1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 #ifndef _LINUX_MEMBLOCK_H
3 #define _LINUX_MEMBLOCK_H
4 #ifdef __KERNEL__
5 
6 /*
7  * Logical memory blocks.
8  *
9  * Copyright (C) 2001 Peter Bergner, IBM Corp.
10  */
11 
12 #include <linux/init.h>
13 #include <linux/mm.h>
14 #include <asm/dma.h>
15 
16 extern unsigned long max_low_pfn;
17 extern unsigned long min_low_pfn;
18 
19 /*
20  * highest page
21  */
22 extern unsigned long max_pfn;
23 /*
24  * highest possible page
25  */
26 extern unsigned long long max_possible_pfn;
27 
28 /**
29  * enum memblock_flags - definition of memory region attributes
30  * @MEMBLOCK_NONE: no special request
31  * @MEMBLOCK_HOTPLUG: hotpluggable region
32  * @MEMBLOCK_MIRROR: mirrored region
33  * @MEMBLOCK_NOMAP: don't add to kernel direct mapping
34  */
35 enum memblock_flags {
36 	MEMBLOCK_NONE		= 0x0,	/* No special request */
37 	MEMBLOCK_HOTPLUG	= 0x1,	/* hotpluggable region */
38 	MEMBLOCK_MIRROR		= 0x2,	/* mirrored region */
39 	MEMBLOCK_NOMAP		= 0x4,	/* don't add to kernel direct mapping */
40 };
41 
42 /**
43  * struct memblock_region - represents a memory region
44  * @base: base address of the region
45  * @size: size of the region
46  * @flags: memory region attributes
47  * @nid: NUMA node id
48  */
49 struct memblock_region {
50 	phys_addr_t base;
51 	phys_addr_t size;
52 	enum memblock_flags flags;
53 #ifdef CONFIG_NEED_MULTIPLE_NODES
54 	int nid;
55 #endif
56 };
57 
58 /**
59  * struct memblock_type - collection of memory regions of certain type
60  * @cnt: number of regions
61  * @max: size of the allocated array
62  * @total_size: size of all regions
63  * @regions: array of regions
64  * @name: the memory type symbolic name
65  */
66 struct memblock_type {
67 	unsigned long cnt;
68 	unsigned long max;
69 	phys_addr_t total_size;
70 	struct memblock_region *regions;
71 	char *name;
72 };
73 
74 /**
75  * struct memblock - memblock allocator metadata
76  * @bottom_up: is bottom up direction?
77  * @current_limit: physical address of the current allocation limit
78  * @memory: usable memory regions
79  * @reserved: reserved memory regions
80  */
81 struct memblock {
82 	bool bottom_up;  /* is bottom up direction? */
83 	phys_addr_t current_limit;
84 	struct memblock_type memory;
85 	struct memblock_type reserved;
86 };
87 
88 extern struct memblock memblock;
89 
90 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
91 #define __init_memblock __meminit
92 #define __initdata_memblock __meminitdata
93 void memblock_discard(void);
94 #else
95 #define __init_memblock
96 #define __initdata_memblock
memblock_discard(void)97 static inline void memblock_discard(void) {}
98 #endif
99 
100 phys_addr_t memblock_find_in_range(phys_addr_t start, phys_addr_t end,
101 				   phys_addr_t size, phys_addr_t align);
102 void memblock_allow_resize(void);
103 int memblock_add_node(phys_addr_t base, phys_addr_t size, int nid);
104 int memblock_add(phys_addr_t base, phys_addr_t size);
105 int memblock_remove(phys_addr_t base, phys_addr_t size);
106 int memblock_free(phys_addr_t base, phys_addr_t size);
107 int memblock_reserve(phys_addr_t base, phys_addr_t size);
108 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
109 int memblock_physmem_add(phys_addr_t base, phys_addr_t size);
110 #endif
111 void memblock_trim_memory(phys_addr_t align);
112 bool memblock_overlaps_region(struct memblock_type *type,
113 			      phys_addr_t base, phys_addr_t size);
114 int memblock_mark_hotplug(phys_addr_t base, phys_addr_t size);
115 int memblock_clear_hotplug(phys_addr_t base, phys_addr_t size);
116 int memblock_mark_mirror(phys_addr_t base, phys_addr_t size);
117 int memblock_mark_nomap(phys_addr_t base, phys_addr_t size);
118 int memblock_clear_nomap(phys_addr_t base, phys_addr_t size);
119 
120 void memblock_free_all(void);
121 void reset_node_managed_pages(pg_data_t *pgdat);
122 void reset_all_zones_managed_pages(void);
123 
124 /* Low level functions */
125 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
126 		      struct memblock_type *type_a,
127 		      struct memblock_type *type_b, phys_addr_t *out_start,
128 		      phys_addr_t *out_end, int *out_nid);
129 
130 void __next_mem_range_rev(u64 *idx, int nid, enum memblock_flags flags,
131 			  struct memblock_type *type_a,
132 			  struct memblock_type *type_b, phys_addr_t *out_start,
133 			  phys_addr_t *out_end, int *out_nid);
134 
135 void __memblock_free_late(phys_addr_t base, phys_addr_t size);
136 
137 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
__next_physmem_range(u64 * idx,struct memblock_type * type,phys_addr_t * out_start,phys_addr_t * out_end)138 static inline void __next_physmem_range(u64 *idx, struct memblock_type *type,
139 					phys_addr_t *out_start,
140 					phys_addr_t *out_end)
141 {
142 	extern struct memblock_type physmem;
143 
144 	__next_mem_range(idx, NUMA_NO_NODE, MEMBLOCK_NONE, &physmem, type,
145 			 out_start, out_end, NULL);
146 }
147 
148 /**
149  * for_each_physmem_range - iterate through physmem areas not included in type.
