1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* The driver transmit and receive code */
5 
6 #include <linux/prefetch.h>
7 #include <linux/mm.h>
8 #include <linux/bpf_trace.h>
9 #include <net/xdp.h>
10 #include "ice_txrx_lib.h"
11 #include "ice_lib.h"
12 #include "ice.h"
13 #include "ice_dcb_lib.h"
14 #include "ice_xsk.h"
15 
16 #define ICE_RX_HDR_SIZE		256
17 
18 #define FDIR_DESC_RXDID 0x40
19 #define ICE_FDIR_CLEAN_DELAY 10
20 
21 /**
22  * ice_prgm_fdir_fltr - Program a Flow Director filter
23  * @vsi: VSI to send dummy packet
24  * @fdir_desc: flow director descriptor
25  * @raw_packet: allocated buffer for flow director
26  */
27 int
ice_prgm_fdir_fltr(struct ice_vsi * vsi,struct ice_fltr_desc * fdir_desc,u8 * raw_packet)28 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
29 		   u8 *raw_packet)
30 {
31 	struct ice_tx_buf *tx_buf, *first;
32 	struct ice_fltr_desc *f_desc;
33 	struct ice_tx_desc *tx_desc;
34 	struct ice_ring *tx_ring;
35 	struct device *dev;
36 	dma_addr_t dma;
37 	u32 td_cmd;
38 	u16 i;
39 
40 	/* VSI and Tx ring */
41 	if (!vsi)
42 		return -ENOENT;
43 	tx_ring = vsi->tx_rings[0];
44 	if (!tx_ring || !tx_ring->desc)
45 		return -ENOENT;
46 	dev = tx_ring->dev;
47 
48 	/* we are using two descriptors to add/del a filter and we can wait */
49 	for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) {
50 		if (!i)
51 			return -EAGAIN;
52 		msleep_interruptible(1);
53 	}
54 
55 	dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE,
56 			     DMA_TO_DEVICE);
57 
58 	if (dma_mapping_error(dev, dma))
59 		return -EINVAL;
60 
61 	/* grab the next descriptor */
62 	i = tx_ring->next_to_use;
63 	first = &tx_ring->tx_buf[i];
64 	f_desc = ICE_TX_FDIRDESC(tx_ring, i);
65 	memcpy(f_desc, fdir_desc, sizeof(*f_desc));
66 
67 	i++;
68 	i = (i < tx_ring->count) ? i : 0;
69 	tx_desc = ICE_TX_DESC(tx_ring, i);
70 	tx_buf = &tx_ring->tx_buf[i];
71 
72 	i++;
73 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
74 
75 	memset(tx_buf, 0, sizeof(*tx_buf));
76 	dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE);
77 	dma_unmap_addr_set(tx_buf, dma, dma);
78 
79 	tx_desc->buf_addr = cpu_to_le64(dma);
80 	td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY |
81 		 ICE_TX_DESC_CMD_RE;
82 
83 	tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT;
84 	tx_buf->raw_buf = raw_packet;
85 
86 	tx_desc->cmd_type_offset_bsz =
87 		ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0);
88 
89 	/* Force memory write to complete before letting h/w know
90 	 * there are new descriptors to fetch.
91 	 */
92 	wmb();
93 
94 	/* mark the data descriptor to be watched */
95 	first->next_to_watch = tx_desc;
96 
97 	writel(tx_ring->next_to_use, tx_ring->tail);
98 
99 	return 0;
100 }
101 
102 /**
103  * ice_unmap_and_free_tx_buf - Release a Tx buffer
104  * @ring: the ring that owns the buffer
105  * @tx_buf: the buffer to free
106  */
107 static void
ice_unmap_and_free_tx_buf(struct ice_ring * ring,struct ice_tx_buf * tx_buf)108 ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
109 {
110 	if (tx_buf->skb) {
111 		if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
112 			devm_kfree(ring->dev, tx_buf->raw_buf);
113 		else if (ice_ring_is_xdp(ring))
114 			page_frag_free(tx_buf->raw_buf);
115 		else
116 			dev_kfree_skb_any(tx_buf->skb);
117 		if (dma_unmap_len(tx_buf, len))
118 			dma_unmap_single(ring->dev,
119 					 dma_unmap_addr(tx_buf, dma),
120 					 dma_unmap_len(tx_buf, len),
121 					 DMA_TO_DEVICE);
122 	} else if (dma_unmap_len(tx_buf, len)) {
123 		dma_unmap_page(ring->dev,
124 			       dma_unmap_addr(tx_buf, dma),
125 			       dma_unmap_len(tx_buf, len),
126 			       DMA_TO_DEVICE);
127 	}
128 
129 	tx_buf->next_to_watch = NULL;
130 	tx_buf->skb = NULL;
131 	dma_unmap_len_set(tx_buf, len, 0);
132 	/* tx_buf must be completely set up in the transmit path */
133 }
134 
txring_txq(const struct ice_ring * ring)135 static struct netdev_queue *txring_txq(const struct ice_ring *ring)
136 {
137 	return netdev_get_tx_queue(ring->netdev, ring->q_index);
138 }
139 
140 /**
141  * ice_clean_tx_ring - Free any empty Tx buffers
142  * @tx_ring: ring to be cleaned
143  */
ice_clean_tx_ring(struct ice_ring * tx_ring)144 void ice_clean_tx_ring(struct ice_ring *tx_ring)
145 {
146 	u16 i;
147 
148 	if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
149 		ice_xsk_clean_xdp_ring(tx_ring);
150 		goto tx_skip_free;
151 	}
152 
153 	/* ring already cleared, nothing to do */
154 	if (!tx_ring->tx_buf)
155 		return;
156 
157 	/* Free all the Tx ring sk_buffs */
158 	for (i = 0; i < tx_ring->count; i++)
159 		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
160 
161 tx_skip_free:
162 	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
163 
164 	/* Zero out the descriptor ring */
165 	memset(tx_ring->desc, 0, tx_ring->size);
166 
167 	tx_ring->next_to_use = 0;
168 	tx_ring->next_to_clean = 0;
169 
170 	if (!tx_ring->netdev)
171 		return;
172 
173 	/* cleanup Tx queue statistics */
174 	netdev_tx_reset_queue(txring_txq(tx_ring));
175 }
176 
177 /**
178  * ice_free_tx_ring - Free Tx resources per queue
179  * @tx_ring: Tx descriptor ring for a specific queue
180  *
181  * Free all transmit software resources
182  */
ice_free_tx_ring(struct ice_ring * tx_ring)183 void ice_free_tx_ring(struct ice_ring *tx_ring)
184 {
185 	ice_clean_tx_ring(tx_ring);
186 	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
187 	tx_ring->tx_buf = NULL;
188 
189 	if (tx_ring->desc) {
190 		dmam_free_coherent(tx_ring->dev, tx_ring->size,
191 				   tx_ring->desc, tx_ring->dma);
192 		tx_ring->desc = NULL;
193 	}
194 }
195 
196 /**
197  * ice_clean_tx_irq - Reclaim resources after transmit completes
198  * @tx_ring: Tx ring to clean
199  * @napi_budget: Used to determine if we are in netpoll
200  *
201  * Returns true if there's any budget left (e.g. the clean is finished)
202  */
ice_clean_tx_irq(struct ice_ring * tx_ring,int napi_budget)203 static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget)
204 {
205 	unsigned int total_bytes = 0, total_pkts = 0;
206 	unsigned int budget = ICE_DFLT_IRQ_WORK;
207 	struct ice_vsi *vsi = tx_ring->vsi;
208 	s16 i = tx_ring->next_to_clean;
209 	struct ice_tx_desc *tx_desc;
210 	struct ice_tx_buf *tx_buf;
211 
212 	tx_buf = &tx_ring->tx_buf[i];
213 	tx_desc = ICE_TX_DESC(tx_ring, i);
214 	i -= tx_ring->count;
215 
216 	prefetch(&vsi->state);
217 
218 	do {
219 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
220 
221 		/* if next_to_watch is not set then there is no work pending */
222 		if (!eop_desc)
223 			break;
224 
225 		smp_rmb();	/* prevent any other reads prior to eop_desc */
226 
227 		/* if the descriptor isn't done, no work yet to do */
228 		if (!(eop_desc->cmd_type_offset_bsz &
229 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
230 			break;
231 
232 		/* clear next_to_watch to prevent false hangs */
233 		tx_buf->next_to_watch = NULL;
234 
235 		/* update the statistics for this packet */
236 		total_bytes += tx_buf->bytecount;
237 		total_pkts += tx_buf->gso_segs;
238 
239 		if (ice_ring_is_xdp(tx_ring))
240 			page_frag_free(tx_buf->raw_buf);
241 		else
242 			/* free the skb */
243 			napi_consume_skb(tx_buf->skb, napi_budget);
244 
245 		/* unmap skb header data */
246 		dma_unmap_single(tx_ring->dev,
247 				 dma_unmap_addr(tx_buf, dma),
248 				 dma_unmap_len(tx_buf, len),
249 				 DMA_TO_DEVICE);
250 
251 		/* clear tx_buf data */
252 		tx_buf->skb = NULL;
253 		dma_unmap_len_set(tx_buf, len, 0);
254 
255 		/* unmap remaining buffers */
256 		while (tx_desc != eop_desc) {
257 			tx_buf++;
258 			tx_desc++;
259 			i++;
260 			if (unlikely(!i)) {
261 				i -= tx_ring->count;
262 				tx_buf = tx_ring->tx_buf;
263 				tx_desc = ICE_TX_DESC(tx_ring, 0);
264 			}
265 
266 			/* unmap any remaining paged data */
267 			if (dma_unmap_len(tx_buf, len)) {
268 				dma_unmap_page(tx_ring->dev,
269 					       dma_unmap_addr(tx_buf, dma),
270 					       dma_unmap_len(tx_buf, len),
271 					       DMA_TO_DEVICE);
272 				dma_unmap_len_set(tx_buf, len, 0);
273 			}
274 		}
275 
276 		/* move us one more past the eop_desc for start of next pkt */
277 		tx_buf++;
278 		tx_desc++;
279 		i++;
280 		if (unlikely(!i)) {
281 			i -= tx_ring->count;
282 			tx_buf = tx_ring->tx_buf;
283 			tx_desc = ICE_TX_DESC(tx_ring, 0);
284 		}
285 
286 		prefetch(tx_desc);
287 
288 		/* update budget accounting */
289 		budget--;
290 	} while (likely(budget));
291 
292 	i += tx_ring->count;
293 	tx_ring->next_to_clean = i;
294 
295 	ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
296 
297 	if (ice_ring_is_xdp(tx_ring))
298 		return !!budget;
299 
300 	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
301 				  total_bytes);
302 
303 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
304 	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
305 		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
306 		/* Make sure that anybody stopping the queue after this
307 		 * sees the new next_to_clean.
