1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Copyright (c) 2013-2014 Samsung Electronics Co., Ltd
4 //	http://www.samsung.com
5 //
6 //  Copyright (C) 2013 Google, Inc
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/module.h>
11 #include <linux/i2c.h>
12 #include <linux/bcd.h>
13 #include <linux/regmap.h>
14 #include <linux/rtc.h>
15 #include <linux/platform_device.h>
16 #include <linux/mfd/samsung/core.h>
17 #include <linux/mfd/samsung/irq.h>
18 #include <linux/mfd/samsung/rtc.h>
19 #include <linux/mfd/samsung/s2mps14.h>
20 
21 /*
22  * Maximum number of retries for checking changes in UDR field
23  * of S5M_RTC_UDR_CON register (to limit possible endless loop).
24  *
25  * After writing to RTC registers (setting time or alarm) read the UDR field
26  * in S5M_RTC_UDR_CON register. UDR is auto-cleared when data have
27  * been transferred.
28  */
29 #define UDR_READ_RETRY_CNT	5
30 
31 enum {
32 	RTC_SEC = 0,
33 	RTC_MIN,
34 	RTC_HOUR,
35 	RTC_WEEKDAY,
36 	RTC_DATE,
37 	RTC_MONTH,
38 	RTC_YEAR1,
39 	RTC_YEAR2,
40 	/* Make sure this is always the last enum name. */
41 	RTC_MAX_NUM_TIME_REGS
42 };
43 
44 /*
45  * Registers used by the driver which are different between chipsets.
46  *
47  * Operations like read time and write alarm/time require updating
48  * specific fields in UDR register. These fields usually are auto-cleared
49  * (with some exceptions).
50  *
51  * Table of operations per device:
52  *
53  * Device     | Write time | Read time | Write alarm
54  * =================================================
55  * S5M8767    | UDR + TIME |           | UDR
56  * S2MPS11/14 | WUDR       | RUDR      | WUDR + RUDR
57  * S2MPS13    | WUDR       | RUDR      | WUDR + AUDR
58  * S2MPS15    | WUDR       | RUDR      | AUDR
59  */
60 struct s5m_rtc_reg_config {
61 	/* Number of registers used for setting time/alarm0/alarm1 */
62 	unsigned int regs_count;
63 	/* First register for time, seconds */
64 	unsigned int time;
65 	/* RTC control register */
66 	unsigned int ctrl;
67 	/* First register for alarm 0, seconds */
68 	unsigned int alarm0;
69 	/* First register for alarm 1, seconds */
70 	unsigned int alarm1;
71 	/*
72 	 * Register for update flag (UDR). Typically setting UDR field to 1
73 	 * will enable update of time or alarm register. Then it will be
74 	 * auto-cleared after successful update.
75 	 */
76 	unsigned int udr_update;
77 	/* Auto-cleared mask in UDR field for writing time and alarm */
78 	unsigned int autoclear_udr_mask;
79 	/*
80 	 * Masks in UDR field for time and alarm operations.
81 	 * The read time mask can be 0. Rest should not.
82 	 */
83 	unsigned int read_time_udr_mask;
84 	unsigned int write_time_udr_mask;
85 	unsigned int write_alarm_udr_mask;
86 };
87 
88 /* Register map for S5M8763 and S5M8767 */
89 static const struct s5m_rtc_reg_config s5m_rtc_regs = {
90 	.regs_count		= 8,
91 	.time			= S5M_RTC_SEC,
92 	.ctrl			= S5M_ALARM1_CONF,
93 	.alarm0			= S5M_ALARM0_SEC,
94 	.alarm1			= S5M_ALARM1_SEC,
95 	.udr_update		= S5M_RTC_UDR_CON,
96 	.autoclear_udr_mask	= S5M_RTC_UDR_MASK,
97 	.read_time_udr_mask	= 0, /* Not needed */
98 	.write_time_udr_mask	= S5M_RTC_UDR_MASK | S5M_RTC_TIME_EN_MASK,
99 	.write_alarm_udr_mask	= S5M_RTC_UDR_MASK,
100 };
101 
102 /* Register map for S2MPS13 */
103 static const struct s5m_rtc_reg_config s2mps13_rtc_regs = {
104 	.regs_count		= 7,
105 	.time			= S2MPS_RTC_SEC,
106 	.ctrl			= S2MPS_RTC_CTRL,
107 	.alarm0			= S2MPS_ALARM0_SEC,
108 	.alarm1			= S2MPS_ALARM1_SEC,
