Tx, and reset the chip. */
876 	writel(0, ioaddr + GenCtrl);
877 	writel(1, ioaddr + PCIDeviceConfig);
878 	if (debug > 1)
879 		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
880 		       dev->name, irq);
881 
882 	/* Allocate the various queues. */
883 	if (!np->queue_mem) {
884 		tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
885 		rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
886 		tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
887 		rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
888 		np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
889 		np->queue_mem = dma_alloc_coherent(&np->pci_dev->dev,
890 						   np->queue_mem_size,
891 						   &np->queue_mem_dma, GFP_ATOMIC);
892 		if (np->queue_mem == NULL) {
893 			free_irq(irq, dev);
894 			return -ENOMEM;
895 		}
896 
897 		np->tx_done_q     = np->queue_mem;
898 		np->tx_done_q_dma = np->queue_mem_dma;
899 		np->rx_done_q     = (void *) np->tx_done_q + tx_done_q_size;
900 		np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
901 		np->tx_ring       = (void *) np->rx_done_q + rx_done_q_size;
902 		np->tx_ring_dma   = np->rx_done_q_dma + rx_done_q_size;
903 		np->rx_ring       = (void *) np->tx_ring + tx_ring_size;
904 		np->rx_ring_dma   = np->tx_ring_dma + tx_ring_size;
905 	}
906 
907 	/* Start with no carrier, it gets adjusted later */
908 	netif_carrier_off(dev);
909 	init_ring(dev);
910 	/* Set the size of the Rx buffers. */
911 	writel((np->rx_buf_sz << RxBufferLenShift) |
912 	       (0 << RxMinDescrThreshShift) |
913 	       RxPrefetchMode | RxVariableQ |
914 	       RX_Q_ENTRIES |
915 	       RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
916 	       RxDescSpace4,
917 	       ioaddr + RxDescQCtrl);
918 
919 	/* Set up the Rx DMA controller. */
920 	writel(RxChecksumIgnore |
921 	       (0 << RxEarlyIntThreshShift) |
922 	       (6 << RxHighPrioThreshShift) |
923 	       ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
924 	       ioaddr + RxDMACtrl);
925 
926 	/* Set Tx descriptor */
927 	writel((2 << TxHiPriFIFOThreshShift) |
928 	       (0 << TxPadLenShift) |
929 	       ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
930 	       TX_DESC_Q_ADDR_SIZE |
931 	       TX_DESC_SPACING | TX_DESC_TYPE,
932 	       ioaddr + TxDescCtrl);
933 
934 	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
935 	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
936 	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
937 	writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
938 	writel(np->tx_ring_dma, ioaddr + TxRingPtr);
939 
940 	writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
941 	writel(np->rx_done_q_dma |
942 	       RxComplType |
943 	       (0 << RxComplThreshShift),
944 	       ioaddr + RxCompletionAddr);
945 
946 	if (debug > 1)
947 		printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
948 
949 	/* Fill both the Tx SA register and the Rx perfect filter. */
950 	for (i = 0; i < 6; i++)
951 		writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
952 	/* The first entry is special because it bypasses the VLAN filter.
953 	   Don't use it. */
954 	writew(0, ioaddr + PerfFilterTable);
955 	writew(0, ioaddr + PerfFilterTable + 4);
956 	writew(0, ioaddr + PerfFilterTable + 8);
957 	for (i = 1; i < 16; i++) {
958 		__be16 *eaddrs = (__be16 *)dev->dev_addr;
959 		void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
960 		writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
961 		writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
962 		writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
963 	}
964 
965 	/* Initialize other registers. */
966 	/* Configure the PCI bus bursts and FIFO thresholds. */
967 	np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable;	/* modified when link is up. */
968 	writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
969 	udelay(1000);
970 	writel(np->tx_mode, ioaddr + TxMode);
971 	np->tx_threshold = 4;
972 	writel(np->tx_threshold, ioaddr + TxThreshold);
973 
974 	writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
975 
976 	napi_enable(&np->napi);
977 
978 	netif_start_queue(dev);
979 
980 	if (debug > 1)
981 		printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
982 	set_rx_mode(dev);
983 
984 	np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
985 	check_duplex(dev);
986 
987 	/* Enable GPIO interrupts on link change */
988 	writel(0x0f00ff00, ioaddr + GPIOCtrl);
989 
990 	/* Set the interrupt mask */
991 	writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
992 	       IntrTxDMADone | IntrStatsMax | IntrLinkChange |
993 	       IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
994 	       ioaddr + IntrEnable);
995 	/* Enable PCI interrupts. */
996 	writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
997 	       ioaddr + PCIDeviceConfig);
998 
999 #ifdef VLAN_SUPPORT
1000 	/* Set VLAN type to 802.1q */
1001 	writel(ETH_P_8021Q, ioaddr + VlanType);
1002 #endif /* VLAN_SUPPORT */
1003 
1004 	retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1005 	if (retval) {
1006 		printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1007 		       FIRMWARE_RX);
1008 		goto out_init;
1009 	}
1010 	if (fw_rx->size % 4) {
1011 		printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1012 		       fw_rx->size, FIRMWARE_RX);
1013 		retval = -EINVAL;
1014 		goto out_rx;
1015 	}
1016 	retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1017 	if (retval) {
1018 		printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1019 		       FIRMWARE_TX);