308 		 */
309 		smp_mb();
310 		if (__netif_subqueue_stopped(tx_ring->netdev,
311 					     tx_ring->q_index) &&
312 		    !test_bit(ICE_VSI_DOWN, vsi->state)) {
313 			netif_wake_subqueue(tx_ring->netdev,
314 					    tx_ring->q_index);
315 			++tx_ring->tx_stats.restart_q;
316 		}
317 	}
318 
319 	return !!budget;
320 }
321 
322 /**
323  * ice_setup_tx_ring - Allocate the Tx descriptors
324  * @tx_ring: the Tx ring to set up
325  *
326  * Return 0 on success, negative on error
327  */
ice_setup_tx_ring(struct ice_ring * tx_ring)328 int ice_setup_tx_ring(struct ice_ring *tx_ring)
329 {
330 	struct device *dev = tx_ring->dev;
331 
332 	if (!dev)
333 		return -ENOMEM;
334 
335 	/* warn if we are about to overwrite the pointer */
336 	WARN_ON(tx_ring->tx_buf);
337 	tx_ring->tx_buf =
338 		devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count,
339 			     GFP_KERNEL);
340 	if (!tx_ring->tx_buf)
341 		return -ENOMEM;
342 
343 	/* round up to nearest page */
344 	tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
345 			      PAGE_SIZE);
346 	tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
347 					    GFP_KERNEL);
348 	if (!tx_ring->desc) {
349 		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
350 			tx_ring->size);
351 		goto err;
352 	}
353 
354 	tx_ring->next_to_use = 0;
355 	tx_ring->next_to_clean = 0;
356 	tx_ring->tx_stats.prev_pkt = -1;
357 	return 0;
358 
359 err:
360 	devm_kfree(dev, tx_ring->tx_buf);
361 	tx_ring->tx_buf = NULL;
362 	return -ENOMEM;
363 }
364 
365 /**
366  * ice_clean_rx_ring - Free Rx buffers
367  * @rx_ring: ring to be cleaned
368  */
ice_clean_rx_ring(struct ice_ring * rx_ring)369 void ice_clean_rx_ring(struct ice_ring *rx_ring)
370 {
371 	struct device *dev = rx_ring->dev;
372 	u16 i;
373 
374 	/* ring already cleared, nothing to do */
375 	if (!rx_ring->rx_buf)
376 		return;
377 
378 	if (rx_ring->skb) {
379 		dev_kfree_skb(rx_ring->skb);
380 		rx_ring->skb = NULL;
381 	}
382 
383 	if (rx_ring->xsk_pool) {
384 		ice_xsk_clean_rx_ring(rx_ring);
385 		goto rx_skip_free;
386 	}
387 
388 	/* Free all the Rx ring sk_buffs */
389 	for (i = 0; i < rx_ring->count; i++) {
390 		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
391 
392 		if (!rx_buf->page)
393 			continue;
394 
395 		/* Invalidate cache lines that may have been written to by
396 		 * device so that we avoid corrupting memory.
397 		 */
398 		dma_sync_single_range_for_cpu(dev, rx_buf->dma,
399 					      rx_buf->page_offset,
400 					      rx_ring->rx_buf_len,
401 					      DMA_FROM_DEVICE);
402 
403 		/* free resources associated with mapping */
404 		dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
405 				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
406 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
407 
408 		rx_buf->page = NULL;
409 		rx_buf->page_offset = 0;
410 	}
411 
412 rx_skip_free:
413 	memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count);
414 
415 	/* Zero out the descriptor ring */
416 	memset(rx_ring->desc, 0, rx_ring->size);
417 
418 	rx_ring->next_to_alloc = 0;
419 	rx_ring->next_to_clean = 0;
420 	rx_ring->next_to_use = 0;
421 }
422 
423 /**
424  * ice_free_rx_ring - Free Rx resources
425  * @rx_ring: ring to clean the resources from
426  *
427  * Free all receive software resources
428  */
ice_free_rx_ring(struct ice_ring * rx_ring)429 void ice_free_rx_ring(struct ice_ring *rx_ring)
430 {
431 	ice_clean_rx_ring(rx_ring);
432 	if (rx_ring->vsi->type == ICE_VSI_PF)
433 		if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
434 			xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
435 	rx_ring->xdp_prog = NULL;
436 	devm_kfree(rx_ring->dev, rx_ring->rx_buf);
437 	rx_ring->rx_buf = NULL;
438 
439 	if (rx_ring->desc) {
440 		dmam_free_coherent(rx_ring->dev, rx_ring->size,
441 				   rx_ring->desc, rx_ring->dma);
442 		rx_ring->desc = NULL;
443 	}
444 }
445 
446 /**
447  * ice_setup_rx_ring - Allocate the Rx descriptors
448  * @rx_ring: the Rx ring to set up
449  *
450  * Return 0 on success, negative on error
451  */
ice_setup_rx_ring(struct ice_ring * rx_ring)452 int ice_setup_rx_ring(struct ice_ring *rx_ring)
453 {
454 	struct device *dev = rx_ring->dev;
455 
456 	if (!dev)
457 		return -ENOMEM;
458 
459 	/* warn if we are about to overwrite the pointer */
460 	WARN_ON(rx_ring->rx_buf);
461 	rx_ring->rx_buf =
462 		devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count,
463 			     GFP_KERNEL);
464 	if (!rx_ring->rx_buf)
465 		return -ENOMEM;
466 
467 	/* round up to nearest page */
468 	rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
469 			      PAGE_SIZE);
470 	rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
471 					    GFP_KERNEL);
472 	if (!rx_ring->desc) {
473 		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
474 			rx_ring->size);
475 		goto err;
476 	}
477 
478 	rx_ring->next_to_use = 0;
479 	rx_ring->next_to_clean = 0;
480 
481 	if (ice_is_xdp_ena_vsi(rx_ring->vsi))
482 		WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
483 
484 	if (rx_ring->vsi->type == ICE_VSI_PF &&
485 	    !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
486 		if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
487 				     rx_ring->q_index, rx_ring->q_vector->napi.napi_id))
488 			goto err;
489 	return 0;
490 
491 err:
492 	devm_kfree(dev, rx_ring->rx_buf);
493 	rx_ring->rx_buf = NULL;
494 	return -ENOMEM;
495 }
496 
497 static unsigned int
ice_rx_frame_truesize(struct ice_ring * rx_ring,unsigned int __maybe_unused size)498 ice_rx_frame_truesize(struct ice_ring *rx_ring, unsigned int __maybe_unused size)
499 {
500 	unsigned int truesize;
501 
502 #if (PAGE_SIZE < 8192)
503 	truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
504 #else
505 	truesize = rx_ring->rx_offset ?
506 		SKB_DATA_ALIGN(rx_ring->rx_offset + size) +
507 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
508 		SKB_DATA_ALIGN(size);
509 #endif
510 	return truesize;
511 }
512 
513 /**
514  * ice_run_xdp - Executes an XDP program on initialized xdp_buff
515  * @rx_ring: Rx ring
516  * @xdp: xdp_buff used as input to the XDP program
517  * @xdp_prog: XDP program to run
518  *
519  * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
520  */
521 static int
ice_run_xdp(struct ice_ring * rx_ring,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)522 ice_run_xdp(struct ice_ring *rx_ring, struct xdp_buff *xdp,
523 	    struct bpf_prog *xdp_prog)
524 {
525 	struct ice_ring *xdp_ring;
526 	int err;
527 	u32 act;
528 
529 	act = bpf_prog_run_xdp(xdp_prog, xdp);
530 	switch (act) {
531 	case XDP_PASS:
532 		return ICE_XDP_PASS;
533 	case XDP_TX:
534 		xdp_ring = rx_ring->vsi->xdp_rings[smp_processor_id()];
535 		return ice_xmit_xdp_buff(xdp, xdp_ring);
536 	case XDP_REDIRECT:
537 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
538 		return !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED;
539 	default:
540 		bpf_warn_invalid_xdp_action(act);
541 		fallthrough;
542 	case XDP_ABORTED:
543 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
544 		fallthrough;
545 	case XDP_DROP:
546 		return ICE_XDP_CONSUMED;
547 	}
548 }
549 
550 /**
551  * ice_xdp_xmit - submit packets to XDP ring for transmission
552  * @dev: netdev
553  * @n: number of XDP frames to be transmitted
554  * @frames: XDP frames to be transmitted
555  * @flags: transmit flags
556  *
557  * Returns number of frames successfully sent. Failed frames
558  * will be free'ed by XDP core.
559  * For error cases, a negative errno code is returned and no-frames
560  * are transmitted (caller must handle freeing frames).
561  */
562 int
ice_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)563 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
564 	     u32 flags)
565 {
566 	struct ice_netdev_priv *np = netdev_priv(dev);
567 	unsigned int queue_index = smp_processor_id();
568 	struct ice_vsi *vsi = np->vsi;
569 	struct ice_ring *xdp_ring;
570 	int nxmit = 0, i;
571 
572 	if (test_bit(ICE_VSI_DOWN, vsi->state))
573 		return -ENETDOWN;
574 
575 	if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq)
576 		return -ENXIO;
577 
578 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
579 		return -EINVAL;
580 
581 	xdp_ring = vsi->xdp_rings[queue_index];
582 	for (i = 0; i < n; i++) {
583 		struct xdp_frame *xdpf = frames[i];
584 		int err;
585 
586 		err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring);
587 		if (err != ICE_XDP_TX)
588 			break;
589 		nxmit++;
590 	}
591 
592 	if (unlikely(flags & XDP_XMIT_FLUSH))
593 		ice_xdp_ring_update_tail(xdp_ring);
594 
595 	return nxmit;
596 }
597 
598 /**
599  * ice_alloc_mapped_page - recycle or make a new page
600  * @rx_ring: ring to use
601  * @bi: rx_buf struct to modify
602  *
603  * Returns true if the page was successfully allocated or
604  * reused.
