1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Copyright (c) 2013-2014 Samsung Electronics Co., Ltd
4 // http://www.samsung.com
5 //
6 // Copyright (C) 2013 Google, Inc
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/module.h>
11 #include <linux/i2c.h>
12 #include <linux/bcd.h>
13 #include <linux/regmap.h>
14 #include <linux/rtc.h>
15 #include <linux/platform_device.h>
16 #include <linux/mfd/samsung/core.h>
17 #include <linux/mfd/samsung/irq.h>
18 #include <linux/mfd/samsung/rtc.h>
19 #include <linux/mfd/samsung/s2mps14.h>
20
21 /*
22 * Maximum number of retries for checking changes in UDR field
23 * of S5M_RTC_UDR_CON register (to limit possible endless loop).
24 *
25 * After writing to RTC registers (setting time or alarm) read the UDR field
26 * in S5M_RTC_UDR_CON register. UDR is auto-cleared when data have
27 * been transferred.
28 */
29 #define UDR_READ_RETRY_CNT 5
30
31 enum {
32 RTC_SEC = 0,
33 RTC_MIN,
34 RTC_HOUR,
35 RTC_WEEKDAY,
36 RTC_DATE,
37 RTC_MONTH,
38 RTC_YEAR1,
39 RTC_YEAR2,
40 /* Make sure this is always the last enum name. */
41 RTC_MAX_NUM_TIME_REGS
42 };
43
44 /*
45 * Registers used by the driver which are different between chipsets.
46 *
47 * Operations like read time and write alarm/time require updating
48 * specific fields in UDR register. These fields usually are auto-cleared
49 * (with some exceptions).
50 *
51 * Table of operations per device:
52 *
53 * Device | Write time | Read time | Write alarm
54 * =================================================
55 * S5M8767 | UDR + TIME | | UDR
56 * S2MPS11/14 | WUDR | RUDR | WUDR + RUDR
57 * S2MPS13 | WUDR | RUDR | WUDR + AUDR
58 * S2MPS15 | WUDR | RUDR | AUDR
59 */
60 struct s5m_rtc_reg_config {
61 /* Number of registers used for setting time/alarm0/alarm1 */
62 unsigned int regs_count;
63 /* First register for time, seconds */
64 unsigned int time;
65 /* RTC control register */
66 unsigned int ctrl;
67 /* First register for alarm 0, seconds */
68 unsigned int alarm0;
69 /* First register for alarm 1, seconds */
70 unsigned int alarm1;
71 /*
72 * Register for update flag (UDR). Typically setting UDR field to 1
73 * will enable update of time or alarm register. Then it will be
74 * auto-cleared after successful update.
75 */
76 unsigned int udr_update;
77 /* Auto-cleared mask in UDR field for writing time and alarm */
78 unsigned int autoclear_udr_mask;
79 /*
80 * Masks in UDR field for time and alarm operations.
81 * The read time mask can be 0. Rest should not.