1020 		goto out_rx;
1021 	}
1022 	if (fw_tx->size % 4) {
1023 		printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1024 		       fw_tx->size, FIRMWARE_TX);
1025 		retval = -EINVAL;
1026 		goto out_tx;
1027 	}
1028 	fw_rx_data = (const __be32 *)&fw_rx->data[0];
1029 	fw_tx_data = (const __be32 *)&fw_tx->data[0];
1030 	rx_size = fw_rx->size / 4;
1031 	tx_size = fw_tx->size / 4;
1032 
1033 	/* Load Rx/Tx firmware into the frame processors */
1034 	for (i = 0; i < rx_size; i++)
1035 		writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1036 	for (i = 0; i < tx_size; i++)
1037 		writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1038 	if (enable_hw_cksum)
1039 		/* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1040 		writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1041 	else
1042 		/* Enable the Rx and Tx units only. */
1043 		writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1044 
1045 	if (debug > 1)
1046 		printk(KERN_DEBUG "%s: Done netdev_open().\n",
1047 		       dev->name);
1048 
1049 out_tx:
1050 	release_firmware(fw_tx);
1051 out_rx:
1052 	release_firmware(fw_rx);
1053 out_init:
1054 	if (retval)
1055 		netdev_close(dev);
1056 	return retval;
1057 }
1058 
1059 
check_duplex(struct net_device * dev)1060 static void check_duplex(struct net_device *dev)
1061 {
1062 	struct netdev_private *np = netdev_priv(dev);
1063 	u16 reg0;
1064 	int silly_count = 1000;
1065 
1066 	mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1067 	mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1068 	udelay(500);
1069 	while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1070 		/* do nothing */;
1071 	if (!silly_count) {
1072 		printk("%s: MII reset failed!\n", dev->name);
1073 		return;
1074 	}
1075 
1076 	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1077 
1078 	if (!np->mii_if.force_media) {
1079 		reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1080 	} else {
1081 		reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1082 		if (np->speed100)
1083 			reg0 |= BMCR_SPEED100;
1084 		if (np->mii_if.full_duplex)
1085 			reg0 |= BMCR_FULLDPLX;
1086 		printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1087 		       dev->name,
1088 		       np->speed100 ? "100" : "10",
1089 		       np->mii_if.full_duplex ? "full" : "half");
1090 	}
1091 	mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1092 }
1093 
1094 
tx_timeout(struct net_device * dev,unsigned int txqueue)1095 static void tx_timeout(struct net_device *dev, unsigned int txqueue)
1096 {
1097 	struct netdev_private *np = netdev_priv(dev);
1098 	void __iomem *ioaddr = np->base;
1099 	int old_debug;
1100 
1101 	printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1102 	       "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1103 
1104 	/* Perhaps we should reinitialize the hardware here. */
1105 
1106 	/*
1107 	 * Stop and restart the interface.
1108 	 * Cheat and increase the debug level temporarily.
1109 	 */
1110 	old_debug = debug;
1111 	debug = 2;
1112 	netdev_close(dev);
1113 	netdev_open(dev);
1114 	debug = old_debug;
1115 
1116 	/* Trigger an immediate transmit demand. */
1117 
1118 	netif_trans_update(dev); /* prevent tx timeout */
1119 	dev->stats.tx_errors++;
1120 	netif_wake_queue(dev);
1121 }
1122 
1123 
1124 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
init_ring(struct net_device * dev)1125 static void init_ring(struct net_device *dev)
1126 {
1127 	struct netdev_private *np = netdev_priv(dev);
1128 	int i;
1129 
1130 	np->cur_rx = np->cur_tx = np->reap_tx = 0;
1131 	np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1132 
1133 	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1134 
1135 	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
1136 	for (i = 0; i < RX_RING_SIZE; i++) {
1137 		struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1138 		np->rx_info[i].skb = skb;
1139 		if (skb == NULL)
1140 			break;
1141 		np->rx_info[i].mapping = dma_map_single(&np->pci_dev->dev,
1142 							skb->data,
1143 							np->rx_buf_sz,
1144 							DMA_FROM_DEVICE);
1145 		if (dma_mapping_error(&np->pci_dev->dev, np->rx_info[i].mapping)) {
1146 			dev_kfree_skb(skb);
1147 			np->rx_info[i].skb = NULL;
1148 			break;
1149 		}
1150 		/* Grrr, we cannot offset to correctly align the IP header. */
1151 		np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1152 	}
1153 	writew(i - 1, np->base + RxDescQIdx);
1154 	np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1155 
1156 	/* Clear the remainder of the Rx buffer ring. */
1157 	for (  ; i < RX_RING_SIZE; i++) {
1158 		np->rx_ring[i].rxaddr = 0;
1159 		np->rx_info[i].skb = NULL;
1160 		np->rx_info[i].mapping = 0;
1161 	}
1162 	/* Mark the last entry as wrapping the ring. */
1163 	np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1164 
1165 	/* Clear the completion rings. */
1166 	for (i = 0; i < DONE_Q_SIZE; i++) {
1167 		np->rx_done_q[i].status = 0;
1168 		np->tx_done_q[i].status = 0;
1169 	}
1170 
1171 	for (i = 0; i < TX_RING_SIZE; i++)
1172 		memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1173 }
1174 
1175 
start_tx(struct sk_buff * skb,struct net_device * dev)1176 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1177 {
1178 	struct netdev_private *np = netdev_priv(dev);
1179 	unsigned int entry;
1180 	unsigned int prev_tx;
1181 	u32 status;
1182 	int i, j;
1183 
1184 	/*
1185 	 * be cautious here, wrapping the queue has weird semantics
1186 	 * and we may not have enough slots even when it seems we do.