109 	.udr_update		= S2MPS_RTC_UDR_CON,
110 	.autoclear_udr_mask	= S2MPS_RTC_WUDR_MASK,
111 	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
112 	.write_time_udr_mask	= S2MPS_RTC_WUDR_MASK,
113 	.write_alarm_udr_mask	= S2MPS_RTC_WUDR_MASK | S2MPS13_RTC_AUDR_MASK,
114 };
115 
116 /* Register map for S2MPS11/14 */
117 static const struct s5m_rtc_reg_config s2mps14_rtc_regs = {
118 	.regs_count		= 7,
119 	.time			= S2MPS_RTC_SEC,
120 	.ctrl			= S2MPS_RTC_CTRL,
121 	.alarm0			= S2MPS_ALARM0_SEC,
122 	.alarm1			= S2MPS_ALARM1_SEC,
123 	.udr_update		= S2MPS_RTC_UDR_CON,
124 	.autoclear_udr_mask	= S2MPS_RTC_WUDR_MASK,
125 	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
126 	.write_time_udr_mask	= S2MPS_RTC_WUDR_MASK,
127 	.write_alarm_udr_mask	= S2MPS_RTC_WUDR_MASK | S2MPS_RTC_RUDR_MASK,
128 };
129 
130 /*
131  * Register map for S2MPS15 - in comparison to S2MPS14 the WUDR and AUDR bits
132  * are swapped.
133  */
134 static const struct s5m_rtc_reg_config s2mps15_rtc_regs = {
135 	.regs_count		= 7,
136 	.time			= S2MPS_RTC_SEC,
137 	.ctrl			= S2MPS_RTC_CTRL,
138 	.alarm0			= S2MPS_ALARM0_SEC,
139 	.alarm1			= S2MPS_ALARM1_SEC,
140 	.udr_update		= S2MPS_RTC_UDR_CON,
141 	.autoclear_udr_mask	= S2MPS_RTC_WUDR_MASK,
142 	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
143 	.write_time_udr_mask	= S2MPS15_RTC_WUDR_MASK,
144 	.write_alarm_udr_mask	= S2MPS15_RTC_AUDR_MASK,
145 };
146 
147 struct s5m_rtc_info {
148 	struct device *dev;
149 	struct i2c_client *i2c;
150 	struct sec_pmic_dev *s5m87xx;
151 	struct regmap *regmap;
152 	struct rtc_device *rtc_dev;
153 	int irq;
154 	enum sec_device_type device_type;
155 	int rtc_24hr_mode;
156 	const struct s5m_rtc_reg_config	*regs;
157 };
158 
159 static const struct regmap_config s5m_rtc_regmap_config = {
160 	.reg_bits = 8,
161 	.val_bits = 8,
162 
163 	.max_register = S5M_RTC_REG_MAX,
164 };
165 
166 static const struct regmap_config s2mps14_rtc_regmap_config = {
167 	.reg_bits = 8,
168 	.val_bits = 8,
169 
170 	.max_register = S2MPS_RTC_REG_MAX,
171 };
172 
s5m8767_data_to_tm(u8 * data,struct rtc_time * tm,int rtc_24hr_mode)173 static void s5m8767_data_to_tm(u8 *data, struct rtc_time *tm,
174 			       int rtc_24hr_mode)
175 {
176 	tm->tm_sec = data[RTC_SEC] & 0x7f;
177 	tm->tm_min = data[RTC_MIN] & 0x7f;
178 	if (rtc_24hr_mode) {
179 		tm->tm_hour = data[RTC_HOUR] & 0x1f;
180 	} else {
181 		tm->tm_hour = data[RTC_HOUR] & 0x0f;
182 		if (data[RTC_HOUR] & HOUR_PM_MASK)
183 			tm->tm_hour += 12;
184 	}
185 
186 	tm->tm_wday = ffs(data[RTC_WEEKDAY] & 0x7f);
187 	tm->tm_mday = data[RTC_DATE] & 0x1f;
188 	tm->tm_mon = (data[RTC_MONTH] & 0x0f) - 1;
189 	tm->tm_year = (data[RTC_YEAR1] & 0x7f) + 100;
190 	tm->tm_yday = 0;
191 	tm->tm_isdst = 0;
192 }
193 
s5m8767_tm_to_data(struct rtc_time * tm,u8 * data)194 static int s5m8767_tm_to_data(struct rtc_time *tm, u8 *data)
195 {
196 	data[RTC_SEC] = tm->tm_sec;
197 	data[RTC_MIN] = tm->tm_min;
198 
199 	if (tm->tm_hour >= 12)
200 		data[RTC_HOUR] = tm->tm_hour | HOUR_PM_MASK;
201 	else
202 		data[RTC_HOUR] = tm->tm_hour & ~HOUR_PM_MASK;
203 
204 	data[RTC_WEEKDAY] = 1 << tm->tm_wday;
205 	data[RTC_DATE] = tm->tm_mday;
206 	data[RTC_MONTH] = tm->tm_mon + 1;
207 	data[RTC_YEAR1] = tm->tm_year > 100 ? (tm->tm_year - 100) : 0;
208 
209 	if (tm->tm_year < 100) {
210 		pr_err("RTC cannot handle the year %d\n",
211 		       1900 + tm->tm_year);
212 		return -EINVAL;
213 	} else {
214 		return 0;
215 	}
216 }
217 
218 /*
219  * Read RTC_UDR_CON register and wait till UDR field is cleared.