82 */
83 unsigned int read_time_udr_mask;
84 unsigned int write_time_udr_mask;
85 unsigned int write_alarm_udr_mask;
86 };
87
88 /* Register map for S5M8763 and S5M8767 */
89 static const struct s5m_rtc_reg_config s5m_rtc_regs = {
90 .regs_count = 8,
91 .time = S5M_RTC_SEC,
92 .ctrl = S5M_ALARM1_CONF,
93 .alarm0 = S5M_ALARM0_SEC,
94 .alarm1 = S5M_ALARM1_SEC,
95 .udr_update = S5M_RTC_UDR_CON,
96 .autoclear_udr_mask = S5M_RTC_UDR_MASK,
97 .read_time_udr_mask = 0, /* Not needed */
98 .write_time_udr_mask = S5M_RTC_UDR_MASK | S5M_RTC_TIME_EN_MASK,
99 .write_alarm_udr_mask = S5M_RTC_UDR_MASK,
100 };
101
102 /* Register map for S2MPS13 */
103 static const struct s5m_rtc_reg_config s2mps13_rtc_regs = {
104 .regs_count = 7,
105 .time = S2MPS_RTC_SEC,
106 .ctrl = S2MPS_RTC_CTRL,
107 .alarm0 = S2MPS_ALARM0_SEC,
108 .alarm1 = S2MPS_ALARM1_SEC,
109 .udr_update = S2MPS_RTC_UDR_CON,
110 .autoclear_udr_mask = S2MPS_RTC_WUDR_MASK,
111 .read_time_udr_mask = S2MPS_RTC_RUDR_MASK,
112 .write_time_udr_mask = S2MPS_RTC_WUDR_MASK,
113 .write_alarm_udr_mask = S2MPS_RTC_WUDR_MASK | S2MPS13_RTC_AUDR_MASK,
114 };
115
116 /* Register map for S2MPS11/14 */
117 static const struct s5m_rtc_reg_config s2mps14_rtc_regs = {
118 .regs_count = 7,
119 .time = S2MPS_RTC_SEC,
120 .ctrl = S2MPS_RTC_CTRL,
121 .alarm0 = S2MPS_ALARM0_SEC,
122 .alarm1 = S2MPS_ALARM1_SEC,
123 .udr_update = S2MPS_RTC_UDR_CON,
124 .autoclear_udr_mask = S2MPS_RTC_WUDR_MASK,
125 .read_time_udr_mask = S2MPS_RTC_RUDR_MASK,
126 .write_time_udr_mask = S2MPS_RTC_WUDR_MASK,
127 .write_alarm_udr_mask = S2MPS_RTC_WUDR_MASK | S2MPS_RTC_RUDR_MASK,
128 };
129
130 /*
131 * Register map for S2MPS15 - in comparison to S2MPS14 the WUDR and AUDR bits
132 * are swapped.
133 */
134 static const struct s5m_rtc_reg_config s2mps15_rtc_regs = {
135 .regs_count = 7,
136 .time = S2MPS_RTC_SEC,
137 .ctrl = S2MPS_RTC_CTRL,
138 .alarm0 = S2MPS_ALARM0_SEC,
139 .alarm1 = S2MPS_ALARM1_SEC,
140 .udr_update = S2MPS_RTC_UDR_CON,
141 .autoclear_udr_mask = S2MPS_RTC_WUDR_MASK,
142 .read_time_udr_mask = S2MPS_RTC_RUDR_MASK,
143 .write_time_udr_mask = S2MPS15_RTC_WUDR_MASK,
144 .write_alarm_udr_mask = S2MPS15_RTC_AUDR_MASK,
145 };
146
147 struct s5m_rtc_info {
148 struct device *dev;
149 struct i2c_client *i2c;
150 struct sec_pmic_dev *s5m87xx;
151 struct regmap *regmap;
152 struct rtc_device *rtc_dev;
153 int irq;
154 enum sec_device_type device_type;
155 int rtc_24hr_mode;
156 const struct s5m_rtc_reg_config *regs;
157 };
158
159 static const struct regmap_config s5m_rtc_regmap_config = {
160 .reg_bits = 8,
161 .val_bits = 8,
162
163 .max_register = S5M_RTC_REG_MAX,
164 };
165
166 static const struct regmap_config s2mps14_rtc_regmap_config = {
167 .reg_bits = 8,
168 .val_bits = 8,
169
170 .max_register = S2MPS_RTC_REG_MAX,
171 };
172
s5m8767_data_to_tm(u8 * data,struct rtc_time * tm,int rtc_24hr_mode)173 static void s5m8767_data_to_tm(u8 *data, struct rtc_time *tm,
174 int rtc_24hr_mode)
175 {
176 tm->tm_sec = data[RTC_SEC] & 0x7f;
177 tm->tm_min = data[RTC_MIN] & 0x7f;
178 if (rtc_24hr_mode) {