605  */
606 static bool
ice_alloc_mapped_page(struct ice_ring * rx_ring,struct ice_rx_buf * bi)607 ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi)
608 {
609 	struct page *page = bi->page;
610 	dma_addr_t dma;
611 
612 	/* since we are recycling buffers we should seldom need to alloc */
613 	if (likely(page))
614 		return true;
615 
616 	/* alloc new page for storage */
617 	page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
618 	if (unlikely(!page)) {
619 		rx_ring->rx_stats.alloc_page_failed++;
620 		return false;
621 	}
622 
623 	/* map page for use */
624 	dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
625 				 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
626 
627 	/* if mapping failed free memory back to system since
628 	 * there isn't much point in holding memory we can't use
629 	 */
630 	if (dma_mapping_error(rx_ring->dev, dma)) {
631 		__free_pages(page, ice_rx_pg_order(rx_ring));
632 		rx_ring->rx_stats.alloc_page_failed++;
633 		return false;
634 	}
635 
636 	bi->dma = dma;
637 	bi->page = page;
638 	bi->page_offset = rx_ring->rx_offset;
639 	page_ref_add(page, USHRT_MAX - 1);
640 	bi->pagecnt_bias = USHRT_MAX;
641 
642 	return true;
643 }
644 
645 /**
646  * ice_alloc_rx_bufs - Replace used receive buffers
647  * @rx_ring: ring to place buffers on
648  * @cleaned_count: number of buffers to replace
649  *
650  * Returns false if all allocations were successful, true if any fail. Returning
651  * true signals to the caller that we didn't replace cleaned_count buffers and
652  * there is more work to do.
653  *
654  * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
655  * buffers. Then bump tail at most one time. Grouping like this lets us avoid
656  * multiple tail writes per call.
657  */
ice_alloc_rx_bufs(struct ice_ring * rx_ring,u16 cleaned_count)658 bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
659 {
660 	union ice_32b_rx_flex_desc *rx_desc;
661 	u16 ntu = rx_ring->next_to_use;
662 	struct ice_rx_buf *bi;
663 
664 	/* do nothing if no valid netdev defined */
665 	if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) ||
666 	    !cleaned_count)
667 		return false;
668 
669 	/* get the Rx descriptor and buffer based on next_to_use */
670 	rx_desc = ICE_RX_DESC(rx_ring, ntu);
671 	bi = &rx_ring->rx_buf[ntu];
672 
673 	do {
674 		/* if we fail here, we have work remaining */
675 		if (!ice_alloc_mapped_page(rx_ring, bi))
676 			break;
677 
678 		/* sync the buffer for use by the device */
679 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
680 						 bi->page_offset,
681 						 rx_ring->rx_buf_len,
682 						 DMA_FROM_DEVICE);
683 
684 		/* Refresh the desc even if buffer_addrs didn't change
685 		 * because each write-back erases this info.
686 		 */
687 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
688 
689 		rx_desc++;
690 		bi++;
691 		ntu++;
692 		if (unlikely(ntu == rx_ring->count)) {
693 			rx_desc = ICE_RX_DESC(rx_ring, 0);
694 			bi = rx_ring->rx_buf;
695 			ntu = 0;
696 		}
697 
698 		/* clear the status bits for the next_to_use descriptor */
699 		rx_desc->wb.status_error0 = 0;
700 
701 		cleaned_count--;
702 	} while (cleaned_count);
703 
704 	if (rx_ring->next_to_use != ntu)
705 		ice_release_rx_desc(rx_ring, ntu);
706 
707 	return !!cleaned_count;
708 }
709 
710 /**
711  * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
712  * @rx_buf: Rx buffer to adjust
713  * @size: Size of adjustment
714  *
715  * Update the offset within page so that Rx buf will be ready to be reused.
716  * For systems with PAGE_SIZE < 8192 this function will flip the page offset
717  * so the second half of page assigned to Rx buffer will be used, otherwise
718  * the offset is moved by "size" bytes
719  */
720 static void
ice_rx_buf_adjust_pg_offset(struct ice_rx_buf * rx_buf,unsigned int size)721 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
722 {
723 #if (PAGE_SIZE < 8192)
724 	/* flip page offset to other buffer */
725 	rx_buf->page_offset ^= size;
726 #else
727 	/* move offset up to the next cache line */
728 	rx_buf->page_offset += size;
729 #endif
730 }
731 
732 /**
733  * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
734  * @rx_buf: buffer containing the page
735  * @rx_buf_pgcnt: rx_buf page refcount pre xdp_do_redirect() call
736  *
737  * If page is reusable, we have a green light for calling ice_reuse_rx_page,
738  * which will assign the current buffer to the buffer that next_to_alloc is
739  * pointing to; otherwise, the DMA mapping needs to be destroyed and
740  * page freed
741  */
742 static bool
ice_can_reuse_rx_page(struct ice_rx_buf * rx_buf,int rx_buf_pgcnt)743 ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf, int rx_buf_pgcnt)
744 {
745 	unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
746 	struct page *page = rx_buf->page;
747 
748 	/* avoid re-using remote and pfmemalloc pages */
749 	if (!dev_page_is_reusable(page))
750 		return false;
751 
752 #if (PAGE_SIZE < 8192)
753 	/* if we are only owner of page we can reuse it */
754 	if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
755 		return false;
756 #else
757 #define ICE_LAST_OFFSET \
758 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048)
759 	if (rx_buf->page_offset > ICE_LAST_OFFSET)
760 		return false;
761 #endif /* PAGE_SIZE < 8192) */
762 
763 	/* If we have drained the page fragment pool we need to update
764 	 * the pagecnt_bias and page count so that we fully restock the
765 	 * number of references the driver holds.
766 	 */
767 	if (unlikely(pagecnt_bias == 1)) {
768 		page_ref_add(page, USHRT_MAX - 1);
769 		rx_buf->pagecnt_bias = USHRT_MAX;
770 	}
771 
772 	return true;
773 }
774 
775 /**
776  * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
777  * @rx_ring: Rx descriptor ring to transact packets on
778  * @rx_buf: buffer containing page to add
779  * @skb: sk_buff to place the data into
780  * @size: packet length from rx_desc
781  *
782  * This function will add the data contained in rx_buf->page to the skb.
783  * It will just attach the page as a frag to the skb.
784  * The function will then update the page offset.
785  */
786 static void
ice_add_rx_frag(struct ice_ring * rx_ring,struct ice_rx_buf * rx_buf,struct sk_buff * skb,unsigned int size)787 ice_add_rx_frag(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
788 		struct sk_buff *skb, unsigned int size)
789 {
790 #if (PAGE_SIZE >= 8192)
791 	unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset);
792 #else
793 	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
794 #endif
795 
796 	if (!size)
797 		return;
798 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
799 			rx_buf->page_offset, size, truesize);
800 
801 	/* page is being used so we must update the page offset */
802 	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
803 }
804 
805 /**
806  * ice_reuse_rx_page - page flip buffer and store it back on the ring
807  * @rx_ring: Rx descriptor ring to store buffers on
808  * @old_buf: donor buffer to have page reused
809  *
810  * Synchronizes page for reuse by the adapter
811  */
812 static void
ice_reuse_rx_page(struct ice_ring * rx_ring,struct ice_rx_buf * old_buf)813 ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf)
814 {
815 	u16 nta = rx_ring->next_to_alloc;
816 	struct ice_rx_buf *new_buf;
817 
818 	new_buf = &rx_ring->rx_buf[nta];
819 
820 	/* update, and store next to alloc */
821 	nta++;
822 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
823 
824 	/* Transfer page from old buffer to new buffer.
825 	 * Move each member individually to avoid possible store
826 	 * forwarding stalls and unnecessary copy of skb.
827 	 */
828 	new_buf->dma = old_buf->dma;
829 	new_buf->page = old_buf->page;
830 	new_buf->page_offset = old_buf->page_offset;
831 	new_buf->pagecnt_bias = old_buf->pagecnt_bias;
832 }
833 
834 /**
835  * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
836  * @rx_ring: Rx descriptor ring to transact packets on
837  * @size: size of buffer to add to skb
838  * @rx_buf_pgcnt: rx_buf page refcount
839  *
840  * This function will pull an Rx buffer from the ring and synchronize it
841  * for use by the CPU.
842  */
843 static struct ice_rx_buf *
ice_get_rx_buf(struct ice_ring * rx_ring,const unsigned int size,int * rx_buf_pgcnt)844 ice_get_rx_buf(struct ice_ring *rx_ring, const unsigned int size,
845 	       int *rx_buf_pgcnt)
846 {
847 	struct ice_rx_buf *rx_buf;
848 
849 	rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
850 	*rx_buf_pgcnt =
851 #if (PAGE_SIZE < 8192)
852 		page_count(rx_buf->page);
853 #else
854 		0;
855 #endif
856 	prefetchw(rx_buf->page);
857 
858 	if (!size)
859 		return rx_buf;
860 	/* we are reusing so sync this buffer for CPU use */
861 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
862 				      rx_buf->page_offset, size,
863 				      DMA_FROM_DEVICE);
864 
865 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
866 	rx_buf->pagecnt_bias--;
867 
868 	return rx_buf;
869 }
870 
871 /**
872  * ice_build_skb - Build skb around an existing buffer
873  * @rx_ring: Rx descriptor ring to transact packets on
874  * @rx_buf: Rx buffer to pull data from
875  * @xdp: xdp_buff pointing to the data
876  *
877  * This function builds an skb around an existing Rx buffer, taking care
878  * to set up the skb correctly and avoid any memcpy overhead.
879  */
880 static struct sk_buff *
ice_build_skb(struct ice_ring * rx_ring,struct ice_rx_buf * rx_buf,struct xdp_buff * xdp)881 ice_build_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
882 	      struct xdp_buff *xdp)
883 {
884 	u8 metasize = xdp->data - xdp->data_meta;
885 #if (PAGE_SIZE < 8192)
886 	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
887 #else
888 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
889 				SKB_DATA_ALIGN(xdp->data_end -
890 					       xdp->data_hard_start);
891 #endif
892 	struct sk_buff *skb;
893 
894 	/* Prefetch first cache line of first page. If xdp->data_meta
895 	 * is unused, this points exactly as xdp->data, otherwise we
896 	 * likely have a consumer accessing first few bytes of meta
897 	 * data, and then actual data.
