1 // SPDX-License-Identifier: GPL-2.0
2 /****************************************************************************/
3 /*
4  *  linux/fs/binfmt_flat.c
5  *
6  *	Copyright (C) 2000-2003 David McCullough <davidm@snapgear.com>
7  *	Copyright (C) 2002 Greg Ungerer <gerg@snapgear.com>
8  *	Copyright (C) 2002 SnapGear, by Paul Dale <pauli@snapgear.com>
9  *	Copyright (C) 2000, 2001 Lineo, by David McCullough <davidm@lineo.com>
10  *  based heavily on:
11  *
12  *  linux/fs/binfmt_aout.c:
13  *      Copyright (C) 1991, 1992, 1996  Linus Torvalds
14  *  linux/fs/binfmt_flat.c for 2.0 kernel
15  *	    Copyright (C) 1998  Kenneth Albanowski <kjahds@kjahds.com>
16  *	JAN/99 -- coded full program relocation (gerg@snapgear.com)
17  */
18 
19 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
20 
21 #include <linux/kernel.h>
22 #include <linux/sched.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/mm.h>
25 #include <linux/mman.h>
26 #include <linux/errno.h>
27 #include <linux/signal.h>
28 #include <linux/string.h>
29 #include <linux/fs.h>
30 #include <linux/file.h>
31 #include <linux/ptrace.h>
32 #include <linux/user.h>
33 #include <linux/slab.h>
34 #include <linux/binfmts.h>
35 #include <linux/personality.h>
36 #include <linux/init.h>
37 #include <linux/flat.h>
38 #include <linux/uaccess.h>
39 #include <linux/vmalloc.h>
40 
41 #include <asm/byteorder.h>
42 #include <asm/unaligned.h>
43 #include <asm/cacheflush.h>
44 #include <asm/page.h>
45 #include <asm/flat.h>
46 
47 #ifndef flat_get_relocate_addr
48 #define flat_get_relocate_addr(rel)	(rel)
49 #endif
50 
51 /****************************************************************************/
52 
53 /*
54  * User data (data section and bss) needs to be aligned.
55  * We pick 0x20 here because it is the max value elf2flt has always
56  * used in producing FLAT files, and because it seems to be large
57  * enough to make all the gcc alignment related tests happy.
58  */
59 #define FLAT_DATA_ALIGN	(0x20)
60 
61 /*
62  * User data (stack) also needs to be aligned.
63  * Here we can be a bit looser than the data sections since this
64  * needs to only meet arch ABI requirements.
65  */
66 #define FLAT_STACK_ALIGN	max_t(unsigned long, sizeof(void *), ARCH_SLAB_MINALIGN)
67 
68 #define RELOC_FAILED 0xff00ff01		/* Relocation incorrect somewhere */
69 #define UNLOADED_LIB 0x7ff000ff		/* Placeholder for unused library */
70 
71 #ifdef CONFIG_BINFMT_SHARED_FLAT
72 #define	MAX_SHARED_LIBS			(4)
73 #else
74 #define	MAX_SHARED_LIBS			(1)
75 #endif
76 
77 #ifdef CONFIG_BINFMT_FLAT_NO_DATA_START_OFFSET
78 #define DATA_START_OFFSET_WORDS		(0)
79 #else
80 #define DATA_START_OFFSET_WORDS		(MAX_SHARED_LIBS)
81 #endif
82 
83 struct lib_info {
84 	struct {
85 		unsigned long start_code;		/* Start of text segment */
86 		unsigned long start_data;		/* Start of data segment */
87 		unsigned long start_brk;		/* End of data segment */
88 		unsigned long text_len;			/* Length of text segment */
89 		unsigned long entry;			/* Start address for this module */
90 		unsigned long build_date;		/* When this one was compiled */
91 		bool loaded;				/* Has this library been loaded? */
92 	} lib_list[MAX_SHARED_LIBS];
93 };
94 
95 #ifdef CONFIG_BINFMT_SHARED_FLAT
96 static int load_flat_shared_library(int id, struct lib_info *p);
97 #endif
98 
99 static int load_flat_binary(struct linux_binprm *);
100 static int flat_core_dump(struct coredump_params *cprm);
101 
102 static struct linux_binfmt flat_format = {
103 	.module		= THIS_MODULE,
104 	.load_binary	= load_flat_binary,
105 	.core_dump	= flat_core_dump,
106 	.min_coredump	= PAGE_SIZE
107 };
108 
109 /****************************************************************************/
110 /*
111  * Routine writes a core dump image in the current directory.
112  * Currently only a stub-function.
113  */
114 
flat_core_dump(struct coredump_params * cprm)115 static int flat_core_dump(struct coredump_params *cprm)
116 {
117 	pr_warn("Process %s:%d received signr %d and should have core dumped\n",
118 		current->comm, current->pid, cprm->siginfo->si_signo);
119 	return 1;
120 }
121 
122 /****************************************************************************/
123 /*
124  * create_flat_tables() parses the env- and arg-strings in new user
125  * memory and creates the pointer tables from them, and puts their
126  * addresses on the "stack", recording the new stack pointer value.