1187 	 */
1188 	if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1189 		netif_stop_queue(dev);
1190 		return NETDEV_TX_BUSY;
1191 	}
1192 
1193 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1194 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1195 		if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1196 			return NETDEV_TX_OK;
1197 	}
1198 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1199 
1200 	prev_tx = np->cur_tx;
1201 	entry = np->cur_tx % TX_RING_SIZE;
1202 	for (i = 0; i < skb_num_frags(skb); i++) {
1203 		int wrap_ring = 0;
1204 		status = TxDescID;
1205 
1206 		if (i == 0) {
1207 			np->tx_info[entry].skb = skb;
1208 			status |= TxCRCEn;
1209 			if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1210 				status |= TxRingWrap;
1211 				wrap_ring = 1;
1212 			}
1213 			if (np->reap_tx) {
1214 				status |= TxDescIntr;
1215 				np->reap_tx = 0;
1216 			}
1217 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
1218 				status |= TxCalTCP;
1219 				dev->stats.tx_compressed++;
1220 			}
1221 			status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1222 
1223 			np->tx_info[entry].mapping =
1224 				dma_map_single(&np->pci_dev->dev, skb->data,
1225 					       skb_first_frag_len(skb),
1226 					       DMA_TO_DEVICE);
1227 		} else {
1228 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1229 			status |= skb_frag_size(this_frag);
1230 			np->tx_info[entry].mapping =
1231 				dma_map_single(&np->pci_dev->dev,
1232 					       skb_frag_address(this_frag),
1233 					       skb_frag_size(this_frag),
1234 					       DMA_TO_DEVICE);
1235 		}
1236 		if (dma_mapping_error(&np->pci_dev->dev, np->tx_info[entry].mapping)) {
1237 			dev->stats.tx_dropped++;
1238 			goto err_out;
1239 		}
1240 
1241 		np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1242 		np->tx_ring[entry].status = cpu_to_le32(status);
1243 		if (debug > 3)
1244 			printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1245 			       dev->name, np->cur_tx, np->dirty_tx,
1246 			       entry, status);
1247 		if (wrap_ring) {
1248 			np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1249 			np->cur_tx += np->tx_info[entry].used_slots;
1250 			entry = 0;
1251 		} else {
1252 			np->tx_info[entry].used_slots = 1;
1253 			np->cur_tx += np->tx_info[entry].used_slots;
1254 			entry++;
1255 		}
1256 		/* scavenge the tx descriptors twice per TX_RING_SIZE */
1257 		if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1258 			np->reap_tx = 1;
1259 	}
1260 
1261 	/* Non-x86: explicitly flush descriptor cache lines here. */
1262 	/* Ensure all descriptors are written back before the transmit is
1263 	   initiated. - Jes */
1264 	wmb();
1265 
1266 	/* Update the producer index. */
1267 	writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1268 
1269 	/* 4 is arbitrary, but should be ok */
1270 	if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1271 		netif_stop_queue(dev);
1272 
1273 	return NETDEV_TX_OK;
1274 
1275 err_out:
1276 	entry = prev_tx % TX_RING_SIZE;
1277 	np->tx_info[entry].skb = NULL;
1278 	if (i > 0) {
1279 		dma_unmap_single(&np->pci_dev->dev,
1280 				 np->tx_info[entry].mapping,
1281 				 skb_first_frag_len(skb), DMA_TO_DEVICE);
1282 		np->tx_info[entry].mapping = 0;
1283 		entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1284 		for (j = 1; j < i; j++) {
1285 			dma_unmap_single(&np->pci_dev->dev,
1286 					 np->tx_info[entry].mapping,
1287 					 skb_frag_size(&skb_shinfo(skb)->frags[j - 1]),
1288 					 DMA_TO_DEVICE);
1289 			entry++;
1290 		}
1291 	}
1292 	dev_kfree_skb_any(skb);
1293 	np->cur_tx = prev_tx;
1294 	return NETDEV_TX_OK;
1295 }
1296 
1297 /* The interrupt handler does all of the Rx thread work and cleans up
1298    after the Tx thread. */
intr_handler(int irq,void * dev_instance)1299 static irqreturn_t intr_handler(int irq, void *dev_instance)
1300 {
1301 	struct net_device *dev = dev_instance;
1302 	struct netdev_private *np = netdev_priv(dev);
1303 	void __iomem *ioaddr = np->base;
1304 	int boguscnt = max_interrupt_work;
1305 	int consumer;
1306 	int tx_status;
1307 	int handled = 0;
1308 
1309 	do {
1310 		u32 intr_status = readl(ioaddr + IntrClear);
1311 
1312 		if (debug > 4)
1313 			printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1314 			       dev->name, intr_status);
1315 
1316 		if (intr_status == 0 || intr_status == (u32) -1)
1317 			break;
1318 
1319 		handled = 1;
1320 
1321 		if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1322 			u32 enable;
1323 
1324 			if (likely(napi_schedule_prep(&np->napi))) {
1325 				__napi_schedule(&np->napi);
1326 				enable = readl(ioaddr + IntrEnable);
1327 				enable &= ~(IntrRxDone | IntrRxEmpty);
1328 				writel(enable, ioaddr + IntrEnable);
1329 				/* flush PCI posting buffers */
1330 				readl(ioaddr + IntrEnable);
1331 			} else {
1332 				/* Paranoia check */
1333 				enable = readl(ioaddr + IntrEnable);
1334 				if (enable & (IntrRxDone | IntrRxEmpty)) {
1335 					printk(KERN_INFO
1336 					       "%s: interrupt while in poll!\n",
1337 					       dev->name);
1338 					enable &= ~(IntrRxDone | IntrRxEmpty);
1339 					writel(enable, ioaddr + IntrEnable);
1340 				}
1341 			}
1342 		}
1343 
1344 		/* Scavenge the skbuff list based on the Tx-done queue.