150  * @i: u64 used as loop variable
151  * @type: ptr to memblock_type which excludes from the iteration, can be %NULL
152  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
153  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
154  */
155 #define for_each_physmem_range(i, type, p_start, p_end)			\
156 	for (i = 0, __next_physmem_range(&i, type, p_start, p_end);	\
157 	     i != (u64)ULLONG_MAX;					\
158 	     __next_physmem_range(&i, type, p_start, p_end))
159 #endif /* CONFIG_HAVE_MEMBLOCK_PHYS_MAP */
160 
161 /**
162  * __for_each_mem_range - iterate through memblock areas from type_a and not
163  * included in type_b. Or just type_a if type_b is NULL.
164  * @i: u64 used as loop variable
165  * @type_a: ptr to memblock_type to iterate
166  * @type_b: ptr to memblock_type which excludes from the iteration
167  * @nid: node selector, %NUMA_NO_NODE for all nodes
168  * @flags: pick from blocks based on memory attributes
169  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
170  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
171  * @p_nid: ptr to int for nid of the range, can be %NULL
172  */
173 #define __for_each_mem_range(i, type_a, type_b, nid, flags,		\
174 			   p_start, p_end, p_nid)			\
175 	for (i = 0, __next_mem_range(&i, nid, flags, type_a, type_b,	\
176 				     p_start, p_end, p_nid);		\
177 	     i != (u64)ULLONG_MAX;					\
178 	     __next_mem_range(&i, nid, flags, type_a, type_b,		\
179 			      p_start, p_end, p_nid))
180 
181 /**
182  * __for_each_mem_range_rev - reverse iterate through memblock areas from
183  * type_a and not included in type_b. Or just type_a if type_b is NULL.
184  * @i: u64 used as loop variable
185  * @type_a: ptr to memblock_type to iterate
186  * @type_b: ptr to memblock_type which excludes from the iteration
187  * @nid: node selector, %NUMA_NO_NODE for all nodes
188  * @flags: pick from blocks based on memory attributes
189  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
190  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
191  * @p_nid: ptr to int for nid of the range, can be %NULL
192  */
193 #define __for_each_mem_range_rev(i, type_a, type_b, nid, flags,		\
194 				 p_start, p_end, p_nid)			\
195 	for (i = (u64)ULLONG_MAX,					\
196 		     __next_mem_range_rev(&i, nid, flags, type_a, type_b, \
197 					  p_start, p_end, p_nid);	\
198 	     i != (u64)ULLONG_MAX;					\
199 	     __next_mem_range_rev(&i, nid, flags, type_a, type_b,	\
200 				  p_start, p_end, p_nid))
201 
202 /**
203  * for_each_mem_range - iterate through memory areas.
204  * @i: u64 used as loop variable
205  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
206  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
207  */
208 #define for_each_mem_range(i, p_start, p_end) \
209 	__for_each_mem_range(i, &memblock.memory, NULL, NUMA_NO_NODE,	\
210 			     MEMBLOCK_NONE, p_start, p_end, NULL)
211 
212 /**
213  * for_each_mem_range_rev - reverse iterate through memblock areas from
214  * type_a and not included in type_b. Or just type_a if type_b is NULL.