127  */
128 
create_flat_tables(struct linux_binprm * bprm,unsigned long arg_start)129 static int create_flat_tables(struct linux_binprm *bprm, unsigned long arg_start)
130 {
131 	char __user *p;
132 	unsigned long __user *sp;
133 	long i, len;
134 
135 	p = (char __user *)arg_start;
136 	sp = (unsigned long __user *)current->mm->start_stack;
137 
138 	sp -= bprm->envc + 1;
139 	sp -= bprm->argc + 1;
140 	if (IS_ENABLED(CONFIG_BINFMT_FLAT_ARGVP_ENVP_ON_STACK))
141 		sp -= 2; /* argvp + envp */
142 	sp -= 1;  /* &argc */
143 
144 	current->mm->start_stack = (unsigned long)sp & -FLAT_STACK_ALIGN;
145 	sp = (unsigned long __user *)current->mm->start_stack;
146 
147 	if (put_user(bprm->argc, sp++))
148 		return -EFAULT;
149 	if (IS_ENABLED(CONFIG_BINFMT_FLAT_ARGVP_ENVP_ON_STACK)) {
150 		unsigned long argv, envp;
151 		argv = (unsigned long)(sp + 2);
152 		envp = (unsigned long)(sp + 2 + bprm->argc + 1);
153 		if (put_user(argv, sp++) || put_user(envp, sp++))
154 			return -EFAULT;
155 	}
156 
157 	current->mm->arg_start = (unsigned long)p;
158 	for (i = bprm->argc; i > 0; i--) {
159 		if (put_user((unsigned long)p, sp++))
160 			return -EFAULT;
161 		len = strnlen_user(p, MAX_ARG_STRLEN);
162 		if (!len || len > MAX_ARG_STRLEN)
163 			return -EINVAL;
164 		p += len;
165 	}
166 	if (put_user(0, sp++))
167 		return -EFAULT;
168 	current->mm->arg_end = (unsigned long)p;
169 
170 	current->mm->env_start = (unsigned long) p;
171 	for (i = bprm->envc; i > 0; i--) {
172 		if (put_user((unsigned long)p, sp++))
173 			return -EFAULT;
174 		len = strnlen_user(p, MAX_ARG_STRLEN);
175 		if (!len || len > MAX_ARG_STRLEN)
176 			return -EINVAL;
177 		p += len;
178 	}
179 	if (put_user(0, sp++))
180 		return -EFAULT;
181 	current->mm->env_end = (unsigned long)p;
182 
183 	return 0;
184 }
185 
186 /****************************************************************************/
187 
188 #ifdef CONFIG_BINFMT_ZFLAT
189 
190 #include <linux/zlib.h>
191 
192 #define LBUFSIZE	4000
193 
194 /* gzip flag byte */
195 #define ASCII_FLAG   0x01 /* bit 0 set: file probably ASCII text */
196 #define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
197 #define EXTRA_FIELD  0x04 /* bit 2 set: extra field present */
198 #define ORIG_NAME    0x08 /* bit 3 set: original file name present */
199 #define COMMENT      0x10 /* bit 4 set: file comment present */
200 #define ENCRYPTED    0x20 /* bit 5 set: file is encrypted */
201 #define RESERVED     0xC0 /* bit 6,7:   reserved */
202 
decompress_exec(struct linux_binprm * bprm,loff_t fpos,char * dst,long len,int fd)203 static int decompress_exec(struct linux_binprm *bprm, loff_t fpos, char *dst,
204 		long len, int fd)
205 {
206 	unsigned char *buf;
207 	z_stream strm;
208 	int ret, retval;
209 
210 	pr_debug("decompress_exec(offset=%llx,buf=%p,len=%lx)\n", fpos, dst, len);
211 
212 	memset(&strm, 0, sizeof(strm));
213 	strm.workspace = kmalloc(zlib_inflate_workspacesize(), GFP_KERNEL);
214 	if (!strm.workspace)
215 		return -ENOMEM;
216 
217 	buf = kmalloc(LBUFSIZE, GFP_KERNEL);
218 	if (!buf) {
219 		retval = -ENOMEM;
220 		goto out_free;
221 	}
222 
223 	/* Read in first chunk of data and parse gzip header. */
224 	ret = kernel_read(bprm->file, buf, LBUFSIZE, &fpos);
225 
226 	strm.next_in = buf;
227 	strm.avail_in = ret;
228 	strm.total_in = 0;
229 
230 	retval = -ENOEXEC;
231 
232 	/* Check minimum size -- gzip header */
233 	if (ret < 10) {
234 		pr_debug("file too small?\n");
235 		goto out_free_buf;
236 	}
237 
238 	/* Check gzip magic number */
239 	if ((buf[0] != 037) || ((buf[1] != 0213) && (buf[1] != 0236))) {
240 		pr_debug("unknown compression magic?\n");
241 		goto out_free_buf;
242 	}
243 
244 	/* Check gzip method */
245 	if (buf[2] != 8) {
246 		pr_debug("unknown compression method?\n");
247 		goto out_free_buf;
248 	}
249 	/* Check gzip flags */
250 	if ((buf[3] & ENCRYPTED) || (buf[3] & CONTINUATION) ||
251 	    (buf[3] & RESERVED)) {
252 		pr_debug("unknown flags?\n");
253 		goto out_free_buf;
254 	}
255 
256 	ret = 10;