898 	 */
899 	net_prefetch(xdp->data_meta);
900 	/* build an skb around the page buffer */
901 	skb = build_skb(xdp->data_hard_start, truesize);
902 	if (unlikely(!skb))
903 		return NULL;
904 
905 	/* must to record Rx queue, otherwise OS features such as
906 	 * symmetric queue won't work
907 	 */
908 	skb_record_rx_queue(skb, rx_ring->q_index);
909 
910 	/* update pointers within the skb to store the data */
911 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
912 	__skb_put(skb, xdp->data_end - xdp->data);
913 	if (metasize)
914 		skb_metadata_set(skb, metasize);
915 
916 	/* buffer is used by skb, update page_offset */
917 	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
918 
919 	return skb;
920 }
921 
922 /**
923  * ice_construct_skb - Allocate skb and populate it
924  * @rx_ring: Rx descriptor ring to transact packets on
925  * @rx_buf: Rx buffer to pull data from
926  * @xdp: xdp_buff pointing to the data
927  *
928  * This function allocates an skb. It then populates it with the page
929  * data from the current receive descriptor, taking care to set up the
930  * skb correctly.
931  */
932 static struct sk_buff *
ice_construct_skb(struct ice_ring * rx_ring,struct ice_rx_buf * rx_buf,struct xdp_buff * xdp)933 ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
934 		  struct xdp_buff *xdp)
935 {
936 	unsigned int size = xdp->data_end - xdp->data;
937 	unsigned int headlen;
938 	struct sk_buff *skb;
939 
940 	/* prefetch first cache line of first page */
941 	net_prefetch(xdp->data);
942 
943 	/* allocate a skb to store the frags */
944 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE,
945 			       GFP_ATOMIC | __GFP_NOWARN);
946 	if (unlikely(!skb))
947 		return NULL;
948 
949 	skb_record_rx_queue(skb, rx_ring->q_index);
950 	/* Determine available headroom for copy */
951 	headlen = size;
952 	if (headlen > ICE_RX_HDR_SIZE)
953 		headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
954 
955 	/* align pull length to size of long to optimize memcpy performance */
956 	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen,
957 							 sizeof(long)));
958 
959 	/* if we exhaust the linear part then add what is left as a frag */
960 	size -= headlen;
961 	if (size) {
962 #if (PAGE_SIZE >= 8192)
963 		unsigned int truesize = SKB_DATA_ALIGN(size);
964 #else
965 		unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
966 #endif
967 		skb_add_rx_frag(skb, 0, rx_buf->page,
968 				rx_buf->page_offset + headlen, size, truesize);
969 		/* buffer is used by skb, update page_offset */
970 		ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
971 	} else {
972 		/* buffer is unused, reset bias back to rx_buf; data was copied
973 		 * onto skb's linear part so there's no need for adjusting
974 		 * page offset and we can reuse this buffer as-is
975 		 */
976 		rx_buf->pagecnt_bias++;
977 	}
978 
979 	return skb;
980 }
981 
982 /**
983  * ice_put_rx_buf - Clean up used buffer and either recycle or free
984  * @rx_ring: Rx descriptor ring to transact packets on
985  * @rx_buf: Rx buffer to pull data from
986  * @rx_buf_pgcnt: Rx buffer page count pre xdp_do_redirect()
987  *
988  * This function will update next_to_clean and then clean up the contents
989  * of the rx_buf. It will either recycle the buffer or unmap it and free
990  * the associated resources.
991  */
992 static void
ice_put_rx_buf(struct ice_ring * rx_ring,struct ice_rx_buf * rx_buf,int rx_buf_pgcnt)993 ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
994 	       int rx_buf_pgcnt)
995 {
996 	u16 ntc = rx_ring->next_to_clean + 1;
997 
998 	/* fetch, update, and store next to clean */
999 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1000 	rx_ring->next_to_clean = ntc;
1001 
1002 	if (!rx_buf)
1003 		return;
1004 
1005 	if (ice_can_reuse_rx_page(rx_buf, rx_buf_pgcnt)) {
1006 		/* hand second half of page back to the ring */
1007 		ice_reuse_rx_page(rx_ring, rx_buf);
1008 	} else {
1009 		/* we are not reusing the buffer so unmap it */
1010 		dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
1011 				     ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1012 				     ICE_RX_DMA_ATTR);
1013 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
1014 	}
1015 
1016 	/* clear contents of buffer_info */
1017 	rx_buf->page = NULL;
1018 }
1019 
1020 /**
1021  * ice_is_non_eop - process handling of non-EOP buffers
1022  * @rx_ring: Rx ring being processed
1023  * @rx_desc: Rx descriptor for current buffer
1024  *
1025  * If the buffer is an EOP buffer, this function exits returning false,
1026  * otherwise return true indicating that this is in fact a non-EOP buffer.
1027  */
1028 static bool
ice_is_non_eop(struct ice_ring * rx_ring,union ice_32b_rx_flex_desc * rx_desc)1029 ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc)
1030 {
1031 	/* if we are the last buffer then there is nothing else to do */
1032 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
1033 	if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
1034 		return false;
1035 
1036 	rx_ring->rx_stats.non_eop_descs++;
1037 
1038 	return true;
1039 }
1040 
1041 /**
1042  * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1043  * @rx_ring: Rx descriptor ring to transact packets on
1044  * @budget: Total limit on number of packets to process
1045  *
1046  * This function provides a "bounce buffer" approach to Rx interrupt
1047  * processing. The advantage to this is that on systems that have
1048  * expensive overhead for IOMMU access this provides a means of avoiding
1049  * it by maintaining the mapping of the page to the system.
1050  *
1051  * Returns amount of work completed
1052  */
ice_clean_rx_irq(struct ice_ring * rx_ring,int budget)1053 int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
1054 {
1055 	unsigned int total_rx_bytes = 0, total_rx_pkts = 0, frame_sz = 0;
1056 	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
1057 	unsigned int offset = rx_ring->rx_offset;
1058 	unsigned int xdp_res, xdp_xmit = 0;
1059 	struct sk_buff *skb = rx_ring->skb;
1060 	struct bpf_prog *xdp_prog = NULL;
1061 	struct xdp_buff xdp;
1062 	bool failure;
1063 
1064 	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
1065 #if (PAGE_SIZE < 8192)
1066 	frame_sz = ice_rx_frame_truesize(rx_ring, 0);
1067 #endif
1068 	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
1069 
1070 	/* start the loop to process Rx packets bounded by 'budget' */
1071 	while (likely(total_rx_pkts < (unsigned int)budget)) {
1072 		union ice_32b_rx_flex_desc *rx_desc;
1073 		struct ice_rx_buf *rx_buf;
1074 		unsigned char *hard_start;
1075 		unsigned int size;
1076 		u16 stat_err_bits;
1077 		int rx_buf_pgcnt;
1078 		u16 vlan_tag = 0;
1079 		u8 rx_ptype;
1080 
1081 		/* get the Rx desc from Rx ring based on 'next_to_clean' */
1082 		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
1083 
1084 		/* status_error_len will always be zero for unused descriptors
1085 		 * because it's cleared in cleanup, and overlaps with hdr_addr
1086 		 * which is always zero because packet split isn't used, if the
1087 		 * hardware wrote DD then it will be non-zero
1088 		 */
1089 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1090 		if (!ice_test_staterr(rx_desc, stat_err_bits))
1091 			break;
1092 
1093 		/* This memory barrier is needed to keep us from reading
1094 		 * any other fields out of the rx_desc until we know the
1095 		 * DD bit is set.
1096 		 */
1097 		dma_rmb();
1098 
1099 		if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) {
1100 			struct ice_vsi *ctrl_vsi = rx_ring->vsi;
1101 
1102 			if (rx_desc->wb.rxdid == FDIR_DESC_RXDID &&
1103 			    ctrl_vsi->vf_id != ICE_INVAL_VFID)
1104 				ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc);
1105 			ice_put_rx_buf(rx_ring, NULL, 0);
1106 			cleaned_count++;
1107 			continue;
1108 		}
1109 
1110 		size = le16_to_cpu(rx_desc->wb.pkt_len) &
1111 			ICE_RX_FLX_DESC_PKT_LEN_M;
1112 
1113 		/* retrieve a buffer from the ring */
1114 		rx_buf = ice_get_rx_buf(rx_ring, size, &rx_buf_pgcnt);
1115 
1116 		if (!size) {
1117 			xdp.data = NULL;
1118 			xdp.data_end = NULL;
1119 			xdp.data_hard_start = NULL;
1120 			xdp.data_meta = NULL;
1121 			goto construct_skb;
1122 		}
1123 
1124 		hard_start = page_address(rx_buf->page) + rx_buf->page_offset -
1125 			     offset;
1126 		xdp_prepare_buff(&xdp, hard_start, offset, size, true);
1127 #if (PAGE_SIZE > 4096)
1128 		/* At larger PAGE_SIZE, frame_sz depend on len size */
1129 		xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size);
1130 #endif
1131 
1132 		rcu_read_lock();
1133 		xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1134 		if (!xdp_prog) {
1135 			rcu_read_unlock();
1136 			goto construct_skb;
1137 		}
1138 
1139 		xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog);
1140 		rcu_read_unlock();
1141 		if (!xdp_res)
1142 			goto construct_skb;
1143 		if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
1144 			xdp_xmit |= xdp_res;
1145 			ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz);
1146 		} else {
1147 			rx_buf->pagecnt_bias++;
1148 		}
1149 		total_rx_bytes += size;
1150 		total_rx_pkts++;
1151 
1152 		cleaned_count++;
1153 		ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt);
1154 		continue;
1155 construct_skb:
1156 		if (skb) {
1157 			ice_add_rx_frag(rx_ring, rx_buf, skb, size);
1158 		} else if (likely(xdp.data)) {
1159 			if (ice_ring_uses_build_skb(rx_ring))
1160 				skb = ice_build_skb(rx_ring, rx_buf, &xdp);
1161 			else
1162 				skb = ice_construct_skb(rx_ring, rx_buf, &xdp);
1163 		}
1164 		/* exit if we failed to retrieve a buffer */
1165 		if (!skb) {
1166 			rx_ring->rx_stats.alloc_buf_failed++;
1167 			if (rx_buf)
1168 				rx_buf->pagecnt_bias++;
1169 			break;
1170 		}
1171 
1172 		ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt);
1173 		cleaned_count++;
1174 
1175 		/* skip if it is NOP desc */
1176 		if (ice_is_non_eop(rx_ring, rx_desc))
1177 			continue;
1178 
1179 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1180 		if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
1181 			dev_kfree_skb_any(skb);
1182 			continue;
1183 		}
1184 
1185 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
1186 		if (ice_test_staterr(rx_desc, stat_err_bits))
1187 			vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
1188 
1189 		/* pad the skb if needed, to make a valid ethernet frame */
1190 		if (eth_skb_pad(skb)) {
1191 			skb = NULL;
1192 			continue;
1193 		}
1194 
1195 		/* probably a little skewed due to removing CRC */
1196 		total_rx_bytes += skb->len;
1197 
1198 		/* populate checksum, VLAN, and protocol */
1199 		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1200 			ICE_RX_FLEX_DESC_PTYPE_M;
1201 
1202 		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1203 
1204 		/* send completed skb up the stack */
1205 		ice_receive_skb(rx_ring, skb, vlan_tag);
1206 		skb = NULL;
1207 
1208 		/* update budget accounting */
1209 		total_rx_pkts++;
1210 	}
1211 
1212 	/* return up to cleaned_count buffers to hardware */
1213 	failure = ice_alloc_rx_bufs(rx_ring, cleaned_count);
1214 
1215 	if (xdp_prog)
1216 		ice_finalize_xdp_rx(rx_ring, xdp_xmit);
1217 	rx_ring->skb = skb;
1218 
1219 	ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes);
1220 
1221 	/* guarantee a trip back through this routine if there was a failure */
1222 	return failure ? budget : (int)total_rx_pkts;
1223 }
1224 
1225 /**
1226  * ice_net_dim - Update net DIM algorithm
1227  * @q_vector: the vector associated with the interrupt
1228  *
1229  * Create a DIM sample and notify net_dim() so that it can possibly decide
1230  * a new ITR value based on incoming packets, bytes, and interrupts.
