1 /* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
2 /*
3 	Written/copyright 1999-2001 by Donald Becker.
4 	Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
5 	Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
6 	Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
7 
8 	This software may be used and distributed according to the terms of
9 	the GNU General Public License (GPL), incorporated herein by reference.
10 	Drivers based on or derived from this code fall under the GPL and must
11 	retain the authorship, copyright and license notice.  This file is not
12 	a complete program and may only be used when the entire operating
13 	system is licensed under the GPL.  License for under other terms may be
14 	available.  Contact the original author for details.
15 
16 	The original author may be reached as becker@scyld.com, or at
17 	Scyld Computing Corporation
18 	410 Severn Ave., Suite 210
19 	Annapolis MD 21403
20 
21 	Support information and updates available at
22 	http://www.scyld.com/network/netsemi.html
23 	[link no longer provides useful info -jgarzik]
24 
25 
26 	TODO:
27 	* big endian support with CFG:BEM instead of cpu_to_le32
28 */
29 
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/errno.h>
35 #include <linux/ioport.h>
36 #include <linux/slab.h>
37 #include <linux/interrupt.h>
38 #include <linux/pci.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/skbuff.h>
42 #include <linux/init.h>
43 #include <linux/spinlock.h>
44 #include <linux/ethtool.h>
45 #include <linux/delay.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/mii.h>
48 #include <linux/crc32.h>
49 #include <linux/bitops.h>
50 #include <linux/prefetch.h>
51 #include <asm/processor.h>	/* Processor type for cache alignment. */
52 #include <asm/io.h>
53 #include <asm/irq.h>
54 #include <linux/uaccess.h>
55 
56 #define DRV_NAME	"natsemi"
57 #define DRV_VERSION	"2.1"
58 #define DRV_RELDATE	"Sept 11, 2006"
59 
60 #define RX_OFFSET	2
61 
62 /* Updated to recommendations in pci-skeleton v2.03. */
63 
64 /* The user-configurable values.
65    These may be modified when a driver module is loaded.*/
66 
67 #define NATSEMI_DEF_MSG		(NETIF_MSG_DRV		| \
68 				 NETIF_MSG_LINK		| \
69 				 NETIF_MSG_WOL		| \
70 				 NETIF_MSG_RX_ERR	| \
71 				 NETIF_MSG_TX_ERR)
72 static int debug = -1;
73 
74 static int mtu;
75 
76 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
77    This chip uses a 512 element hash table based on the Ethernet CRC.  */
78 static const int multicast_filter_limit = 100;
79 
80 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
81    Setting to > 1518 effectively disables this feature. */
82 static int rx_copybreak;
83 
84 static int dspcfg_workaround = 1;
85 
86 /* Used to pass the media type, etc.
87    Both 'options[]' and 'full_duplex[]' should exist for driver
88    interoperability.
89    The media type is usually passed in 'options[]'.
90 */
91 #define MAX_UNITS 8		/* More are supported, limit only on options */
92 static int options[MAX_UNITS];
93 static int full_duplex[MAX_UNITS];
94 
95 /* Operational parameters that are set at compile time. */
96 
97 /* Keep the ring sizes a power of two for compile efficiency.
98    The compiler will convert <unsigned>'%'<2^N> into a bit mask.
99    Making the Tx ring too large decreases the effectiveness of channel
100    bonding and packet priority.
101    There are no ill effects from too-large receive rings. */
102 #define TX_RING_SIZE	16
103 #define TX_QUEUE_LEN	10 /* Limit ring entries actually used, min 4. */
104 #define RX_RING_SIZE	32
105 
106 /* Operational parameters that usually are not changed. */
107 /* Time in jiffies before concluding the transmitter is hung. */
108 #define TX_TIMEOUT  (2*HZ)
109 
110 #define NATSEMI_HW_TIMEOUT	400
111 #define NATSEMI_TIMER_FREQ	5*HZ
112 #define NATSEMI_PG0_NREGS	64
113 #define NATSEMI_RFDR_NREGS	8
114 #define NATSEMI_PG1_NREGS	4
115 #define NATSEMI_NREGS		(NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
116 				 NATSEMI_PG1_NREGS)
117 #define NATSEMI_REGS_VER	1 /* v1 added RFDR registers */
118 #define NATSEMI_REGS_SIZE	(NATSEMI_NREGS * sizeof(u32))
119 
120 /* Buffer sizes:
121  * The nic writes 32-bit values, even if the upper bytes of
122  * a 32-bit value are beyond the end of the buffer.
123  */
124 #define NATSEMI_HEADERS		22	/* 2*mac,type,vlan,crc */
125 #define NATSEMI_PADDING		16	/* 2 bytes should be sufficient */
126 #define NATSEMI_LONGPKT		1518	/* limit for normal packets */
127 #define NATSEMI_RX_LIMIT	2046	/* maximum supported by hardware */
128 
129 /* These identify the driver base version and may not be removed. */
130 static const char version[] =
131   KERN_INFO DRV_NAME " dp8381x driver, version "
132       DRV_VERSION ", " DRV_RELDATE "\n"
133   "  originally by Donald Becker <becker@scyld.com>\n"
134   "  2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
135 
136 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
137 MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
138 MODULE_LICENSE("GPL");
139 
140 module_param(mtu, int, 0);
141 module_param(debug, int, 0);
142 module_param(rx_copybreak, int, 0);
143 module_param(dspcfg_workaround, int, 0);
144 module_param_array(options, int, NULL, 0);
145 module_param_array(full_duplex, int, NULL, 0);
146 MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
147 MODULE_PARM_DESC(debug, "DP8381x default debug level");
148 MODULE_PARM_DESC(rx_copybreak,
149 	"DP8381x copy breakpoint for copy-only-tiny-frames");
150 MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
151 MODULE_PARM_DESC(options,
152 	"DP8381x: Bits 0-3: media type, bit 17: full duplex");
153 MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
154 
155 /*
156 				Theory of Operation
157 
158 I. Board Compatibility
159 
160 This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
161 It also works with other chips in in the DP83810 series.
162 
163 II. Board-specific settings
164 
165 This driver requires the PCI interrupt line to be valid.
166 It honors the EEPROM-set values.
167 
168 III. Driver operation
169 
170 IIIa. Ring buffers
171 
172 This driver uses two statically allocated fixed-size descriptor lists
173 formed into rings by a branch from the final descriptor to the beginning of
174 the list.  The ring sizes are set at compile time by RX/TX_RING_SIZE.
175 The NatSemi design uses a 'next descriptor' pointer that the driver forms
176 into a list.
177 
178 IIIb/c. Transmit/Receive Structure
179 
180 This driver uses a zero-copy receive and transmit scheme.
181 The driver allocates full frame size skbuffs for the Rx ring buffers at
182 open() time and passes the skb->data field to the chip as receive data
183 buffers.  When an incoming frame is less than RX_COPYBREAK bytes long,
184 a fresh skbuff is allocated and the frame is copied to the new skbuff.
185 When the incoming frame is larger, the skbuff is passed directly up the
186 protocol stack.  Buffers consumed this way are replaced by newly allocated
187 skbuffs in a later phase of receives.
188 
189 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
190 using a full-sized skbuff for small frames vs. the copying costs of larger
191 frames.  New boards are typically used in generously configured machines
192 and the underfilled buffers have negligible impact compared to the benefit of
193 a single allocation size, so the default value of zero results in never
194 copying packets.  When copying is done, the cost is usually mitigated by using
195 a combined copy/checksum routine.  Copying also preloads the cache, which is
196 most useful with small frames.
197 
198 A subtle aspect of the operation is that unaligned buffers are not permitted
199 by the hardware.  Thus the IP header at offset 14 in an ethernet frame isn't
200 longword aligned for further processing.  On copies frames are put into the
201 skbuff at an offset of "+2", 16-byte aligning the IP header.
202 
203 IIId. Synchronization
204 
205 Most operations are synchronized on the np->lock irq spinlock, except the
206 receive and transmit paths which are synchronised using a combination of
207 hardware descriptor ownership, disabling interrupts and NAPI poll scheduling.
208 
209 IVb. References
210 
211 http://www.scyld.com/expert/100mbps.html
212 http://www.scyld.com/expert/NWay.html
213 Datasheet is available from:
214 http://www.national.com/pf/DP/DP83815.html
215 
216 IVc. Errata
217 
218 None characterised.
219 */
220 
221 
222 
223 /*
224  * Support for fibre connections on Am79C874:
225  * This phy needs a special setup when connected to a fibre cable.
226  * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
227  */
228 #define PHYID_AM79C874	0x0022561b
229 
230 enum {
231 	MII_MCTRL	= 0x15,		/* mode control register */
232 	MII_FX_SEL	= 0x0001,	/* 100BASE-FX (fiber) */
233 	MII_EN_SCRM	= 0x0004,	/* enable scrambler (tp) */
234 };
235 
236 enum {
237 	NATSEMI_FLAG_IGNORE_PHY		= 0x1,
238 };
239 
240 /* array of board data directly indexed by pci_tbl[x].driver_data */
241 static struct {
242 	const char *name;
243 	unsigned long flags;
244 	unsigned int eeprom_size;
245 } natsemi_pci_info[] = {
246 	{ "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
247 	{ "NatSemi DP8381[56]", 0, 24 },
248 };
249 
250 static const struct pci_device_id natsemi_pci_tbl[] = {
251 	{ PCI_VENDOR_ID_NS, 0x0020, 0x12d9,     0x000c,     0, 0, 0 },
252 	{ PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
253 	{ }	/* terminate list */
254 };
255 MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
256 
257 /* Offsets to the device registers.
258    Unlike software-only systems, device drivers interact with complex hardware.
259    It's not useful to define symbolic names for every register bit in the
260    device.
261 */
262 enum register_offsets {
263 	ChipCmd			= 0x00,
264 	ChipConfig		= 0x04,
265 	EECtrl			= 0x08,
266 	PCIBusCfg		= 0x0C,
267 	IntrStatus		= 0x10,
268 	IntrMask		= 0x14,
269 	IntrEnable		= 0x18,
270 	IntrHoldoff		= 0x1C, /* DP83816 only */
271 	TxRingPtr		= 0x20,
272 	TxConfig		= 0x24,
273 	RxRingPtr		= 0x30,
274 	RxConfig		= 0x34,
275 	ClkRun			= 0x3C,
276 	WOLCmd			= 0x40,
277 	PauseCmd		= 0x44,
278 	RxFilterAddr		= 0x48,
279 	RxFilterData		= 0x4C,
280 	BootRomAddr		= 0x50,
281 	BootRomData		= 0x54,
282 	SiliconRev		= 0x58,
283 	StatsCtrl		= 0x5C,
284 	StatsData		= 0x60,
285 	RxPktErrs		= 0x60,
286 	RxMissed		= 0x68,
287 	RxCRCErrs		= 0x64,
288 	BasicControl		= 0x80,
289 	BasicStatus		= 0x84,
290 	AnegAdv			= 0x90,
291 	AnegPeer		= 0x94,
292 	PhyStatus		= 0xC0,
293 	MIntrCtrl		= 0xC4,
294 	MIntrStatus		= 0xC8,
295 	PhyCtrl			= 0xE4,
296 
297 	/* These are from the spec, around page 78... on a separate table.
298 	 * The meaning of these registers depend on the value of PGSEL. */
299 	PGSEL			= 0xCC,
300 	PMDCSR			= 0xE4,
301 	TSTDAT			= 0xFC,
302 	DSPCFG			= 0xF4,
303 	SDCFG			= 0xF8
304 };
305 /* the values for the 'magic' registers above (PGSEL=1) */
306 #define PMDCSR_VAL	0x189c	/* enable preferred adaptation circuitry */
307 #define TSTDAT_VAL	0x0
308 #define DSPCFG_VAL	0x5040
309 #define SDCFG_VAL	0x008c	/* set voltage thresholds for Signal Detect */
310 #define DSPCFG_LOCK	0x20	/* coefficient lock bit in DSPCFG */
311 #define DSPCFG_COEF	0x1000	/* see coefficient (in TSTDAT) bit in DSPCFG */
312 #define TSTDAT_FIXED	0xe8	/* magic number for bad coefficients */
313 
314 /* misc PCI space registers */
315 enum pci_register_offsets {
316 	PCIPM			= 0x44,
317 };
318 
319 enum ChipCmd_bits {
320 	ChipReset		= 0x100,
321 	RxReset			= 0x20,
322 	TxReset			= 0x10,
323 	RxOff			= 0x08,
324 	RxOn			= 0x04,
325 	TxOff			= 0x02,
326 	TxOn			= 0x01,
327 };
328 
329 enum ChipConfig_bits {
330 	CfgPhyDis		= 0x200,
331 	CfgPhyRst		= 0x400,
332 	CfgExtPhy		= 0x1000,
333 	CfgAnegEnable		= 0x2000,
334 	CfgAneg100		= 0x4000,
335 	CfgAnegFull		= 0x8000,
336 	CfgAnegDone		= 0x8000000,
337 	CfgFullDuplex		= 0x20000000,
338 	CfgSpeed100		= 0x40000000,
339 	CfgLink			= 0x80000000,
340 };
341 
342 enum EECtrl_bits {
343 	EE_ShiftClk		= 0x04,
344 	EE_DataIn		= 0x01,
345 	EE_ChipSelect		= 0x08,
346 	EE_DataOut		= 0x02,
347 	MII_Data 		= 0x10,
348 	MII_Write		= 0x20,
349 	MII_ShiftClk		= 0x40,
350 };
351 
352 enum PCIBusCfg_bits {
353 	EepromReload		= 0x4,
354 };
355 
356 /* Bits in the interrupt status/mask registers. */
357 enum IntrStatus_bits {
358 	IntrRxDone		= 0x0001,
359 	IntrRxIntr		= 0x0002,
360 	IntrRxErr		= 0x0004,
361 	IntrRxEarly		= 0x0008,
362 	IntrRxIdle		= 0x0010,
363 	IntrRxOverrun		= 0x0020,
364 	IntrTxDone		= 0x0040,
365 	IntrTxIntr		= 0x0080,
366 	IntrTxErr		= 0x0100,
367 	IntrTxIdle		= 0x0200,
368 	IntrTxUnderrun		= 0x0400,
369 	StatsMax		= 0x0800,
370 	SWInt			= 0x1000,
371 	WOLPkt			= 0x2000,
372 	LinkChange		= 0x4000,
373 	IntrHighBits		= 0x8000,
374 	RxStatusFIFOOver	= 0x10000,
375 	IntrPCIErr		= 0xf00000,
376 	RxResetDone		= 0x1000000,
377 	TxResetDone		= 0x2000000,
378 	IntrAbnormalSummary	= 0xCD20,
379 };
380 
381 /*
382  * Default Interrupts:
383  * Rx OK, Rx Packet Error, Rx Overrun,
384  * Tx OK, Tx Packet Error, Tx Underrun,
385  * MIB Service, Phy Interrupt, High Bits,
386  * Rx Status FIFO overrun,
387  * Received Target Abort, Received Master Abort,
388  * Signalled System Error, Received Parity Error
389  */
390 #define DEFAULT_INTR 0x00f1cd65
391 
392 enum TxConfig_bits {
393 	TxDrthMask		= 0x3f,
394 	TxFlthMask		= 0x3f00,
395 	TxMxdmaMask		= 0x700000,
396 	TxMxdma_512		= 0x0,
397 	TxMxdma_4		= 0x100000,
398 	TxMxdma_8		= 0x200000,
399 	TxMxdma_16		= 0x300000,
400 	TxMxdma_32		= 0x400000,
401 	TxMxdma_64		= 0x500000,
402 	TxMxdma_128		= 0x600000,
403 	TxMxdma_256		= 0x700000,
404 	TxCollRetry		= 0x800000,
405 	TxAutoPad		= 0x10000000,
406 	TxMacLoop		= 0x20000000,
407 	TxHeartIgn		= 0x40000000,
408 	TxCarrierIgn		= 0x80000000
409 };
410 
411 /*
412  * Tx Configuration:
413  * - 256 byte DMA burst length
414  * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
415  * - 64 bytes initial drain threshold (i.e. begin actual transmission
416  *   when 64 byte are in the fifo)
417  * - on tx underruns, increase drain threshold by 64.
418  * - at most use a drain threshold of 1472 bytes: The sum of the fill
419  *   threshold and the drain threshold must be less than 2016 bytes.