257 	if (buf[3] & EXTRA_FIELD) {
258 		ret += 2 + buf[10] + (buf[11] << 8);
259 		if (unlikely(ret >= LBUFSIZE)) {
260 			pr_debug("buffer overflow (EXTRA)?\n");
261 			goto out_free_buf;
262 		}
263 	}
264 	if (buf[3] & ORIG_NAME) {
265 		while (ret < LBUFSIZE && buf[ret++] != 0)
266 			;
267 		if (unlikely(ret == LBUFSIZE)) {
268 			pr_debug("buffer overflow (ORIG_NAME)?\n");
269 			goto out_free_buf;
270 		}
271 	}
272 	if (buf[3] & COMMENT) {
273 		while (ret < LBUFSIZE && buf[ret++] != 0)
274 			;
275 		if (unlikely(ret == LBUFSIZE)) {
276 			pr_debug("buffer overflow (COMMENT)?\n");
277 			goto out_free_buf;
278 		}
279 	}
280 
281 	strm.next_in += ret;
282 	strm.avail_in -= ret;
283 
284 	strm.next_out = dst;
285 	strm.avail_out = len;
286 	strm.total_out = 0;
287 
288 	if (zlib_inflateInit2(&strm, -MAX_WBITS) != Z_OK) {
289 		pr_debug("zlib init failed?\n");
290 		goto out_free_buf;
291 	}
292 
293 	while ((ret = zlib_inflate(&strm, Z_NO_FLUSH)) == Z_OK) {
294 		ret = kernel_read(bprm->file, buf, LBUFSIZE, &fpos);
295 		if (ret <= 0)
296 			break;
297 		len -= ret;
298 
299 		strm.next_in = buf;
300 		strm.avail_in = ret;
301 		strm.total_in = 0;
302 	}
303 
304 	if (ret < 0) {
305 		pr_debug("decompression failed (%d), %s\n",
306 			ret, strm.msg);
307 		goto out_zlib;
308 	}
309 
310 	retval = 0;
311 out_zlib:
312 	zlib_inflateEnd(&strm);
313 out_free_buf:
314 	kfree(buf);
315 out_free:
316 	kfree(strm.workspace);
317 	return retval;
318 }
319 
320 #endif /* CONFIG_BINFMT_ZFLAT */
321 
322 /****************************************************************************/
323 
324 static unsigned long
calc_reloc(unsigned long r,struct lib_info * p,int curid,int internalp)325 calc_reloc(unsigned long r, struct lib_info *p, int curid, int internalp)
326 {
327 	unsigned long addr;
328 	int id;
329 	unsigned long start_brk;
330 	unsigned long start_data;
331 	unsigned long text_len;
332 	unsigned long start_code;
333 
334 #ifdef CONFIG_BINFMT_SHARED_FLAT
335 	if (r == 0)
336 		id = curid;	/* Relocs of 0 are always self referring */
337 	else {
338 		id = (r >> 24) & 0xff;	/* Find ID for this reloc */
339 		r &= 0x00ffffff;	/* Trim ID off here */
340 	}
341 	if (id >= MAX_SHARED_LIBS) {
342 		pr_err("reference 0x%lx to shared library %d", r, id);
343 		goto failed;
344 	}
345 	if (curid != id) {
346 		if (internalp) {
347 			pr_err("reloc address 0x%lx not in same module "
348 			       "(%d != %d)", r, curid, id);
349 			goto failed;
350 		} else if (!p->lib_list[id].loaded &&
351 			   load_flat_shared_library(id, p) < 0) {
352 			pr_err("failed to load library %d", id);
353 			goto failed;
354 		}
355 		/* Check versioning information (i.e. time stamps) */
356 		if (p->lib_list[id].build_date && p->lib_list[curid].build_date &&
357 				p->lib_list[curid].build_date < p->lib_list[id].build_date) {
358 			pr_err("library %d is younger than %d", id, curid);
359 			goto failed;
360 		}
361 	}
362 #else
363 	id = 0;
364 #endif
365 
366 	start_brk = p->lib_list[id].start_brk;
367 	start_data = p->lib_list[id].start_data;
368 	start_code = p->lib_list[id].start_code;
369 	text_len = p->lib_list[id].text_len;
370 
371 	if (r > start_brk - start_data + text_len) {
372 		pr_err("reloc outside program 0x%lx (0 - 0x%lx/0x%lx)",
373 		       r, start_brk-start_data+text_len, text_len);
374 		goto failed;
375 	}
376 
377 	if (r < text_len)			/* In text segment */
378 		addr = r + start_code;
379 	else					/* In data segment */
380 		addr = r - text_len + start_data;
381 
382 	/* Range checked already above so doing the range tests is redundant...*/
383 	return addr;
384 
385 failed:
386 	pr_cont(", killing %s!\n", current->comm);
387 	send_sig(SIGSEGV, current, 0);
388 
389 	return RELOC_FAILED;
390 }
391 
392 /****************************************************************************/
393 
394 #ifdef CONFIG_BINFMT_FLAT_OLD
old_reloc(unsigned long rl)395 static void old_reloc(unsigned long rl)
396 {
397 	static const char *segment[] = { "TEXT", "DATA", "BSS", "*UNKNOWN*" };