179 tm->tm_hour = data[RTC_HOUR] & 0x1f;
180 } else {
181 tm->tm_hour = data[RTC_HOUR] & 0x0f;
182 if (data[RTC_HOUR] & HOUR_PM_MASK)
183 tm->tm_hour += 12;
184 }
185
186 tm->tm_wday = ffs(data[RTC_WEEKDAY] & 0x7f);
187 tm->tm_mday = data[RTC_DATE] & 0x1f;
188 tm->tm_mon = (data[RTC_MONTH] & 0x0f) - 1;
189 tm->tm_year = (data[RTC_YEAR1] & 0x7f) + 100;
190 tm->tm_yday = 0;
191 tm->tm_isdst = 0;
192 }
193
s5m8767_tm_to_data(struct rtc_time * tm,u8 * data)194 static int s5m8767_tm_to_data(struct rtc_time *tm, u8 *data)
195 {
196 data[RTC_SEC] = tm->tm_sec;
197 data[RTC_MIN] = tm->tm_min;
198
199 if (tm->tm_hour >= 12)
200 data[RTC_HOUR] = tm->tm_hour | HOUR_PM_MASK;
201 else
202 data[RTC_HOUR] = tm->tm_hour & ~HOUR_PM_MASK;
203
204 data[RTC_WEEKDAY] = 1 << tm->tm_wday;
205 data[RTC_DATE] = tm->tm_mday;
206 data[RTC_MONTH] = tm->tm_mon + 1;
207 data[RTC_YEAR1] = tm->tm_year > 100 ? (tm->tm_year - 100) : 0;
208
209 if (tm->tm_year < 100) {
210 pr_err("RTC cannot handle the year %d\n",
211 1900 + tm->tm_year);
212 return -EINVAL;
213 } else {
214 return 0;
215 }
216 }
217
218 /*
219 * Read RTC_UDR_CON register and wait till UDR field is cleared.
220 * This indicates that time/alarm update ended.
221 */
s5m8767_wait_for_udr_update(struct s5m_rtc_info * info)222 static int s5m8767_wait_for_udr_update(struct s5m_rtc_info *info)
223 {
224 int ret, retry = UDR_READ_RETRY_CNT;
225 unsigned int data;
226
227 do {
228 ret = regmap_read(info->regmap, info->regs->udr_update, &data);
229 } while (--retry && (data & info->regs->autoclear_udr_mask) && !ret);
230
231 if (!retry)
232 dev_err(info->dev, "waiting for UDR update, reached max number of retries\n");
233
234 return ret;
235 }
236
s5m_check_peding_alarm_interrupt(struct s5m_rtc_info * info,struct rtc_wkalrm * alarm)237 static int s5m_check_peding_alarm_interrupt(struct s5m_rtc_info *info,
238 struct rtc_wkalrm *alarm)
239 {
240 int ret;
241 unsigned int val;
242
243 switch (info->device_type) {
244 case S5M8767X:
245 case S5M8763X:
246 ret = regmap_read(info->regmap, S5M_RTC_STATUS, &val);
247 val &= S5M_ALARM0_STATUS;
248 break;
249 case S2MPS15X:
250 case S2MPS14X:
251 case S2MPS13X:
252 ret = regmap_read(info->s5m87xx->regmap_pmic, S2MPS14_REG_ST2,
253 &val);
254 val &= S2MPS_ALARM0_STATUS;
255 break;
256 default:
257 return -EINVAL;
258 }
259 if (ret < 0)
260 return ret;
261
262 if (val)
263 alarm->pending = 1;
264 else
265 alarm->pending = 0;
266
267 return 0;
268 }
269
s5m8767_rtc_set_time_reg(struct s5m_rtc_info * info)270 static int s5m8767_rtc_set_time_reg(struct s5m_rtc_info *info)
271 {
272 int ret;
273 unsigned int data;
274
275 ret = regmap_read(info->regmap, info->regs->udr_update, &data);
276 if (ret < 0) {
277 dev_err(info->dev, "failed to read update reg(%d)\n", ret);
278 return ret;
279 }
280
281 data |= info->regs->write_time_udr_mask;
282
283 ret = regmap_write(info->regmap, info->regs->udr_update, data);
284 if (ret < 0) {
285 dev_err(info->dev, "failed to write update reg(%d)\n", ret);
286 return ret;
287 }
288
289 ret = s5m8767_wait_for_udr_update(info);