420  *
421  */
422 #define TX_FLTH_VAL		((512/32) << 8)
423 #define TX_DRTH_VAL_START	(64/32)
424 #define TX_DRTH_VAL_INC		2
425 #define TX_DRTH_VAL_LIMIT	(1472/32)
426 
427 enum RxConfig_bits {
428 	RxDrthMask		= 0x3e,
429 	RxMxdmaMask		= 0x700000,
430 	RxMxdma_512		= 0x0,
431 	RxMxdma_4		= 0x100000,
432 	RxMxdma_8		= 0x200000,
433 	RxMxdma_16		= 0x300000,
434 	RxMxdma_32		= 0x400000,
435 	RxMxdma_64		= 0x500000,
436 	RxMxdma_128		= 0x600000,
437 	RxMxdma_256		= 0x700000,
438 	RxAcceptLong		= 0x8000000,
439 	RxAcceptTx		= 0x10000000,
440 	RxAcceptRunt		= 0x40000000,
441 	RxAcceptErr		= 0x80000000
442 };
443 #define RX_DRTH_VAL		(128/8)
444 
445 enum ClkRun_bits {
446 	PMEEnable		= 0x100,
447 	PMEStatus		= 0x8000,
448 };
449 
450 enum WolCmd_bits {
451 	WakePhy			= 0x1,
452 	WakeUnicast		= 0x2,
453 	WakeMulticast		= 0x4,
454 	WakeBroadcast		= 0x8,
455 	WakeArp			= 0x10,
456 	WakePMatch0		= 0x20,
457 	WakePMatch1		= 0x40,
458 	WakePMatch2		= 0x80,
459 	WakePMatch3		= 0x100,
460 	WakeMagic		= 0x200,
461 	WakeMagicSecure		= 0x400,
462 	SecureHack		= 0x100000,
463 	WokePhy			= 0x400000,
464 	WokeUnicast		= 0x800000,
465 	WokeMulticast		= 0x1000000,
466 	WokeBroadcast		= 0x2000000,
467 	WokeArp			= 0x4000000,
468 	WokePMatch0		= 0x8000000,
469 	WokePMatch1		= 0x10000000,
470 	WokePMatch2		= 0x20000000,
471 	WokePMatch3		= 0x40000000,
472 	WokeMagic		= 0x80000000,
473 	WakeOptsSummary		= 0x7ff
474 };
475 
476 enum RxFilterAddr_bits {
477 	RFCRAddressMask		= 0x3ff,
478 	AcceptMulticast		= 0x00200000,
479 	AcceptMyPhys		= 0x08000000,
480 	AcceptAllPhys		= 0x10000000,
481 	AcceptAllMulticast	= 0x20000000,
482 	AcceptBroadcast		= 0x40000000,
483 	RxFilterEnable		= 0x80000000
484 };
485 
486 enum StatsCtrl_bits {
487 	StatsWarn		= 0x1,
488 	StatsFreeze		= 0x2,
489 	StatsClear		= 0x4,
490 	StatsStrobe		= 0x8,
491 };
492 
493 enum MIntrCtrl_bits {
494 	MICRIntEn		= 0x2,
495 };
496 
497 enum PhyCtrl_bits {
498 	PhyAddrMask		= 0x1f,
499 };
500 
501 #define PHY_ADDR_NONE		32
502 #define PHY_ADDR_INTERNAL	1
503 
504 /* values we might find in the silicon revision register */
505 #define SRR_DP83815_C	0x0302
506 #define SRR_DP83815_D	0x0403
507 #define SRR_DP83816_A4	0x0504
508 #define SRR_DP83816_A5	0x0505
509 
510 /* The Rx and Tx buffer descriptors. */
511 /* Note that using only 32 bit fields simplifies conversion to big-endian
512    architectures. */
513 struct netdev_desc {
514 	__le32 next_desc;
515 	__le32 cmd_status;
516 	__le32 addr;
517 	__le32 software_use;
518 };
519 
520 /* Bits in network_desc.status */
521 enum desc_status_bits {
522 	DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
523 	DescNoCRC=0x10000000, DescPktOK=0x08000000,
524 	DescSizeMask=0xfff,
525 
526 	DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
527 	DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
528 	DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
529 	DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
530 
531 	DescRxAbort=0x04000000, DescRxOver=0x02000000,
532 	DescRxDest=0x01800000, DescRxLong=0x00400000,
533 	DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
534 	DescRxCRC=0x00080000, DescRxAlign=0x00040000,
535 	DescRxLoop=0x00020000, DesRxColl=0x00010000,
536 };
537 
538 struct netdev_private {
539 	/* Descriptor rings first for alignment */
540 	dma_addr_t ring_dma;
541 	struct netdev_desc *rx_ring;
542 	struct netdev_desc *tx_ring;
543 	/* The addresses of receive-in-place skbuffs */
544 	struct sk_buff *rx_skbuff[RX_RING_SIZE];
545 	dma_addr_t rx_dma[RX_RING_SIZE];
546 	/* address of a sent-in-place packet/buffer, for later free() */
547 	struct sk_buff *tx_skbuff[TX_RING_SIZE];
548 	dma_addr_t tx_dma[TX_RING_SIZE];
549 	struct net_device *dev;
550 	void __iomem *ioaddr;
551 	struct napi_struct napi;
552 	/* Media monitoring timer */
553 	struct timer_list timer;
554 	/* Frequently used values: keep some adjacent for cache effect */
555 	struct pci_dev *pci_dev;
556 	struct netdev_desc *rx_head_desc;
557 	/* Producer/consumer ring indices */
558 	unsigned int cur_rx, dirty_rx;
559 	unsigned int cur_tx, dirty_tx;
560 	/* Based on MTU+slack. */
561 	unsigned int rx_buf_sz;
562 	int oom;
563 	/* Interrupt status */
564 	u32 intr_status;
565 	/* Do not touch the nic registers */
566 	int hands_off;
567 	/* Don't pay attention to the reported link state. */
568 	int ignore_phy;
569 	/* external phy that is used: only valid if dev->if_port != PORT_TP */
570 	int mii;
571 	int phy_addr_external;
572 	unsigned int full_duplex;
573 	/* Rx filter */
574 	u32 cur_rx_mode;
575 	u32 rx_filter[16];
576 	/* FIFO and PCI burst thresholds */
577 	u32 tx_config, rx_config;
578 	/* original contents of ClkRun register */
579 	u32 SavedClkRun;
580 	/* silicon revision */
581 	u32 srr;
582 	/* expected DSPCFG value */
583 	u16 dspcfg;
584 	int dspcfg_workaround;
585 	/* parms saved in ethtool format */
586 	u16	speed;		/* The forced speed, 10Mb, 100Mb, gigabit */
587 	u8	duplex;		/* Duplex, half or full */
588 	u8	autoneg;	/* Autonegotiation enabled */
589 	/* MII transceiver section */
590 	u16 advertising;
591 	unsigned int iosize;
592 	spinlock_t lock;
593 	u32 msg_enable;
594 	/* EEPROM data */
595 	int eeprom_size;
596 };
597 
598 static void move_int_phy(struct net_device *dev, int addr);
599 static int eeprom_read(void __iomem *ioaddr, int location);
600 static int mdio_read(struct net_device *dev, int reg);
601 static void mdio_write(struct net_device *dev, int reg, u16 data);
602 static void init_phy_fixup(struct net_device *dev);
603 static int miiport_read(struct net_device *dev, int phy_id, int reg);
604 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
605 static int find_mii(struct net_device *dev);
606 static void natsemi_reset(struct net_device *dev);
607 static void natsemi_reload_eeprom(struct net_device *dev);
608 static void natsemi_stop_rxtx(struct net_device *dev);
609 static int netdev_open(struct net_device *dev);
610 static void do_cable_magic(struct net_device *dev);
611 static void undo_cable_magic(struct net_device *dev);
612 static void check_link(struct net_device *dev);
613 static void netdev_timer(struct timer_list *t);
614 static void dump_ring(struct net_device *dev);
615 static void ns_tx_timeout(struct net_device *dev, unsigned int txqueue);
616 static int alloc_ring(struct net_device *dev);
617 static void refill_rx(struct net_device *dev);
618 static void init_ring(struct net_device *dev);
619 static void drain_tx(struct net_device *dev);
620 static void drain_ring(struct net_device *dev);
621 static void free_ring(struct net_device *dev);
622 static void reinit_ring(struct net_device *dev);
623 static void init_registers(struct net_device *dev);
624 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
625 static irqreturn_t intr_handler(int irq, void *dev_instance);
626 static void netdev_error(struct net_device *dev, int intr_status);
627 static int natsemi_poll(struct napi_struct *napi, int budget);
628 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
629 static void netdev_tx_done(struct net_device *dev);
630 static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
631 #ifdef CONFIG_NET_POLL_CONTROLLER
632 static void natsemi_poll_controller(struct net_device *dev);
633 #endif
634 static void __set_rx_mode(struct net_device *dev);
635 static void set_rx_mode(struct net_device *dev);
636 static void __get_stats(struct net_device *dev);
637 static struct net_device_stats *get_stats(struct net_device *dev);
638 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
639 static int netdev_set_wol(struct net_device *dev, u32 newval);
640 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
641 static int netdev_set_sopass(struct net_device *dev, u8 *newval);
642 static int netdev_get_sopass(struct net_device *dev, u8 *data);
643 static int netdev_get_ecmd(struct net_device *dev,
644 			   struct ethtool_link_ksettings *ecmd);
645 static int netdev_set_ecmd(struct net_device *dev,
646 			   const struct ethtool_link_ksettings *ecmd);
647 static void enable_wol_mode(struct net_device *dev, int enable_intr);
648 static int netdev_close(struct net_device *dev);
649 static int netdev_get_regs(struct net_device *dev, u8 *buf);
650 static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
651 static const struct ethtool_ops ethtool_ops;
652 
653 #define NATSEMI_ATTR(_name) \
654 static ssize_t natsemi_show_##_name(struct device *dev, \
655          struct device_attribute *attr, char *buf); \
656 	 static ssize_t natsemi_set_##_name(struct device *dev, \
657 		struct device_attribute *attr, \
658 	        const char *buf, size_t count); \
659 	 static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
660 
661 #define NATSEMI_CREATE_FILE(_dev, _name) \
662          device_create_file(&_dev->dev, &dev_attr_##_name)
663 #define NATSEMI_REMOVE_FILE(_dev, _name) \
664          device_remove_file(&_dev->dev, &dev_attr_##_name)
665 
666 NATSEMI_ATTR(dspcfg_workaround);
667 
natsemi_show_dspcfg_workaround(struct device * dev,struct device_attribute * attr,char * buf)668 static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
669 				  	      struct device_attribute *attr,
670 					      char *buf)
671 {
672 	struct netdev_private *np = netdev_priv(to_net_dev(dev));
673 
674 	return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
675 }
676 
natsemi_set_dspcfg_workaround(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)677 static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
678 					     struct device_attribute *attr,
679 					     const char *buf, size_t count)
680 {
681 	struct netdev_private *np = netdev_priv(to_net_dev(dev));
682 	int new_setting;
683 	unsigned long flags;
684 
685         /* Find out the new setting */
686         if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
687                 new_setting = 1;
688         else if (!strncmp("off", buf, count - 1) ||
689                  !strncmp("0", buf, count - 1))
690 		new_setting = 0;
691 	else
692                  return count;
693 
694 	spin_lock_irqsave(&np->lock, flags);
695 
696 	np->dspcfg_workaround = new_setting;
697 
698 	spin_unlock_irqrestore(&np->lock, flags);
699 
700 	return count;
701 }
702 
ns_ioaddr(struct net_device * dev)703 static inline void __iomem *ns_ioaddr(struct net_device *dev)
704 {
705 	struct netdev_private *np = netdev_priv(dev);
706 
707 	return np->ioaddr;
708 }
709 
natsemi_irq_enable(struct net_device * dev)710 static inline void natsemi_irq_enable(struct net_device *dev)
711 {
712 	writel(1, ns_ioaddr(dev) + IntrEnable);
713 	readl(ns_ioaddr(dev) + IntrEnable);
714 }
715 
natsemi_irq_disable(struct net_device * dev)716 static inline void natsemi_irq_disable(struct net_device *dev)
717 {
718 	writel(0, ns_ioaddr(dev) + IntrEnable);
719 	readl(ns_ioaddr(dev) + IntrEnable);
720 }
721 
move_int_phy(struct net_device * dev,int addr)722 static void move_int_phy(struct net_device *dev, int addr)
723 {
724 	struct netdev_private *np = netdev_priv(dev);
725 	void __iomem *ioaddr = ns_ioaddr(dev);
726 	int target = 31;
727 
728 	/*
729 	 * The internal phy is visible on the external mii bus. Therefore we must
730 	 * move it away before we can send commands to an external phy.
731 	 * There are two addresses we must avoid:
732 	 * - the address on the external phy that is used for transmission.
733 	 * - the address that we want to access. User space can access phys
734 	 *   on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independent from the
735 	 *   phy that is used for transmission.
736 	 */
737 
738 	if (target == addr)
739 		target--;
740 	if (target == np->phy_addr_external)
741 		target--;
742 	writew(target, ioaddr + PhyCtrl);
743 	readw(ioaddr + PhyCtrl);
744 	udelay(1);
745 }
746 
natsemi_init_media(struct net_device * dev)747 static void natsemi_init_media(struct net_device *dev)
748 {
749 	struct netdev_private *np = netdev_priv(dev);
750 	u32 tmp;
751 
752 	if (np->ignore_phy)
753 		netif_carrier_on(dev);
754 	else
755 		netif_carrier_off(dev);
756 
757 	/* get the initial settings from hardware */
758 	tmp            = mdio_read(dev, MII_BMCR);
759 	np->speed      = (tmp & BMCR_SPEED100)? SPEED_100     : SPEED_10;
760 	np->duplex     = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL   : DUPLEX_HALF;
761 	np->autoneg    = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
762 	np->advertising= mdio_read(dev, MII_ADVERTISE);
763 
764 	if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL &&
765 	    netif_msg_probe(np)) {
766 		printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
767 			"10%s %s duplex.\n",
768 			pci_name(np->pci_dev),
769 			(mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
770 			  "enabled, advertise" : "disabled, force",
771 			(np->advertising &
772 			  (ADVERTISE_100FULL|ADVERTISE_100HALF))?
773 			    "0" : "",
774 			(np->advertising &
775 			  (ADVERTISE_100FULL|ADVERTISE_10FULL))?
776 			    "full" : "half");
777 	}
778 	if (netif_msg_probe(np))
779 		printk(KERN_INFO
780 			"natsemi %s: Transceiver status %#04x advertising %#04x.\n",
781 			pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
782 			np->advertising);
783 
784 }
785 
786 static const struct net_device_ops natsemi_netdev_ops = {
787 	.ndo_open		= netdev_open,
788 	.ndo_stop		= netdev_close,
789 	.ndo_start_xmit		= start_tx,
790 	.ndo_get_stats		= get_stats,
791 	.ndo_set_rx_mode	= set_rx_mode,
792 	.ndo_change_mtu		= natsemi_change_mtu,
793 	.ndo_do_ioctl		= netdev_ioctl,
794 	.ndo_tx_timeout 	= ns_tx_timeout,
795 	.ndo_set_mac_address 	= eth_mac_addr,
796 	.ndo_validate_addr	= eth_validate_addr,
797 #ifdef CONFIG_NET_POLL_CONTROLLER
798 	.ndo_poll_controller	= natsemi_poll_controller,
799 #endif
800 };
801 
natsemi_probe1(struct pci_dev * pdev,const struct pci_device_id * ent)802 static int natsemi_probe1(struct pci_dev *pdev, const struct pci_device_id *ent)
803 {
804 	struct net_device *dev;
805 	struct netdev_private *np;
806 	int i, option, irq, chip_idx = ent->driver_data;
807 	static int find_cnt = -1;
808 	resource_size_t iostart;
809 	unsigned long iosize;
810 	void __iomem *ioaddr;
811 	const int pcibar = 1; /* PCI base address register */
812 	int prev_eedata;
813 	u32 tmp;
814 
815 /* when built into the kernel, we only print version if device is found */
816 #ifndef MODULE
817 	static int printed_version;
818 	if (!printed_version++)
819 		printk(version);
820 #endif
821 
822 	i = pci_enable_device(pdev);
823 	if (i) return i;
824 
825 	/* natsemi has a non-standard PM control register
826 	 * in PCI config space.  Some boards apparently need
827 	 * to be brought to D0 in this manner.