398 	flat_v2_reloc_t	r;
399 	unsigned long __user *ptr;
400 	unsigned long val;
401 
402 	r.value = rl;
403 #if defined(CONFIG_COLDFIRE)
404 	ptr = (unsigned long __user *)(current->mm->start_code + r.reloc.offset);
405 #else
406 	ptr = (unsigned long __user *)(current->mm->start_data + r.reloc.offset);
407 #endif
408 	get_user(val, ptr);
409 
410 	pr_debug("Relocation of variable at DATASEG+%x "
411 		 "(address %p, currently %lx) into segment %s\n",
412 		 r.reloc.offset, ptr, val, segment[r.reloc.type]);
413 
414 	switch (r.reloc.type) {
415 	case OLD_FLAT_RELOC_TYPE_TEXT:
416 		val += current->mm->start_code;
417 		break;
418 	case OLD_FLAT_RELOC_TYPE_DATA:
419 		val += current->mm->start_data;
420 		break;
421 	case OLD_FLAT_RELOC_TYPE_BSS:
422 		val += current->mm->end_data;
423 		break;
424 	default:
425 		pr_err("Unknown relocation type=%x\n", r.reloc.type);
426 		break;
427 	}
428 	put_user(val, ptr);
429 
430 	pr_debug("Relocation became %lx\n", val);
431 }
432 #endif /* CONFIG_BINFMT_FLAT_OLD */
433 
434 /****************************************************************************/
435 
load_flat_file(struct linux_binprm * bprm,struct lib_info * libinfo,int id,unsigned long * extra_stack)436 static int load_flat_file(struct linux_binprm *bprm,
437 		struct lib_info *libinfo, int id, unsigned long *extra_stack)
438 {
439 	struct flat_hdr *hdr;
440 	unsigned long textpos, datapos, realdatastart;
441 	u32 text_len, data_len, bss_len, stack_len, full_data, flags;
442 	unsigned long len, memp, memp_size, extra, rlim;
443 	__be32 __user *reloc;
444 	u32 __user *rp;
445 	int i, rev, relocs;
446 	loff_t fpos;
447 	unsigned long start_code, end_code;
448 	ssize_t result;
449 	int ret;
450 
451 	hdr = ((struct flat_hdr *) bprm->buf);		/* exec-header */
452 
453 	text_len  = ntohl(hdr->data_start);
454 	data_len  = ntohl(hdr->data_end) - ntohl(hdr->data_start);
455 	bss_len   = ntohl(hdr->bss_end) - ntohl(hdr->data_end);
456 	stack_len = ntohl(hdr->stack_size);
457 	if (extra_stack) {
458 		stack_len += *extra_stack;
459 		*extra_stack = stack_len;
460 	}
461 	relocs    = ntohl(hdr->reloc_count);
462 	flags     = ntohl(hdr->flags);
463 	rev       = ntohl(hdr->rev);
464 	full_data = data_len + relocs * sizeof(unsigned long);
465 
466 	if (strncmp(hdr->magic, "bFLT", 4)) {
467 		/*
468 		 * Previously, here was a printk to tell people
469 		 *   "BINFMT_FLAT: bad header magic".
470 		 * But for the kernel which also use ELF FD-PIC format, this
471 		 * error message is confusing.
472 		 * because a lot of people do not manage to produce good
473 		 */
474 		ret = -ENOEXEC;
475 		goto err;
476 	}
477 
478 	if (flags & FLAT_FLAG_KTRACE)
479 		pr_info("Loading file: %s\n", bprm->filename);
480 
481 #ifdef CONFIG_BINFMT_FLAT_OLD
482 	if (rev != FLAT_VERSION && rev != OLD_FLAT_VERSION) {
483 		pr_err("bad flat file version 0x%x (supported 0x%lx and 0x%lx)\n",
484 		       rev, FLAT_VERSION, OLD_FLAT_VERSION);
485 		ret = -ENOEXEC;
486 		goto err;
487 	}
488 
489 	/* Don't allow old format executables to use shared libraries */
490 	if (rev == OLD_FLAT_VERSION && id != 0) {
491 		pr_err("shared libraries are not available before rev 0x%lx\n",
492 		       FLAT_VERSION);
493 		ret = -ENOEXEC;
494 		goto err;
495 	}
496 
497 	/*
498 	 * fix up the flags for the older format,  there were all kinds
499 	 * of endian hacks,  this only works for the simple cases
500 	 */
501 	if (rev == OLD_FLAT_VERSION &&
502 	   (flags || IS_ENABLED(CONFIG_BINFMT_FLAT_OLD_ALWAYS_RAM)))
503 		flags = FLAT_FLAG_RAM;
504 
505 #else /* CONFIG_BINFMT_FLAT_OLD */
506 	if (rev != FLAT_VERSION) {
507 		pr_err("bad flat file version 0x%x (supported 0x%lx)\n",
508 		       rev, FLAT_VERSION);
509 		ret = -ENOEXEC;
510 		goto err;
511 	}
512 #endif /* !CONFIG_BINFMT_FLAT_OLD */
513 
514 	/*
515 	 * Make sure the header params are sane.
516 	 * 28 bits (256 MB) is way more than reasonable in this case.
517 	 * If some top bits are set we have probable binary corruption.