290
291 return ret;
292 }
293
s5m8767_rtc_set_alarm_reg(struct s5m_rtc_info * info)294 static int s5m8767_rtc_set_alarm_reg(struct s5m_rtc_info *info)
295 {
296 int ret;
297 unsigned int data;
298
299 ret = regmap_read(info->regmap, info->regs->udr_update, &data);
300 if (ret < 0) {
301 dev_err(info->dev, "%s: fail to read update reg(%d)\n",
302 __func__, ret);
303 return ret;
304 }
305
306 data |= info->regs->write_alarm_udr_mask;
307 switch (info->device_type) {
308 case S5M8763X:
309 case S5M8767X:
310 data &= ~S5M_RTC_TIME_EN_MASK;
311 break;
312 case S2MPS15X:
313 case S2MPS14X:
314 case S2MPS13X:
315 /* No exceptions needed */
316 break;
317 default:
318 return -EINVAL;
319 }
320
321 ret = regmap_write(info->regmap, info->regs->udr_update, data);
322 if (ret < 0) {
323 dev_err(info->dev, "%s: fail to write update reg(%d)\n",
324 __func__, ret);
325 return ret;
326 }
327
328 ret = s5m8767_wait_for_udr_update(info);
329
330 /* On S2MPS13 the AUDR is not auto-cleared */
331 if (info->device_type == S2MPS13X)
332 regmap_update_bits(info->regmap, info->regs->udr_update,
333 S2MPS13_RTC_AUDR_MASK, 0);
334
335 return ret;
336 }
337
s5m8763_data_to_tm(u8 * data,struct rtc_time * tm)338 static void s5m8763_data_to_tm(u8 *data, struct rtc_time *tm)
339 {
340 tm->tm_sec = bcd2bin(data[RTC_SEC]);
341 tm->tm_min = bcd2bin(data[RTC_MIN]);
342
343 if (data[RTC_HOUR] & HOUR_12) {
344 tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x1f);
345 if (data[RTC_HOUR] & HOUR_PM)
346 tm->tm_hour += 12;
347 } else {
348 tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x3f);
349 }
350
351 tm->tm_wday = data[RTC_WEEKDAY] & 0x07;
352 tm->tm_mday = bcd2bin(data[RTC_DATE]);
353 tm->tm_mon = bcd2bin(data[RTC_MONTH]);
354 tm->tm_year = bcd2bin(data[RTC_YEAR1]) + bcd2bin(data[RTC_YEAR2]) * 100;
355 tm->tm_year -= 1900;
356 }
357
s5m8763_tm_to_data(struct rtc_time * tm,u8 * data)358 static void s5m8763_tm_to_data(struct rtc_time *tm, u8 *data)
359 {
360 data[RTC_SEC] = bin2bcd(tm->tm_sec);
361 data[RTC_MIN] = bin2bcd(tm->tm_min);
362 data[RTC_HOUR] = bin2bcd(tm->tm_hour);
363 data[RTC_WEEKDAY] = tm->tm_wday;
364 data[RTC_DATE] = bin2bcd(tm->tm_mday);
365 data[RTC_MONTH] = bin2bcd(tm->tm_mon);
366 data[RTC_YEAR1] = bin2bcd(tm->tm_year % 100);
367 data[RTC_YEAR2] = bin2bcd((tm->tm_year + 1900) / 100);
368 }
369
s5m_rtc_read_time(struct device * dev,struct rtc_time * tm)370 static int s5m_rtc_read_time(struct device *dev, struct rtc_time *tm)
371 {
372 struct s5m_rtc_info *info = dev_get_drvdata(dev);
373 u8 data[RTC_MAX_NUM_TIME_REGS];
374 int ret;
375
376 if (info->regs->read_time_udr_mask) {
377 ret = regmap_update_bits(info->regmap,
378 info->regs->udr_update,
379 info->regs->read_time_udr_mask,
380 info->regs->read_time_udr_mask);
381 if (ret) {
382 dev_err(dev,
383 "Failed to prepare registers for time reading: %d\n",
384 ret);
385 return ret;
386 }
387 }
388 ret = regmap_bulk_read(info->regmap, info->regs->time, data,
389 info->regs->regs_count);
390 if (ret < 0)
391 return ret;
392
393 switch (info->device_type) {