1231  *
1232  * This function is a no-op if the ring is not configured to dynamic ITR.
1233  */
ice_net_dim(struct ice_q_vector * q_vector)1234 static void ice_net_dim(struct ice_q_vector *q_vector)
1235 {
1236 	struct ice_ring_container *tx = &q_vector->tx;
1237 	struct ice_ring_container *rx = &q_vector->rx;
1238 
1239 	if (ITR_IS_DYNAMIC(tx)) {
1240 		struct dim_sample dim_sample = {};
1241 		u64 packets = 0, bytes = 0;
1242 		struct ice_ring *ring;
1243 
1244 		ice_for_each_ring(ring, q_vector->tx) {
1245 			packets += ring->stats.pkts;
1246 			bytes += ring->stats.bytes;
1247 		}
1248 
1249 		dim_update_sample(q_vector->total_events, packets, bytes,
1250 				  &dim_sample);
1251 
1252 		net_dim(&tx->dim, dim_sample);
1253 	}
1254 
1255 	if (ITR_IS_DYNAMIC(rx)) {
1256 		struct dim_sample dim_sample = {};
1257 		u64 packets = 0, bytes = 0;
1258 		struct ice_ring *ring;
1259 
1260 		ice_for_each_ring(ring, q_vector->rx) {
1261 			packets += ring->stats.pkts;
1262 			bytes += ring->stats.bytes;
1263 		}
1264 
1265 		dim_update_sample(q_vector->total_events, packets, bytes,
1266 				  &dim_sample);
1267 
1268 		net_dim(&rx->dim, dim_sample);
1269 	}
1270 }
1271 
1272 /**
1273  * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1274  * @itr_idx: interrupt throttling index
1275  * @itr: interrupt throttling value in usecs
1276  */
ice_buildreg_itr(u16 itr_idx,u16 itr)1277 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1278 {
1279 	/* The ITR value is reported in microseconds, and the register value is
1280 	 * recorded in 2 microsecond units. For this reason we only need to
1281 	 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1282 	 * granularity as a shift instead of division. The mask makes sure the
1283 	 * ITR value is never odd so we don't accidentally write into the field
1284 	 * prior to the ITR field.
1285 	 */
1286 	itr &= ICE_ITR_MASK;
1287 
1288 	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1289 		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1290 		(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1291 }
1292 
1293 /**
1294  * ice_update_ena_itr - Update ITR moderation and re-enable MSI-X interrupt
1295  * @q_vector: the vector associated with the interrupt to enable
1296  *
1297  * Update the net_dim() algorithm and re-enable the interrupt associated with
1298  * this vector.
1299  *
1300  * If the VSI is down, the interrupt will not be re-enabled.
1301  */
ice_update_ena_itr(struct ice_q_vector * q_vector)1302 static void ice_update_ena_itr(struct ice_q_vector *q_vector)
1303 {
1304 	struct ice_vsi *vsi = q_vector->vsi;
1305 	bool wb_en = q_vector->wb_on_itr;
1306 	u32 itr_val;
1307 
1308 	if (test_bit(ICE_DOWN, vsi->state))
1309 		return;
1310 
1311 	/* When exiting WB_ON_ITR, let ITR resume its normal
1312 	 * interrupts-enabled path.
1313 	 */
1314 	if (wb_en)
1315 		q_vector->wb_on_itr = false;
1316 
1317 	/* This will do nothing if dynamic updates are not enabled. */
1318 	ice_net_dim(q_vector);
1319 
1320 	/* net_dim() updates ITR out-of-band using a work item */
1321 	itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1322 	/* trigger an immediate software interrupt when exiting
1323 	 * busy poll, to make sure to catch any pending cleanups
1324 	 * that might have been missed due to interrupt state
1325 	 * transition.
1326 	 */
1327 	if (wb_en) {
1328 		itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M |
1329 			   GLINT_DYN_CTL_SW_ITR_INDX_M |
1330 			   GLINT_DYN_CTL_SW_ITR_INDX_ENA_M;
1331 	}
1332 	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
1333 }
1334 
1335 /**
1336  * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
1337  * @q_vector: q_vector to set WB_ON_ITR on
1338  *
1339  * We need to tell hardware to write-back completed descriptors even when
1340  * interrupts are disabled. Descriptors will be written back on cache line
1341  * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
1342  * descriptors may not be written back if they don't fill a cache line until
1343  * the next interrupt.
1344  *
1345  * This sets the write-back frequency to whatever was set previously for the
1346  * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we
1347  * aren't meddling with the INTENA_M bit.
1348  */
ice_set_wb_on_itr(struct ice_q_vector * q_vector)1349 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1350 {
1351 	struct ice_vsi *vsi = q_vector->vsi;
1352 
1353 	/* already in wb_on_itr mode no need to change it */
1354 	if (q_vector->wb_on_itr)
1355 		return;
1356 
1357 	/* use previously set ITR values for all of the ITR indices by
1358 	 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and
1359 	 * be static in non-adaptive mode (user configured)
1360 	 */
1361 	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1362 	     ((ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) &
1363 	      GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M |
1364 	     GLINT_DYN_CTL_WB_ON_ITR_M);
1365 
1366 	q_vector->wb_on_itr = true;
1367 }
1368 
1369 /**
1370  * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1371  * @napi: napi struct with our devices info in it
1372  * @budget: amount of work driver is allowed to do this pass, in packets
1373  *
1374  * This function will clean all queues associated with a q_vector.
1375  *
1376  * Returns the amount of work done
1377  */
ice_napi_poll(struct napi_struct * napi,int budget)1378 int ice_napi_poll(struct napi_struct *napi, int budget)
1379 {
1380 	struct ice_q_vector *q_vector =
1381 				container_of(napi, struct ice_q_vector, napi);
1382 	bool clean_complete = true;
1383 	struct ice_ring *ring;
1384 	int budget_per_ring;
1385 	int work_done = 0;
1386 
1387 	/* Since the actual Tx work is minimal, we can give the Tx a larger
1388 	 * budget and be more aggressive about cleaning up the Tx descriptors.
1389 	 */
1390 	ice_for_each_ring(ring, q_vector->tx) {
1391 		bool wd = ring->xsk_pool ?
1392 			  ice_clean_tx_irq_zc(ring, budget) :
1393 			  ice_clean_tx_irq(ring, budget);
1394 
1395 		if (!wd)
1396 			clean_complete = false;
1397 	}
1398 
1399 	/* Handle case where we are called by netpoll with a budget of 0 */
1400 	if (unlikely(budget <= 0))
1401 		return budget;
1402 
1403 	/* normally we have 1 Rx ring per q_vector */
1404 	if (unlikely(q_vector->num_ring_rx > 1))
1405 		/* We attempt to distribute budget to each Rx queue fairly, but
1406 		 * don't allow the budget to go below 1 because that would exit
1407 		 * polling early.
1408 		 */
1409 		budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1);
1410 	else
1411 		/* Max of 1 Rx ring in this q_vector so give it the budget */
1412 		budget_per_ring = budget;
1413 
1414 	ice_for_each_ring(ring, q_vector->rx) {
1415 		int cleaned;
1416 
1417 		/* A dedicated path for zero-copy allows making a single
1418 		 * comparison in the irq context instead of many inside the
1419 		 * ice_clean_rx_irq function and makes the codebase cleaner.
1420 		 */
1421 		cleaned = ring->xsk_pool ?
1422 			  ice_clean_rx_irq_zc(ring, budget_per_ring) :
1423 			  ice_clean_rx_irq(ring, budget_per_ring);
1424 		work_done += cleaned;
1425 		/* if we clean as many as budgeted, we must not be done */
1426 		if (cleaned >= budget_per_ring)
1427 			clean_complete = false;
1428 	}
1429 
1430 	/* If work not completed, return budget and polling will return */
1431 	if (!clean_complete) {
1432 		/* Set the writeback on ITR so partial completions of
1433 		 * cache-lines will still continue even if we're polling.