828 	 */
829 	pci_read_config_dword(pdev, PCIPM, &tmp);
830 	if (tmp & PCI_PM_CTRL_STATE_MASK) {
831 		/* D0 state, disable PME assertion */
832 		u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
833 		pci_write_config_dword(pdev, PCIPM, newtmp);
834 	}
835 
836 	find_cnt++;
837 	iostart = pci_resource_start(pdev, pcibar);
838 	iosize = pci_resource_len(pdev, pcibar);
839 	irq = pdev->irq;
840 
841 	pci_set_master(pdev);
842 
843 	dev = alloc_etherdev(sizeof (struct netdev_private));
844 	if (!dev)
845 		return -ENOMEM;
846 	SET_NETDEV_DEV(dev, &pdev->dev);
847 
848 	i = pci_request_regions(pdev, DRV_NAME);
849 	if (i)
850 		goto err_pci_request_regions;
851 
852 	ioaddr = ioremap(iostart, iosize);
853 	if (!ioaddr) {
854 		i = -ENOMEM;
855 		goto err_ioremap;
856 	}
857 
858 	/* Work around the dropped serial bit. */
859 	prev_eedata = eeprom_read(ioaddr, 6);
860 	for (i = 0; i < 3; i++) {
861 		int eedata = eeprom_read(ioaddr, i + 7);
862 		dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
863 		dev->dev_addr[i*2+1] = eedata >> 7;
864 		prev_eedata = eedata;
865 	}
866 
867 	np = netdev_priv(dev);
868 	np->ioaddr = ioaddr;
869 
870 	netif_napi_add(dev, &np->napi, natsemi_poll, 64);
871 	np->dev = dev;
872 
873 	np->pci_dev = pdev;
874 	pci_set_drvdata(pdev, dev);
875 	np->iosize = iosize;
876 	spin_lock_init(&np->lock);
877 	np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
878 	np->hands_off = 0;
879 	np->intr_status = 0;
880 	np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
881 	if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
882 		np->ignore_phy = 1;
883 	else
884 		np->ignore_phy = 0;
885 	np->dspcfg_workaround = dspcfg_workaround;
886 
887 	/* Initial port:
888 	 * - If configured to ignore the PHY set up for external.
889 	 * - If the nic was configured to use an external phy and if find_mii
890 	 *   finds a phy: use external port, first phy that replies.
891 	 * - Otherwise: internal port.
892 	 * Note that the phy address for the internal phy doesn't matter:
893 	 * The address would be used to access a phy over the mii bus, but
894 	 * the internal phy is accessed through mapped registers.
895 	 */
896 	if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
897 		dev->if_port = PORT_MII;
898 	else
899 		dev->if_port = PORT_TP;
900 	/* Reset the chip to erase previous misconfiguration. */
901 	natsemi_reload_eeprom(dev);
902 	natsemi_reset(dev);
903 
904 	if (dev->if_port != PORT_TP) {
905 		np->phy_addr_external = find_mii(dev);
906 		/* If we're ignoring the PHY it doesn't matter if we can't
907 		 * find one. */
908 		if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
909 			dev->if_port = PORT_TP;
910 			np->phy_addr_external = PHY_ADDR_INTERNAL;
911 		}
912 	} else {
913 		np->phy_addr_external = PHY_ADDR_INTERNAL;
914 	}
915 
916 	option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
917 	/* The lower four bits are the media type. */
918 	if (option) {
919 		if (option & 0x200)
920 			np->full_duplex = 1;
921 		if (option & 15)
922 			printk(KERN_INFO
923 				"natsemi %s: ignoring user supplied media type %d",
924 				pci_name(np->pci_dev), option & 15);
925 	}
926 	if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt])
927 		np->full_duplex = 1;
928 
929 	dev->netdev_ops = &natsemi_netdev_ops;
930 	dev->watchdog_timeo = TX_TIMEOUT;
931 
932 	dev->ethtool_ops = &ethtool_ops;
933 
934 	/* MTU range: 64 - 2024 */
935 	dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN;
936 	dev->max_mtu = NATSEMI_RX_LIMIT - NATSEMI_HEADERS;
937 
938 	if (mtu)
939 		dev->mtu = mtu;
940 
941 	natsemi_init_media(dev);
942 
943 	/* save the silicon revision for later querying */
944 	np->srr = readl(ioaddr + SiliconRev);
945 	if (netif_msg_hw(np))
946 		printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
947 				pci_name(np->pci_dev), np->srr);
948 
949 	i = register_netdev(dev);
950 	if (i)
951 		goto err_register_netdev;
952 	i = NATSEMI_CREATE_FILE(pdev, dspcfg_workaround);
953 	if (i)
954 		goto err_create_file;
955 
956 	if (netif_msg_drv(np)) {
957 		printk(KERN_INFO "natsemi %s: %s at %#08llx "
958 		       "(%s), %pM, IRQ %d",
959 		       dev->name, natsemi_pci_info[chip_idx].name,
960 		       (unsigned long long)iostart, pci_name(np->pci_dev),
961 		       dev->dev_addr, irq);
962 		if (dev->if_port == PORT_TP)
963 			printk(", port TP.\n");
964 		else if (np->ignore_phy)
965 			printk(", port MII, ignoring PHY\n");
966 		else
967 			printk(", port MII, phy ad %d.\n", np->phy_addr_external);
968 	}
969 	return 0;
970 
971  err_create_file:
972  	unregister_netdev(dev);
973 
974  err_register_netdev:
975 	iounmap(ioaddr);
976 
977  err_ioremap:
978 	pci_release_regions(pdev);
979 
980  err_pci_request_regions:
981 	free_netdev(dev);
982 	return i;
983 }
984 
985 
986 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
987    The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
988 
989 /* Delay between EEPROM clock transitions.
990    No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
991    a delay.  Note that pre-2.0.34 kernels had a cache-alignment bug that
992    made udelay() unreliable.
993    The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
994    deprecated.
995 */
996 #define eeprom_delay(ee_addr)	readl(ee_addr)
997 
998 #define EE_Write0 (EE_ChipSelect)
999 #define EE_Write1 (EE_ChipSelect | EE_DataIn)
1000 
1001 /* The EEPROM commands include the alway-set leading bit. */
1002 enum EEPROM_Cmds {
1003 	EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
1004 };
1005 
eeprom_read(void __iomem * addr,int location)1006 static int eeprom_read(void __iomem *addr, int location)
1007 {
1008 	int i;
1009 	int retval = 0;
1010 	void __iomem *ee_addr = addr + EECtrl;
1011 	int read_cmd = location | EE_ReadCmd;
1012 
1013 	writel(EE_Write0, ee_addr);
1014 
1015 	/* Shift the read command bits out. */
1016 	for (i = 10; i >= 0; i--) {
1017 		short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1018 		writel(dataval, ee_addr);
1019 		eeprom_delay(ee_addr);
1020 		writel(dataval | EE_ShiftClk, ee_addr);
1021 		eeprom_delay(ee_addr);
1022 	}
1023 	writel(EE_ChipSelect, ee_addr);
1024 	eeprom_delay(ee_addr);
1025 
1026 	for (i = 0; i < 16; i++) {
1027 		writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1028 		eeprom_delay(ee_addr);
1029 		retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1030 		writel(EE_ChipSelect, ee_addr);
1031 		eeprom_delay(ee_addr);
1032 	}
1033 
1034 	/* Terminate the EEPROM access. */
1035 	writel(EE_Write0, ee_addr);
1036 	writel(0, ee_addr);
1037 	return retval;
1038 }
1039 
1040 /* MII transceiver control section.
1041  * The 83815 series has an internal transceiver, and we present the
1042  * internal management registers as if they were MII connected.
1043  * External Phy registers are referenced through the MII interface.
1044  */
1045 
1046 /* clock transitions >= 20ns (25MHz)
1047  * One readl should be good to PCI @ 100MHz
1048  */
1049 #define mii_delay(ioaddr)  readl(ioaddr + EECtrl)
1050 
mii_getbit(struct net_device * dev)1051 static int mii_getbit (struct net_device *dev)
1052 {
1053 	int data;
1054 	void __iomem *ioaddr = ns_ioaddr(dev);
1055 
1056 	writel(MII_ShiftClk, ioaddr + EECtrl);
1057 	data = readl(ioaddr + EECtrl);
1058 	writel(0, ioaddr + EECtrl);
1059 	mii_delay(ioaddr);
1060 	return (data & MII_Data)? 1 : 0;
1061 }
1062 
mii_send_bits(struct net_device * dev,u32 data,int len)1063 static void mii_send_bits (struct net_device *dev, u32 data, int len)
1064 {
1065 	u32 i;
1066 	void __iomem *ioaddr = ns_ioaddr(dev);
1067 
1068 	for (i = (1 << (len-1)); i; i >>= 1)
1069 	{
1070 		u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1071 		writel(mdio_val, ioaddr + EECtrl);
1072 		mii_delay(ioaddr);
1073 		writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1074 		mii_delay(ioaddr);
1075 	}
1076 	writel(0, ioaddr + EECtrl);
1077 	mii_delay(ioaddr);
1078 }
1079 
miiport_read(struct net_device * dev,int phy_id,int reg)1080 static int miiport_read(struct net_device *dev, int phy_id, int reg)
1081 {
1082 	u32 cmd;
1083 	int i;
1084 	u32 retval = 0;
1085 
1086 	/* Ensure sync */
1087 	mii_send_bits (dev, 0xffffffff, 32);
1088 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1089 	/* ST,OP = 0110'b for read operation */
1090 	cmd = (0x06 << 10) | (phy_id << 5) | reg;
1091 	mii_send_bits (dev, cmd, 14);
1092 	/* Turnaround */
1093 	if (mii_getbit (dev))
1094 		return 0;
1095 	/* Read data */
1096 	for (i = 0; i < 16; i++) {
1097 		retval <<= 1;
1098 		retval |= mii_getbit (dev);
1099 	}
1100 	/* End cycle */
1101 	mii_getbit (dev);
1102 	return retval;
1103 }
1104 
miiport_write(struct net_device * dev,int phy_id,int reg,u16 data)1105 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1106 {
1107 	u32 cmd;
1108 
1109 	/* Ensure sync */
1110 	mii_send_bits (dev, 0xffffffff, 32);
1111 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1112 	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1113 	cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1114 	mii_send_bits (dev, cmd, 32);
1115 	/* End cycle */
1116 	mii_getbit (dev);
1117 }
1118 
mdio_read(struct net_device * dev,int reg)1119 static int mdio_read(struct net_device *dev, int reg)
1120 {
1121 	struct netdev_private *np = netdev_priv(dev);
1122 	void __iomem *ioaddr = ns_ioaddr(dev);
1123 
1124 	/* The 83815 series has two ports:
1125 	 * - an internal transceiver
1126 	 * - an external mii bus
1127 	 */
1128 	if (dev->if_port == PORT_TP)
1129 		return readw(ioaddr+BasicControl+(reg<<2));
1130 	else
1131 		return miiport_read(dev, np->phy_addr_external, reg);
1132 }
1133 
mdio_write(struct net_device * dev,int reg,u16 data)1134 static void mdio_write(struct net_device *dev, int reg, u16 data)
1135 {
1136 	struct netdev_private *np = netdev_priv(dev);
1137 	void __iomem *ioaddr = ns_ioaddr(dev);
1138 
1139 	/* The 83815 series has an internal transceiver; handle separately */
1140 	if (dev->if_port == PORT_TP)
1141 		writew(data, ioaddr+BasicControl+(reg<<2));
1142 	else
1143 		miiport_write(dev, np->phy_addr_external, reg, data);
1144 }
1145 
init_phy_fixup(struct net_device * dev)1146 static void init_phy_fixup(struct net_device *dev)
1147 {
1148 	struct netdev_private *np = netdev_priv(dev);
1149 	void __iomem *ioaddr = ns_ioaddr(dev);
1150 	int i;
1151 	u32 cfg;
1152 	u16 tmp;
1153 
1154 	/* restore stuff lost when power was out */
1155 	tmp = mdio_read(dev, MII_BMCR);
1156 	if (np->autoneg == AUTONEG_ENABLE) {
1157 		/* renegotiate if something changed */
1158 		if ((tmp & BMCR_ANENABLE) == 0 ||
1159 		    np->advertising != mdio_read(dev, MII_ADVERTISE))
1160 		{
1161 			/* turn on autonegotiation and force negotiation */
1162 			tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1163 			mdio_write(dev, MII_ADVERTISE, np->advertising);
1164 		}
1165 	} else {
1166 		/* turn off auto negotiation, set speed and duplexity */
1167 		tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1168 		if (np->speed == SPEED_100)
1169 			tmp |= BMCR_SPEED100;
1170 		if (np->duplex == DUPLEX_FULL)
1171 			tmp |= BMCR_FULLDPLX;
1172 		/*
1173 		 * Note: there is no good way to inform the link partner
1174 		 * that our capabilities changed. The user has to unplug
1175 		 * and replug the network cable after some changes, e.g.
1176 		 * after switching from 10HD, autoneg off to 100 HD,
1177 		 * autoneg off.
1178 		 */
1179 	}
1180 	mdio_write(dev, MII_BMCR, tmp);
1181 	readl(ioaddr + ChipConfig);
1182 	udelay(1);
1183 
1184 	/* find out what phy this is */
1185 	np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1186 				+ mdio_read(dev, MII_PHYSID2);
1187 
1188 	/* handle external phys here */
1189 	switch (np->mii) {
1190 	case PHYID_AM79C874:
1191 		/* phy specific configuration for fibre/tp operation */
1192 		tmp = mdio_read(dev, MII_MCTRL);
1193 		tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1194 		if (dev->if_port == PORT_FIBRE)
1195 			tmp |= MII_FX_SEL;
1196 		else
1197 			tmp |= MII_EN_SCRM;
1198 		mdio_write(dev, MII_MCTRL, tmp);
1199 		break;
1200 	default:
1201 		break;
1202 	}
1203 	cfg = readl(ioaddr + ChipConfig);
1204 	if (cfg & CfgExtPhy)
1205 		return;
1206 
1207 	/* On page 78 of the spec, they recommend some settings for "optimum
1208 	   performance" to be done in sequence.  These settings optimize some
1209 	   of the 100Mbit autodetection circuitry.  They say we only want to
1210 	   do this for rev C of the chip, but engineers at NSC (Bradley
1211 	   Kennedy) recommends always setting them.  If you don't, you get
1212 	   errors on some autonegotiations that make the device unusable.
1213 
1214 	   It seems that the DSP needs a few usec to reinitialize after
1215 	   the start of the phy. Just retry writing these values until they
1216 	   stick.
1217 	*/
1218 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1219 
1220 		int dspcfg;
1221 		writew(1, ioaddr + PGSEL);
1222 		writew(PMDCSR_VAL, ioaddr + PMDCSR);
1223 		writew(TSTDAT_VAL, ioaddr + TSTDAT);
1224 		np->dspcfg = (np->srr <= SRR_DP83815_C)?
1225 			DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1226 		writew(np->dspcfg, ioaddr + DSPCFG);
1227 		writew(SDCFG_VAL, ioaddr + SDCFG);
1228 		writew(0, ioaddr + PGSEL);
1229 		readl(ioaddr + ChipConfig);
1230 		udelay(10);
1231 
1232 		writew(1, ioaddr + PGSEL);
1233 		dspcfg = readw(ioaddr + DSPCFG);
1234 		writew(0, ioaddr + PGSEL);
1235 		if (np->dspcfg == dspcfg)
1236 			break;
1237 	}
1238 
1239 	if (netif_msg_link(np)) {
1240 		if (i==NATSEMI_HW_TIMEOUT) {
1241 			printk(KERN_INFO
1242 				"%s: DSPCFG mismatch after retrying for %d usec.\n",
1243 				dev->name, i*10);
1244 		} else {
1245 			printk(KERN_INFO
1246 				"%s: DSPCFG accepted after %d usec.\n",
1247 				dev->name, i*10);
1248 		}
1249 	}
1250 	/*
1251 	 * Enable PHY Specific event based interrupts.  Link state change
1252 	 * and Auto-Negotiation Completion are among the affected.
1253 	 * Read the intr status to clear it (needed for wake events).
1254 	 */
1255 	readw(ioaddr + MIntrStatus);
1256 	writew(MICRIntEn, ioaddr + MIntrCtrl);
1257 }
1258 
switch_port_external(struct net_device * dev)1259 static int switch_port_external(struct net_device *dev)
1260 {
1261 	struct netdev_private *np = netdev_priv(dev);
1262 	void __iomem *ioaddr = ns_ioaddr(dev);
1263 	u32 cfg;
1264 
1265 	cfg = readl(ioaddr + ChipConfig);
1266 	if (cfg & CfgExtPhy)
1267 		return 0;
1268 
1269 	if (netif_msg_link(np)) {
1270 		printk(KERN_INFO "%s: switching to external transceiver.\n",
1271 				dev->name);
1272 	}
1273 
1274 	/* 1) switch back to external phy */
1275 	writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1276 	readl(ioaddr + ChipConfig);
1277 	udelay(1);
1278 
1279 	/* 2) reset the external phy: */
1280 	/* resetting the external PHY has been known to cause a hub supplying
1281 	 * power over Ethernet to kill the power.  We don't want to kill
1282 	 * power to this computer, so we avoid resetting the phy.