394 case S5M8763X:
395 s5m8763_data_to_tm(data, tm);
396 break;
397
398 case S5M8767X:
399 case S2MPS15X:
400 case S2MPS14X:
401 case S2MPS13X:
402 s5m8767_data_to_tm(data, tm, info->rtc_24hr_mode);
403 break;
404
405 default:
406 return -EINVAL;
407 }
408
409 dev_dbg(dev, "%s: %ptR(%d)\n", __func__, tm, tm->tm_wday);
410
411 return 0;
412 }
413
s5m_rtc_set_time(struct device * dev,struct rtc_time * tm)414 static int s5m_rtc_set_time(struct device *dev, struct rtc_time *tm)
415 {
416 struct s5m_rtc_info *info = dev_get_drvdata(dev);
417 u8 data[RTC_MAX_NUM_TIME_REGS];
418 int ret = 0;
419
420 switch (info->device_type) {
421 case S5M8763X:
422 s5m8763_tm_to_data(tm, data);
423 break;
424 case S5M8767X:
425 case S2MPS15X:
426 case S2MPS14X:
427 case S2MPS13X:
428 ret = s5m8767_tm_to_data(tm, data);
429 break;
430 default:
431 return -EINVAL;
432 }
433
434 if (ret < 0)
435 return ret;
436
437 dev_dbg(dev, "%s: %ptR(%d)\n", __func__, tm, tm->tm_wday);
438
439 ret = regmap_raw_write(info->regmap, info->regs->time, data,
440 info->regs->regs_count);
441 if (ret < 0)
442 return ret;
443
444 ret = s5m8767_rtc_set_time_reg(info);
445
446 return ret;
447 }
448
s5m_rtc_read_alarm(struct device * dev,struct rtc_wkalrm * alrm)449 static int s5m_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
450 {
451 struct s5m_rtc_info *info = dev_get_drvdata(dev);
452 u8 data[RTC_MAX_NUM_TIME_REGS];
453 unsigned int val;
454 int ret, i;
455
456 ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
457 info->regs->regs_count);
458 if (ret < 0)
459 return ret;
460
461 switch (info->device_type) {
462 case S5M8763X:
463 s5m8763_data_to_tm(data, &alrm->time);
464 ret = regmap_read(info->regmap, S5M_ALARM0_CONF, &val);
465 if (ret < 0)
466 return ret;
467
468 alrm->enabled = !!val;
469 break;
470
471 case S5M8767X:
472 case S2MPS15X:
473 case S2MPS14X:
474 case S2MPS13X:
475 s5m8767_data_to_tm(data, &alrm->time, info->rtc_24hr_mode);
476 alrm->enabled = 0;
477 for (i = 0; i < info->regs->regs_count; i++) {
478 if (data[i] & ALARM_ENABLE_MASK) {
479 alrm->enabled = 1;
480 break;
481 }
482 }
483 break;
484
485 default:
486 return -EINVAL;
487 }
488
489 dev_dbg(dev, "%s: %ptR(%d)\n", __func__, &alrm->time, alrm->time.tm_wday);
490
491 ret = s5m_check_peding_alarm_interrupt(info, alrm);
492
493 return 0;
494 }
495
s5m_rtc_stop_alarm(struct s5m_rtc_info * info)496 static int s5m_rtc_stop_alarm(struct s5m_rtc_info *info)
497 {
498 u8 data[RTC_MAX_NUM_TIME_REGS];
499 int ret, i;
500 struct rtc_time tm;
501
502 ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
503 info->regs->regs_count);
504 if (ret < 0)
505 return ret;
506
507 s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
508 dev_dbg(info->dev, "%s: %ptR(%d)\n", __func__, &tm, tm.tm_wday);
509
510 switch (info->device_type) {
511 case S5M8763X:
512 ret = regmap_write(info->regmap, S5M_ALARM0_CONF, 0);
513 break;
514
515 case S5M8767X:
516 case S2MPS15X:
517 case S2MPS14X:
518 case S2MPS13X:
519 for (i = 0; i < info->regs->regs_count; i++)
520 data[i] &= ~ALARM_ENABLE_MASK;