1434 		 */
1435 		ice_set_wb_on_itr(q_vector);
1436 		return budget;
1437 	}
1438 
1439 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1440 	 * poll us due to busy-polling
1441 	 */
1442 	if (likely(napi_complete_done(napi, work_done)))
1443 		ice_update_ena_itr(q_vector);
1444 	else
1445 		ice_set_wb_on_itr(q_vector);
1446 
1447 	return min_t(int, work_done, budget - 1);
1448 }
1449 
1450 /**
1451  * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1452  * @tx_ring: the ring to be checked
1453  * @size: the size buffer we want to assure is available
1454  *
1455  * Returns -EBUSY if a stop is needed, else 0
1456  */
__ice_maybe_stop_tx(struct ice_ring * tx_ring,unsigned int size)1457 static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1458 {
1459 	netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
1460 	/* Memory barrier before checking head and tail */
1461 	smp_mb();
1462 
1463 	/* Check again in a case another CPU has just made room available. */
1464 	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1465 		return -EBUSY;
1466 
1467 	/* A reprieve! - use start_subqueue because it doesn't call schedule */
1468 	netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
1469 	++tx_ring->tx_stats.restart_q;
1470 	return 0;
1471 }
1472 
1473 /**
1474  * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1475  * @tx_ring: the ring to be checked
1476  * @size:    the size buffer we want to assure is available
1477  *
1478  * Returns 0 if stop is not needed
1479  */
ice_maybe_stop_tx(struct ice_ring * tx_ring,unsigned int size)1480 static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1481 {
1482 	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1483 		return 0;
1484 
1485 	return __ice_maybe_stop_tx(tx_ring, size);
1486 }
1487 
1488 /**
1489  * ice_tx_map - Build the Tx descriptor
1490  * @tx_ring: ring to send buffer on
1491  * @first: first buffer info buffer to use
1492  * @off: pointer to struct that holds offload parameters
1493  *
1494  * This function loops over the skb data pointed to by *first
1495  * and gets a physical address for each memory location and programs
1496  * it and the length into the transmit descriptor.
1497  */
1498 static void
ice_tx_map(struct ice_ring * tx_ring,struct ice_tx_buf * first,struct ice_tx_offload_params * off)1499 ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
1500 	   struct ice_tx_offload_params *off)
1501 {
1502 	u64 td_offset, td_tag, td_cmd;
1503 	u16 i = tx_ring->next_to_use;
1504 	unsigned int data_len, size;
1505 	struct ice_tx_desc *tx_desc;
1506 	struct ice_tx_buf *tx_buf;
1507 	struct sk_buff *skb;
1508 	skb_frag_t *frag;
1509 	dma_addr_t dma;
1510 
1511 	td_tag = off->td_l2tag1;
1512 	td_cmd = off->td_cmd;
1513 	td_offset = off->td_offset;
1514 	skb = first->skb;
1515 
1516 	data_len = skb->data_len;
1517 	size = skb_headlen(skb);
1518 
1519 	tx_desc = ICE_TX_DESC(tx_ring, i);
1520 
1521 	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1522 		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1523 		td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
1524 			  ICE_TX_FLAGS_VLAN_S;
1525 	}
1526 
1527 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1528 
1529 	tx_buf = first;
1530 
1531 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1532 		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1533 
1534 		if (dma_mapping_error(tx_ring->dev, dma))
1535 			goto dma_error;
1536 
1537 		/* record length, and DMA address */
1538 		dma_unmap_len_set(tx_buf, len, size);
1539 		dma_unmap_addr_set(tx_buf, dma, dma);
1540 
1541 		/* align size to end of page */
1542 		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1543 		tx_desc->buf_addr = cpu_to_le64(dma);
1544 
1545 		/* account for data chunks larger than the hardware
1546 		 * can handle
1547 		 */
1548 		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1549 			tx_desc->cmd_type_offset_bsz =
1550 				ice_build_ctob(td_cmd, td_offset, max_data,
1551 					       td_tag);
1552 
1553 			tx_desc++;
1554 			i++;
1555 
1556 			if (i == tx_ring->count) {
1557 				tx_desc = ICE_TX_DESC(tx_ring, 0);
1558 				i = 0;
1559 			}
1560 
1561 			dma += max_data;
1562 			size -= max_data;
1563 
1564 			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1565 			tx_desc->buf_addr = cpu_to_le64(dma);
1566 		}
1567 
1568 		if (likely(!data_len))
1569 			break;
1570 
1571 		tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset,
1572 							      size, td_tag);
1573 
1574 		tx_desc++;
1575 		i++;
1576 
1577 		if (i == tx_ring->count) {
1578 			tx_desc = ICE_TX_DESC(tx_ring, 0);
1579 			i = 0;
1580 		}
1581 
1582 		size = skb_frag_size(frag);
1583 		data_len -= size;
1584 
1585 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1586 				       DMA_TO_DEVICE);
1587 
1588 		tx_buf = &tx_ring->tx_buf[i];
1589 	}
1590 
1591 	/* record bytecount for BQL */
1592 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1593 
1594 	/* record SW timestamp if HW timestamp is not available */
1595 	skb_tx_timestamp(first->skb);
1596 
1597 	i++;
1598 	if (i == tx_ring->count)
1599 		i = 0;
1600 
1601 	/* write last descriptor with RS and EOP bits */
1602 	td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
1603 	tx_desc->cmd_type_offset_bsz =
1604 			ice_build_ctob(td_cmd, td_offset, size, td_tag);
1605 
1606 	/* Force memory writes to complete before letting h/w know there
1607 	 * are new descriptors to fetch.
1608 	 *
1609 	 * We also use this memory barrier to make certain all of the
1610 	 * status bits have been updated before next_to_watch is written.
1611 	 */
1612 	wmb();
1613 
1614 	/* set next_to_watch value indicating a packet is present */
1615 	first->next_to_watch = tx_desc;
1616 
1617 	tx_ring->next_to_use = i;
1618 
1619 	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1620 
1621 	/* notify HW of packet */
1622 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
1623 		writel(i, tx_ring->tail);
1624 
1625 	return;
1626 
1627 dma_error:
1628 	/* clear DMA mappings for failed tx_buf map */
1629 	for (;;) {
1630 		tx_buf = &tx_ring->tx_buf[i];
1631 		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1632 		if (tx_buf == first)
1633 			break;
1634 		if (i == 0)
1635 			i = tx_ring->count;
1636 		i--;
1637 	}
1638 
1639 	tx_ring->next_to_use = i;
1640 }
1641 
1642 /**
1643  * ice_tx_csum - Enable Tx checksum offloads
1644  * @first: pointer to the first descriptor
1645  * @off: pointer to struct that holds offload parameters
1646  *
1647  * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1648  */
1649 static
ice_tx_csum(struct ice_tx_buf * first,struct ice_tx_offload_params * off)1650 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1651 {
1652 	u32 l4_len = 0, l3_len = 0, l2_len = 0;
1653 	struct sk_buff *skb = first->skb;
1654 	union {
1655 		struct iphdr *v4;
1656 		struct ipv6hdr *v6;
1657 		unsigned char *hdr;
1658 	} ip;
1659 	union {
1660 		struct tcphdr *tcp;
1661 		unsigned char *hdr;
1662 	} l4;
1663 	__be16 frag_off, protocol;
1664 	unsigned char *exthdr;
1665 	u32 offset, cmd = 0;
1666 	u8 l4_proto = 0;
1667 
1668 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1669 		return 0;
1670 
1671 	ip.hdr = skb_network_header(skb);
1672 	l4.hdr = skb_transport_header(skb);
1673 
1674 	/* compute outer L2 header size */
1675 	l2_len = ip.hdr - skb->data;
1676 	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1677 
1678 	protocol = vlan_get_protocol(skb);
1679 
1680 	if (protocol == htons(ETH_P_IP))
1681 		first->tx_flags |= ICE_TX_FLAGS_IPV4;
1682 	else if (protocol == htons(ETH_P_IPV6))
1683 		first->tx_flags |= ICE_TX_FLAGS_IPV6;
1684 
1685 	if (skb->encapsulation) {
1686 		bool gso_ena = false;
1687 		u32 tunnel = 0;
1688 
1689 		/* define outer network header type */
1690 		if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1691 			tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ?
1692 				  ICE_TX_CTX_EIPT_IPV4 :
1693 				  ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
1694 			l4_proto = ip.v4->protocol;
1695 		} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1696 			int ret;
1697 
1698 			tunnel |= ICE_TX_CTX_EIPT_IPV6;
1699 			exthdr = ip.hdr + sizeof(*ip.v6);
1700 			l4_proto = ip.v6->nexthdr;
1701 			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
1702 					       &l4_proto, &frag_off);
1703 			if (ret < 0)
1704 				return -1;
1705 		}
1706 
1707 		/* define outer transport */
1708 		switch (l4_proto) {
1709 		case IPPROTO_UDP:
1710 			tunnel |= ICE_TXD_CTX_UDP_TUNNELING;
1711 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1712 			break;
1713 		case IPPROTO_GRE:
1714 			tunnel |= ICE_TXD_CTX_GRE_TUNNELING;
1715 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1716 			break;
1717 		case IPPROTO_IPIP:
1718 		case IPPROTO_IPV6:
1719 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1720 			l4.hdr = skb_inner_network_header(skb);
1721 			break;
1722 		default:
1723 			if (first->tx_flags & ICE_TX_FLAGS_TSO)
1724 				return -1;
1725 
1726 			skb_checksum_help(skb);
1727 			return 0;
1728 		}
1729 
1730 		/* compute outer L3 header size */
1731 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1732 			  ICE_TXD_CTX_QW0_EIPLEN_S;
1733 
1734 		/* switch IP header pointer from outer to inner header */
1735 		ip.hdr = skb_inner_network_header(skb);
1736 
1737 		/* compute tunnel header size */
1738 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1739 			   ICE_TXD_CTX_QW0_NATLEN_S;
1740 
1741 		gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
1742 		/* indicate if we need to offload outer UDP header */
1743 		if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena &&
1744 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1745 			tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M;
1746 
1747 		/* record tunnel offload values */
1748 		off->cd_tunnel_params |= tunnel;
1749 
1750 		/* set DTYP=1 to indicate that it's an Tx context descriptor
1751 		 * in IPsec tunnel mode with Tx offloads in Quad word 1
1752 		 */
1753 		off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX;
1754 
1755 		/* switch L4 header pointer from outer to inner */
1756 		l4.hdr = skb_inner_transport_header(skb);
1757 		l4_proto = 0;
1758 
1759 		/* reset type as we transition from outer to inner headers */
1760 		first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6);
1761 		if (ip.v4->version == 4)
1762 			first->tx_flags |= ICE_TX_FLAGS_IPV4;
1763 		if (ip.v6->version == 6)
1764 			first->tx_flags |= ICE_TX_FLAGS_IPV6;
1765 	}
1766 
1767 	/* Enable IP checksum offloads */
1768 	if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1769 		l4_proto = ip.v4->protocol;
1770 		/* the stack computes the IP header already, the only time we
1771 		 * need the hardware to recompute it is in the case of TSO.