220  * This indicates that time/alarm update ended.
221  */
s5m8767_wait_for_udr_update(struct s5m_rtc_info * info)222 static int s5m8767_wait_for_udr_update(struct s5m_rtc_info *info)
223 {
224 	int ret, retry = UDR_READ_RETRY_CNT;
225 	unsigned int data;
226 
227 	do {
228 		ret = regmap_read(info->regmap, info->regs->udr_update, &data);
229 	} while (--retry && (data & info->regs->autoclear_udr_mask) && !ret);
230 
231 	if (!retry)
232 		dev_err(info->dev, "waiting for UDR update, reached max number of retries\n");
233 
234 	return ret;
235 }
236 
s5m_check_peding_alarm_interrupt(struct s5m_rtc_info * info,struct rtc_wkalrm * alarm)237 static int s5m_check_peding_alarm_interrupt(struct s5m_rtc_info *info,
238 		struct rtc_wkalrm *alarm)
239 {
240 	int ret;
241 	unsigned int val;
242 
243 	switch (info->device_type) {
244 	case S5M8767X:
245 	case S5M8763X:
246 		ret = regmap_read(info->regmap, S5M_RTC_STATUS, &val);
247 		val &= S5M_ALARM0_STATUS;
248 		break;
249 	case S2MPS15X:
250 	case S2MPS14X:
251 	case S2MPS13X:
252 		ret = regmap_read(info->s5m87xx->regmap_pmic, S2MPS14_REG_ST2,
253 				&val);
254 		val &= S2MPS_ALARM0_STATUS;
255 		break;
256 	default:
257 		return -EINVAL;
258 	}
259 	if (ret < 0)
260 		return ret;
261 
262 	if (val)
263 		alarm->pending = 1;
264 	else
265 		alarm->pending = 0;
266 
267 	return 0;
268 }
269 
s5m8767_rtc_set_time_reg(struct s5m_rtc_info * info)270 static int s5m8767_rtc_set_time_reg(struct s5m_rtc_info *info)
271 {
272 	int ret;
273 	unsigned int data;
274 
275 	ret = regmap_read(info->regmap, info->regs->udr_update, &data);
276 	if (ret < 0) {
277 		dev_err(info->dev, "failed to read update reg(%d)\n", ret);
278 		return ret;
279 	}
280 
281 	data |= info->regs->write_time_udr_mask;
282 
283 	ret = regmap_write(info->regmap, info->regs->udr_update, data);
284 	if (ret < 0) {
285 		dev_err(info->dev, "failed to write update reg(%d)\n", ret);
286 		return ret;
287 	}
288 
289 	ret = s5m8767_wait_for_udr_update(info);
290 
291 	return ret;
292 }
293 
s5m8767_rtc_set_alarm_reg(struct s5m_rtc_info * info)294 static int s5m8767_rtc_set_alarm_reg(struct s5m_rtc_info *info)
295 {
296 	int ret;
297 	unsigned int data;
298 
299 	ret = regmap_read(info->regmap, info->regs->udr_update, &data);
300 	if (ret < 0) {
301 		dev_err(info->dev, "%s: fail to read update reg(%d)\n",
302 			__func__, ret);
303 		return ret;
304 	}
305 
306 	data |= info->regs->write_alarm_udr_mask;
307 	switch (info->device_type) {
308 	case S5M8763X:
309 	case S5M8767X:
310 		data &= ~S5M_RTC_TIME_EN_MASK;
311 		break;
312 	case S2MPS15X:
313 	case S2MPS14X:
314 	case S2MPS13X:
315 		/* No exceptions needed */
316 		break;
317 	default:
318 		return -EINVAL;
319 	}
320 
321 	ret = regmap_write(info->regmap, info->regs->udr_update, data);
322 	if (ret < 0) {
323 		dev_err(info->dev, "%s: fail to write update reg(%d)\n",
324 			__func__, ret);
325 		return ret;
326 	}
327 
328 	ret = s5m8767_wait_for_udr_update(info);
329 
330 	/* On S2MPS13 the AUDR is not auto-cleared */