521
522 ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
523 info->regs->regs_count);
524 if (ret < 0)
525 return ret;
526
527 ret = s5m8767_rtc_set_alarm_reg(info);
528
529 break;
530
531 default:
532 return -EINVAL;
533 }
534
535 return ret;
536 }
537
s5m_rtc_start_alarm(struct s5m_rtc_info * info)538 static int s5m_rtc_start_alarm(struct s5m_rtc_info *info)
539 {
540 int ret;
541 u8 data[RTC_MAX_NUM_TIME_REGS];
542 u8 alarm0_conf;
543 struct rtc_time tm;
544
545 ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
546 info->regs->regs_count);
547 if (ret < 0)
548 return ret;
549
550 s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
551 dev_dbg(info->dev, "%s: %ptR(%d)\n", __func__, &tm, tm.tm_wday);
552
553 switch (info->device_type) {
554 case S5M8763X:
555 alarm0_conf = 0x77;
556 ret = regmap_write(info->regmap, S5M_ALARM0_CONF, alarm0_conf);
557 break;
558
559 case S5M8767X:
560 case S2MPS15X:
561 case S2MPS14X:
562 case S2MPS13X:
563 data[RTC_SEC] |= ALARM_ENABLE_MASK;
564 data[RTC_MIN] |= ALARM_ENABLE_MASK;
565 data[RTC_HOUR] |= ALARM_ENABLE_MASK;
566 data[RTC_WEEKDAY] &= ~ALARM_ENABLE_MASK;
567 if (data[RTC_DATE] & 0x1f)
568 data[RTC_DATE] |= ALARM_ENABLE_MASK;
569 if (data[RTC_MONTH] & 0xf)
570 data[RTC_MONTH] |= ALARM_ENABLE_MASK;
571 if (data[RTC_YEAR1] & 0x7f)
572 data[RTC_YEAR1] |= ALARM_ENABLE_MASK;
573
574 ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
575 info->regs->regs_count);
576 if (ret < 0)
577 return ret;
578 ret = s5m8767_rtc_set_alarm_reg(info);
579
580 break;
581
582 default:
583 return -EINVAL;
584 }
585
586 return ret;
587 }
588
s5m_rtc_set_alarm(struct device * dev,struct rtc_wkalrm * alrm)589 static int s5m_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
590 {
591 struct s5m_rtc_info *info = dev_get_drvdata(dev);
592 u8 data[RTC_MAX_NUM_TIME_REGS];
593 int ret;
594
595 switch (info->device_type) {
596 case S5M8763X:
597 s5m8763_tm_to_data(&alrm->time, data);
598 break;
599
600 case S5M8767X:
601 case S2MPS15X:
602 case S2MPS14X:
603 case S2MPS13X:
604 s5m8767_tm_to_data(&alrm->time, data);
605 break;
606
607 default:
608 return -EINVAL;
609 }
610
611 dev_dbg(dev, "%s: %ptR(%d)\n", __func__, &alrm->time, alrm->time.tm_wday);
612
613 ret = s5m_rtc_stop_alarm(info);
614 if (ret < 0)
615 return ret;
616
617 ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
618 info->regs->regs_count);
619 if (ret < 0)
620 return ret;
621
622 ret = s5m8767_rtc_set_alarm_reg(info);
623 if (ret < 0)
624 return ret;
625
626 if (alrm->enabled)
627 ret = s5m_rtc_start_alarm(info);
628
629 return ret;
630 }
631
s5m_rtc_alarm_irq_enable(struct device * dev,unsigned int enabled)632 static int s5m_rtc_alarm_irq_enable(struct device *dev,
633 unsigned int enabled)
634 {
635 struct s5m_rtc_info *info = dev_get_drvdata(dev);
636
637 if (enabled)
638 return s5m_rtc_start_alarm(info);
639 else
640 return s5m_rtc_stop_alarm(info);
641 }
642
s5m_rtc_alarm_irq(int irq,void * data)643 static irqreturn_t s5m_rtc_alarm_irq(int irq, void *data)
644 {
645 struct s5m_rtc_info *info = data;