1772 		 */
1773 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1774 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1775 		else
1776 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1777 
1778 	} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1779 		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1780 		exthdr = ip.hdr + sizeof(*ip.v6);
1781 		l4_proto = ip.v6->nexthdr;
1782 		if (l4.hdr != exthdr)
1783 			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1784 					 &frag_off);
1785 	} else {
1786 		return -1;
1787 	}
1788 
1789 	/* compute inner L3 header size */
1790 	l3_len = l4.hdr - ip.hdr;
1791 	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
1792 
1793 	/* Enable L4 checksum offloads */
1794 	switch (l4_proto) {
1795 	case IPPROTO_TCP:
1796 		/* enable checksum offloads */
1797 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1798 		l4_len = l4.tcp->doff;
1799 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1800 		break;
1801 	case IPPROTO_UDP:
1802 		/* enable UDP checksum offload */
1803 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1804 		l4_len = (sizeof(struct udphdr) >> 2);
1805 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1806 		break;
1807 	case IPPROTO_SCTP:
1808 		/* enable SCTP checksum offload */
1809 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
1810 		l4_len = sizeof(struct sctphdr) >> 2;
1811 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1812 		break;
1813 
1814 	default:
1815 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1816 			return -1;
1817 		skb_checksum_help(skb);
1818 		return 0;
1819 	}
1820 
1821 	off->td_cmd |= cmd;
1822 	off->td_offset |= offset;
1823 	return 1;
1824 }
1825 
1826 /**
1827  * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
1828  * @tx_ring: ring to send buffer on
1829  * @first: pointer to struct ice_tx_buf
1830  *
1831  * Checks the skb and set up correspondingly several generic transmit flags
1832  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1833  */
1834 static void
ice_tx_prepare_vlan_flags(struct ice_ring * tx_ring,struct ice_tx_buf * first)1835 ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
1836 {
1837 	struct sk_buff *skb = first->skb;
1838 
1839 	/* nothing left to do, software offloaded VLAN */
1840 	if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol))
1841 		return;
1842 
1843 	/* currently, we always assume 802.1Q for VLAN insertion as VLAN
1844 	 * insertion for 802.1AD is not supported
1845 	 */
1846 	if (skb_vlan_tag_present(skb)) {
1847 		first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
1848 		first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
1849 	}
1850 
1851 	ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
1852 }
1853 
1854 /**
1855  * ice_tso - computes mss and TSO length to prepare for TSO
1856  * @first: pointer to struct ice_tx_buf
1857  * @off: pointer to struct that holds offload parameters
1858  *
1859  * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
1860  */
1861 static
ice_tso(struct ice_tx_buf * first,struct ice_tx_offload_params * off)1862 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1863 {
1864 	struct sk_buff *skb = first->skb;
1865 	union {
1866 		struct iphdr *v4;
1867 		struct ipv6hdr *v6;
1868 		unsigned char *hdr;
1869 	} ip;
1870 	union {
1871 		struct tcphdr *tcp;
1872 		struct udphdr *udp;
1873 		unsigned char *hdr;
1874 	} l4;
1875 	u64 cd_mss, cd_tso_len;
1876 	u32 paylen;
1877 	u8 l4_start;
1878 	int err;
1879 
1880 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1881 		return 0;
1882 
1883 	if (!skb_is_gso(skb))
1884 		return 0;
1885 
1886 	err = skb_cow_head(skb, 0);
1887 	if (err < 0)
1888 		return err;
1889 
1890 	/* cppcheck-suppress unreadVariable */
1891 	ip.hdr = skb_network_header(skb);
1892 	l4.hdr = skb_transport_header(skb);
1893 
1894 	/* initialize outer IP header fields */
1895 	if (ip.v4->version == 4) {
1896 		ip.v4->tot_len = 0;
1897 		ip.v4->check = 0;
1898 	} else {
1899 		ip.v6->payload_len = 0;
1900 	}
1901 
1902 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1903 					 SKB_GSO_GRE_CSUM |
1904 					 SKB_GSO_IPXIP4 |
1905 					 SKB_GSO_IPXIP6 |
1906 					 SKB_GSO_UDP_TUNNEL |
1907 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
1908 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1909 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1910 			l4.udp->len = 0;
1911 
1912 			/* determine offset of outer transport header */
1913 			l4_start = (u8)(l4.hdr - skb->data);
1914 
1915 			/* remove payload length from outer checksum */
1916 			paylen = skb->len - l4_start;
1917 			csum_replace_by_diff(&l4.udp->check,
1918 					     (__force __wsum)htonl(paylen));
1919 		}
1920 
1921 		/* reset pointers to inner headers */
1922 
1923 		/* cppcheck-suppress unreadVariable */
1924 		ip.hdr = skb_inner_network_header(skb);
1925 		l4.hdr = skb_inner_transport_header(skb);
1926 
1927 		/* initialize inner IP header fields */
1928 		if (ip.v4->version == 4) {
1929 			ip.v4->tot_len = 0;
1930 			ip.v4->check = 0;
1931 		} else {
1932 			ip.v6->payload_len = 0;
1933 		}
1934 	}
1935 
1936 	/* determine offset of transport header */
1937 	l4_start = (u8)(l4.hdr - skb->data);
1938 
1939 	/* remove payload length from checksum */
1940 	paylen = skb->len - l4_start;
1941 
1942 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1943 		csum_replace_by_diff(&l4.udp->check,
1944 				     (__force __wsum)htonl(paylen));
1945 		/* compute length of UDP segmentation header */
1946 		off->header_len = (u8)sizeof(l4.udp) + l4_start;
1947 	} else {
1948 		csum_replace_by_diff(&l4.tcp->check,
1949 				     (__force __wsum)htonl(paylen));
1950 		/* compute length of TCP segmentation header */
1951 		off->header_len = (u8)((l4.tcp->doff * 4) + l4_start);
1952 	}
1953 
1954 	/* update gso_segs and bytecount */
1955 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1956 	first->bytecount += (first->gso_segs - 1) * off->header_len;
1957 
1958 	cd_tso_len = skb->len - off->header_len;
1959 	cd_mss = skb_shinfo(skb)->gso_size;
1960 
1961 	/* record cdesc_qw1 with TSO parameters */
1962 	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
1963 			     (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
1964 			     (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
1965 			     (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
1966 	first->tx_flags |= ICE_TX_FLAGS_TSO;
1967 	return 1;
1968 }
1969 
1970 /**
1971  * ice_txd_use_count  - estimate the number of descriptors needed for Tx
1972  * @size: transmit request size in bytes
1973  *
1974  * Due to hardware alignment restrictions (4K alignment), we need to
1975  * assume that we can have no more than 12K of data per descriptor, even
1976  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
1977  * Thus, we need to divide by 12K. But division is slow! Instead,
1978  * we decompose the operation into shifts and one relatively cheap
1979  * multiply operation.
1980  *
1981  * To divide by 12K, we first divide by 4K, then divide by 3:
1982  *     To divide by 4K, shift right by 12 bits
1983  *     To divide by 3, multiply by 85, then divide by 256
1984  *     (Divide by 256 is done by shifting right by 8 bits)
1985  * Finally, we add one to round up. Because 256 isn't an exact multiple of
1986  * 3, we'll underestimate near each multiple of 12K. This is actually more
1987  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
1988  * segment. For our purposes this is accurate out to 1M which is orders of
1989  * magnitude greater than our largest possible GSO size.
1990  *
1991  * This would then be implemented as:
1992  *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
1993  *
1994  * Since multiplication and division are commutative, we can reorder
1995  * operations into:
1996  *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
1997  */
ice_txd_use_count(unsigned int size)1998 static unsigned int ice_txd_use_count(unsigned int size)
1999 {
2000 	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2001 }
2002 
2003 /**
2004  * ice_xmit_desc_count - calculate number of Tx descriptors needed
2005  * @skb: send buffer
2006  *
2007  * Returns number of data descriptors needed for this skb.
2008  */
ice_xmit_desc_count(struct sk_buff * skb)2009 static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
2010 {
2011 	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
2012 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2013 	unsigned int count = 0, size = skb_headlen(skb);
2014 
2015 	for (;;) {
2016 		count += ice_txd_use_count(size);
2017 
2018 		if (!nr_frags--)
2019 			break;
2020 
2021 		size = skb_frag_size(frag++);
2022 	}
2023 
2024 	return count;
2025 }
2026 
2027 /**
2028  * __ice_chk_linearize - Check if there are more than 8 buffers per packet
2029  * @skb: send buffer
2030  *
2031  * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
2032  * and so we need to figure out the cases where we need to linearize the skb.
2033  *
2034  * For TSO we need to count the TSO header and segment payload separately.
2035  * As such we need to check cases where we have 7 fragments or more as we
2036  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2037  * the segment payload in the first descriptor, and another 7 for the
2038  * fragments.
2039  */
__ice_chk_linearize(struct sk_buff * skb)2040 static bool __ice_chk_linearize(struct sk_buff *skb)
2041 {
2042 	const skb_frag_t *frag, *stale;
2043 	int nr_frags, sum;
2044 
2045 	/* no need to check if number of frags is less than 7 */
2046 	nr_frags = skb_shinfo(skb)->nr_frags;
2047 	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
2048 		return false;
2049 
2050 	/* We need to walk through the list and validate that each group
2051 	 * of 6 fragments totals at least gso_size.