331 	if (info->device_type == S2MPS13X)
332 		regmap_update_bits(info->regmap, info->regs->udr_update,
333 				   S2MPS13_RTC_AUDR_MASK, 0);
334 
335 	return ret;
336 }
337 
s5m8763_data_to_tm(u8 * data,struct rtc_time * tm)338 static void s5m8763_data_to_tm(u8 *data, struct rtc_time *tm)
339 {
340 	tm->tm_sec = bcd2bin(data[RTC_SEC]);
341 	tm->tm_min = bcd2bin(data[RTC_MIN]);
342 
343 	if (data[RTC_HOUR] & HOUR_12) {
344 		tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x1f);
345 		if (data[RTC_HOUR] & HOUR_PM)
346 			tm->tm_hour += 12;
347 	} else {
348 		tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x3f);
349 	}
350 
351 	tm->tm_wday = data[RTC_WEEKDAY] & 0x07;
352 	tm->tm_mday = bcd2bin(data[RTC_DATE]);
353 	tm->tm_mon = bcd2bin(data[RTC_MONTH]);
354 	tm->tm_year = bcd2bin(data[RTC_YEAR1]) + bcd2bin(data[RTC_YEAR2]) * 100;
355 	tm->tm_year -= 1900;
356 }
357 
s5m8763_tm_to_data(struct rtc_time * tm,u8 * data)358 static void s5m8763_tm_to_data(struct rtc_time *tm, u8 *data)
359 {
360 	data[RTC_SEC] = bin2bcd(tm->tm_sec);
361 	data[RTC_MIN] = bin2bcd(tm->tm_min);
362 	data[RTC_HOUR] = bin2bcd(tm->tm_hour);
363 	data[RTC_WEEKDAY] = tm->tm_wday;
364 	data[RTC_DATE] = bin2bcd(tm->tm_mday);
365 	data[RTC_MONTH] = bin2bcd(tm->tm_mon);
366 	data[RTC_YEAR1] = bin2bcd(tm->tm_year % 100);
367 	data[RTC_YEAR2] = bin2bcd((tm->tm_year + 1900) / 100);
368 }
369 
s5m_rtc_read_time(struct device * dev,struct rtc_time * tm)370 static int s5m_rtc_read_time(struct device *dev, struct rtc_time *tm)
371 {
372 	struct s5m_rtc_info *info = dev_get_drvdata(dev);
373 	u8 data[RTC_MAX_NUM_TIME_REGS];
374 	int ret;
375 
376 	if (info->regs->read_time_udr_mask) {
377 		ret = regmap_update_bits(info->regmap,
378 				info->regs->udr_update,
379 				info->regs->read_time_udr_mask,
380 				info->regs->read_time_udr_mask);
381 		if (ret) {
382 			dev_err(dev,
383 				"Failed to prepare registers for time reading: %d\n",
384 				ret);
385 			return ret;
386 		}
387 	}
388 	ret = regmap_bulk_read(info->regmap, info->regs->time, data,
389 			info->regs->regs_count);
390 	if (ret < 0)
391 		return ret;
392 
393 	switch (info->device_type) {
394 	case S5M8763X:
395 		s5m8763_data_to_tm(data, tm);
396 		break;
397 
398 	case S5M8767X:
399 	case S2MPS15X:
400 	case S2MPS14X:
401 	case S2MPS13X:
402 		s5m8767_data_to_tm(data, tm, info->rtc_24hr_mode);
403 		break;
404 
405 	default:
406 		return -EINVAL;
407 	}
408 
409 	dev_dbg(dev, "%s: %ptR(%d)\n", __func__, tm, tm->tm_wday);
410 
411 	return 0;
412 }
413 
s5m_rtc_set_time(struct device * dev,struct rtc_time * tm)414 static int s5m_rtc_set_time(struct device *dev, struct rtc_time *tm)
415 {
416 	struct s5m_rtc_info *info = dev_get_drvdata(dev);
417 	u8 data[RTC_MAX_NUM_TIME_REGS];
418 	int ret = 0;
419 
420 	switch (info->device_type) {
421 	case S5M8763X:
422 		s5m8763_tm_to_data(tm, data);
423 		break;
424 	case S5M8767X:
425 	case S2MPS15X:
426 	case S2MPS14X:
427 	case S2MPS13X:
428 		ret = s5m8767_tm_to_data(tm, data);