518 	*/
519 	if ((text_len | data_len | bss_len | stack_len | full_data) >> 28) {
520 		pr_err("bad header\n");
521 		ret = -ENOEXEC;
522 		goto err;
523 	}
524 
525 #ifndef CONFIG_BINFMT_ZFLAT
526 	if (flags & (FLAT_FLAG_GZIP|FLAT_FLAG_GZDATA)) {
527 		pr_err("Support for ZFLAT executables is not enabled.\n");
528 		ret = -ENOEXEC;
529 		goto err;
530 	}
531 #endif
532 
533 	/*
534 	 * Check initial limits. This avoids letting people circumvent
535 	 * size limits imposed on them by creating programs with large
536 	 * arrays in the data or bss.
537 	 */
538 	rlim = rlimit(RLIMIT_DATA);
539 	if (rlim >= RLIM_INFINITY)
540 		rlim = ~0;
541 	if (data_len + bss_len > rlim) {
542 		ret = -ENOMEM;
543 		goto err;
544 	}
545 
546 	/* Flush all traces of the currently running executable */
547 	if (id == 0) {
548 		ret = begin_new_exec(bprm);
549 		if (ret)
550 			goto err;
551 
552 		/* OK, This is the point of no return */
553 		set_personality(PER_LINUX_32BIT);
554 		setup_new_exec(bprm);
555 	}
556 
557 	/*
558 	 * calculate the extra space we need to map in
559 	 */
560 	extra = max_t(unsigned long, bss_len + stack_len,
561 			relocs * sizeof(unsigned long));
562 
563 	/*
564 	 * there are a couple of cases here,  the separate code/data
565 	 * case,  and then the fully copied to RAM case which lumps
566 	 * it all together.
567 	 */
568 	if (!IS_ENABLED(CONFIG_MMU) && !(flags & (FLAT_FLAG_RAM|FLAT_FLAG_GZIP))) {
569 		/*
570 		 * this should give us a ROM ptr,  but if it doesn't we don't
571 		 * really care
572 		 */
573 		pr_debug("ROM mapping of file (we hope)\n");
574 
575 		textpos = vm_mmap(bprm->file, 0, text_len, PROT_READ|PROT_EXEC,
576 				  MAP_PRIVATE|MAP_EXECUTABLE, 0);
577 		if (!textpos || IS_ERR_VALUE(textpos)) {
578 			ret = textpos;
579 			if (!textpos)
580 				ret = -ENOMEM;
581 			pr_err("Unable to mmap process text, errno %d\n", ret);
582 			goto err;
583 		}
584 
585 		len = data_len + extra +
586 			DATA_START_OFFSET_WORDS * sizeof(unsigned long);
587 		len = PAGE_ALIGN(len);
588 		realdatastart = vm_mmap(NULL, 0, len,
589 			PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, 0);
590 
591 		if (realdatastart == 0 || IS_ERR_VALUE(realdatastart)) {
592 			ret = realdatastart;
593 			if (!realdatastart)
594 				ret = -ENOMEM;
595 			pr_err("Unable to allocate RAM for process data, "
596 			       "errno %d\n", ret);
597 			vm_munmap(textpos, text_len);
598 			goto err;
599 		}
600 		datapos = ALIGN(realdatastart +
601 				DATA_START_OFFSET_WORDS * sizeof(unsigned long),
602 				FLAT_DATA_ALIGN);
603 
604 		pr_debug("Allocated data+bss+stack (%u bytes): %lx\n",
605 			 data_len + bss_len + stack_len, datapos);
606 
607 		fpos = ntohl(hdr->data_start);
608 #ifdef CONFIG_BINFMT_ZFLAT
609 		if (flags & FLAT_FLAG_GZDATA) {
610 			result = decompress_exec(bprm, fpos, (char *)datapos,
611 						 full_data, 0);
612 		} else
613 #endif
614 		{
615 			result = read_code(bprm->file, datapos, fpos,
616 					full_data);
617 		}
618 		if (IS_ERR_VALUE(result)) {
619 			ret = result;
620 			pr_err("Unable to read data+bss, errno %d\n", ret);
621 			vm_munmap(textpos, text_len);
622 			vm_munmap(realdatastart, len);
623 			goto err;
624 		}
625 
626 		reloc = (__be32 __user *)
627 			(datapos + (ntohl(hdr->reloc_start) - text_len));
628 		memp = realdatastart;
629 		memp_size = len;
630 	} else {
631 
632 		len = text_len + data_len + extra +
633 			DATA_START_OFFSET_WORDS * sizeof(u32);
634 		len = PAGE_ALIGN(len);
635 		textpos = vm_mmap(NULL, 0, len,
636 			PROT_READ | PROT_EXEC | PROT_WRITE, MAP_PRIVATE, 0);
637 
638 		if (!textpos || IS_ERR_VALUE(textpos)) {
639 			ret = textpos;
640 			if (!textpos)
641 				ret = -ENOMEM;
642 			pr_err("Unable to allocate RAM for process text/data, "
643 			       "errno %d\n", ret);
644 			goto err;
645 		}
646 
647 		realdatastart = textpos + ntohl(hdr->data_start);
648 		datapos = ALIGN(realdatastart +
649 				DATA_START_OFFSET_WORDS * sizeof(u32),
650 				FLAT_DATA_ALIGN);
651 
652 		reloc = (__be32 __user *)
653 			(datapos + (ntohl(hdr->reloc_start) - text_len));
654 		memp = textpos;
655 		memp_size = len;
656 #ifdef CONFIG_BINFMT_ZFLAT
657 		/*
658 		 * load it all in and treat it like a RAM load from now on
659 		 */
660 		if (flags & FLAT_FLAG_GZIP) {
661 #ifndef CONFIG_MMU
662 			result = decompress_exec(bprm, sizeof(struct flat_hdr),
663 					 (((char *)textpos) + sizeof(struct flat_hdr)),
664 					 (text_len + full_data
665 						  - sizeof(struct flat_hdr)),
666 					 0);
667 			memmove((void *) datapos, (void *) realdatastart,
668 					full_data);
669 #else
670 			/*
671 			 * This is used on MMU systems mainly for testing.