1283 	 */
1284 
1285 	/* 3) reinit the phy fixup, it got lost during power down. */
1286 	move_int_phy(dev, np->phy_addr_external);
1287 	init_phy_fixup(dev);
1288 
1289 	return 1;
1290 }
1291 
switch_port_internal(struct net_device * dev)1292 static int switch_port_internal(struct net_device *dev)
1293 {
1294 	struct netdev_private *np = netdev_priv(dev);
1295 	void __iomem *ioaddr = ns_ioaddr(dev);
1296 	int i;
1297 	u32 cfg;
1298 	u16 bmcr;
1299 
1300 	cfg = readl(ioaddr + ChipConfig);
1301 	if (!(cfg &CfgExtPhy))
1302 		return 0;
1303 
1304 	if (netif_msg_link(np)) {
1305 		printk(KERN_INFO "%s: switching to internal transceiver.\n",
1306 				dev->name);
1307 	}
1308 	/* 1) switch back to internal phy: */
1309 	cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1310 	writel(cfg, ioaddr + ChipConfig);
1311 	readl(ioaddr + ChipConfig);
1312 	udelay(1);
1313 
1314 	/* 2) reset the internal phy: */
1315 	bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1316 	writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1317 	readl(ioaddr + ChipConfig);
1318 	udelay(10);
1319 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1320 		bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1321 		if (!(bmcr & BMCR_RESET))
1322 			break;
1323 		udelay(10);
1324 	}
1325 	if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1326 		printk(KERN_INFO
1327 			"%s: phy reset did not complete in %d usec.\n",
1328 			dev->name, i*10);
1329 	}
1330 	/* 3) reinit the phy fixup, it got lost during power down. */
1331 	init_phy_fixup(dev);
1332 
1333 	return 1;
1334 }
1335 
1336 /* Scan for a PHY on the external mii bus.
1337  * There are two tricky points:
1338  * - Do not scan while the internal phy is enabled. The internal phy will
1339  *   crash: e.g. reads from the DSPCFG register will return odd values and
1340  *   the nasty random phy reset code will reset the nic every few seconds.
1341  * - The internal phy must be moved around, an external phy could
1342  *   have the same address as the internal phy.
1343  */
find_mii(struct net_device * dev)1344 static int find_mii(struct net_device *dev)
1345 {
1346 	struct netdev_private *np = netdev_priv(dev);
1347 	int tmp;
1348 	int i;
1349 	int did_switch;
1350 
1351 	/* Switch to external phy */
1352 	did_switch = switch_port_external(dev);
1353 
1354 	/* Scan the possible phy addresses:
1355 	 *
1356 	 * PHY address 0 means that the phy is in isolate mode. Not yet
1357 	 * supported due to lack of test hardware. User space should
1358 	 * handle it through ethtool.
1359 	 */
1360 	for (i = 1; i <= 31; i++) {
1361 		move_int_phy(dev, i);
1362 		tmp = miiport_read(dev, i, MII_BMSR);
1363 		if (tmp != 0xffff && tmp != 0x0000) {
1364 			/* found something! */
1365 			np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1366 					+ mdio_read(dev, MII_PHYSID2);
1367 	 		if (netif_msg_probe(np)) {
1368 				printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1369 						pci_name(np->pci_dev), np->mii, i);
1370 			}
1371 			break;
1372 		}
1373 	}
1374 	/* And switch back to internal phy: */
1375 	if (did_switch)
1376 		switch_port_internal(dev);
1377 	return i;
1378 }
1379 
1380 /* CFG bits [13:16] [18:23] */
1381 #define CFG_RESET_SAVE 0xfde000
1382 /* WCSR bits [0:4] [9:10] */
1383 #define WCSR_RESET_SAVE 0x61f
1384 /* RFCR bits [20] [22] [27:31] */
1385 #define RFCR_RESET_SAVE 0xf8500000
1386 
natsemi_reset(struct net_device * dev)1387 static void natsemi_reset(struct net_device *dev)
1388 {
1389 	int i;
1390 	u32 cfg;
1391 	u32 wcsr;
1392 	u32 rfcr;
1393 	u16 pmatch[3];
1394 	u16 sopass[3];
1395 	struct netdev_private *np = netdev_priv(dev);
1396 	void __iomem *ioaddr = ns_ioaddr(dev);
1397 
1398 	/*
1399 	 * Resetting the chip causes some registers to be lost.
1400 	 * Natsemi suggests NOT reloading the EEPROM while live, so instead
1401 	 * we save the state that would have been loaded from EEPROM
1402 	 * on a normal power-up (see the spec EEPROM map).  This assumes
1403 	 * whoever calls this will follow up with init_registers() eventually.
1404 	 */
1405 
1406 	/* CFG */
1407 	cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1408 	/* WCSR */
1409 	wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1410 	/* RFCR */
1411 	rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1412 	/* PMATCH */
1413 	for (i = 0; i < 3; i++) {
1414 		writel(i*2, ioaddr + RxFilterAddr);
1415 		pmatch[i] = readw(ioaddr + RxFilterData);
1416 	}
1417 	/* SOPAS */
1418 	for (i = 0; i < 3; i++) {
1419 		writel(0xa+(i*2), ioaddr + RxFilterAddr);
1420 		sopass[i] = readw(ioaddr + RxFilterData);
1421 	}
1422 
1423 	/* now whack the chip */
1424 	writel(ChipReset, ioaddr + ChipCmd);
1425 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1426 		if (!(readl(ioaddr + ChipCmd) & ChipReset))
1427 			break;
1428 		udelay(5);
1429 	}
1430 	if (i==NATSEMI_HW_TIMEOUT) {
1431 		printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1432 			dev->name, i*5);
1433 	} else if (netif_msg_hw(np)) {
1434 		printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1435 			dev->name, i*5);
1436 	}
1437 
1438 	/* restore CFG */
1439 	cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1440 	/* turn on external phy if it was selected */
1441 	if (dev->if_port == PORT_TP)
1442 		cfg &= ~(CfgExtPhy | CfgPhyDis);
1443 	else
1444 		cfg |= (CfgExtPhy | CfgPhyDis);
1445 	writel(cfg, ioaddr + ChipConfig);
1446 	/* restore WCSR */
1447 	wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1448 	writel(wcsr, ioaddr + WOLCmd);
1449 	/* read RFCR */
1450 	rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1451 	/* restore PMATCH */
1452 	for (i = 0; i < 3; i++) {
1453 		writel(i*2, ioaddr + RxFilterAddr);
1454 		writew(pmatch[i], ioaddr + RxFilterData);
1455 	}
1456 	for (i = 0; i < 3; i++) {
1457 		writel(0xa+(i*2), ioaddr + RxFilterAddr);
1458 		writew(sopass[i], ioaddr + RxFilterData);
1459 	}
1460 	/* restore RFCR */
1461 	writel(rfcr, ioaddr + RxFilterAddr);
1462 }
1463 
reset_rx(struct net_device * dev)1464 static void reset_rx(struct net_device *dev)
1465 {
1466 	int i;
1467 	struct netdev_private *np = netdev_priv(dev);
1468 	void __iomem *ioaddr = ns_ioaddr(dev);
1469 
1470 	np->intr_status &= ~RxResetDone;
1471 
1472 	writel(RxReset, ioaddr + ChipCmd);
1473 
1474 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1475 		np->intr_status |= readl(ioaddr + IntrStatus);
1476 		if (np->intr_status & RxResetDone)
1477 			break;
1478 		udelay(15);
1479 	}
1480 	if (i==NATSEMI_HW_TIMEOUT) {
1481 		printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1482 		       dev->name, i*15);
1483 	} else if (netif_msg_hw(np)) {
1484 		printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1485 		       dev->name, i*15);
1486 	}
1487 }
1488 
natsemi_reload_eeprom(struct net_device * dev)1489 static void natsemi_reload_eeprom(struct net_device *dev)
1490 {
1491 	struct netdev_private *np = netdev_priv(dev);
1492 	void __iomem *ioaddr = ns_ioaddr(dev);
1493 	int i;
1494 
1495 	writel(EepromReload, ioaddr + PCIBusCfg);
1496 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1497 		udelay(50);
1498 		if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1499 			break;
1500 	}
1501 	if (i==NATSEMI_HW_TIMEOUT) {
1502 		printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1503 			pci_name(np->pci_dev), i*50);
1504 	} else if (netif_msg_hw(np)) {
1505 		printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1506 			pci_name(np->pci_dev), i*50);
1507 	}
1508 }
1509 
natsemi_stop_rxtx(struct net_device * dev)1510 static void natsemi_stop_rxtx(struct net_device *dev)
1511 {
1512 	void __iomem * ioaddr = ns_ioaddr(dev);
1513 	struct netdev_private *np = netdev_priv(dev);
1514 	int i;
1515 
1516 	writel(RxOff | TxOff, ioaddr + ChipCmd);
1517 	for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1518 		if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1519 			break;
1520 		udelay(5);
1521 	}
1522 	if (i==NATSEMI_HW_TIMEOUT) {
1523 		printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1524 			dev->name, i*5);
1525 	} else if (netif_msg_hw(np)) {
1526 		printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1527 			dev->name, i*5);
1528 	}
1529 }
1530 
netdev_open(struct net_device * dev)1531 static int netdev_open(struct net_device *dev)
1532 {
1533 	struct netdev_private *np = netdev_priv(dev);
1534 	void __iomem * ioaddr = ns_ioaddr(dev);
1535 	const int irq = np->pci_dev->irq;
1536 	int i;
1537 
1538 	/* Reset the chip, just in case. */
1539 	natsemi_reset(dev);
1540 
1541 	i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
1542 	if (i) return i;
1543 
1544 	if (netif_msg_ifup(np))
1545 		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1546 			dev->name, irq);
1547 	i = alloc_ring(dev);
1548 	if (i < 0) {
1549 		free_irq(irq, dev);
1550 		return i;
1551 	}
1552 	napi_enable(&np->napi);
1553 
1554 	init_ring(dev);
1555 	spin_lock_irq(&np->lock);
1556 	init_registers(dev);
1557 	/* now set the MAC address according to dev->dev_addr */
1558 	for (i = 0; i < 3; i++) {
1559 		u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1560 
1561 		writel(i*2, ioaddr + RxFilterAddr);
1562 		writew(mac, ioaddr + RxFilterData);
1563 	}
1564 	writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1565 	spin_unlock_irq(&np->lock);
1566 
1567 	netif_start_queue(dev);
1568 
1569 	if (netif_msg_ifup(np))
1570 		printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1571 			dev->name, (int)readl(ioaddr + ChipCmd));
1572 
1573 	/* Set the timer to check for link beat. */
1574 	timer_setup(&np->timer, netdev_timer, 0);
1575 	np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ);
1576 	add_timer(&np->timer);
1577 
1578 	return 0;
1579 }
1580 
do_cable_magic(struct net_device * dev)1581 static void do_cable_magic(struct net_device *dev)
1582 {
1583 	struct netdev_private *np = netdev_priv(dev);
1584 	void __iomem *ioaddr = ns_ioaddr(dev);
1585 
1586 	if (dev->if_port != PORT_TP)
1587 		return;
1588 
1589 	if (np->srr >= SRR_DP83816_A5)
1590 		return;
1591 
1592 	/*
1593 	 * 100 MBit links with short cables can trip an issue with the chip.
1594 	 * The problem manifests as lots of CRC errors and/or flickering
1595 	 * activity LED while idle.  This process is based on instructions
1596 	 * from engineers at National.
1597 	 */
1598 	if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1599 		u16 data;
1600 
1601 		writew(1, ioaddr + PGSEL);
1602 		/*
1603 		 * coefficient visibility should already be enabled via
1604 		 * DSPCFG | 0x1000
1605 		 */
1606 		data = readw(ioaddr + TSTDAT) & 0xff;
1607 		/*
1608 		 * the value must be negative, and within certain values
1609 		 * (these values all come from National)
1610 		 */
1611 		if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1612 			np = netdev_priv(dev);
1613 
1614 			/* the bug has been triggered - fix the coefficient */
1615 			writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1616 			/* lock the value */
1617 			data = readw(ioaddr + DSPCFG);
1618 			np->dspcfg = data | DSPCFG_LOCK;
1619 			writew(np->dspcfg, ioaddr + DSPCFG);
1620 		}
1621 		writew(0, ioaddr + PGSEL);
1622 	}
1623 }
1624 
undo_cable_magic(struct net_device * dev)1625 static void undo_cable_magic(struct net_device *dev)
1626 {
1627 	u16 data;
1628 	struct netdev_private *np = netdev_priv(dev);
1629 	void __iomem * ioaddr = ns_ioaddr(dev);
1630 
1631 	if (dev->if_port != PORT_TP)
1632 		return;
1633 
1634 	if (np->srr >= SRR_DP83816_A5)
1635 		return;
1636 
1637 	writew(1, ioaddr + PGSEL);
1638 	/* make sure the lock bit is clear */
1639 	data = readw(ioaddr + DSPCFG);
1640 	np->dspcfg = data & ~DSPCFG_LOCK;
1641 	writew(np->dspcfg, ioaddr + DSPCFG);
1642 	writew(0, ioaddr + PGSEL);
1643 }
1644 
check_link(struct net_device * dev)1645 static void check_link(struct net_device *dev)
1646 {
1647 	struct netdev_private *np = netdev_priv(dev);
1648 	void __iomem * ioaddr = ns_ioaddr(dev);
1649 	int duplex = np->duplex;
1650 	u16 bmsr;
1651 
1652 	/* If we are ignoring the PHY then don't try reading it. */
1653 	if (np->ignore_phy)
1654 		goto propagate_state;
1655 
1656 	/* The link status field is latched: it remains low after a temporary
1657 	 * link failure until it's read. We need the current link status,
1658 	 * thus read twice.
1659 	 */
1660 	mdio_read(dev, MII_BMSR);
1661 	bmsr = mdio_read(dev, MII_BMSR);
1662 
1663 	if (!(bmsr & BMSR_LSTATUS)) {
1664 		if (netif_carrier_ok(dev)) {
1665 			if (netif_msg_link(np))
1666 				printk(KERN_NOTICE "%s: link down.\n",
1667 				       dev->name);
1668 			netif_carrier_off(dev);
1669 			undo_cable_magic(dev);
1670 		}
1671 		return;
1672 	}
1673 	if (!netif_carrier_ok(dev)) {
1674 		if (netif_msg_link(np))
1675 			printk(KERN_NOTICE "%s: link up.\n", dev->name);
1676 		netif_carrier_on(dev);
1677 		do_cable_magic(dev);
1678 	}
1679 
1680 	duplex = np->full_duplex;
1681 	if (!duplex) {
1682 		if (bmsr & BMSR_ANEGCOMPLETE) {
1683 			int tmp = mii_nway_result(
1684 				np->advertising & mdio_read(dev, MII_LPA));
1685 			if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1686 				duplex = 1;
1687 		} else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1688 			duplex = 1;
1689 	}
1690 
1691 propagate_state:
1692 	/* if duplex is set then bit 28 must be set, too */
1693 	if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1694 		if (netif_msg_link(np))
1695 			printk(KERN_INFO
1696 				"%s: Setting %s-duplex based on negotiated "
1697 				"link capability.\n", dev->name,
1698 				duplex ? "full" : "half");
1699 		if (duplex) {
1700 			np->rx_config |= RxAcceptTx;
1701 			np->tx_config |= TxCarrierIgn | TxHeartIgn;
1702 		} else {
1703 			np->rx_config &= ~RxAcceptTx;
1704 			np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1705 		}
1706 		writel(np->tx_config, ioaddr + TxConfig);
1707 		writel(np->rx_config, ioaddr + RxConfig);
1708 	}
1709 }
1710 
init_registers(struct net_device * dev)1711 static void init_registers(struct net_device *dev)
1712 {
1713 	struct netdev_private *np = netdev_priv(dev);
1714 	void __iomem * ioaddr = ns_ioaddr(dev);
1715 
1716 	init_phy_fixup(dev);
1717 
1718 	/* clear any interrupts that are pending, such as wake events */
1719 	readl(ioaddr + IntrStatus);
1720 
1721 	writel(np->ring_dma, ioaddr + RxRingPtr);
1722 	writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1723 		ioaddr + TxRingPtr);
1724 
1725 	/* Initialize other registers.