429 		break;
430 	default:
431 		return -EINVAL;
432 	}
433 
434 	if (ret < 0)
435 		return ret;
436 
437 	dev_dbg(dev, "%s: %ptR(%d)\n", __func__, tm, tm->tm_wday);
438 
439 	ret = regmap_raw_write(info->regmap, info->regs->time, data,
440 			info->regs->regs_count);
441 	if (ret < 0)
442 		return ret;
443 
444 	ret = s5m8767_rtc_set_time_reg(info);
445 
446 	return ret;
447 }
448 
s5m_rtc_read_alarm(struct device * dev,struct rtc_wkalrm * alrm)449 static int s5m_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
450 {
451 	struct s5m_rtc_info *info = dev_get_drvdata(dev);
452 	u8 data[RTC_MAX_NUM_TIME_REGS];
453 	unsigned int val;
454 	int ret, i;
455 
456 	ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
457 			info->regs->regs_count);
458 	if (ret < 0)
459 		return ret;
460 
461 	switch (info->device_type) {
462 	case S5M8763X:
463 		s5m8763_data_to_tm(data, &alrm->time);
464 		ret = regmap_read(info->regmap, S5M_ALARM0_CONF, &val);
465 		if (ret < 0)
466 			return ret;
467 
468 		alrm->enabled = !!val;
469 		break;
470 
471 	case S5M8767X:
472 	case S2MPS15X:
473 	case S2MPS14X:
474 	case S2MPS13X:
475 		s5m8767_data_to_tm(data, &alrm->time, info->rtc_24hr_mode);
476 		alrm->enabled = 0;
477 		for (i = 0; i < info->regs->regs_count; i++) {
478 			if (data[i] & ALARM_ENABLE_MASK) {
479 				alrm->enabled = 1;
480 				break;
481 			}
482 		}
483 		break;
484 
485 	default:
486 		return -EINVAL;
487 	}
488 
489 	dev_dbg(dev, "%s: %ptR(%d)\n", __func__, &alrm->time, alrm->time.tm_wday);
490 
491 	ret = s5m_check_peding_alarm_interrupt(info, alrm);
492 
493 	return 0;
494 }
495 
s5m_rtc_stop_alarm(struct s5m_rtc_info * info)496 static int s5m_rtc_stop_alarm(struct s5m_rtc_info *info)
497 {
498 	u8 data[RTC_MAX_NUM_TIME_REGS];
499 	int ret, i;
500 	struct rtc_time tm;
501 
502 	ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
503 			info->regs->regs_count);
504 	if (ret < 0)
505 		return ret;
506 
507 	s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
508 	dev_dbg(info->dev, "%s: %ptR(%d)\n", __func__, &tm, tm.tm_wday);
509 
510 	switch (info->device_type) {
511 	case S5M8763X:
512 		ret = regmap_write(info->regmap, S5M_ALARM0_CONF, 0);
513 		break;
514 
515 	case S5M8767X:
516 	case S2MPS15X:
517 	case S2MPS14X:
518 	case S2MPS13X:
519 		for (i = 0; i < info->regs->regs_count; i++)
520 			data[i] &= ~ALARM_ENABLE_MASK;
521 
522 		ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
523 				info->regs->regs_count);
524 		if (ret < 0)
525 			return ret;
526 
527 		ret = s5m8767_rtc_set_alarm_reg(info);
528 
529 		break;
530 
531 	default:
532 		return -EINVAL;
533 	}
534 
535 	return ret;
536 }
537 
s5m_rtc_start_alarm(struct s5m_rtc_info * info)538 static int s5m_rtc_start_alarm(struct s5m_rtc_info *info)
539 {
540 	int ret;
541 	u8 data[RTC_MAX_NUM_TIME_REGS];
542 	u8 alarm0_conf;
543 	struct rtc_time tm;
544 
545 	ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
546 			info->regs->regs_count);
547 	if (ret < 0)
548 		return ret;