215  * @i: u64 used as loop variable
216  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
217  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
218  */
219 #define for_each_mem_range_rev(i, p_start, p_end)			\
220 	__for_each_mem_range_rev(i, &memblock.memory, NULL, NUMA_NO_NODE, \
221 				 MEMBLOCK_NONE, p_start, p_end, NULL)
222 
223 /**
224  * for_each_reserved_mem_range - iterate over all reserved memblock areas
225  * @i: u64 used as loop variable
226  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
227  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
228  *
229  * Walks over reserved areas of memblock. Available as soon as memblock
230  * is initialized.
231  */
232 #define for_each_reserved_mem_range(i, p_start, p_end)			\
233 	__for_each_mem_range(i, &memblock.reserved, NULL, NUMA_NO_NODE,	\
234 			     MEMBLOCK_NONE, p_start, p_end, NULL)
235 
memblock_is_hotpluggable(struct memblock_region * m)236 static inline bool memblock_is_hotpluggable(struct memblock_region *m)
237 {
238 	return m->flags & MEMBLOCK_HOTPLUG;
239 }
240 
memblock_is_mirror(struct memblock_region * m)241 static inline bool memblock_is_mirror(struct memblock_region *m)
242 {
243 	return m->flags & MEMBLOCK_MIRROR;
244 }
245 
memblock_is_nomap(struct memblock_region * m)246 static inline bool memblock_is_nomap(struct memblock_region *m)
247 {
248 	return m->flags & MEMBLOCK_NOMAP;
249 }
250 
251 int memblock_search_pfn_nid(unsigned long pfn, unsigned long *start_pfn,
252 			    unsigned long  *end_pfn);
253 void __next_mem_pfn_range(int *idx, int nid, unsigned long *out_start_pfn,
254 			  unsigned long *out_end_pfn, int *out_nid);
255 
256 /**
257  * for_each_mem_pfn_range - early memory pfn range iterator
258  * @i: an integer used as loop variable
259  * @nid: node selector, %MAX_NUMNODES for all nodes
260  * @p_start: ptr to ulong for start pfn of the range, can be %NULL
261  * @p_end: ptr to ulong for end pfn of the range, can be %NULL
262  * @p_nid: ptr to int for nid of the range, can be %NULL
263  *
264  * Walks over configured memory ranges.
265  */
266 #define for_each_mem_pfn_range(i, nid, p_start, p_end, p_nid)		\
267 	for (i = -1, __next_mem_pfn_range(&i, nid, p_start, p_end, p_nid); \
268 	     i >= 0; __next_mem_pfn_range(&i, nid, p_start, p_end, p_nid))
269 
270 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
271 void __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
272 				  unsigned long *out_spfn,
273 				  unsigned long *out_epfn);
274 /**
275  * for_each_free_mem_pfn_range_in_zone - iterate through zone specific free
276  * memblock areas
277  * @i: u64 used as loop variable
278  * @zone: zone in which all of the memory blocks reside
279  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
280  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
281  *
282  * Walks over free (memory && !reserved) areas of memblock in a specific
283  * zone. Available once memblock and an empty zone is initialized. The main
284  * assumption is that the zone start, end, and pgdat have been associated.
285  * This way we can use the zone to determine NUMA node, and if a given part
286  * of the memblock is valid for the zone.
287  */
288 #define for_each_free_mem_pfn_range_in_zone(i, zone, p_start, p_end)	\
289 	for (i = 0,							\
290 	     __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end);	\
291 	     i != U64_MAX;					\
292 	     __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end))
293 
294 /**
295  * for_each_free_mem_pfn_range_in_zone_from - iterate through zone specific
296  * free memblock areas from a given point
297  * @i: u64 used as loop variable
298  * @zone: zone in which all of the memory blocks reside
299  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
300  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
301  *
302  * Walks over free (memory && !reserved) areas of memblock in a specific
303  * zone, continuing from current position. Available as soon as memblock is
304  * initialized.
305  */
306 #define for_each_free_mem_pfn_range_in_zone_from(i, zone, p_start, p_end) \
307 	for (; i != U64_MAX;					  \
308 	     __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end))
309 
310 int __init deferred_page_init_max_threads(const struct cpumask *node_cpumask);
311 
312 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
313 
314 /**
315  * for_each_free_mem_range - iterate through free memblock areas
316  * @i: u64 used as loop variable
317  * @nid: node selector, %NUMA_NO_NODE for all nodes
318  * @flags: pick from blocks based on memory attributes
319  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
320  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
321  * @p_nid: ptr to int for nid of the range, can be %NULL
322  *
323  * Walks over free (memory && !reserved) areas of memblock.  Available as
324  * soon as memblock is initialized.