1726 	 * Configure the PCI bus bursts and FIFO thresholds.
1727 	 * Configure for standard, in-spec Ethernet.
1728 	 * Start with half-duplex. check_link will update
1729 	 * to the correct settings.
1730 	 */
1731 
1732 	/* DRTH: 2: start tx if 64 bytes are in the fifo
1733 	 * FLTH: 0x10: refill with next packet if 512 bytes are free
1734 	 * MXDMA: 0: up to 256 byte bursts.
1735 	 * 	MXDMA must be <= FLTH
1736 	 * ECRETRY=1
1737 	 * ATP=1
1738 	 */
1739 	np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1740 				TX_FLTH_VAL | TX_DRTH_VAL_START;
1741 	writel(np->tx_config, ioaddr + TxConfig);
1742 
1743 	/* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1744 	 * MXDMA 0: up to 256 byte bursts
1745 	 */
1746 	np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1747 	/* if receive ring now has bigger buffers than normal, enable jumbo */
1748 	if (np->rx_buf_sz > NATSEMI_LONGPKT)
1749 		np->rx_config |= RxAcceptLong;
1750 
1751 	writel(np->rx_config, ioaddr + RxConfig);
1752 
1753 	/* Disable PME:
1754 	 * The PME bit is initialized from the EEPROM contents.
1755 	 * PCI cards probably have PME disabled, but motherboard
1756 	 * implementations may have PME set to enable WakeOnLan.
1757 	 * With PME set the chip will scan incoming packets but
1758 	 * nothing will be written to memory. */
1759 	np->SavedClkRun = readl(ioaddr + ClkRun);
1760 	writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1761 	if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1762 		printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1763 			dev->name, readl(ioaddr + WOLCmd));
1764 	}
1765 
1766 	check_link(dev);
1767 	__set_rx_mode(dev);
1768 
1769 	/* Enable interrupts by setting the interrupt mask. */
1770 	writel(DEFAULT_INTR, ioaddr + IntrMask);
1771 	natsemi_irq_enable(dev);
1772 
1773 	writel(RxOn | TxOn, ioaddr + ChipCmd);
1774 	writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1775 }
1776 
1777 /*
1778  * netdev_timer:
1779  * Purpose:
1780  * 1) check for link changes. Usually they are handled by the MII interrupt
1781  *    but it doesn't hurt to check twice.
1782  * 2) check for sudden death of the NIC:
1783  *    It seems that a reference set for this chip went out with incorrect info,
1784  *    and there exist boards that aren't quite right.  An unexpected voltage
1785  *    drop can cause the PHY to get itself in a weird state (basically reset).
1786  *    NOTE: this only seems to affect revC chips.  The user can disable
1787  *    this check via dspcfg_workaround sysfs option.
1788  * 3) check of death of the RX path due to OOM
1789  */
netdev_timer(struct timer_list * t)1790 static void netdev_timer(struct timer_list *t)
1791 {
1792 	struct netdev_private *np = from_timer(np, t, timer);
1793 	struct net_device *dev = np->dev;
1794 	void __iomem * ioaddr = ns_ioaddr(dev);
1795 	int next_tick = NATSEMI_TIMER_FREQ;
1796 	const int irq = np->pci_dev->irq;
1797 
1798 	if (netif_msg_timer(np)) {
1799 		/* DO NOT read the IntrStatus register,
1800 		 * a read clears any pending interrupts.
1801 		 */
1802 		printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1803 			dev->name);
1804 	}
1805 
1806 	if (dev->if_port == PORT_TP) {
1807 		u16 dspcfg;
1808 
1809 		spin_lock_irq(&np->lock);
1810 		/* check for a nasty random phy-reset - use dspcfg as a flag */
1811 		writew(1, ioaddr+PGSEL);
1812 		dspcfg = readw(ioaddr+DSPCFG);
1813 		writew(0, ioaddr+PGSEL);
1814 		if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
1815 			if (!netif_queue_stopped(dev)) {
1816 				spin_unlock_irq(&np->lock);
1817 				if (netif_msg_drv(np))
1818 					printk(KERN_NOTICE "%s: possible phy reset: "
1819 						"re-initializing\n", dev->name);
1820 				disable_irq(irq);
1821 				spin_lock_irq(&np->lock);
1822 				natsemi_stop_rxtx(dev);
1823 				dump_ring(dev);
1824 				reinit_ring(dev);
1825 				init_registers(dev);
1826 				spin_unlock_irq(&np->lock);
1827 				enable_irq(irq);
1828 			} else {
1829 				/* hurry back */
1830 				next_tick = HZ;
1831 				spin_unlock_irq(&np->lock);
1832 			}
1833 		} else {
1834 			/* init_registers() calls check_link() for the above case */
1835 			check_link(dev);
1836 			spin_unlock_irq(&np->lock);
1837 		}
1838 	} else {
1839 		spin_lock_irq(&np->lock);
1840 		check_link(dev);
1841 		spin_unlock_irq(&np->lock);
1842 	}
1843 	if (np->oom) {
1844 		disable_irq(irq);
1845 		np->oom = 0;
1846 		refill_rx(dev);
1847 		enable_irq(irq);
1848 		if (!np->oom) {
1849 			writel(RxOn, ioaddr + ChipCmd);
1850 		} else {
1851 			next_tick = 1;
1852 		}
1853 	}
1854 
1855 	if (next_tick > 1)
1856 		mod_timer(&np->timer, round_jiffies(jiffies + next_tick));
1857 	else
1858 		mod_timer(&np->timer, jiffies + next_tick);
1859 }
1860 
dump_ring(struct net_device * dev)1861 static void dump_ring(struct net_device *dev)
1862 {
1863 	struct netdev_private *np = netdev_priv(dev);
1864 
1865 	if (netif_msg_pktdata(np)) {
1866 		int i;
1867 		printk(KERN_DEBUG "  Tx ring at %p:\n", np->tx_ring);
1868 		for (i = 0; i < TX_RING_SIZE; i++) {
1869 			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1870 				i, np->tx_ring[i].next_desc,
1871 				np->tx_ring[i].cmd_status,
1872 				np->tx_ring[i].addr);
1873 		}
1874 		printk(KERN_DEBUG "  Rx ring %p:\n", np->rx_ring);
1875 		for (i = 0; i < RX_RING_SIZE; i++) {
1876 			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1877 				i, np->rx_ring[i].next_desc,
1878 				np->rx_ring[i].cmd_status,
1879 				np->rx_ring[i].addr);
1880 		}
1881 	}
1882 }
1883 
ns_tx_timeout(struct net_device * dev,unsigned int txqueue)1884 static void ns_tx_timeout(struct net_device *dev, unsigned int txqueue)
1885 {
1886 	struct netdev_private *np = netdev_priv(dev);
1887 	void __iomem * ioaddr = ns_ioaddr(dev);
1888 	const int irq = np->pci_dev->irq;
1889 
1890 	disable_irq(irq);
1891 	spin_lock_irq(&np->lock);
1892 	if (!np->hands_off) {
1893 		if (netif_msg_tx_err(np))
1894 			printk(KERN_WARNING
1895 				"%s: Transmit timed out, status %#08x,"
1896 				" resetting...\n",
1897 				dev->name, readl(ioaddr + IntrStatus));
1898 		dump_ring(dev);
1899 
1900 		natsemi_reset(dev);
1901 		reinit_ring(dev);
1902 		init_registers(dev);
1903 	} else {
1904 		printk(KERN_WARNING
1905 			"%s: tx_timeout while in hands_off state?\n",
1906 			dev->name);
1907 	}
1908 	spin_unlock_irq(&np->lock);
1909 	enable_irq(irq);
1910 
1911 	netif_trans_update(dev); /* prevent tx timeout */
1912 	dev->stats.tx_errors++;
1913 	netif_wake_queue(dev);
1914 }
1915 
alloc_ring(struct net_device * dev)1916 static int alloc_ring(struct net_device *dev)
1917 {
1918 	struct netdev_private *np = netdev_priv(dev);
1919 	np->rx_ring = dma_alloc_coherent(&np->pci_dev->dev,
1920 					 sizeof(struct netdev_desc) * (RX_RING_SIZE + TX_RING_SIZE),
1921 					 &np->ring_dma, GFP_KERNEL);
1922 	if (!np->rx_ring)
1923 		return -ENOMEM;
1924 	np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1925 	return 0;
1926 }
1927 
refill_rx(struct net_device * dev)1928 static void refill_rx(struct net_device *dev)
1929 {
1930 	struct netdev_private *np = netdev_priv(dev);
1931 
1932 	/* Refill the Rx ring buffers. */
1933 	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1934 		struct sk_buff *skb;
1935 		int entry = np->dirty_rx % RX_RING_SIZE;
1936 		if (np->rx_skbuff[entry] == NULL) {
1937 			unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1938 			skb = netdev_alloc_skb(dev, buflen);
1939 			np->rx_skbuff[entry] = skb;
1940 			if (skb == NULL)
1941 				break; /* Better luck next round. */
1942 			np->rx_dma[entry] = dma_map_single(&np->pci_dev->dev,
1943 							   skb->data, buflen,
1944 							   DMA_FROM_DEVICE);
1945 			if (dma_mapping_error(&np->pci_dev->dev, np->rx_dma[entry])) {
1946 				dev_kfree_skb_any(skb);
1947 				np->rx_skbuff[entry] = NULL;
1948 				break; /* Better luck next round. */
1949 			}
1950 			np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1951 		}
1952 		np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1953 	}
1954 	if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1955 		if (netif_msg_rx_err(np))
1956 			printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1957 		np->oom = 1;
1958 	}
1959 }
1960 
set_bufsize(struct net_device * dev)1961 static void set_bufsize(struct net_device *dev)
1962 {
1963 	struct netdev_private *np = netdev_priv(dev);
1964 	if (dev->mtu <= ETH_DATA_LEN)
1965 		np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1966 	else
1967 		np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1968 }
1969 
1970 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
init_ring(struct net_device * dev)1971 static void init_ring(struct net_device *dev)
1972 {
1973 	struct netdev_private *np = netdev_priv(dev);
1974 	int i;
1975 
1976 	/* 1) TX ring */
1977 	np->dirty_tx = np->cur_tx = 0;
1978 	for (i = 0; i < TX_RING_SIZE; i++) {
1979 		np->tx_skbuff[i] = NULL;
1980 		np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1981 			+sizeof(struct netdev_desc)
1982 			*((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1983 		np->tx_ring[i].cmd_status = 0;
1984 	}
1985 
1986 	/* 2) RX ring */
1987 	np->dirty_rx = 0;
1988 	np->cur_rx = RX_RING_SIZE;
1989 	np->oom = 0;
1990 	set_bufsize(dev);
1991 
1992 	np->rx_head_desc = &np->rx_ring[0];
1993 
1994 	/* Please be careful before changing this loop - at least gcc-2.95.1
1995 	 * miscompiles it otherwise.
1996 	 */
1997 	/* Initialize all Rx descriptors. */
1998 	for (i = 0; i < RX_RING_SIZE; i++) {
1999 		np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
2000 				+sizeof(struct netdev_desc)
2001 				*((i+1)%RX_RING_SIZE));
2002 		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2003 		np->rx_skbuff[i] = NULL;
2004 	}
2005 	refill_rx(dev);
2006 	dump_ring(dev);
2007 }
2008 
drain_tx(struct net_device * dev)2009 static void drain_tx(struct net_device *dev)
2010 {
2011 	struct netdev_private *np = netdev_priv(dev);
2012 	int i;
2013 
2014 	for (i = 0; i < TX_RING_SIZE; i++) {
2015 		if (np->tx_skbuff[i]) {
2016 			dma_unmap_single(&np->pci_dev->dev, np->tx_dma[i],
2017 					 np->tx_skbuff[i]->len, DMA_TO_DEVICE);
2018 			dev_kfree_skb(np->tx_skbuff[i]);
2019 			dev->stats.tx_dropped++;
2020 		}
2021 		np->tx_skbuff[i] = NULL;
2022 	}
2023 }
2024 
drain_rx(struct net_device * dev)2025 static void drain_rx(struct net_device *dev)
2026 {
2027 	struct netdev_private *np = netdev_priv(dev);
2028 	unsigned int buflen = np->rx_buf_sz;
2029 	int i;
2030 
2031 	/* Free all the skbuffs in the Rx queue. */
2032 	for (i = 0; i < RX_RING_SIZE; i++) {
2033 		np->rx_ring[i].cmd_status = 0;
2034 		np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
2035 		if (np->rx_skbuff[i]) {
2036 			dma_unmap_single(&np->pci_dev->dev, np->rx_dma[i],
2037 					 buflen + NATSEMI_PADDING,
2038 					 DMA_FROM_DEVICE);
2039 			dev_kfree_skb(np->rx_skbuff[i]);
2040 		}
2041 		np->rx_skbuff[i] = NULL;
2042 	}
2043 }
2044 
drain_ring(struct net_device * dev)2045 static void drain_ring(struct net_device *dev)
2046 {
2047 	drain_rx(dev);
2048 	drain_tx(dev);
2049 }
2050 
free_ring(struct net_device * dev)2051 static void free_ring(struct net_device *dev)
2052 {
2053 	struct netdev_private *np = netdev_priv(dev);
2054 	dma_free_coherent(&np->pci_dev->dev,
2055 			  sizeof(struct netdev_desc) * (RX_RING_SIZE + TX_RING_SIZE),
2056 			  np->rx_ring, np->ring_dma);
2057 }
2058 
reinit_rx(struct net_device * dev)2059 static void reinit_rx(struct net_device *dev)
2060 {
2061 	struct netdev_private *np = netdev_priv(dev);
2062 	int i;
2063 
2064 	/* RX Ring */
2065 	np->dirty_rx = 0;
2066 	np->cur_rx = RX_RING_SIZE;
2067 	np->rx_head_desc = &np->rx_ring[0];
2068 	/* Initialize all Rx descriptors. */
2069 	for (i = 0; i < RX_RING_SIZE; i++)
2070 		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2071 
2072 	refill_rx(dev);
2073 }
2074 
reinit_ring(struct net_device * dev)2075 static void reinit_ring(struct net_device *dev)
2076 {
2077 	struct netdev_private *np = netdev_priv(dev);
2078 	int i;
2079 
2080 	/* drain TX ring */
2081 	drain_tx(dev);
2082 	np->dirty_tx = np->cur_tx = 0;
2083 	for (i=0;i<TX_RING_SIZE;i++)
2084 		np->tx_ring[i].cmd_status = 0;
2085 
2086 	reinit_rx(dev);
2087 }
2088 
start_tx(struct sk_buff * skb,struct net_device * dev)2089 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
2090 {
2091 	struct netdev_private *np = netdev_priv(dev);
2092 	void __iomem * ioaddr = ns_ioaddr(dev);
2093 	unsigned entry;
2094 	unsigned long flags;
2095 
2096 	/* Note: Ordering is important here, set the field with the
2097 	   "ownership" bit last, and only then increment cur_tx. */
2098 
2099 	/* Calculate the next Tx descriptor entry. */
2100 	entry = np->cur_tx % TX_RING_SIZE;
2101 
2102 	np->tx_skbuff[entry] = skb;
2103 	np->tx_dma[entry] = dma_map_single(&np->pci_dev->dev, skb->data,
2104 					   skb->len, DMA_TO_DEVICE);
2105 	if (dma_mapping_error(&np->pci_dev->dev, np->tx_dma[entry])) {
2106 		np->tx_skbuff[entry] = NULL;
2107 		dev_kfree_skb_irq(skb);
2108 		dev->stats.tx_dropped++;
2109 		return NETDEV_TX_OK;
2110 	}
2111 
2112 	np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2113 
2114 	spin_lock_irqsave(&np->lock, flags);
2115 
2116 	if (!np->hands_off) {
2117 		np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2118 		/* StrongARM: Explicitly cache flush np->tx_ring and
2119 		 * skb->data,skb->len. */
2120 		wmb();
2121 		np->cur_tx++;
2122 		if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2123 			netdev_tx_done(dev);
2124 			if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2125 				netif_stop_queue(dev);
2126 		}
2127 		/* Wake the potentially-idle transmit channel. */
2128 		writel(TxOn, ioaddr + ChipCmd);
2129 	} else {
2130 		dev_kfree_skb_irq(skb);
2131 		dev->stats.tx_dropped++;
2132 	}
2133 	spin_unlock_irqrestore(&np->lock, flags);
2134 
2135 	if (netif_msg_tx_queued(np)) {
2136 		printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2137 			dev->name, np->cur_tx, entry);
2138 	}
2139 	return NETDEV_TX_OK;
2140 }
2141 
netdev_tx_done(struct net_device * dev)2142 static void netdev_tx_done(struct net_device *dev)
2143 {
2144 	struct netdev_private *np = netdev_priv(dev);
2145 
2146 	for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2147 		int entry = np->dirty_tx % TX_RING_SIZE;
2148 		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2149 			break;
2150 		if (netif_msg_tx_done(np))
2151 			printk(KERN_DEBUG
2152 				"%s: tx frame #%d finished, status %#08x.\n",
2153 					dev->name, np->dirty_tx,
2154 					le32_to_cpu(np->tx_ring[entry].cmd_status));
2155 		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2156 			dev->stats.tx_packets++;
2157 			dev->stats.tx_bytes += np->tx_skbuff[entry]->len;
2158 		} else { /* Various Tx errors */
2159 			int tx_status =
2160 				le32_to_cpu(np->tx_ring[entry].cmd_status);
2161 			if (tx_status & (DescTxAbort|DescTxExcColl))
2162 				dev->stats.tx_aborted_errors++;
2163 			if (tx_status & DescTxFIFO)
2164 				dev->stats.tx_fifo_errors++;
2165 			if (tx_status & DescTxCarrier)
2166 				dev->stats.tx_carrier_errors++;
2167 			if (tx_status & DescTxOOWCol)
2168 				dev->stats.tx_window_errors++;
2169 			dev->stats.tx_errors++;
2170 		}
2171 		dma_unmap_single(&np->pci_dev->dev, np->tx_dma[entry],
2172 				 np->tx_skbuff[entry]->len, DMA_TO_DEVICE);
2173 		/* Free the original skb. */
2174 		dev_consume_skb_irq(np->tx_skbuff[entry]);
2175 		np->tx_skbuff[entry] = NULL;
2176 	}
2177 	if (netif_queue_stopped(dev) &&
2178 	    np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2179 		/* The ring is no longer full, wake queue. */
2180 		netif_wake_queue(dev);
2181 	}
2182 }
2183 
2184 /* The interrupt handler doesn't actually handle interrupts itself, it
2185  * schedules a NAPI poll if there is anything to do. */
intr_handler(int irq,void * dev_instance)2186 static irqreturn_t intr_handler(int irq, void *dev_instance)
2187 {
2188 	struct net_device *dev = dev_instance;
2189 	struct netdev_private *np = netdev_priv(dev);
2190 	void __iomem * ioaddr = ns_ioaddr(dev);
2191 
2192 	/* Reading IntrStatus automatically acknowledges so don't do
2193 	 * that while interrupts are disabled, (for example, while a
2194 	 * poll is scheduled).  */
2195 	if (np->hands_off || !readl(ioaddr + IntrEnable))
2196 		return IRQ_NONE;
2197 
2198 	np->intr_status = readl(ioaddr + IntrStatus);
2199 
2200 	if (!np->intr_status)
2201 		return IRQ_NONE;
2202 
2203 	if (netif_msg_intr(np))
2204 		printk(KERN_DEBUG
2205 		       "%s: Interrupt, status %#08x, mask %#08x.\n",
2206 		       dev->name, np->intr_status,
2207 		       readl(ioaddr + IntrMask));
2208 
2209 	prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2210 
2211 	if (napi_schedule_prep(&np->napi)) {
2212 		/* Disable interrupts and register for poll */
2213 		natsemi_irq_disable(dev);
2214 		__napi_schedule(&np->napi);
2215 	} else
2216 		printk(KERN_WARNING
2217 	       	       "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2218 		       dev->name, np->intr_status,
2219 		       readl(ioaddr + IntrMask));
2220 
2221 	return IRQ_HANDLED;
2222 }
2223 
2224 /* This is the NAPI poll routine.  As well as the standard RX handling
2225  * it also handles all other interrupts that the chip might raise.