672 			 * Let's use a kernel buffer to simplify things.
673 			 */
674 			long unz_text_len = text_len - sizeof(struct flat_hdr);
675 			long unz_len = unz_text_len + full_data;
676 			char *unz_data = vmalloc(unz_len);
677 			if (!unz_data) {
678 				result = -ENOMEM;
679 			} else {
680 				result = decompress_exec(bprm, sizeof(struct flat_hdr),
681 							 unz_data, unz_len, 0);
682 				if (result == 0 &&
683 				    (copy_to_user((void __user *)textpos + sizeof(struct flat_hdr),
684 						  unz_data, unz_text_len) ||
685 				     copy_to_user((void __user *)datapos,
686 						  unz_data + unz_text_len, full_data)))
687 					result = -EFAULT;
688 				vfree(unz_data);
689 			}
690 #endif
691 		} else if (flags & FLAT_FLAG_GZDATA) {
692 			result = read_code(bprm->file, textpos, 0, text_len);
693 			if (!IS_ERR_VALUE(result)) {
694 #ifndef CONFIG_MMU
695 				result = decompress_exec(bprm, text_len, (char *) datapos,
696 						 full_data, 0);
697 #else
698 				char *unz_data = vmalloc(full_data);
699 				if (!unz_data) {
700 					result = -ENOMEM;
701 				} else {
702 					result = decompress_exec(bprm, text_len,
703 						       unz_data, full_data, 0);
704 					if (result == 0 &&
705 					    copy_to_user((void __user *)datapos,
706 							 unz_data, full_data))
707 						result = -EFAULT;
708 					vfree(unz_data);
709 				}
710 #endif
711 			}
712 		} else
713 #endif /* CONFIG_BINFMT_ZFLAT */
714 		{
715 			result = read_code(bprm->file, textpos, 0, text_len);
716 			if (!IS_ERR_VALUE(result))
717 				result = read_code(bprm->file, datapos,
718 						   ntohl(hdr->data_start),
719 						   full_data);
720 		}
721 		if (IS_ERR_VALUE(result)) {
722 			ret = result;
723 			pr_err("Unable to read code+data+bss, errno %d\n", ret);
724 			vm_munmap(textpos, text_len + data_len + extra +
725 				  DATA_START_OFFSET_WORDS * sizeof(u32));
726 			goto err;
727 		}
728 	}
729 
730 	start_code = textpos + sizeof(struct flat_hdr);
731 	end_code = textpos + text_len;
732 	text_len -= sizeof(struct flat_hdr); /* the real code len */
733 
734 	/* The main program needs a little extra setup in the task structure */
735 	if (id == 0) {
736 		current->mm->start_code = start_code;
737 		current->mm->end_code = end_code;
738 		current->mm->start_data = datapos;
739 		current->mm->end_data = datapos + data_len;
740 		/*
741 		 * set up the brk stuff, uses any slack left in data/bss/stack
742 		 * allocation.  We put the brk after the bss (between the bss
743 		 * and stack) like other platforms.
744 		 * Userspace code relies on the stack pointer starting out at
745 		 * an address right at the end of a page.
746 		 */
747 		current->mm->start_brk = datapos + data_len + bss_len;
748 		current->mm->brk = (current->mm->start_brk + 3) & ~3;
749 #ifndef CONFIG_MMU
750 		current->mm->context.end_brk = memp + memp_size - stack_len;
751 #endif
752 	}
753 
754 	if (flags & FLAT_FLAG_KTRACE) {
755 		pr_info("Mapping is %lx, Entry point is %x, data_start is %x\n",
756 			textpos, 0x00ffffff&ntohl(hdr->entry), ntohl(hdr->data_start));
757 		pr_info("%s %s: TEXT=%lx-%lx DATA=%lx-%lx BSS=%lx-%lx\n",
758 			id ? "Lib" : "Load", bprm->filename,
759 			start_code, end_code, datapos, datapos + data_len,
760 			datapos + data_len, (datapos + data_len + bss_len + 3) & ~3);
761 	}
762 
763 	/* Store the current module values into the global library structure */
764 	libinfo->lib_list[id].start_code = start_code;
765 	libinfo->lib_list[id].start_data = datapos;
766 	libinfo->lib_list[id].start_brk = datapos + data_len + bss_len;
767 	libinfo->lib_list[id].text_len = text_len;
768 	libinfo->lib_list[id].loaded = 1;
769 	libinfo->lib_list[id].entry = (0x00ffffff & ntohl(hdr->entry)) + textpos;
770 	libinfo->lib_list[id].build_date = ntohl(hdr->build_date);
771 
772 	/*
773 	 * We just load the allocations into some temporary memory to
774 	 * help simplify all this mumbo jumbo
775 	 *
776 	 * We've got two different sections of relocation entries.