646
647 rtc_update_irq(info->rtc_dev, 1, RTC_IRQF | RTC_AF);
648
649 return IRQ_HANDLED;
650 }
651
652 static const struct rtc_class_ops s5m_rtc_ops = {
653 .read_time = s5m_rtc_read_time,
654 .set_time = s5m_rtc_set_time,
655 .read_alarm = s5m_rtc_read_alarm,
656 .set_alarm = s5m_rtc_set_alarm,
657 .alarm_irq_enable = s5m_rtc_alarm_irq_enable,
658 };
659
s5m8767_rtc_init_reg(struct s5m_rtc_info * info)660 static int s5m8767_rtc_init_reg(struct s5m_rtc_info *info)
661 {
662 u8 data[2];
663 int ret;
664
665 switch (info->device_type) {
666 case S5M8763X:
667 case S5M8767X:
668 /* UDR update time. Default of 7.32 ms is too long. */
669 ret = regmap_update_bits(info->regmap, S5M_RTC_UDR_CON,
670 S5M_RTC_UDR_T_MASK, S5M_RTC_UDR_T_450_US);
671 if (ret < 0)
672 dev_err(info->dev, "%s: fail to change UDR time: %d\n",
673 __func__, ret);
674
675 /* Set RTC control register : Binary mode, 24hour mode */
676 data[0] = (1 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
677 data[1] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
678
679 ret = regmap_raw_write(info->regmap, S5M_ALARM0_CONF, data, 2);
680 break;
681
682 case S2MPS15X:
683 case S2MPS14X:
684 case S2MPS13X:
685 data[0] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
686 ret = regmap_write(info->regmap, info->regs->ctrl, data[0]);
687 if (ret < 0)
688 break;
689
690 /*
691 * Should set WUDR & (RUDR or AUDR) bits to high after writing
692 * RTC_CTRL register like writing Alarm registers. We can't find
693 * the description from datasheet but vendor code does that
694 * really.
695 */
696 ret = s5m8767_rtc_set_alarm_reg(info);
697 break;
698
699 default:
700 return -EINVAL;
701 }
702
703 info->rtc_24hr_mode = 1;
704 if (ret < 0) {
705 dev_err(info->dev, "%s: fail to write controlm reg(%d)\n",
706 __func__, ret);
707 return ret;
708 }
709
710 return ret;
711 }
712
s5m_rtc_probe(struct platform_device * pdev)713 static int s5m_rtc_probe(struct platform_device *pdev)
714 {
715 struct sec_pmic_dev *s5m87xx = dev_get_drvdata(pdev->dev.parent);
716 struct s5m_rtc_info *info;
717 const struct regmap_config *regmap_cfg;
718 int ret, alarm_irq;
719
720 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
721 if (!info)
722 return -ENOMEM;
723
724 switch (platform_get_device_id(pdev)->driver_data) {
725 case S2MPS15X:
726 regmap_cfg = &s2mps14_rtc_regmap_config;
727 info->regs = &s2mps15_rtc_regs;
728 alarm_irq = S2MPS14_IRQ_RTCA0;
729 break;
730 case S2MPS14X:
731 regmap_cfg = &s2mps14_rtc_regmap_config;
732 info->regs = &s2mps14_rtc_regs;
733 alarm_irq = S2MPS14_IRQ_RTCA0;
734 break;
735 case S2MPS13X:
736 regmap_cfg = &s2mps14_rtc_regmap_config;
737 info->regs = &s2mps13_rtc_regs;
738 alarm_irq = S2MPS14_IRQ_RTCA0;
739 break;
740 case S5M8763X:
741 regmap_cfg = &s5m_rtc_regmap_config;
742 info->regs = &s5m_rtc_regs;
743 alarm_irq = S5M8763_IRQ_ALARM0;
744 break;
745 case S5M8767X:
746 regmap_cfg = &s5m_rtc_regmap_config;
747 info->regs = &s5m_rtc_regs;
748 alarm_irq = S5M8767_IRQ_RTCA1;
749 break;
750 default:
751 dev_err(&pdev->dev,