325  */
326 #define for_each_free_mem_range(i, nid, flags, p_start, p_end, p_nid)	\
327 	__for_each_mem_range(i, &memblock.memory, &memblock.reserved,	\
328 			     nid, flags, p_start, p_end, p_nid)
329 
330 /**
331  * for_each_free_mem_range_reverse - rev-iterate through free memblock areas
332  * @i: u64 used as loop variable
333  * @nid: node selector, %NUMA_NO_NODE for all nodes
334  * @flags: pick from blocks based on memory attributes
335  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
336  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
337  * @p_nid: ptr to int for nid of the range, can be %NULL
338  *
339  * Walks over free (memory && !reserved) areas of memblock in reverse
340  * order.  Available as soon as memblock is initialized.
341  */
342 #define for_each_free_mem_range_reverse(i, nid, flags, p_start, p_end,	\
343 					p_nid)				\
344 	__for_each_mem_range_rev(i, &memblock.memory, &memblock.reserved, \
345 				 nid, flags, p_start, p_end, p_nid)
346 
347 int memblock_set_node(phys_addr_t base, phys_addr_t size,
348 		      struct memblock_type *type, int nid);
349 
350 #ifdef CONFIG_NEED_MULTIPLE_NODES
memblock_set_region_node(struct memblock_region * r,int nid)351 static inline void memblock_set_region_node(struct memblock_region *r, int nid)
352 {
353 	r->nid = nid;
354 }
355 
memblock_get_region_node(const struct memblock_region * r)356 static inline int memblock_get_region_node(const struct memblock_region *r)
357 {
358 	return r->nid;
359 }
360 #else
memblock_set_region_node(struct memblock_region * r,int nid)361 static inline void memblock_set_region_node(struct memblock_region *r, int nid)
362 {
363 }
364 
memblock_get_region_node(const struct memblock_region * r)365 static inline int memblock_get_region_node(const struct memblock_region *r)
366 {
367 	return 0;
368 }
369 #endif /* CONFIG_NEED_MULTIPLE_NODES */
370 
371 /* Flags for memblock allocation APIs */
372 #define MEMBLOCK_ALLOC_ANYWHERE	(~(phys_addr_t)0)
373 #define MEMBLOCK_ALLOC_ACCESSIBLE	0
374 #define MEMBLOCK_ALLOC_KASAN		1
375 
376 /* We are using top down, so it is safe to use 0 here */
377 #define MEMBLOCK_LOW_LIMIT 0
378 
379 #ifndef ARCH_LOW_ADDRESS_LIMIT
380 #define ARCH_LOW_ADDRESS_LIMIT  0xffffffffUL
381 #endif
382 
383 phys_addr_t memblock_phys_alloc_range(phys_addr_t size, phys_addr_t align,
384 				      phys_addr_t start, phys_addr_t end);
385 phys_addr_t memblock_alloc_range_nid(phys_addr_t size,
386 				      phys_addr_t align, phys_addr_t start,
387 				      phys_addr_t end, int nid, bool exact_nid);
388 phys_addr_t memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid);
389 
memblock_phys_alloc(phys_addr_t size,phys_addr_t align)390 static inline phys_addr_t memblock_phys_alloc(phys_addr_t size,
391 					      phys_addr_t align)
392 {
393 	return memblock_phys_alloc_range(size, align, 0,
394 					 MEMBLOCK_ALLOC_ACCESSIBLE);
395 }
396 
397 void *memblock_alloc_exact_nid_raw(phys_addr_t size, phys_addr_t align,
398 				 phys_addr_t min_addr, phys_addr_t max_addr,
399 				 int nid);
400 void *memblock_alloc_try_nid_raw(phys_addr_t size, phys_addr_t align,
401 				 phys_addr_t min_addr, phys_addr_t max_addr,
402 				 int nid);
403 void *memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align,
404 			     phys_addr_t min_addr, phys_addr_t max_addr,
405 			     int nid);
406 
memblock_alloc(phys_addr_t size,phys_addr_t align)407 static __always_inline void *memblock_alloc(phys_addr_t size, phys_addr_t align)
408 {
409 	return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT,
410 				      MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
411 }
412 
memblock_alloc_raw(phys_addr_t size,phys_addr_t align)413 static inline void *memblock_alloc_raw(phys_addr_t size,
414 					       phys_addr_t align)
415 {
416 	return memblock_alloc_try_nid_raw(size, align, MEMBLOCK_LOW_LIMIT,