777 	 * The first is the GOT which resides at the beginning of the data segment
778 	 * and is terminated with a -1.  This one can be relocated in place.
779 	 * The second is the extra relocation entries tacked after the image's
780 	 * data segment. These require a little more processing as the entry is
781 	 * really an offset into the image which contains an offset into the
782 	 * image.
783 	 */
784 	if (flags & FLAT_FLAG_GOTPIC) {
785 		for (rp = (u32 __user *)datapos; ; rp++) {
786 			u32 addr, rp_val;
787 			if (get_user(rp_val, rp))
788 				return -EFAULT;
789 			if (rp_val == 0xffffffff)
790 				break;
791 			if (rp_val) {
792 				addr = calc_reloc(rp_val, libinfo, id, 0);
793 				if (addr == RELOC_FAILED) {
794 					ret = -ENOEXEC;
795 					goto err;
796 				}
797 				if (put_user(addr, rp))
798 					return -EFAULT;
799 			}
800 		}
801 	}
802 
803 	/*
804 	 * Now run through the relocation entries.
805 	 * We've got to be careful here as C++ produces relocatable zero
806 	 * entries in the constructor and destructor tables which are then
807 	 * tested for being not zero (which will always occur unless we're
808 	 * based from address zero).  This causes an endless loop as __start
809 	 * is at zero.  The solution used is to not relocate zero addresses.
810 	 * This has the negative side effect of not allowing a global data
811 	 * reference to be statically initialised to _stext (I've moved
812 	 * __start to address 4 so that is okay).
813 	 */
814 	if (rev > OLD_FLAT_VERSION) {
815 		for (i = 0; i < relocs; i++) {
816 			u32 addr, relval;
817 			__be32 tmp;
818 
819 			/*
820 			 * Get the address of the pointer to be
821 			 * relocated (of course, the address has to be
822 			 * relocated first).
823 			 */
824 			if (get_user(tmp, reloc + i))
825 				return -EFAULT;
826 			relval = ntohl(tmp);
827 			addr = flat_get_relocate_addr(relval);
828 			rp = (u32 __user *)calc_reloc(addr, libinfo, id, 1);
829 			if (rp == (u32 __user *)RELOC_FAILED) {
830 				ret = -ENOEXEC;
831 				goto err;
832 			}
833 
834 			/* Get the pointer's value.  */
835 			ret = flat_get_addr_from_rp(rp, relval, flags, &addr);
836 			if (unlikely(ret))
837 				goto err;
838 
839 			if (addr != 0) {
840 				/*
841 				 * Do the relocation.  PIC relocs in the data section are
842 				 * already in target order
843 				 */
844 				if ((flags & FLAT_FLAG_GOTPIC) == 0) {
845 					/*
846 					 * Meh, the same value can have a different
847 					 * byte order based on a flag..
848 					 */
849 					addr = ntohl((__force __be32)addr);
850 				}
851 				addr = calc_reloc(addr, libinfo, id, 0);
852 				if (addr == RELOC_FAILED) {
853 					ret = -ENOEXEC;
854 					goto err;
855 				}
856 
857 				/* Write back the relocated pointer.  */
858 				ret = flat_put_addr_at_rp(rp, addr, relval);
859 				if (unlikely(ret))
860 					goto err;
861 			}
862 		}
863 #ifdef CONFIG_BINFMT_FLAT_OLD
864 	} else {
865 		for (i = 0; i < relocs; i++) {
866 			__be32 relval;
867 			if (get_user(relval, reloc + i))
868 				return -EFAULT;
869 			old_reloc(ntohl(relval));
870 		}
871 #endif /* CONFIG_BINFMT_FLAT_OLD */
872 	}
873 
874 	flush_icache_user_range(start_code, end_code);
875 
876 	/* zero the BSS,  BRK and stack areas */
877 	if (clear_user((void __user *)(datapos + data_len), bss_len +
878 		       (memp + memp_size - stack_len -		/* end brk */
879 		       libinfo->lib_list[id].start_brk) +	/* start brk */
880 		       stack_len))
881 		return -EFAULT;
882 
883 	return 0;
884 err:
885 	return ret;
886 }
887 
888 
889 /****************************************************************************/
890 #ifdef CONFIG_BINFMT_SHARED_FLAT
891 
892 /*
893  * Load a shared library into memory.  The library gets its own data
894  * segment (including bss) but not argv/argc/environ.
895  */
896 
load_flat_shared_library(int id,struct lib_info * libs)897 static int load_flat_shared_library(int id, struct lib_info *libs)
898 {
899 	/*
900 	 * This is a fake bprm struct; only the members "buf", "file" and
901 	 * "filename" are actually used.