549 
550 	s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
551 	dev_dbg(info->dev, "%s: %ptR(%d)\n", __func__, &tm, tm.tm_wday);
552 
553 	switch (info->device_type) {
554 	case S5M8763X:
555 		alarm0_conf = 0x77;
556 		ret = regmap_write(info->regmap, S5M_ALARM0_CONF, alarm0_conf);
557 		break;
558 
559 	case S5M8767X:
560 	case S2MPS15X:
561 	case S2MPS14X:
562 	case S2MPS13X:
563 		data[RTC_SEC] |= ALARM_ENABLE_MASK;
564 		data[RTC_MIN] |= ALARM_ENABLE_MASK;
565 		data[RTC_HOUR] |= ALARM_ENABLE_MASK;
566 		data[RTC_WEEKDAY] &= ~ALARM_ENABLE_MASK;
567 		if (data[RTC_DATE] & 0x1f)
568 			data[RTC_DATE] |= ALARM_ENABLE_MASK;
569 		if (data[RTC_MONTH] & 0xf)
570 			data[RTC_MONTH] |= ALARM_ENABLE_MASK;
571 		if (data[RTC_YEAR1] & 0x7f)
572 			data[RTC_YEAR1] |= ALARM_ENABLE_MASK;
573 
574 		ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
575 				info->regs->regs_count);
576 		if (ret < 0)
577 			return ret;
578 		ret = s5m8767_rtc_set_alarm_reg(info);
579 
580 		break;
581 
582 	default:
583 		return -EINVAL;
584 	}
585 
586 	return ret;
587 }
588 
s5m_rtc_set_alarm(struct device * dev,struct rtc_wkalrm * alrm)589 static int s5m_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
590 {
591 	struct s5m_rtc_info *info = dev_get_drvdata(dev);
592 	u8 data[RTC_MAX_NUM_TIME_REGS];
593 	int ret;
594 
595 	switch (info->device_type) {
596 	case S5M8763X:
597 		s5m8763_tm_to_data(&alrm->time, data);
598 		break;
599 
600 	case S5M8767X:
601 	case S2MPS15X:
602 	case S2MPS14X:
603 	case S2MPS13X:
604 		s5m8767_tm_to_data(&alrm->time, data);
605 		break;
606 
607 	default:
608 		return -EINVAL;
609 	}
610 
611 	dev_dbg(dev, "%s: %ptR(%d)\n", __func__, &alrm->time, alrm->time.tm_wday);
612 
613 	ret = s5m_rtc_stop_alarm(info);
614 	if (ret < 0)
615 		return ret;
616 
617 	ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
618 			info->regs->regs_count);
619 	if (ret < 0)
620 		return ret;
621 
622 	ret = s5m8767_rtc_set_alarm_reg(info);
623 	if (ret < 0)
624 		return ret;
625 
626 	if (alrm->enabled)
627 		ret = s5m_rtc_start_alarm(info);
628 
629 	return ret;
630 }
631 
s5m_rtc_alarm_irq_enable(struct device * dev,unsigned int enabled)632 static int s5m_rtc_alarm_irq_enable(struct device *dev,
633 				    unsigned int enabled)
634 {
635 	struct s5m_rtc_info *info = dev_get_drvdata(dev);
636 
637 	if (enabled)
638 		return s5m_rtc_start_alarm(info);
639 	else
640 		return s5m_rtc_stop_alarm(info);
641 }
642 
s5m_rtc_alarm_irq(int irq,void * data)643 static irqreturn_t s5m_rtc_alarm_irq(int irq, void *data)
644 {
645 	struct s5m_rtc_info *info = data;
646 
647 	rtc_update_irq(info->rtc_dev, 1, RTC_IRQF | RTC_AF);
648 
649 	return IRQ_HANDLED;
650 }
651 
652 static const struct rtc_class_ops s5m_rtc_ops = {
653 	.read_time = s5m_rtc_read_time,
654 	.set_time = s5m_rtc_set_time,
655 	.read_alarm = s5m_rtc_read_alarm,
656 	.set_alarm = s5m_rtc_set_alarm,
657 	.alarm_irq_enable = s5m_rtc_alarm_irq_enable,
658 };
659 