1345 		   There are redundant checks here that may be cleaned up
1346 		   after the driver has proven to be reliable. */
1347 		consumer = readl(ioaddr + TxConsumerIdx);
1348 		if (debug > 3)
1349 			printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1350 			       dev->name, consumer);
1351 
1352 		while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1353 			if (debug > 3)
1354 				printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1355 				       dev->name, np->dirty_tx, np->tx_done, tx_status);
1356 			if ((tx_status & 0xe0000000) == 0xa0000000) {
1357 				dev->stats.tx_packets++;
1358 			} else if ((tx_status & 0xe0000000) == 0x80000000) {
1359 				u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1360 				struct sk_buff *skb = np->tx_info[entry].skb;
1361 				np->tx_info[entry].skb = NULL;
1362 				dma_unmap_single(&np->pci_dev->dev,
1363 						 np->tx_info[entry].mapping,
1364 						 skb_first_frag_len(skb),
1365 						 DMA_TO_DEVICE);
1366 				np->tx_info[entry].mapping = 0;
1367 				np->dirty_tx += np->tx_info[entry].used_slots;
1368 				entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1369 				{
1370 					int i;
1371 					for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1372 						dma_unmap_single(&np->pci_dev->dev,
1373 								 np->tx_info[entry].mapping,
1374 								 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1375 								 DMA_TO_DEVICE);
1376 						np->dirty_tx++;
1377 						entry++;
1378 					}
1379 				}
1380 
1381 				dev_consume_skb_irq(skb);
1382 			}
1383 			np->tx_done_q[np->tx_done].status = 0;
1384 			np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1385 		}
1386 		writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1387 
1388 		if (netif_queue_stopped(dev) &&
1389 		    (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1390 			/* The ring is no longer full, wake the queue. */
1391 			netif_wake_queue(dev);
1392 		}
1393 
1394 		/* Stats overflow */
1395 		if (intr_status & IntrStatsMax)
1396 			get_stats(dev);
1397 
1398 		/* Media change interrupt. */
1399 		if (intr_status & IntrLinkChange)
1400 			netdev_media_change(dev);
1401 
1402 		/* Abnormal error summary/uncommon events handlers. */
1403 		if (intr_status & IntrAbnormalSummary)
1404 			netdev_error(dev, intr_status);
1405 
1406 		if (--boguscnt < 0) {
1407 			if (debug > 1)
1408 				printk(KERN_WARNING "%s: Too much work at interrupt, "
1409 				       "status=%#8.8x.\n",
1410 				       dev->name, intr_status);
1411 			break;
1412 		}
1413 	} while (1);
1414 
1415 	if (debug > 4)
1416 		printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1417 		       dev->name, (int) readl(ioaddr + IntrStatus));
1418 	return IRQ_RETVAL(handled);
1419 }
1420 
1421 
1422 /*
1423  * This routine is logically part of the interrupt/poll handler, but separated
1424  * for clarity and better register allocation.
1425  */
__netdev_rx(struct net_device * dev,int * quota)1426 static int __netdev_rx(struct net_device *dev, int *quota)
1427 {
1428 	struct netdev_private *np = netdev_priv(dev);
1429 	u32 desc_status;
1430 	int retcode = 0;
1431 
1432 	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1433 	while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1434 		struct sk_buff *skb;
1435 		u16 pkt_len;
1436 		int entry;
1437 		rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1438 
1439 		if (debug > 4)
1440 			printk(KERN_DEBUG "  netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1441 		if (!(desc_status & RxOK)) {
1442 			/* There was an error. */
1443 			if (debug > 2)
1444 				printk(KERN_DEBUG "  netdev_rx() Rx error was %#8.8x.\n", desc_status);
1445 			dev->stats.rx_errors++;
1446 			if (desc_status & RxFIFOErr)
1447 				dev->stats.rx_fifo_errors++;
1448 			goto next_rx;
1449 		}
1450 
1451 		if (*quota <= 0) {	/* out of rx quota */
1452 			retcode = 1;
1453 			goto out;
1454 		}
1455 		(*quota)--;
1456 
1457 		pkt_len = desc_status;	/* Implicitly Truncate */
1458 		entry = (desc_status >> 16) & 0x7ff;
1459 
1460 		if (debug > 4)
1461 			printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1462 		/* Check if the packet is long enough to accept without copying
1463 		   to a minimally-sized skbuff. */
1464 		if (pkt_len < rx_copybreak &&
1465 		    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1466 			skb_reserve(skb, 2);	/* 16 byte align the IP header */
1467 			dma_sync_single_for_cpu(&np->pci_dev->dev,
1468 						np->rx_info[entry].mapping,
1469 						pkt_len, DMA_FROM_DEVICE);
1470 			skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1471 			dma_sync_single_for_device(&np->pci_dev->dev,
1472 						   np->rx_info[entry].mapping,
1473 						   pkt_len, DMA_FROM_DEVICE);
1474 			skb_put(skb, pkt_len);
1475 		} else {
1476 			dma_unmap_single(&np->pci_dev->dev,
1477 					 np->rx_info[entry].mapping,
1478 					 np->rx_buf_sz, DMA_FROM_DEVICE);
1479 			skb = np->rx_info[entry].skb;
1480 			skb_put(skb, pkt_len);
1481 			np->rx_info[entry].skb = NULL;
1482 			np->rx_info[entry].mapping = 0;
1483 		}
1484 #ifndef final_version			/* Remove after testing. */
1485 		/* You will want this info for the initial debug. */
1486 		if (debug > 5) {
1487 			printk(KERN_DEBUG "  Rx data %pM %pM %2.2x%2.2x.\n",
1488 			       skb->data, skb->data + 6,
1489 			       skb->data[12], skb->data[13]);
1490 		}
1491 #endif
1492 
1493 		skb->protocol = eth_type_trans(skb, dev);
1494 #ifdef VLAN_SUPPORT
1495 		if (debug > 4)
1496 			printk(KERN_DEBUG "  netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1497 #endif
1498 		if (le16_to_cpu(desc->status2) & 0x0100) {
1499 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1500 			dev->stats.rx_compressed++;
1501 		}
1502 		/*
1503 		 * This feature doesn't seem to be working, at least
1504 		 * with the two firmware versions I have. If the GFP sees
1505 		 * an IP fragment, it either ignores it completely, or reports
1506 		 * "bad checksum" on it.