2052 	 */
2053 	nr_frags -= ICE_MAX_BUF_TXD - 2;
2054 	frag = &skb_shinfo(skb)->frags[0];
2055 
2056 	/* Initialize size to the negative value of gso_size minus 1. We
2057 	 * use this as the worst case scenario in which the frag ahead
2058 	 * of us only provides one byte which is why we are limited to 6
2059 	 * descriptors for a single transmit as the header and previous
2060 	 * fragment are already consuming 2 descriptors.
2061 	 */
2062 	sum = 1 - skb_shinfo(skb)->gso_size;
2063 
2064 	/* Add size of frags 0 through 4 to create our initial sum */
2065 	sum += skb_frag_size(frag++);
2066 	sum += skb_frag_size(frag++);
2067 	sum += skb_frag_size(frag++);
2068 	sum += skb_frag_size(frag++);
2069 	sum += skb_frag_size(frag++);
2070 
2071 	/* Walk through fragments adding latest fragment, testing it, and
2072 	 * then removing stale fragments from the sum.
2073 	 */
2074 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2075 		int stale_size = skb_frag_size(stale);
2076 
2077 		sum += skb_frag_size(frag++);
2078 
2079 		/* The stale fragment may present us with a smaller
2080 		 * descriptor than the actual fragment size. To account
2081 		 * for that we need to remove all the data on the front and
2082 		 * figure out what the remainder would be in the last
2083 		 * descriptor associated with the fragment.
2084 		 */
2085 		if (stale_size > ICE_MAX_DATA_PER_TXD) {
2086 			int align_pad = -(skb_frag_off(stale)) &
2087 					(ICE_MAX_READ_REQ_SIZE - 1);
2088 
2089 			sum -= align_pad;
2090 			stale_size -= align_pad;
2091 
2092 			do {
2093 				sum -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2094 				stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2095 			} while (stale_size > ICE_MAX_DATA_PER_TXD);
2096 		}
2097 
2098 		/* if sum is negative we failed to make sufficient progress */
2099 		if (sum < 0)
2100 			return true;
2101 
2102 		if (!nr_frags--)
2103 			break;
2104 
2105 		sum -= stale_size;
2106 	}
2107 
2108 	return false;
2109 }
2110 
2111 /**
2112  * ice_chk_linearize - Check if there are more than 8 fragments per packet
2113  * @skb:      send buffer
2114  * @count:    number of buffers used
2115  *
2116  * Note: Our HW can't scatter-gather more than 8 fragments to build
2117  * a packet on the wire and so we need to figure out the cases where we
2118  * need to linearize the skb.
2119  */
ice_chk_linearize(struct sk_buff * skb,unsigned int count)2120 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2121 {
2122 	/* Both TSO and single send will work if count is less than 8 */
2123 	if (likely(count < ICE_MAX_BUF_TXD))
2124 		return false;
2125 
2126 	if (skb_is_gso(skb))
2127 		return __ice_chk_linearize(skb);
2128 
2129 	/* we can support up to 8 data buffers for a single send */
2130 	return count != ICE_MAX_BUF_TXD;
2131 }
2132 
2133 /**
2134  * ice_xmit_frame_ring - Sends buffer on Tx ring
2135  * @skb: send buffer
2136  * @tx_ring: ring to send buffer on
2137  *
2138  * Returns NETDEV_TX_OK if sent, else an error code
2139  */
2140 static netdev_tx_t
ice_xmit_frame_ring(struct sk_buff * skb,struct ice_ring * tx_ring)2141 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
2142 {
2143 	struct ice_tx_offload_params offload = { 0 };
2144 	struct ice_vsi *vsi = tx_ring->vsi;
2145 	struct ice_tx_buf *first;
2146 	unsigned int count;
2147 	int tso, csum;
2148 
2149 	count = ice_xmit_desc_count(skb);
2150 	if (ice_chk_linearize(skb, count)) {
2151 		if (__skb_linearize(skb))
2152 			goto out_drop;
2153 		count = ice_txd_use_count(skb->len);
2154 		tx_ring->tx_stats.tx_linearize++;
2155 	}
2156 
2157 	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2158 	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2159 	 *       + 4 desc gap to avoid the cache line where head is,
2160 	 *       + 1 desc for context descriptor,
2161 	 * otherwise try next time
2162 	 */
2163 	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2164 			      ICE_DESCS_FOR_CTX_DESC)) {
2165 		tx_ring->tx_stats.tx_busy++;
2166 		return NETDEV_TX_BUSY;
2167 	}
2168 
2169 	offload.tx_ring = tx_ring;
2170 
2171 	/* record the location of the first descriptor for this packet */
2172 	first = &tx_ring->tx_buf[tx_ring->next_to_use];
2173 	first->skb = skb;
2174 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2175 	first->gso_segs = 1;
2176 	first->tx_flags = 0;
2177 
2178 	/* prepare the VLAN tagging flags for Tx */
2179 	ice_tx_prepare_vlan_flags(tx_ring, first);
2180 
2181 	/* set up TSO offload */
2182 	tso = ice_tso(first, &offload);
2183 	if (tso < 0)
2184 		goto out_drop;
2185 
2186 	/* always set up Tx checksum offload */
2187 	csum = ice_tx_csum(first, &offload);
2188 	if (csum < 0)
2189 		goto out_drop;
2190 
2191 	/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
2192 	if (unlikely(skb->priority == TC_PRIO_CONTROL &&
2193 		     vsi->type == ICE_VSI_PF &&
2194 		     vsi->port_info->qos_cfg.is_sw_lldp))
2195 		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2196 					ICE_TX_CTX_DESC_SWTCH_UPLINK <<
2197 					ICE_TXD_CTX_QW1_CMD_S);
2198 
2199 	if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2200 		struct ice_tx_ctx_desc *cdesc;
2201 		u16 i = tx_ring->next_to_use;
2202 
2203 		/* grab the next descriptor */
2204 		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2205 		i++;
2206 		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2207 
2208 		/* setup context descriptor */
2209 		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2210 		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2211 		cdesc->rsvd = cpu_to_le16(0);
2212 		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2213 	}
2214 
2215 	ice_tx_map(tx_ring, first, &offload);
2216 	return NETDEV_TX_OK;
2217 
2218 out_drop:
2219 	dev_kfree_skb_any(skb);
2220 	return NETDEV_TX_OK;
2221 }
2222 
2223 /**
2224  * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2225  * @skb: send buffer
2226  * @netdev: network interface device structure
2227  *
2228  * Returns NETDEV_TX_OK if sent, else an error code
2229  */
ice_start_xmit(struct sk_buff * skb,struct net_device * netdev)2230 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2231 {
2232 	struct ice_netdev_priv *np = netdev_priv(netdev);
2233 	struct ice_vsi *vsi = np->vsi;
2234 	struct ice_ring *tx_ring;
2235 
2236 	tx_ring = vsi->tx_rings[skb->queue_mapping];
2237 
2238 	/* hardware can't handle really short frames, hardware padding works
2239 	 * beyond this point
2240 	 */
2241 	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2242 		return NETDEV_TX_OK;
2243 
2244 	return ice_xmit_frame_ring(skb, tx_ring);
2245 }
2246 
2247 /**
2248  * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue
2249  * @tx_ring: tx_ring to clean
2250  */
ice_clean_ctrl_tx_irq(struct ice_ring * tx_ring)2251 void ice_clean_ctrl_tx_irq(struct ice_ring *tx_ring)
2252 {
2253 	struct ice_vsi *vsi = tx_ring->vsi;
2254 	s16 i = tx_ring->next_to_clean;
2255 	int budget = ICE_DFLT_IRQ_WORK;
2256 	struct ice_tx_desc *tx_desc;
2257 	struct ice_tx_buf *tx_buf;
2258 
2259 	tx_buf = &tx_ring->tx_buf[i];
2260 	tx_desc = ICE_TX_DESC(tx_ring, i);
2261 	i -= tx_ring->count;
2262 
2263 	do {
2264 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
2265 
2266 		/* if next_to_watch is not set then there is no pending work */
2267 		if (!eop_desc)
2268 			break;
2269 
2270 		/* prevent any other reads prior to eop_desc */
2271 		smp_rmb();
2272 
2273 		/* if the descriptor isn't done, no work to do */
2274 		if (!(eop_desc->cmd_type_offset_bsz &
2275 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
2276 			break;
2277 
2278 		/* clear next_to_watch to prevent false hangs */
2279 		tx_buf->next_to_watch = NULL;
2280 		tx_desc->buf_addr = 0;
2281 		tx_desc->cmd_type_offset_bsz = 0;
2282 
2283 		/* move past filter desc */
2284 		tx_buf++;
2285 		tx_desc++;
2286 		i++;
2287 		if (unlikely(!i)) {
2288 			i -= tx_ring->count;
2289 			tx_buf = tx_ring->tx_buf;
2290 			tx_desc = ICE_TX_DESC(tx_ring, 0);
2291 		}
2292 
2293 		/* unmap the data header */
2294 		if (dma_unmap_len(tx_buf, len))
2295 			dma_unmap_single(tx_ring->dev,
2296 					 dma_unmap_addr(tx_buf, dma),
2297 					 dma_unmap_len(tx_buf, len),
2298 					 DMA_TO_DEVICE);
2299 		if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
2300 			devm_kfree(tx_ring->dev, tx_buf->raw_buf);
2301 
2302 		/* clear next_to_watch to prevent false hangs */
2303 		tx_buf->raw_buf = NULL;
2304 		tx_buf->tx_flags = 0;
2305 		tx_buf->next_to_watch = NULL;
2306 		dma_unmap_len_set(tx_buf, len, 0);
2307 		tx_desc->buf_addr = 0;
2308 		tx_desc->cmd_type_offset_bsz = 0;
2309 
2310 		/* move past eop_desc for start of next FD desc */
2311 		tx_buf++;
2312 		tx_desc++;
2313 		i++;
2314 		if (unlikely(!i)) {
2315 			i -= tx_ring->count;
2316 			tx_buf = tx_ring->tx_buf;
2317 			tx_desc = ICE_TX_DESC(tx_ring, 0);
2318 		}
2319 
2320 		budget--;
2321 	} while (likely(budget));
2322 
2323 	i += tx_ring->count;
2324 	tx_ring->next_to_clean = i;
2325 
2326 	/* re-enable interrupt if needed */
2327 	ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]);
2328 }
2329