2226  */
natsemi_poll(struct napi_struct * napi,int budget)2227 static int natsemi_poll(struct napi_struct *napi, int budget)
2228 {
2229 	struct netdev_private *np = container_of(napi, struct netdev_private, napi);
2230 	struct net_device *dev = np->dev;
2231 	void __iomem * ioaddr = ns_ioaddr(dev);
2232 	int work_done = 0;
2233 
2234 	do {
2235 		if (netif_msg_intr(np))
2236 			printk(KERN_DEBUG
2237 			       "%s: Poll, status %#08x, mask %#08x.\n",
2238 			       dev->name, np->intr_status,
2239 			       readl(ioaddr + IntrMask));
2240 
2241 		/* netdev_rx() may read IntrStatus again if the RX state
2242 		 * machine falls over so do it first. */
2243 		if (np->intr_status &
2244 		    (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2245 		     IntrRxErr | IntrRxOverrun)) {
2246 			netdev_rx(dev, &work_done, budget);
2247 		}
2248 
2249 		if (np->intr_status &
2250 		    (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2251 			spin_lock(&np->lock);
2252 			netdev_tx_done(dev);
2253 			spin_unlock(&np->lock);
2254 		}
2255 
2256 		/* Abnormal error summary/uncommon events handlers. */
2257 		if (np->intr_status & IntrAbnormalSummary)
2258 			netdev_error(dev, np->intr_status);
2259 
2260 		if (work_done >= budget)
2261 			return work_done;
2262 
2263 		np->intr_status = readl(ioaddr + IntrStatus);
2264 	} while (np->intr_status);
2265 
2266 	napi_complete_done(napi, work_done);
2267 
2268 	/* Reenable interrupts providing nothing is trying to shut
2269 	 * the chip down. */
2270 	spin_lock(&np->lock);
2271 	if (!np->hands_off)
2272 		natsemi_irq_enable(dev);
2273 	spin_unlock(&np->lock);
2274 
2275 	return work_done;
2276 }
2277 
2278 /* This routine is logically part of the interrupt handler, but separated
2279    for clarity and better register allocation. */
netdev_rx(struct net_device * dev,int * work_done,int work_to_do)2280 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2281 {
2282 	struct netdev_private *np = netdev_priv(dev);
2283 	int entry = np->cur_rx % RX_RING_SIZE;
2284 	int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2285 	s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2286 	unsigned int buflen = np->rx_buf_sz;
2287 	void __iomem * ioaddr = ns_ioaddr(dev);
2288 
2289 	/* If the driver owns the next entry it's a new packet. Send it up. */
2290 	while (desc_status < 0) { /* e.g. & DescOwn */
2291 		int pkt_len;
2292 		if (netif_msg_rx_status(np))
2293 			printk(KERN_DEBUG
2294 				"  netdev_rx() entry %d status was %#08x.\n",
2295 				entry, desc_status);
2296 		if (--boguscnt < 0)
2297 			break;
2298 
2299 		if (*work_done >= work_to_do)
2300 			break;
2301 
2302 		(*work_done)++;
2303 
2304 		pkt_len = (desc_status & DescSizeMask) - 4;
2305 		if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2306 			if (desc_status & DescMore) {
2307 				unsigned long flags;
2308 
2309 				if (netif_msg_rx_err(np))
2310 					printk(KERN_WARNING
2311 						"%s: Oversized(?) Ethernet "
2312 						"frame spanned multiple "
2313 						"buffers, entry %#08x "
2314 						"status %#08x.\n", dev->name,
2315 						np->cur_rx, desc_status);
2316 				dev->stats.rx_length_errors++;
2317 
2318 				/* The RX state machine has probably
2319 				 * locked up beneath us.  Follow the
2320 				 * reset procedure documented in
2321 				 * AN-1287. */
2322 
2323 				spin_lock_irqsave(&np->lock, flags);
2324 				reset_rx(dev);
2325 				reinit_rx(dev);
2326 				writel(np->ring_dma, ioaddr + RxRingPtr);
2327 				check_link(dev);
2328 				spin_unlock_irqrestore(&np->lock, flags);
2329 
2330 				/* We'll enable RX on exit from this
2331 				 * function. */
2332 				break;
2333 
2334 			} else {
2335 				/* There was an error. */
2336 				dev->stats.rx_errors++;
2337 				if (desc_status & (DescRxAbort|DescRxOver))
2338 					dev->stats.rx_over_errors++;
2339 				if (desc_status & (DescRxLong|DescRxRunt))
2340 					dev->stats.rx_length_errors++;
2341 				if (desc_status & (DescRxInvalid|DescRxAlign))
2342 					dev->stats.rx_frame_errors++;
2343 				if (desc_status & DescRxCRC)
2344 					dev->stats.rx_crc_errors++;
2345 			}
2346 		} else if (pkt_len > np->rx_buf_sz) {
2347 			/* if this is the tail of a double buffer
2348 			 * packet, we've already counted the error
2349 			 * on the first part.  Ignore the second half.
2350 			 */
2351 		} else {
2352 			struct sk_buff *skb;
2353 			/* Omit CRC size. */
2354 			/* Check if the packet is long enough to accept
2355 			 * without copying to a minimally-sized skbuff. */
2356 			if (pkt_len < rx_copybreak &&
2357 			    (skb = netdev_alloc_skb(dev, pkt_len + RX_OFFSET)) != NULL) {
2358 				/* 16 byte align the IP header */
2359 				skb_reserve(skb, RX_OFFSET);
2360 				dma_sync_single_for_cpu(&np->pci_dev->dev,
2361 							np->rx_dma[entry],
2362 							buflen,
2363 							DMA_FROM_DEVICE);
2364 				skb_copy_to_linear_data(skb,
2365 					np->rx_skbuff[entry]->data, pkt_len);
2366 				skb_put(skb, pkt_len);
2367 				dma_sync_single_for_device(&np->pci_dev->dev,
2368 							   np->rx_dma[entry],
2369 							   buflen,
2370 							   DMA_FROM_DEVICE);
2371 			} else {
2372 				dma_unmap_single(&np->pci_dev->dev,
2373 						 np->rx_dma[entry],
2374 						 buflen + NATSEMI_PADDING,
2375 						 DMA_FROM_DEVICE);
2376 				skb_put(skb = np->rx_skbuff[entry], pkt_len);
2377 				np->rx_skbuff[entry] = NULL;
2378 			}
2379 			skb->protocol = eth_type_trans(skb, dev);
2380 			netif_receive_skb(skb);
2381 			dev->stats.rx_packets++;
2382 			dev->stats.rx_bytes += pkt_len;
2383 		}
2384 		entry = (++np->cur_rx) % RX_RING_SIZE;
2385 		np->rx_head_desc = &np->rx_ring[entry];
2386 		desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2387 	}
2388 	refill_rx(dev);
2389 
2390 	/* Restart Rx engine if stopped. */
2391 	if (np->oom)
2392 		mod_timer(&np->timer, jiffies + 1);
2393 	else
2394 		writel(RxOn, ioaddr + ChipCmd);
2395 }
2396 
netdev_error(struct net_device * dev,int intr_status)2397 static void netdev_error(struct net_device *dev, int intr_status)
2398 {
2399 	struct netdev_private *np = netdev_priv(dev);
2400 	void __iomem * ioaddr = ns_ioaddr(dev);
2401 
2402 	spin_lock(&np->lock);
2403 	if (intr_status & LinkChange) {
2404 		u16 lpa = mdio_read(dev, MII_LPA);
2405 		if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE &&
2406 		    netif_msg_link(np)) {
2407 			printk(KERN_INFO
2408 				"%s: Autonegotiation advertising"
2409 				" %#04x  partner %#04x.\n", dev->name,
2410 				np->advertising, lpa);
2411 		}
2412 
2413 		/* read MII int status to clear the flag */
2414 		readw(ioaddr + MIntrStatus);
2415 		check_link(dev);
2416 	}
2417 	if (intr_status & StatsMax) {
2418 		__get_stats(dev);
2419 	}
2420 	if (intr_status & IntrTxUnderrun) {
2421 		if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2422 			np->tx_config += TX_DRTH_VAL_INC;
2423 			if (netif_msg_tx_err(np))
2424 				printk(KERN_NOTICE
2425 					"%s: increased tx threshold, txcfg %#08x.\n",
2426 					dev->name, np->tx_config);
2427 		} else {
2428 			if (netif_msg_tx_err(np))
2429 				printk(KERN_NOTICE
2430 					"%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2431 					dev->name, np->tx_config);
2432 		}
2433 		writel(np->tx_config, ioaddr + TxConfig);
2434 	}
2435 	if (intr_status & WOLPkt && netif_msg_wol(np)) {
2436 		int wol_status = readl(ioaddr + WOLCmd);
2437 		printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2438 			dev->name, wol_status);
2439 	}
2440 	if (intr_status & RxStatusFIFOOver) {
2441 		if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2442 			printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2443 				dev->name);
2444 		}
2445 		dev->stats.rx_fifo_errors++;
2446 		dev->stats.rx_errors++;
2447 	}
2448 	/* Hmmmmm, it's not clear how to recover from PCI faults. */
2449 	if (intr_status & IntrPCIErr) {
2450 		printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2451 			intr_status & IntrPCIErr);
2452 		dev->stats.tx_fifo_errors++;
2453 		dev->stats.tx_errors++;
2454 		dev->stats.rx_fifo_errors++;
2455 		dev->stats.rx_errors++;
2456 	}
2457 	spin_unlock(&np->lock);
2458 }
2459 
__get_stats(struct net_device * dev)2460 static void __get_stats(struct net_device *dev)
2461 {
2462 	void __iomem * ioaddr = ns_ioaddr(dev);
2463 
2464 	/* The chip only need report frame silently dropped. */
2465 	dev->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2466 	dev->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2467 }
2468 
get_stats(struct net_device * dev)2469 static struct net_device_stats *get_stats(struct net_device *dev)
2470 {
2471 	struct netdev_private *np = netdev_priv(dev);
2472 
2473 	/* The chip only need report frame silently dropped. */
2474 	spin_lock_irq(&np->lock);
2475 	if (netif_running(dev) && !np->hands_off)
2476 		__get_stats(dev);
2477 	spin_unlock_irq(&np->lock);
2478 
2479 	return &dev->stats;
2480 }
2481 
2482 #ifdef CONFIG_NET_POLL_CONTROLLER
natsemi_poll_controller(struct net_device * dev)2483 static void natsemi_poll_controller(struct net_device *dev)
2484 {
2485 	struct netdev_private *np = netdev_priv(dev);
2486 	const int irq = np->pci_dev->irq;
2487 
2488 	disable_irq(irq);
2489 	intr_handler(irq, dev);
2490 	enable_irq(irq);
2491 }
2492 #endif
2493 
2494 #define HASH_TABLE	0x200
__set_rx_mode(struct net_device * dev)2495 static void __set_rx_mode(struct net_device *dev)
2496 {
2497 	void __iomem * ioaddr = ns_ioaddr(dev);
2498 	struct netdev_private *np = netdev_priv(dev);
2499 	u8 mc_filter[64]; /* Multicast hash filter */
2500 	u32 rx_mode;
2501 
2502 	if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2503 		rx_mode = RxFilterEnable | AcceptBroadcast
2504 			| AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2505 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2506 		   (dev->flags & IFF_ALLMULTI)) {
2507 		rx_mode = RxFilterEnable | AcceptBroadcast
2508 			| AcceptAllMulticast | AcceptMyPhys;
2509 	} else {
2510 		struct netdev_hw_addr *ha;
2511 		int i;
2512 
2513 		memset(mc_filter, 0, sizeof(mc_filter));
2514 		netdev_for_each_mc_addr(ha, dev) {
2515 			int b = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x1ff;
2516 			mc_filter[b/8] |= (1 << (b & 0x07));
2517 		}
2518 		rx_mode = RxFilterEnable | AcceptBroadcast
2519 			| AcceptMulticast | AcceptMyPhys;
2520 		for (i = 0; i < 64; i += 2) {
2521 			writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2522 			writel((mc_filter[i + 1] << 8) + mc_filter[i],
2523 			       ioaddr + RxFilterData);
2524 		}
2525 	}
2526 	writel(rx_mode, ioaddr + RxFilterAddr);
2527 	np->cur_rx_mode = rx_mode;
2528 }
2529 
natsemi_change_mtu(struct net_device * dev,int new_mtu)2530 static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2531 {
2532 	dev->mtu = new_mtu;
2533 
2534 	/* synchronized against open : rtnl_lock() held by caller */
2535 	if (netif_running(dev)) {
2536 		struct netdev_private *np = netdev_priv(dev);
2537 		void __iomem * ioaddr = ns_ioaddr(dev);
2538 		const int irq = np->pci_dev->irq;
2539 
2540 		disable_irq(irq);
2541 		spin_lock(&np->lock);
2542 		/* stop engines */
2543 		natsemi_stop_rxtx(dev);
2544 		/* drain rx queue */
2545 		drain_rx(dev);
2546 		/* change buffers */
2547 		set_bufsize(dev);
2548 		reinit_rx(dev);
2549 		writel(np->ring_dma, ioaddr + RxRingPtr);
2550 		/* restart engines */
2551 		writel(RxOn | TxOn, ioaddr + ChipCmd);
2552 		spin_unlock(&np->lock);
2553 		enable_irq(irq);
2554 	}
2555 	return 0;
2556 }
2557 
set_rx_mode(struct net_device * dev)2558 static void set_rx_mode(struct net_device *dev)
2559 {
2560 	struct netdev_private *np = netdev_priv(dev);
2561 	spin_lock_irq(&np->lock);
2562 	if (!np->hands_off)
2563 		__set_rx_mode(dev);
2564 	spin_unlock_irq(&np->lock);
2565 }
2566 
get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)2567 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2568 {
2569 	struct netdev_private *np = netdev_priv(dev);
2570 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2571 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2572 	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
2573 }
2574 
get_regs_len(struct net_device * dev)2575 static int get_regs_len(struct net_device *dev)
2576 {
2577 	return NATSEMI_REGS_SIZE;
2578 }
2579 
get_eeprom_len(struct net_device * dev)2580 static int get_eeprom_len(struct net_device *dev)
2581 {
2582 	struct netdev_private *np = netdev_priv(dev);
2583 	return np->eeprom_size;
2584 }
2585 