1507 		 *
1508 		 * Maybe I missed something -- corrections are welcome.
1509 		 * Until then, the printk stays. :-) -Ion
1510 		 */
1511 		else if (le16_to_cpu(desc->status2) & 0x0040) {
1512 			skb->ip_summed = CHECKSUM_COMPLETE;
1513 			skb->csum = le16_to_cpu(desc->csum);
1514 			printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1515 		}
1516 #ifdef VLAN_SUPPORT
1517 		if (le16_to_cpu(desc->status2) & 0x0200) {
1518 			u16 vlid = le16_to_cpu(desc->vlanid);
1519 
1520 			if (debug > 4) {
1521 				printk(KERN_DEBUG "  netdev_rx() vlanid = %d\n",
1522 				       vlid);
1523 			}
1524 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlid);
1525 		}
1526 #endif /* VLAN_SUPPORT */
1527 		netif_receive_skb(skb);
1528 		dev->stats.rx_packets++;
1529 
1530 	next_rx:
1531 		np->cur_rx++;
1532 		desc->status = 0;
1533 		np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1534 	}
1535 
1536 	if (*quota == 0) {	/* out of rx quota */
1537 		retcode = 1;
1538 		goto out;
1539 	}
1540 	writew(np->rx_done, np->base + CompletionQConsumerIdx);
1541 
1542  out:
1543 	refill_rx_ring(dev);
1544 	if (debug > 5)
1545 		printk(KERN_DEBUG "  exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1546 		       retcode, np->rx_done, desc_status);
1547 	return retcode;
1548 }
1549 
netdev_poll(struct napi_struct * napi,int budget)1550 static int netdev_poll(struct napi_struct *napi, int budget)
1551 {
1552 	struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1553 	struct net_device *dev = np->dev;
1554 	u32 intr_status;
1555 	void __iomem *ioaddr = np->base;
1556 	int quota = budget;
1557 
1558 	do {
1559 		writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1560 
1561 		if (__netdev_rx(dev, &quota))
1562 			goto out;
1563 
1564 		intr_status = readl(ioaddr + IntrStatus);
1565 	} while (intr_status & (IntrRxDone | IntrRxEmpty));
1566 
1567 	napi_complete(napi);
1568 	intr_status = readl(ioaddr + IntrEnable);
1569 	intr_status |= IntrRxDone | IntrRxEmpty;
1570 	writel(intr_status, ioaddr + IntrEnable);
1571 
1572  out:
1573 	if (debug > 5)
1574 		printk(KERN_DEBUG "  exiting netdev_poll(): %d.\n",
1575 		       budget - quota);
1576 
1577 	/* Restart Rx engine if stopped. */
1578 	return budget - quota;
1579 }
1580 
refill_rx_ring(struct net_device * dev)1581 static void refill_rx_ring(struct net_device *dev)
1582 {
1583 	struct netdev_private *np = netdev_priv(dev);
1584 	struct sk_buff *skb;
1585 	int entry = -1;
1586 
1587 	/* Refill the Rx ring buffers. */
1588 	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1589 		entry = np->dirty_rx % RX_RING_SIZE;
1590 		if (np->rx_info[entry].skb == NULL) {
1591 			skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1592 			np->rx_info[entry].skb = skb;
1593 			if (skb == NULL)
1594 				break;	/* Better luck next round. */
1595 			np->rx_info[entry].mapping =
1596 				dma_map_single(&np->pci_dev->dev, skb->data,
1597 					       np->rx_buf_sz, DMA_FROM_DEVICE);
1598 			if (dma_mapping_error(&np->pci_dev->dev, np->rx_info[entry].mapping)) {
1599 				dev_kfree_skb(skb);
1600 				np->rx_info[entry].skb = NULL;
1601 				break;
1602 			}
1603 			np->rx_ring[entry].rxaddr =
1604 				cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1605 		}
1606 		if (entry == RX_RING_SIZE - 1)
1607 			np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1608 	}
1609 	if (entry >= 0)
1610 		writew(entry, np->base + RxDescQIdx);
1611 }
1612 
1613 
netdev_media_change(struct net_device * dev)1614 static void netdev_media_change(struct net_device *dev)
1615 {
1616 	struct netdev_private *np = netdev_priv(dev);
1617 	void __iomem *ioaddr = np->base;
1618 	u16 reg0, reg1, reg4, reg5;
1619 	u32 new_tx_mode;
1620 	u32 new_intr_timer_ctrl;
1621 
1622 	/* reset status first */
1623 	mdio_read(dev, np->phys[0], MII_BMCR);
1624 	mdio_read(dev, np->phys[0], MII_BMSR);
1625 
1626 	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1627 	reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1628 
1629 	if (reg1 & BMSR_LSTATUS) {
1630 		/* link is up */
1631 		if (reg0 & BMCR_ANENABLE) {
1632 			/* autonegotiation is enabled */
1633 			reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1634 			reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1635 			if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1636 				np->speed100 = 1;
1637 				np->mii_if.full_duplex = 1;
1638 			} else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1639 				np->speed100 = 1;
1640 				np->mii_if.full_duplex = 0;
1641 			} else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1642 				np->speed100 = 0;
1643 				np->mii_if.full_duplex = 1;
1644 			} else {
1645 				np->speed100 = 0;
1646 				np->mii_if.full_duplex = 0;
1647 			}
1648 		} else {
1649 			/* autonegotiation is disabled */
1650 			if (reg0 & BMCR_SPEED100)
1651 				np->speed100 = 1;