752 "Device type %lu is not supported by RTC driver\n",
753 platform_get_device_id(pdev)->driver_data);
754 return -ENODEV;
755 }
756
757 info->i2c = devm_i2c_new_dummy_device(&pdev->dev, s5m87xx->i2c->adapter,
758 RTC_I2C_ADDR);
759 if (IS_ERR(info->i2c)) {
760 dev_err(&pdev->dev, "Failed to allocate I2C for RTC\n");
761 return PTR_ERR(info->i2c);
762 }
763
764 info->regmap = devm_regmap_init_i2c(info->i2c, regmap_cfg);
765 if (IS_ERR(info->regmap)) {
766 ret = PTR_ERR(info->regmap);
767 dev_err(&pdev->dev, "Failed to allocate RTC register map: %d\n",
768 ret);
769 return ret;
770 }
771
772 info->dev = &pdev->dev;
773 info->s5m87xx = s5m87xx;
774 info->device_type = platform_get_device_id(pdev)->driver_data;
775
776 if (s5m87xx->irq_data) {
777 info->irq = regmap_irq_get_virq(s5m87xx->irq_data, alarm_irq);
778 if (info->irq <= 0) {
779 dev_err(&pdev->dev, "Failed to get virtual IRQ %d\n",
780 alarm_irq);
781 return -EINVAL;
782 }
783 }
784
785 platform_set_drvdata(pdev, info);
786
787 ret = s5m8767_rtc_init_reg(info);
788 if (ret)
789 return ret;
790
791 device_init_wakeup(&pdev->dev, 1);
792
793 info->rtc_dev = devm_rtc_device_register(&pdev->dev, "s5m-rtc",
794 &s5m_rtc_ops, THIS_MODULE);
795
796 if (IS_ERR(info->rtc_dev))
797 return PTR_ERR(info->rtc_dev);
798
799 if (!info->irq) {
800 dev_info(&pdev->dev, "Alarm IRQ not available\n");
801 return 0;
802 }
803
804 ret = devm_request_threaded_irq(&pdev->dev, info->irq, NULL,
805 s5m_rtc_alarm_irq, 0, "rtc-alarm0",
806 info);
807 if (ret < 0) {
808 dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n",
809 info->irq, ret);
810 return ret;
811 }
812
813 return 0;
814 }
815
816 #ifdef CONFIG_PM_SLEEP
s5m_rtc_resume(struct device * dev)817 static int s5m_rtc_resume(struct device *dev)
818 {
819 struct s5m_rtc_info *info = dev_get_drvdata(dev);
820 int ret = 0;
821
822 if (info->irq && device_may_wakeup(dev))
823 ret = disable_irq_wake(info->irq);
824
825 return ret;
826 }
827
s5m_rtc_suspend(struct device * dev)828 static int s5m_rtc_suspend(struct device *dev)
829 {
830 struct s5m_rtc_info *info = dev_get_drvdata(dev);
831 int ret = 0;
832
833 if (info->irq && device_may_wakeup(dev))
834 ret = enable_irq_wake(info->irq);
835
836 return ret;
837 }
838 #endif /* CONFIG_PM_SLEEP */
839
840 static SIMPLE_DEV_PM_OPS(s5m_rtc_pm_ops, s5m_rtc_suspend, s5m_rtc_resume);
841
842 static const struct platform_device_id s5m_rtc_id[] = {
843 { "s5m-rtc", S5M8767X },
844 { "s2mps13-rtc", S2MPS13X },
845 { "s2mps14-rtc", S2MPS14X },
846 { "s2mps15-rtc", S2MPS15X },
847 { },
848 };
849 MODULE_DEVICE_TABLE(platform, s5m_rtc_id);
850
851 static struct platform_driver s5m_rtc_driver = {
852 .driver = {
853 .name = "s5m-rtc",
854 .pm = &s5m_rtc_pm_ops,
855 },
856 .probe = s5m_rtc_probe,
857 .id_table = s5m_rtc_id,
858 };
859
860 module_platform_driver(s5m_rtc_driver);
861
862 /* Module information */
863 MODULE_AUTHOR("Sangbeom Kim <sbkim73@samsung.com>");
864 MODULE_DESCRIPTION("Samsung S5M/S2MPS14 RTC driver");
865 MODULE_LICENSE("GPL");
866 MODULE_ALIAS("platform:s5m-rtc");
867