s5m8767_rtc_init_reg(struct s5m_rtc_info * info)660 static int s5m8767_rtc_init_reg(struct s5m_rtc_info *info)
661 {
662 	u8 data[2];
663 	int ret;
664 
665 	switch (info->device_type) {
666 	case S5M8763X:
667 	case S5M8767X:
668 		/* UDR update time. Default of 7.32 ms is too long. */
669 		ret = regmap_update_bits(info->regmap, S5M_RTC_UDR_CON,
670 				S5M_RTC_UDR_T_MASK, S5M_RTC_UDR_T_450_US);
671 		if (ret < 0)
672 			dev_err(info->dev, "%s: fail to change UDR time: %d\n",
673 					__func__, ret);
674 
675 		/* Set RTC control register : Binary mode, 24hour mode */
676 		data[0] = (1 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
677 		data[1] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
678 
679 		ret = regmap_raw_write(info->regmap, S5M_ALARM0_CONF, data, 2);
680 		break;
681 
682 	case S2MPS15X:
683 	case S2MPS14X:
684 	case S2MPS13X:
685 		data[0] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
686 		ret = regmap_write(info->regmap, info->regs->ctrl, data[0]);
687 		if (ret < 0)
688 			break;
689 
690 		/*
691 		 * Should set WUDR & (RUDR or AUDR) bits to high after writing
692 		 * RTC_CTRL register like writing Alarm registers. We can't find
693 		 * the description from datasheet but vendor code does that
694 		 * really.
695 		 */
696 		ret = s5m8767_rtc_set_alarm_reg(info);
697 		break;
698 
699 	default:
700 		return -EINVAL;
701 	}
702 
703 	info->rtc_24hr_mode = 1;
704 	if (ret < 0) {
705 		dev_err(info->dev, "%s: fail to write controlm reg(%d)\n",
706 			__func__, ret);
707 		return ret;
708 	}
709 
710 	return ret;
711 }
712 
s5m_rtc_probe(struct platform_device * pdev)713 static int s5m_rtc_probe(struct platform_device *pdev)
714 {
715 	struct sec_pmic_dev *s5m87xx = dev_get_drvdata(pdev->dev.parent);
716 	struct s5m_rtc_info *info;
717 	const struct regmap_config *regmap_cfg;
718 	int ret, alarm_irq;
719 
720 	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
721 	if (!info)
722 		return -ENOMEM;
723 
724 	switch (platform_get_device_id(pdev)->driver_data) {
725 	case S2MPS15X:
726 		regmap_cfg = &s2mps14_rtc_regmap_config;
727 		info->regs = &s2mps15_rtc_regs;
728 		alarm_irq = S2MPS14_IRQ_RTCA0;
729 		break;
730 	case S2MPS14X:
731 		regmap_cfg = &s2mps14_rtc_regmap_config;
732 		info->regs = &s2mps14_rtc_regs;
733 		alarm_irq = S2MPS14_IRQ_RTCA0;
734 		break;
735 	case S2MPS13X:
736 		regmap_cfg = &s2mps14_rtc_regmap_config;
737 		info->regs = &s2mps13_rtc_regs;
738 		alarm_irq = S2MPS14_IRQ_RTCA0;
739 		break;
740 	case S5M8763X:
741 		regmap_cfg = &s5m_rtc_regmap_config;
742 		info->regs = &s5m_rtc_regs;
743 		alarm_irq = S5M8763_IRQ_ALARM0;
744 		break;
745 	case S5M8767X:
746 		regmap_cfg = &s5m_rtc_regmap_config;
747 		info->regs = &s5m_rtc_regs;
748 		alarm_irq = S5M8767_IRQ_RTCA1;
749 		break;
750 	default:
751 		dev_err(&pdev->dev,
752 				"Device type %lu is not supported by RTC driver\n",
753 				platform_get_device_id(pdev)->driver_data);
754 		return -ENODEV;
755 	}
756 
757 	info->i2c = devm_i2c_new_dummy_device(&pdev->dev, s5m87xx->i2c->adapter,