1652 			else
1653 				np->speed100 = 0;
1654 			if (reg0 & BMCR_FULLDPLX)
1655 				np->mii_if.full_duplex = 1;
1656 			else
1657 				np->mii_if.full_duplex = 0;
1658 		}
1659 		netif_carrier_on(dev);
1660 		printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1661 		       dev->name,
1662 		       np->speed100 ? "100" : "10",
1663 		       np->mii_if.full_duplex ? "full" : "half");
1664 
1665 		new_tx_mode = np->tx_mode & ~FullDuplex;	/* duplex setting */
1666 		if (np->mii_if.full_duplex)
1667 			new_tx_mode |= FullDuplex;
1668 		if (np->tx_mode != new_tx_mode) {
1669 			np->tx_mode = new_tx_mode;
1670 			writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1671 			udelay(1000);
1672 			writel(np->tx_mode, ioaddr + TxMode);
1673 		}
1674 
1675 		new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1676 		if (np->speed100)
1677 			new_intr_timer_ctrl |= Timer10X;
1678 		if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1679 			np->intr_timer_ctrl = new_intr_timer_ctrl;
1680 			writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1681 		}
1682 	} else {
1683 		netif_carrier_off(dev);
1684 		printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1685 	}
1686 }
1687 
1688 
netdev_error(struct net_device * dev,int intr_status)1689 static void netdev_error(struct net_device *dev, int intr_status)
1690 {
1691 	struct netdev_private *np = netdev_priv(dev);
1692 
1693 	/* Came close to underrunning the Tx FIFO, increase threshold. */
1694 	if (intr_status & IntrTxDataLow) {
1695 		if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1696 			writel(++np->tx_threshold, np->base + TxThreshold);
1697 			printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1698 			       dev->name, np->tx_threshold * 16);
1699 		} else
1700 			printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1701 	}
1702 	if (intr_status & IntrRxGFPDead) {
1703 		dev->stats.rx_fifo_errors++;
1704 		dev->stats.rx_errors++;
1705 	}
1706 	if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1707 		dev->stats.tx_fifo_errors++;
1708 		dev->stats.tx_errors++;
1709 	}
1710 	if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1711 		printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1712 		       dev->name, intr_status);
1713 }
1714 
1715 
get_stats(struct net_device * dev)1716 static struct net_device_stats *get_stats(struct net_device *dev)
1717 {
1718 	struct netdev_private *np = netdev_priv(dev);
1719 	void __iomem *ioaddr = np->base;
1720 
1721 	/* This adapter architecture needs no SMP locks. */
1722 	dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1723 	dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1724 	dev->stats.tx_packets = readl(ioaddr + 0x57000);
1725 	dev->stats.tx_aborted_errors =
1726 		readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1727 	dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1728 	dev->stats.collisions =
1729 		readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1730 
1731 	/* The chip only need report frame silently dropped. */
1732 	dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1733 	writew(0, ioaddr + RxDMAStatus);
1734 	dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1735 	dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1736 	dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1737 	dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1738 
1739 	return &dev->stats;
1740 }
1741 
1742 #ifdef VLAN_SUPPORT
set_vlan_mode(struct netdev_private * np)1743 static u32 set_vlan_mode(struct netdev_private *np)
1744 {
1745 	u32 ret = VlanMode;
1746 	u16 vid;
1747 	void __iomem *filter_addr = np->base + HashTable + 8;
1748 	int vlan_count = 0;
1749 
1750 	for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1751 		if (vlan_count == 32)
1752 			break;
1753 		writew(vid, filter_addr);
1754 		filter_addr += 16;
1755 		vlan_count++;
1756 	}
1757 	if (vlan_count == 32) {
1758 		ret |= PerfectFilterVlan;
1759 		while (vlan_count < 32) {
1760 			writew(0, filter_addr);
1761 			filter_addr += 16;
1762 			vlan_count++;
1763 		}
1764 	}
1765 	return ret;
1766 }
1767 #endif /* VLAN_SUPPORT */
1768 
set_rx_mode(struct net_device * dev)1769 static void set_rx_mode(struct net_device *dev)
1770 {
1771 	struct netdev_private *np = netdev_priv(dev);
1772 	void __iomem *ioaddr = np->base;
1773 	u32 rx_mode = MinVLANPrio;
1774 	struct netdev_hw_addr *ha;
1775 	int i;
1776 
1777 #ifdef VLAN_SUPPORT
1778 	rx_mode |= set_vlan_mode(np);
1779 #endif /* VLAN_SUPPORT */
1780 
1781 	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1782 		rx_mode |= AcceptAll;
1783 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1784 		   (dev->flags & IFF_ALLMULTI)) {
1785 		/* Too many to match, or accept all multicasts. */
1786 		rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1787 	} else if (netdev_mc_count(dev) <= 14) {