902 	 */
903 	struct linux_binprm bprm;
904 	int res;
905 	char buf[16];
906 	loff_t pos = 0;
907 
908 	memset(&bprm, 0, sizeof(bprm));
909 
910 	/* Create the file name */
911 	sprintf(buf, "/lib/lib%d.so", id);
912 
913 	/* Open the file up */
914 	bprm.filename = buf;
915 	bprm.file = open_exec(bprm.filename);
916 	res = PTR_ERR(bprm.file);
917 	if (IS_ERR(bprm.file))
918 		return res;
919 
920 	res = kernel_read(bprm.file, bprm.buf, BINPRM_BUF_SIZE, &pos);
921 
922 	if (res >= 0)
923 		res = load_flat_file(&bprm, libs, id, NULL);
924 
925 	allow_write_access(bprm.file);
926 	fput(bprm.file);
927 
928 	return res;
929 }
930 
931 #endif /* CONFIG_BINFMT_SHARED_FLAT */
932 /****************************************************************************/
933 
934 /*
935  * These are the functions used to load flat style executables and shared
936  * libraries.  There is no binary dependent code anywhere else.
937  */
938 
load_flat_binary(struct linux_binprm * bprm)939 static int load_flat_binary(struct linux_binprm *bprm)
940 {
941 	struct lib_info libinfo;
942 	struct pt_regs *regs = current_pt_regs();
943 	unsigned long stack_len = 0;
944 	unsigned long start_addr;
945 	int res;
946 	int i, j;
947 
948 	memset(&libinfo, 0, sizeof(libinfo));
949 
950 	/*
951 	 * We have to add the size of our arguments to our stack size
952 	 * otherwise it's too easy for users to create stack overflows
953 	 * by passing in a huge argument list.  And yes,  we have to be
954 	 * pedantic and include space for the argv/envp array as it may have
955 	 * a lot of entries.
956 	 */
957 #ifndef CONFIG_MMU
958 	stack_len += PAGE_SIZE * MAX_ARG_PAGES - bprm->p; /* the strings */
959 #endif
960 	stack_len += (bprm->argc + 1) * sizeof(char *);   /* the argv array */
961 	stack_len += (bprm->envc + 1) * sizeof(char *);   /* the envp array */
962 	stack_len = ALIGN(stack_len, FLAT_STACK_ALIGN);
963 
964 	res = load_flat_file(bprm, &libinfo, 0, &stack_len);
965 	if (res < 0)
966 		return res;
967 
968 	/* Update data segment pointers for all libraries */
969 	for (i = 0; i < MAX_SHARED_LIBS; i++) {
970 		if (!libinfo.lib_list[i].loaded)
971 			continue;
972 		for (j = 0; j < MAX_SHARED_LIBS; j++) {
973 			unsigned long val = libinfo.lib_list[j].loaded ?
974 				libinfo.lib_list[j].start_data : UNLOADED_LIB;
975 			unsigned long __user *p = (unsigned long __user *)
976 				libinfo.lib_list[i].start_data;
977 			p -= j + 1;
978 			if (put_user(val, p))
979 				return -EFAULT;
980 		}
981 	}
982 
983 	set_binfmt(&flat_format);
984 
985 #ifdef CONFIG_MMU
986 	res = setup_arg_pages(bprm, STACK_TOP, EXSTACK_DEFAULT);
987 	if (!res)
988 		res = create_flat_tables(bprm, bprm->p);
989 #else
990 	/* Stash our initial stack pointer into the mm structure */
991 	current->mm->start_stack =
992 		((current->mm->context.end_brk + stack_len + 3) & ~3) - 4;
993 	pr_debug("sp=%lx\n", current->mm->start_stack);
994 
995 	/* copy the arg pages onto the stack */
996 	res = transfer_args_to_stack(bprm, &current->mm->start_stack);
997 	if (!res)
998 		res = create_flat_tables(bprm, current->mm->start_stack);
999 #endif
1000 	if (res)
1001 		return res;
1002 
1003 	/* Fake some return addresses to ensure the call chain will
1004 	 * initialise library in order for us.  We are required to call
1005 	 * lib 1 first, then 2, ... and finally the main program (id 0).
1006 	 */
1007 	start_addr = libinfo.lib_list[0].entry;
1008 
1009 #ifdef CONFIG_BINFMT_SHARED_FLAT
1010 	for (i = MAX_SHARED_LIBS-1; i > 0; i--) {
1011 		if (libinfo.lib_list[i].loaded) {
1012 			/* Push previos first to call address */
1013 			unsigned long __user *sp;
1014 			current->mm->start_stack -= sizeof(unsigned long);
1015 			sp = (unsigned long __user *)current->mm->start_stack;
1016 			if (put_user(start_addr, sp))
1017 				return -EFAULT;
1018 			start_addr = libinfo.lib_list[i].entry;
1019 		}
1020 	}
1021 #endif
1022 
1023 #ifdef FLAT_PLAT_INIT
1024 	FLAT_PLAT_INIT(regs);
1025 #endif
1026 
1027 	finalize_exec(bprm);
1028 	pr_debug("start_thread(regs=0x%p, entry=0x%lx, start_stack=0x%lx)\n",
1029 		 regs, start_addr, current->mm->start_stack);
1030 	start_thread(regs, start_addr, current->mm->start_stack);
1031 
1032 	return 0;
1033 }
1034 
1035 /****************************************************************************/
1036 
init_flat_binfmt(void)1037 static int __init init_flat_binfmt(void)
1038 {
1039 	register_binfmt(&flat_format);
1040 	return 0;
1041 }
1042 core_initcall(init_flat_binfmt);
1043 
1044 /****************************************************************************/
1045