get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * ecmd)2586 static int get_link_ksettings(struct net_device *dev,
2587 			      struct ethtool_link_ksettings *ecmd)
2588 {
2589 	struct netdev_private *np = netdev_priv(dev);
2590 	spin_lock_irq(&np->lock);
2591 	netdev_get_ecmd(dev, ecmd);
2592 	spin_unlock_irq(&np->lock);
2593 	return 0;
2594 }
2595 
set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * ecmd)2596 static int set_link_ksettings(struct net_device *dev,
2597 			      const struct ethtool_link_ksettings *ecmd)
2598 {
2599 	struct netdev_private *np = netdev_priv(dev);
2600 	int res;
2601 	spin_lock_irq(&np->lock);
2602 	res = netdev_set_ecmd(dev, ecmd);
2603 	spin_unlock_irq(&np->lock);
2604 	return res;
2605 }
2606 
get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)2607 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2608 {
2609 	struct netdev_private *np = netdev_priv(dev);
2610 	spin_lock_irq(&np->lock);
2611 	netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2612 	netdev_get_sopass(dev, wol->sopass);
2613 	spin_unlock_irq(&np->lock);
2614 }
2615 
set_wol(struct net_device * dev,struct ethtool_wolinfo * wol)2616 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2617 {
2618 	struct netdev_private *np = netdev_priv(dev);
2619 	int res;
2620 	spin_lock_irq(&np->lock);
2621 	netdev_set_wol(dev, wol->wolopts);
2622 	res = netdev_set_sopass(dev, wol->sopass);
2623 	spin_unlock_irq(&np->lock);
2624 	return res;
2625 }
2626 
get_regs(struct net_device * dev,struct ethtool_regs * regs,void * buf)2627 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2628 {
2629 	struct netdev_private *np = netdev_priv(dev);
2630 	regs->version = NATSEMI_REGS_VER;
2631 	spin_lock_irq(&np->lock);
2632 	netdev_get_regs(dev, buf);
2633 	spin_unlock_irq(&np->lock);
2634 }
2635 
get_msglevel(struct net_device * dev)2636 static u32 get_msglevel(struct net_device *dev)
2637 {
2638 	struct netdev_private *np = netdev_priv(dev);
2639 	return np->msg_enable;
2640 }
2641 
set_msglevel(struct net_device * dev,u32 val)2642 static void set_msglevel(struct net_device *dev, u32 val)
2643 {
2644 	struct netdev_private *np = netdev_priv(dev);
2645 	np->msg_enable = val;
2646 }
2647 
nway_reset(struct net_device * dev)2648 static int nway_reset(struct net_device *dev)
2649 {
2650 	int tmp;
2651 	int r = -EINVAL;
2652 	/* if autoneg is off, it's an error */
2653 	tmp = mdio_read(dev, MII_BMCR);
2654 	if (tmp & BMCR_ANENABLE) {
2655 		tmp |= (BMCR_ANRESTART);
2656 		mdio_write(dev, MII_BMCR, tmp);
2657 		r = 0;
2658 	}
2659 	return r;
2660 }
2661 
get_link(struct net_device * dev)2662 static u32 get_link(struct net_device *dev)
2663 {
2664 	/* LSTATUS is latched low until a read - so read twice */
2665 	mdio_read(dev, MII_BMSR);
2666 	return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2667 }
2668 
get_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)2669 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2670 {
2671 	struct netdev_private *np = netdev_priv(dev);
2672 	u8 *eebuf;
2673 	int res;
2674 
2675 	eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2676 	if (!eebuf)
2677 		return -ENOMEM;
2678 
2679 	eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2680 	spin_lock_irq(&np->lock);
2681 	res = netdev_get_eeprom(dev, eebuf);
2682 	spin_unlock_irq(&np->lock);
2683 	if (!res)
2684 		memcpy(data, eebuf+eeprom->offset, eeprom->len);
2685 	kfree(eebuf);
2686 	return res;
2687 }
2688 
2689 static const struct ethtool_ops ethtool_ops = {
2690 	.get_drvinfo = get_drvinfo,
2691 	.get_regs_len = get_regs_len,
2692 	.get_eeprom_len = get_eeprom_len,
2693 	.get_wol = get_wol,
2694 	.set_wol = set_wol,
2695 	.get_regs = get_regs,
2696 	.get_msglevel = get_msglevel,
2697 	.set_msglevel = set_msglevel,
2698 	.nway_reset = nway_reset,
2699 	.get_link = get_link,
2700 	.get_eeprom = get_eeprom,
2701 	.get_link_ksettings = get_link_ksettings,
2702 	.set_link_ksettings = set_link_ksettings,
2703 };
2704 
netdev_set_wol(struct net_device * dev,u32 newval)2705 static int netdev_set_wol(struct net_device *dev, u32 newval)
2706 {
2707 	struct netdev_private *np = netdev_priv(dev);
2708 	void __iomem * ioaddr = ns_ioaddr(dev);
2709 	u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2710 
2711 	/* translate to bitmasks this chip understands */
2712 	if (newval & WAKE_PHY)
2713 		data |= WakePhy;
2714 	if (newval & WAKE_UCAST)
2715 		data |= WakeUnicast;
2716 	if (newval & WAKE_MCAST)
2717 		data |= WakeMulticast;
2718 	if (newval & WAKE_BCAST)
2719 		data |= WakeBroadcast;
2720 	if (newval & WAKE_ARP)
2721 		data |= WakeArp;
2722 	if (newval & WAKE_MAGIC)
2723 		data |= WakeMagic;
2724 	if (np->srr >= SRR_DP83815_D) {
2725 		if (newval & WAKE_MAGICSECURE) {
2726 			data |= WakeMagicSecure;
2727 		}
2728 	}
2729 
2730 	writel(data, ioaddr + WOLCmd);
2731 
2732 	return 0;
2733 }
2734 
netdev_get_wol(struct net_device * dev,u32 * supported,u32 * cur)2735 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2736 {
2737 	struct netdev_private *np = netdev_priv(dev);
2738 	void __iomem * ioaddr = ns_ioaddr(dev);
2739 	u32 regval = readl(ioaddr + WOLCmd);
2740 
2741 	*supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2742 			| WAKE_ARP | WAKE_MAGIC);
2743 
2744 	if (np->srr >= SRR_DP83815_D) {
2745 		/* SOPASS works on revD and higher */
2746 		*supported |= WAKE_MAGICSECURE;
2747 	}
2748 	*cur = 0;
2749 
2750 	/* translate from chip bitmasks */
2751 	if (regval & WakePhy)
2752 		*cur |= WAKE_PHY;
2753 	if (regval & WakeUnicast)
2754 		*cur |= WAKE_UCAST;
2755 	if (regval & WakeMulticast)
2756 		*cur |= WAKE_MCAST;
2757 	if (regval & WakeBroadcast)
2758 		*cur |= WAKE_BCAST;
2759 	if (regval & WakeArp)
2760 		*cur |= WAKE_ARP;
2761 	if (regval & WakeMagic)
2762 		*cur |= WAKE_MAGIC;
2763 	if (regval & WakeMagicSecure) {
2764 		/* this can be on in revC, but it's broken */
2765 		*cur |= WAKE_MAGICSECURE;
2766 	}
2767 
2768 	return 0;
2769 }
2770 
netdev_set_sopass(struct net_device * dev,u8 * newval)2771 static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2772 {
2773 	struct netdev_private *np = netdev_priv(dev);
2774 	void __iomem * ioaddr = ns_ioaddr(dev);
2775 	u16 *sval = (u16 *)newval;
2776 	u32 addr;
2777 
2778 	if (np->srr < SRR_DP83815_D) {
2779 		return 0;
2780 	}
2781 
2782 	/* enable writing to these registers by disabling the RX filter */
2783 	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2784 	addr &= ~RxFilterEnable;
2785 	writel(addr, ioaddr + RxFilterAddr);
2786 
2787 	/* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2788 	writel(addr | 0xa, ioaddr + RxFilterAddr);
2789 	writew(sval[0], ioaddr + RxFilterData);
2790 
2791 	writel(addr | 0xc, ioaddr + RxFilterAddr);
2792 	writew(sval[1], ioaddr + RxFilterData);
2793 
2794 	writel(addr | 0xe, ioaddr + RxFilterAddr);
2795 	writew(sval[2], ioaddr + RxFilterData);
2796 
2797 	/* re-enable the RX filter */
2798 	writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2799 
2800 	return 0;
2801 }
2802 
netdev_get_sopass(struct net_device * dev,u8 * data)2803 static int netdev_get_sopass(struct net_device *dev, u8 *data)
2804 {
2805 	struct netdev_private *np = netdev_priv(dev);
2806 	void __iomem * ioaddr = ns_ioaddr(dev);
2807 	u16 *sval = (u16 *)data;
2808 	u32 addr;
2809 
2810 	if (np->srr < SRR_DP83815_D) {
2811 		sval[0] = sval[1] = sval[2] = 0;
2812 		return 0;
2813 	}
2814 
2815 	/* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2816 	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2817 
2818 	writel(addr | 0xa, ioaddr + RxFilterAddr);
2819 	sval[0] = readw(ioaddr + RxFilterData);
2820 
2821 	writel(addr | 0xc, ioaddr + RxFilterAddr);
2822 	sval[1] = readw(ioaddr + RxFilterData);
2823 
2824 	writel(addr | 0xe, ioaddr + RxFilterAddr);
2825 	sval[2] = readw(ioaddr + RxFilterData);
2826 
2827 	writel(addr, ioaddr + RxFilterAddr);
2828 
2829 	return 0;
2830 }
2831 
netdev_get_ecmd(struct net_device * dev,struct ethtool_link_ksettings * ecmd)2832 static int netdev_get_ecmd(struct net_device *dev,
2833 			   struct ethtool_link_ksettings *ecmd)
2834 {
2835 	struct netdev_private *np = netdev_priv(dev);
2836 	u32 supported, advertising;
2837 	u32 tmp;
2838 
2839 	ecmd->base.port   = dev->if_port;
2840 	ecmd->base.speed  = np->speed;
2841 	ecmd->base.duplex = np->duplex;
2842 	ecmd->base.autoneg = np->autoneg;
2843 	advertising = 0;
2844 
2845 	if (np->advertising & ADVERTISE_10HALF)
2846 		advertising |= ADVERTISED_10baseT_Half;
2847 	if (np->advertising & ADVERTISE_10FULL)
2848 		advertising |= ADVERTISED_10baseT_Full;
2849 	if (np->advertising & ADVERTISE_100HALF)
2850 		advertising |= ADVERTISED_100baseT_Half;
2851 	if (np->advertising & ADVERTISE_100FULL)
2852 		advertising |= ADVERTISED_100baseT_Full;
2853 	supported   = (SUPPORTED_Autoneg |
2854 		SUPPORTED_10baseT_Half  | SUPPORTED_10baseT_Full  |
2855 		SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2856 		SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2857 	ecmd->base.phy_address = np->phy_addr_external;
2858 	/*
2859 	 * We intentionally report the phy address of the external
2860 	 * phy, even if the internal phy is used. This is necessary
2861 	 * to work around a deficiency of the ethtool interface:
2862 	 * It's only possible to query the settings of the active
2863 	 * port. Therefore
2864 	 * # ethtool -s ethX port mii
2865 	 * actually sends an ioctl to switch to port mii with the
2866 	 * settings that are used for the current active port.
2867 	 * If we would report a different phy address in this
2868 	 * command, then
2869 	 * # ethtool -s ethX port tp;ethtool -s ethX port mii
2870 	 * would unintentionally change the phy address.
2871 	 *
2872 	 * Fortunately the phy address doesn't matter with the
2873 	 * internal phy...
2874 	 */
2875 
2876 	/* set information based on active port type */
2877 	switch (ecmd->base.port) {
2878 	default:
2879 	case PORT_TP:
2880 		advertising |= ADVERTISED_TP;
2881 		break;
2882 	case PORT_MII:
2883 		advertising |= ADVERTISED_MII;
2884 		break;
2885 	case PORT_FIBRE:
2886 		advertising |= ADVERTISED_FIBRE;
2887 		break;
2888 	}
2889 
2890 	/* if autonegotiation is on, try to return the active speed/duplex */
2891 	if (ecmd->base.autoneg == AUTONEG_ENABLE) {
2892 		advertising |= ADVERTISED_Autoneg;
2893 		tmp = mii_nway_result(
2894 			np->advertising & mdio_read(dev, MII_LPA));
2895 		if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2896 			ecmd->base.speed = SPEED_100;
2897 		else
2898 			ecmd->base.speed = SPEED_10;
2899 		if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2900 			ecmd->base.duplex = DUPLEX_FULL;
2901 		else
2902 			ecmd->base.duplex = DUPLEX_HALF;
2903 	}
2904 
2905 	/* ignore maxtxpkt, maxrxpkt for now */
2906 
2907 	ethtool_convert_legacy_u32_to_link_mode(ecmd->link_modes.supported,
2908 						supported);
2909 	ethtool_convert_legacy_u32_to_link_mode(ecmd->link_modes.advertising,
2910 						advertising);
2911 
2912 	return 0;
2913 }
2914 
netdev_set_ecmd(struct net_device * dev,const struct ethtool_link_ksettings * ecmd)2915 static int netdev_set_ecmd(struct net_device *dev,
2916 			   const struct ethtool_link_ksettings *ecmd)
2917 {
2918 	struct netdev_private *np = netdev_priv(dev);
2919 	u32 advertising;
2920 
2921 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
2922 						ecmd->link_modes.advertising);
2923 
2924 	if (ecmd->base.port != PORT_TP &&
2925 	    ecmd->base.port != PORT_MII &&
2926 	    ecmd->base.port != PORT_FIBRE)
2927 		return -EINVAL;
2928 	if (ecmd->base.autoneg == AUTONEG_ENABLE) {
2929 		if ((advertising & (ADVERTISED_10baseT_Half |
2930 					  ADVERTISED_10baseT_Full |
2931 					  ADVERTISED_100baseT_Half |
2932 					  ADVERTISED_100baseT_Full)) == 0) {
2933 			return -EINVAL;
2934 		}
2935 	} else if (ecmd->base.autoneg == AUTONEG_DISABLE) {
2936 		u32 speed = ecmd->base.speed;
2937 		if (speed != SPEED_10 && speed != SPEED_100)
2938 			return -EINVAL;
2939 		if (ecmd->base.duplex != DUPLEX_HALF &&
2940 		    ecmd->base.duplex != DUPLEX_FULL)
2941 			return -EINVAL;
2942 	} else {
2943 		return -EINVAL;
2944 	}
2945 
2946 	/*
2947 	 * If we're ignoring the PHY then autoneg and the internal
2948 	 * transceiver are really not going to work so don't let the
2949 	 * user select them.
2950 	 */
2951 	if (np->ignore_phy && (ecmd->base.autoneg == AUTONEG_ENABLE ||
2952 			       ecmd->base.port == PORT_TP))
2953 		return -EINVAL;
2954 
2955 	/*
2956 	 * maxtxpkt, maxrxpkt: ignored for now.