1788 		/* Use the 16 element perfect filter, skip first two entries. */
1789 		void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1790 		__be16 *eaddrs;
1791 		netdev_for_each_mc_addr(ha, dev) {
1792 			eaddrs = (__be16 *) ha->addr;
1793 			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1794 			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1795 			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1796 		}
1797 		eaddrs = (__be16 *)dev->dev_addr;
1798 		i = netdev_mc_count(dev) + 2;
1799 		while (i++ < 16) {
1800 			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1801 			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1802 			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1803 		}
1804 		rx_mode |= AcceptBroadcast|PerfectFilter;
1805 	} else {
1806 		/* Must use a multicast hash table. */
1807 		void __iomem *filter_addr;
1808 		__be16 *eaddrs;
1809 		__le16 mc_filter[32] __attribute__ ((aligned(sizeof(long))));	/* Multicast hash filter */
1810 
1811 		memset(mc_filter, 0, sizeof(mc_filter));
1812 		netdev_for_each_mc_addr(ha, dev) {
1813 			/* The chip uses the upper 9 CRC bits
1814 			   as index into the hash table */
1815 			int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1816 			__le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1817 
1818 			*fptr |= cpu_to_le32(1 << (bit_nr & 31));
1819 		}
1820 		/* Clear the perfect filter list, skip first two entries. */
1821 		filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1822 		eaddrs = (__be16 *)dev->dev_addr;
1823 		for (i = 2; i < 16; i++) {
1824 			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1825 			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1826 			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1827 		}
1828 		for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1829 			writew(mc_filter[i], filter_addr);
1830 		rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1831 	}
1832 	writel(rx_mode, ioaddr + RxFilterMode);
1833 }
1834 
check_if_running(struct net_device * dev)1835 static int check_if_running(struct net_device *dev)
1836 {
1837 	if (!netif_running(dev))
1838 		return -EINVAL;
1839 	return 0;
1840 }
1841 
get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1842 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1843 {
1844 	struct netdev_private *np = netdev_priv(dev);
1845 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1846 	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1847 }
1848 
get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1849 static int get_link_ksettings(struct net_device *dev,
1850 			      struct ethtool_link_ksettings *cmd)
1851 {
1852 	struct netdev_private *np = netdev_priv(dev);
1853 	spin_lock_irq(&np->lock);
1854 	mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1855 	spin_unlock_irq(&np->lock);
1856 	return 0;
1857 }
1858 
set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1859 static int set_link_ksettings(struct net_device *dev,
1860 			      const struct ethtool_link_ksettings *cmd)
1861 {
1862 	struct netdev_private *np = netdev_priv(dev);
1863 	int res;
1864 	spin_lock_irq(&np->lock);
1865 	res = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1866 	spin_unlock_irq(&np->lock);
1867 	check_duplex(dev);
1868 	return res;
1869 }
1870 
nway_reset(struct net_device * dev)1871 static int nway_reset(struct net_device *dev)
1872 {
1873 	struct netdev_private *np = netdev_priv(dev);
1874 	return mii_nway_restart(&np->mii_if);
1875 }
1876 
get_link(struct net_device * dev)1877 static u32 get_link(struct net_device *dev)
1878 {
1879 	struct netdev_private *np = netdev_priv(dev);
1880 	return mii_link_ok(&np->mii_if);
1881 }
1882 
get_msglevel(struct net_device * dev)1883 static u32 get_msglevel(struct net_device *dev)
1884 {
1885 	return debug;
1886 }
1887 
set_msglevel(struct net_device * dev,u32 val)1888 static void set_msglevel(struct net_device *dev, u32 val)
1889 {
1890 	debug = val;
1891 }
1892 
1893 static const struct ethtool_ops ethtool_ops = {
1894 	.begin = check_if_running,
1895 	.get_drvinfo = get_drvinfo,
1896 	.nway_reset = nway_reset,
1897 	.get_link = get_link,
1898 	.get_msglevel = get_msglevel,
1899 	.set_msglevel = set_msglevel,
1900 	.get_link_ksettings = get_link_ksettings,
1901 	.set_link_ksettings = set_link_ksettings,
1902 };
1903 
netdev_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1904 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1905 {
1906 	struct netdev_private *np = netdev_priv(dev);
1907 	struct mii_ioctl_data *data = if_mii(rq);
1908 	int rc;
1909 
1910 	if (!netif_running(dev))
1911 		return -EINVAL;
1912 
1913 	spin_lock_irq(&np->lock);
1914 	rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1915 	spin_unlock_irq(&np->lock);
1916 
1917 	if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1918 		check_duplex(dev);