758 					      RTC_I2C_ADDR);
759 	if (IS_ERR(info->i2c)) {
760 		dev_err(&pdev->dev, "Failed to allocate I2C for RTC\n");
761 		return PTR_ERR(info->i2c);
762 	}
763 
764 	info->regmap = devm_regmap_init_i2c(info->i2c, regmap_cfg);
765 	if (IS_ERR(info->regmap)) {
766 		ret = PTR_ERR(info->regmap);
767 		dev_err(&pdev->dev, "Failed to allocate RTC register map: %d\n",
768 				ret);
769 		return ret;
770 	}
771 
772 	info->dev = &pdev->dev;
773 	info->s5m87xx = s5m87xx;
774 	info->device_type = platform_get_device_id(pdev)->driver_data;
775 
776 	if (s5m87xx->irq_data) {
777 		info->irq = regmap_irq_get_virq(s5m87xx->irq_data, alarm_irq);
778 		if (info->irq <= 0) {
779 			dev_err(&pdev->dev, "Failed to get virtual IRQ %d\n",
780 				alarm_irq);
781 			return -EINVAL;
782 		}
783 	}
784 
785 	platform_set_drvdata(pdev, info);
786 
787 	ret = s5m8767_rtc_init_reg(info);
788 	if (ret)
789 		return ret;
790 
791 	device_init_wakeup(&pdev->dev, 1);
792 
793 	info->rtc_dev = devm_rtc_device_register(&pdev->dev, "s5m-rtc",
794 						 &s5m_rtc_ops, THIS_MODULE);
795 
796 	if (IS_ERR(info->rtc_dev))
797 		return PTR_ERR(info->rtc_dev);
798 
799 	if (!info->irq) {
800 		dev_info(&pdev->dev, "Alarm IRQ not available\n");
801 		return 0;
802 	}
803 
804 	ret = devm_request_threaded_irq(&pdev->dev, info->irq, NULL,
805 					s5m_rtc_alarm_irq, 0, "rtc-alarm0",
806 					info);
807 	if (ret < 0) {
808 		dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n",
809 			info->irq, ret);
810 		return ret;
811 	}
812 
813 	return 0;
814 }
815 
816 #ifdef CONFIG_PM_SLEEP
s5m_rtc_resume(struct device * dev)817 static int s5m_rtc_resume(struct device *dev)
818 {
819 	struct s5m_rtc_info *info = dev_get_drvdata(dev);
820 	int ret = 0;
821 
822 	if (info->irq && device_may_wakeup(dev))
823 		ret = disable_irq_wake(info->irq);
824 
825 	return ret;
826 }
827 
s5m_rtc_suspend(struct device * dev)828 static int s5m_rtc_suspend(struct device *dev)
829 {
830 	struct s5m_rtc_info *info = dev_get_drvdata(dev);
831 	int ret = 0;
832 
833 	if (info->irq && device_may_wakeup(dev))
834 		ret = enable_irq_wake(info->irq);
835 
836 	return ret;
837 }
838 #endif /* CONFIG_PM_SLEEP */
839 
840 static SIMPLE_DEV_PM_OPS(s5m_rtc_pm_ops, s5m_rtc_suspend, s5m_rtc_resume);
841 
842 static const struct platform_device_id s5m_rtc_id[] = {
843 	{ "s5m-rtc",		S5M8767X },
844 	{ "s2mps13-rtc",	S2MPS13X },
845 	{ "s2mps14-rtc",	S2MPS14X },
846 	{ "s2mps15-rtc",	S2MPS15X },
847 	{ },
848 };
849 MODULE_DEVICE_TABLE(platform, s5m_rtc_id);
850 
851 static struct platform_driver s5m_rtc_driver = {
852 	.driver		= {
853 		.name	= "s5m-rtc",
854 		.pm	= &s5m_rtc_pm_ops,
855 	},
856 	.probe		= s5m_rtc_probe,
857 	.id_table	= s5m_rtc_id,
858 };
859 
860 module_platform_driver(s5m_rtc_driver);
861 
862 /* Module information */
863 MODULE_AUTHOR("Sangbeom Kim <sbkim73@samsung.com>");
864 MODULE_DESCRIPTION("Samsung S5M/S2MPS14 RTC driver");
865 MODULE_LICENSE("GPL");
866 MODULE_ALIAS("platform:s5m-rtc");
867