2957 	 *
2958 	 * transceiver:
2959 	 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2960 	 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2961 	 * selects based on ecmd->port.
2962 	 *
2963 	 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2964 	 * phys that are connected to the mii bus. It's used to apply fibre
2965 	 * specific updates.
2966 	 */
2967 
2968 	/* WHEW! now lets bang some bits */
2969 
2970 	/* save the parms */
2971 	dev->if_port          = ecmd->base.port;
2972 	np->autoneg           = ecmd->base.autoneg;
2973 	np->phy_addr_external = ecmd->base.phy_address & PhyAddrMask;
2974 	if (np->autoneg == AUTONEG_ENABLE) {
2975 		/* advertise only what has been requested */
2976 		np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2977 		if (advertising & ADVERTISED_10baseT_Half)
2978 			np->advertising |= ADVERTISE_10HALF;
2979 		if (advertising & ADVERTISED_10baseT_Full)
2980 			np->advertising |= ADVERTISE_10FULL;
2981 		if (advertising & ADVERTISED_100baseT_Half)
2982 			np->advertising |= ADVERTISE_100HALF;
2983 		if (advertising & ADVERTISED_100baseT_Full)
2984 			np->advertising |= ADVERTISE_100FULL;
2985 	} else {
2986 		np->speed  = ecmd->base.speed;
2987 		np->duplex = ecmd->base.duplex;
2988 		/* user overriding the initial full duplex parm? */
2989 		if (np->duplex == DUPLEX_HALF)
2990 			np->full_duplex = 0;
2991 	}
2992 
2993 	/* get the right phy enabled */
2994 	if (ecmd->base.port == PORT_TP)
2995 		switch_port_internal(dev);
2996 	else
2997 		switch_port_external(dev);
2998 
2999 	/* set parms and see how this affected our link status */
3000 	init_phy_fixup(dev);
3001 	check_link(dev);
3002 	return 0;
3003 }
3004 
netdev_get_regs(struct net_device * dev,u8 * buf)3005 static int netdev_get_regs(struct net_device *dev, u8 *buf)
3006 {
3007 	int i;
3008 	int j;
3009 	u32 rfcr;
3010 	u32 *rbuf = (u32 *)buf;
3011 	void __iomem * ioaddr = ns_ioaddr(dev);
3012 
3013 	/* read non-mii page 0 of registers */
3014 	for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
3015 		rbuf[i] = readl(ioaddr + i*4);
3016 	}
3017 
3018 	/* read current mii registers */
3019 	for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
3020 		rbuf[i] = mdio_read(dev, i & 0x1f);
3021 
3022 	/* read only the 'magic' registers from page 1 */
3023 	writew(1, ioaddr + PGSEL);
3024 	rbuf[i++] = readw(ioaddr + PMDCSR);
3025 	rbuf[i++] = readw(ioaddr + TSTDAT);
3026 	rbuf[i++] = readw(ioaddr + DSPCFG);
3027 	rbuf[i++] = readw(ioaddr + SDCFG);
3028 	writew(0, ioaddr + PGSEL);
3029 
3030 	/* read RFCR indexed registers */
3031 	rfcr = readl(ioaddr + RxFilterAddr);
3032 	for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
3033 		writel(j*2, ioaddr + RxFilterAddr);
3034 		rbuf[i++] = readw(ioaddr + RxFilterData);
3035 	}
3036 	writel(rfcr, ioaddr + RxFilterAddr);
3037 
3038 	/* the interrupt status is clear-on-read - see if we missed any */
3039 	if (rbuf[4] & rbuf[5]) {
3040 		printk(KERN_WARNING
3041 			"%s: shoot, we dropped an interrupt (%#08x)\n",
3042 			dev->name, rbuf[4] & rbuf[5]);
3043 	}
3044 
3045 	return 0;
3046 }
3047 
3048 #define SWAP_BITS(x)	( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3049 			| (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9)  \
3050 			| (((x) & 0x0010) << 7)  | (((x) & 0x0020) << 5)  \
3051 			| (((x) & 0x0040) << 3)  | (((x) & 0x0080) << 1)  \
3052 			| (((x) & 0x0100) >> 1)  | (((x) & 0x0200) >> 3)  \
3053 			| (((x) & 0x0400) >> 5)  | (((x) & 0x0800) >> 7)  \
3054 			| (((x) & 0x1000) >> 9)  | (((x) & 0x2000) >> 11) \
3055 			| (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3056 
netdev_get_eeprom(struct net_device * dev,u8 * buf)3057 static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
3058 {
3059 	int i;
3060 	u16 *ebuf = (u16 *)buf;
3061 	void __iomem * ioaddr = ns_ioaddr(dev);
3062 	struct netdev_private *np = netdev_priv(dev);
3063 
3064 	/* eeprom_read reads 16 bits, and indexes by 16 bits */
3065 	for (i = 0; i < np->eeprom_size/2; i++) {
3066 		ebuf[i] = eeprom_read(ioaddr, i);
3067 		/* The EEPROM itself stores data bit-swapped, but eeprom_read
3068 		 * reads it back "sanely". So we swap it back here in order to
3069 		 * present it to userland as it is stored. */
3070 		ebuf[i] = SWAP_BITS(ebuf[i]);
3071 	}
3072 	return 0;
3073 }
3074 
netdev_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)3075 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3076 {
3077 	struct mii_ioctl_data *data = if_mii(rq);
3078 	struct netdev_private *np = netdev_priv(dev);
3079 
3080 	switch(cmd) {
3081 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
3082 		data->phy_id = np->phy_addr_external;
3083 		fallthrough;
3084 
3085 	case SIOCGMIIREG:		/* Read MII PHY register. */
3086 		/* The phy_id is not enough to uniquely identify
3087 		 * the intended target. Therefore the command is sent to
3088 		 * the given mii on the current port.
3089 		 */
3090 		if (dev->if_port == PORT_TP) {
3091 			if ((data->phy_id & 0x1f) == np->phy_addr_external)
3092 				data->val_out = mdio_read(dev,
3093 							data->reg_num & 0x1f);
3094 			else
3095 				data->val_out = 0;
3096 		} else {
3097 			move_int_phy(dev, data->phy_id & 0x1f);
3098 			data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3099 							data->reg_num & 0x1f);
3100 		}
3101 		return 0;
3102 
3103 	case SIOCSMIIREG:		/* Write MII PHY register. */
3104 		if (dev->if_port == PORT_TP) {
3105 			if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3106  				if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3107 					np->advertising = data->val_in;
3108 				mdio_write(dev, data->reg_num & 0x1f,
3109 							data->val_in);
3110 			}
3111 		} else {
3112 			if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3113  				if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3114 					np->advertising = data->val_in;
3115 			}
3116 			move_int_phy(dev, data->phy_id & 0x1f);
3117 			miiport_write(dev, data->phy_id & 0x1f,
3118 						data->reg_num & 0x1f,
3119 						data->val_in);
3120 		}
3121 		return 0;
3122 	default:
3123 		return -EOPNOTSUPP;
3124 	}
3125 }
3126 
enable_wol_mode(struct net_device * dev,int enable_intr)3127 static void enable_wol_mode(struct net_device *dev, int enable_intr)
3128 {
3129 	void __iomem * ioaddr = ns_ioaddr(dev);
3130 	struct netdev_private *np = netdev_priv(dev);
3131 
3132 	if (netif_msg_wol(np))
3133 		printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3134 			dev->name);
3135 
3136 	/* For WOL we must restart the rx process in silent mode.
3137 	 * Write NULL to the RxRingPtr. Only possible if
3138 	 * rx process is stopped
3139 	 */
3140 	writel(0, ioaddr + RxRingPtr);
3141 
3142 	/* read WoL status to clear */
3143 	readl(ioaddr + WOLCmd);
3144 
3145 	/* PME on, clear status */
3146 	writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3147 
3148 	/* and restart the rx process */
3149 	writel(RxOn, ioaddr + ChipCmd);
3150 
3151 	if (enable_intr) {
3152 		/* enable the WOL interrupt.
3153 		 * Could be used to send a netlink message.
3154 		 */
3155 		writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3156 		natsemi_irq_enable(dev);
3157 	}
3158 }
3159 
netdev_close(struct net_device * dev)3160 static int netdev_close(struct net_device *dev)
3161 {
3162 	void __iomem * ioaddr = ns_ioaddr(dev);
3163 	struct netdev_private *np = netdev_priv(dev);
3164 	const int irq = np->pci_dev->irq;
3165 
3166 	if (netif_msg_ifdown(np))
3167 		printk(KERN_DEBUG
3168 			"%s: Shutting down ethercard, status was %#04x.\n",
3169 			dev->name, (int)readl(ioaddr + ChipCmd));
3170 	if (netif_msg_pktdata(np))
3171 		printk(KERN_DEBUG
3172 			"%s: Queue pointers were Tx %d / %d,  Rx %d / %d.\n",
3173 			dev->name, np->cur_tx, np->dirty_tx,
3174 			np->cur_rx, np->dirty_rx);
3175 
3176 	napi_disable(&np->napi);
3177 
3178 	/*
3179 	 * FIXME: what if someone tries to close a device
3180 	 * that is suspended?
3181 	 * Should we reenable the nic to switch to
3182 	 * the final WOL settings?
3183 	 */
3184 
3185 	del_timer_sync(&np->timer);
3186 	disable_irq(irq);
3187 	spin_lock_irq(&np->lock);
3188 	natsemi_irq_disable(dev);
3189 	np->hands_off = 1;
3190 	spin_unlock_irq(&np->lock);
3191 	enable_irq(irq);
3192 
3193 	free_irq(irq, dev);
3194 
3195 	/* Interrupt disabled, interrupt handler released,
3196 	 * queue stopped, timer deleted, rtnl_lock held
3197 	 * All async codepaths that access the driver are disabled.
3198 	 */
3199 	spin_lock_irq(&np->lock);
3200 	np->hands_off = 0;
3201 	readl(ioaddr + IntrMask);
3202 	readw(ioaddr + MIntrStatus);
3203 
3204 	/* Freeze Stats */
3205 	writel(StatsFreeze, ioaddr + StatsCtrl);
3206 
3207 	/* Stop the chip's Tx and Rx processes. */
3208 	natsemi_stop_rxtx(dev);
3209 
3210 	__get_stats(dev);
3211 	spin_unlock_irq(&np->lock);
3212 
3213 	/* clear the carrier last - an interrupt could reenable it otherwise */
3214 	netif_carrier_off(dev);
3215 	netif_stop_queue(dev);
3216 
3217 	dump_ring(dev);
3218 	drain_ring(dev);
3219 	free_ring(dev);
3220 
3221 	{
3222 		u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3223 		if (wol) {
3224 			/* restart the NIC in WOL mode.
3225 			 * The nic must be stopped for this.
3226 			 */
3227 			enable_wol_mode(dev, 0);
3228 		} else {
3229 			/* Restore PME enable bit unmolested */
3230 			writel(np->SavedClkRun, ioaddr + ClkRun);
3231 		}
3232 	}
3233 	return 0;
3234 }
3235 
3236 
natsemi_remove1(struct pci_dev * pdev)3237 static void natsemi_remove1(struct pci_dev *pdev)
3238 {
3239 	struct net_device *dev = pci_get_drvdata(pdev);
3240 	void __iomem * ioaddr = ns_ioaddr(dev);
3241 
3242 	NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
3243 	unregister_netdev (dev);
3244 	pci_release_regions (pdev);
3245 	iounmap(ioaddr);
3246 	free_netdev (dev);
3247 }
3248 
3249 /*
3250  * The ns83815 chip doesn't have explicit RxStop bits.
3251  * Kicking the Rx or Tx process for a new packet reenables the Rx process
3252  * of the nic, thus this function must be very careful:
3253  *
3254  * suspend/resume synchronization:
3255  * entry points:
3256  *   netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3257  *   start_tx, ns_tx_timeout
3258  *
3259  * No function accesses the hardware without checking np->hands_off.
3260  *	the check occurs under spin_lock_irq(&np->lock);
3261  * exceptions:
3262  *	* netdev_ioctl: noncritical access.
3263  *	* netdev_open: cannot happen due to the device_detach
3264  *	* netdev_close: doesn't hurt.
3265  *	* netdev_timer: timer stopped by natsemi_suspend.
3266  *	* intr_handler: doesn't acquire the spinlock. suspend calls
3267  *		disable_irq() to enforce synchronization.
3268  *      * natsemi_poll: checks before reenabling interrupts.  suspend
3269  *              sets hands_off, disables interrupts and then waits with
3270  *              napi_disable().
3271  *
3272  * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3273  */
3274 
natsemi_suspend(struct device * dev_d)3275 static int __maybe_unused natsemi_suspend(struct device *dev_d)
3276 {
3277 	struct net_device *dev = dev_get_drvdata(dev_d);
3278 	struct netdev_private *np = netdev_priv(dev);
3279 	void __iomem * ioaddr = ns_ioaddr(dev);
3280 
3281 	rtnl_lock();
3282 	if (netif_running (dev)) {
3283 		const int irq = np->pci_dev->irq;
3284 
3285 		del_timer_sync(&np->timer);
3286 
3287 		disable_irq(irq);
3288 		spin_lock_irq(&np->lock);
3289 
3290 		natsemi_irq_disable(dev);
3291 		np->hands_off = 1;
3292 		natsemi_stop_rxtx(dev);
3293 		netif_stop_queue(dev);
3294 
3295 		spin_unlock_irq(&np->lock);
3296 		enable_irq(irq);
3297 
3298 		napi_disable(&np->napi);
3299 
3300 		/* Update the error counts. */
3301 		__get_stats(dev);
3302 
3303 		/* pci_power_off(pdev, -1); */
3304 		drain_ring(dev);
3305 		{
3306 			u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3307 			/* Restore PME enable bit */
3308 			if (wol) {
3309 				/* restart the NIC in WOL mode.
3310 				 * The nic must be stopped for this.
3311 				 * FIXME: use the WOL interrupt
3312 				 */
3313 				enable_wol_mode(dev, 0);
3314 			} else {
3315 				/* Restore PME enable bit unmolested */
3316 				writel(np->SavedClkRun, ioaddr + ClkRun);
3317 			}
3318 		}
3319 	}
3320 	netif_device_detach(dev);
3321 	rtnl_unlock();
3322 	return 0;
3323 }
3324 
3325 
natsemi_resume(struct device * dev_d)3326 static int __maybe_unused natsemi_resume(struct device *dev_d)
3327 {
3328 	struct net_device *dev = dev_get_drvdata(dev_d);
3329 	struct netdev_private *np = netdev_priv(dev);
3330 
3331 	rtnl_lock();
3332 	if (netif_device_present(dev))
3333 		goto out;
3334 	if (netif_running(dev)) {
3335 		const int irq = np->pci_dev->irq;
3336 
3337 		BUG_ON(!np->hands_off);
3338 	/*	pci_power_on(pdev); */
3339 
3340 		napi_enable(&np->napi);
3341 
3342 		natsemi_reset(dev);
3343 		init_ring(dev);
3344 		disable_irq(irq);
3345 		spin_lock_irq(&np->lock);
3346 		np->hands_off = 0;
3347 		init_registers(dev);
3348 		netif_device_attach(dev);
3349 		spin_unlock_irq(&np->lock);
3350 		enable_irq(irq);
3351 
3352 		mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ));
3353 	}
3354 	netif_device_attach(dev);
3355 out:
3356 	rtnl_unlock();
3357 	return 0;
3358 }
3359 
3360 static SIMPLE_DEV_PM_OPS(natsemi_pm_ops, natsemi_suspend, natsemi_resume);
3361 
3362 static struct pci_driver natsemi_driver = {
3363 	.name		= DRV_NAME,
3364 	.id_table	= natsemi_pci_tbl,
3365 	.probe		= natsemi_probe1,
3366 	.remove		= natsemi_remove1,
3367 	.driver.pm	= &natsemi_pm_ops,
3368 };
3369 
natsemi_init_mod(void)3370 static int __init natsemi_init_mod (void)
3371 {
3372 /* when a module, this is printed whether or not devices are found in probe */
3373 #ifdef MODULE
3374 	printk(version);
3375 #endif
3376 
3377 	return pci_register_driver(&natsemi_driver);
3378 }
3379 
natsemi_exit_mod(void)3380 static void __exit natsemi_exit_mod (void)
3381 {
3382 	pci_unregister_driver (&natsemi_driver);
3383 }
3384 
3385 module_init(natsemi_init_mod);
3386 module_exit(natsemi_exit_mod);
3387 
3388