1919 
1920 	return rc;
1921 }
1922 
netdev_close(struct net_device * dev)1923 static int netdev_close(struct net_device *dev)
1924 {
1925 	struct netdev_private *np = netdev_priv(dev);
1926 	void __iomem *ioaddr = np->base;
1927 	int i;
1928 
1929 	netif_stop_queue(dev);
1930 
1931 	napi_disable(&np->napi);
1932 
1933 	if (debug > 1) {
1934 		printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1935 			   dev->name, (int) readl(ioaddr + IntrStatus));
1936 		printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1937 		       dev->name, np->cur_tx, np->dirty_tx,
1938 		       np->cur_rx, np->dirty_rx);
1939 	}
1940 
1941 	/* Disable interrupts by clearing the interrupt mask. */
1942 	writel(0, ioaddr + IntrEnable);
1943 
1944 	/* Stop the chip's Tx and Rx processes. */
1945 	writel(0, ioaddr + GenCtrl);
1946 	readl(ioaddr + GenCtrl);
1947 
1948 	if (debug > 5) {
1949 		printk(KERN_DEBUG"  Tx ring at %#llx:\n",
1950 		       (long long) np->tx_ring_dma);
1951 		for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1952 			printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1953 			       i, le32_to_cpu(np->tx_ring[i].status),
1954 			       (long long) dma_to_cpu(np->tx_ring[i].addr),
1955 			       le32_to_cpu(np->tx_done_q[i].status));
1956 		printk(KERN_DEBUG "  Rx ring at %#llx -> %p:\n",
1957 		       (long long) np->rx_ring_dma, np->rx_done_q);
1958 		if (np->rx_done_q)
1959 			for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1960 				printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1961 				       i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1962 		}
1963 	}
1964 
1965 	free_irq(np->pci_dev->irq, dev);
1966 
1967 	/* Free all the skbuffs in the Rx queue. */
1968 	for (i = 0; i < RX_RING_SIZE; i++) {
1969 		np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1970 		if (np->rx_info[i].skb != NULL) {
1971 			dma_unmap_single(&np->pci_dev->dev,
1972 					 np->rx_info[i].mapping,
1973 					 np->rx_buf_sz, DMA_FROM_DEVICE);
1974 			dev_kfree_skb(np->rx_info[i].skb);
1975 		}
1976 		np->rx_info[i].skb = NULL;
1977 		np->rx_info[i].mapping = 0;
1978 	}
1979 	for (i = 0; i < TX_RING_SIZE; i++) {
1980 		struct sk_buff *skb = np->tx_info[i].skb;
1981 		if (skb == NULL)
1982 			continue;
1983 		dma_unmap_single(&np->pci_dev->dev, np->tx_info[i].mapping,
1984 				 skb_first_frag_len(skb), DMA_TO_DEVICE);
1985 		np->tx_info[i].mapping = 0;
1986 		dev_kfree_skb(skb);
1987 		np->tx_info[i].skb = NULL;
1988 	}
1989 
1990 	return 0;
1991 }
1992 
starfire_suspend(struct device * dev_d)1993 static int __maybe_unused starfire_suspend(struct device *dev_d)
1994 {
1995 	struct net_device *dev = dev_get_drvdata(dev_d);
1996 
1997 	if (netif_running(dev)) {
1998 		netif_device_detach(dev);
1999 		netdev_close(dev);
2000 	}
2001 
2002 	return 0;
2003 }
2004 
starfire_resume(struct device * dev_d)2005 static int __maybe_unused starfire_resume(struct device *dev_d)
2006 {
2007 	struct net_device *dev = dev_get_drvdata(dev_d);
2008 
2009 	if (netif_running(dev)) {
2010 		netdev_open(dev);
2011 		netif_device_attach(dev);
2012 	}
2013 
2014 	return 0;
2015 }
2016 
starfire_remove_one(struct pci_dev * pdev)2017 static void starfire_remove_one(struct pci_dev *pdev)
2018 {
2019 	struct net_device *dev = pci_get_drvdata(pdev);
2020 	struct netdev_private *np = netdev_priv(dev);
2021 
2022 	BUG_ON(!dev);
2023 
2024 	unregister_netdev(dev);
2025 
2026 	if (np->queue_mem)
2027 		dma_free_coherent(&pdev->dev, np->queue_mem_size,
2028 				  np->queue_mem, np->queue_mem_dma);
2029 
2030 
2031 	/* XXX: add wakeup code -- requires firmware for MagicPacket */
2032 	pci_set_power_state(pdev, PCI_D3hot);	/* go to sleep in D3 mode */
2033 	pci_disable_device(pdev);
2034 
2035 	iounmap(np->base);
2036 	pci_release_regions(pdev);
2037 
2038 	free_netdev(dev);			/* Will also free np!! */
2039 }
2040 
2041 static SIMPLE_DEV_PM_OPS(starfire_pm_ops, starfire_suspend, starfire_resume);
2042 
2043 static struct pci_driver starfire_driver = {
2044 	.name		= DRV_NAME,
2045 	.probe		= starfire_init_one,
2046 	.remove		= starfire_remove_one,
2047 	.driver.pm	= &starfire_pm_ops,
2048 	.id_table	= starfire_pci_tbl,
2049 };
2050 
2051 
starfire_init(void)2052 static int __init starfire_init (void)
2053 {
2054 /* when a module, this is printed whether or not devices are found in probe */
2055 #ifdef MODULE
2056 	printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2057 #endif
2058 
2059 	BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2060 
2061 	return pci_register_driver(&starfire_driver);
2062 }
2063 
2064 
starfire_cleanup(void)2065 static void __exit starfire_cleanup (void)
2066 {
2067 	pci_unregister_driver (&starfire_driver);
2068 }
2069 
2070 
2071 module_init(starfire_init);
2072 module_exit(starfire_cleanup);
2073