417 					  MEMBLOCK_ALLOC_ACCESSIBLE,
418 					  NUMA_NO_NODE);
419 }
420 
memblock_alloc_from(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr)421 static inline void *memblock_alloc_from(phys_addr_t size,
422 						phys_addr_t align,
423 						phys_addr_t min_addr)
424 {
425 	return memblock_alloc_try_nid(size, align, min_addr,
426 				      MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
427 }
428 
memblock_alloc_low(phys_addr_t size,phys_addr_t align)429 static inline void *memblock_alloc_low(phys_addr_t size,
430 					       phys_addr_t align)
431 {
432 	return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT,
433 				      ARCH_LOW_ADDRESS_LIMIT, NUMA_NO_NODE);
434 }
435 
memblock_alloc_node(phys_addr_t size,phys_addr_t align,int nid)436 static inline void *memblock_alloc_node(phys_addr_t size,
437 						phys_addr_t align, int nid)
438 {
439 	return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT,
440 				      MEMBLOCK_ALLOC_ACCESSIBLE, nid);
441 }
442 
memblock_free_early(phys_addr_t base,phys_addr_t size)443 static inline void memblock_free_early(phys_addr_t base,
444 					      phys_addr_t size)
445 {
446 	memblock_free(base, size);
447 }
448 
memblock_free_early_nid(phys_addr_t base,phys_addr_t size,int nid)449 static inline void memblock_free_early_nid(phys_addr_t base,
450 						  phys_addr_t size, int nid)
451 {
452 	memblock_free(base, size);
453 }
454 
memblock_free_late(phys_addr_t base,phys_addr_t size)455 static inline void memblock_free_late(phys_addr_t base, phys_addr_t size)
456 {
457 	__memblock_free_late(base, size);
458 }
459 
460 /*
461  * Set the allocation direction to bottom-up or top-down.
462  */
memblock_set_bottom_up(bool enable)463 static inline __init_memblock void memblock_set_bottom_up(bool enable)
464 {
465 	memblock.bottom_up = enable;
466 }
467 
468 /*
469  * Check if the allocation direction is bottom-up or not.
470  * if this is true, that said, memblock will allocate memory
471  * in bottom-up direction.
472  */
memblock_bottom_up(void)473 static inline __init_memblock bool memblock_bottom_up(void)
474 {
475 	return memblock.bottom_up;
476 }
477 
478 phys_addr_t memblock_phys_mem_size(void);
479 phys_addr_t memblock_reserved_size(void);
480 phys_addr_t memblock_start_of_DRAM(void);
481 phys_addr_t memblock_end_of_DRAM(void);
482 void memblock_enforce_memory_limit(phys_addr_t memory_limit);
483 void memblock_cap_memory_range(phys_addr_t base, phys_addr_t size);
484 void memblock_mem_limit_remove_map(phys_addr_t limit);
485 bool memblock_is_memory(phys_addr_t addr);
486 bool memblock_is_map_memory(phys_addr_t addr);
487 bool memblock_is_region_memory(phys_addr_t base, phys_addr_t size);
488 bool memblock_is_reserved(phys_addr_t addr);
489 bool memblock_is_region_reserved(phys_addr_t base, phys_addr_t size);
490 
491 void memblock_dump_all(void);
492 
493 /**
494  * memblock_set_current_limit - Set the current allocation limit to allow
495  *                         limiting allocations to what is currently
496  *                         accessible during boot
497  * @limit: New limit value (physical address)
498  */
499 void memblock_set_current_limit(phys_addr_t limit);
500 
501 
502 phys_addr_t memblock_get_current_limit(void);
503 
504 /*
505  * pfn conversion functions
506  *
507  * While the memory MEMBLOCKs should always be page aligned, the reserved
508  * MEMBLOCKs may not be. This accessor attempt to provide a very clear
509  * idea of what they return for such non aligned MEMBLOCKs.
510  */
511 
512 /**
513  * memblock_region_memory_base_pfn - get the lowest pfn of the memory region
514  * @reg: memblock_region structure
515  *
516  * Return: the lowest pfn intersecting with the memory region
517  */
memblock_region_memory_base_pfn(const struct memblock_region * reg)518 static inline unsigned long memblock_region_memory_base_pfn(const struct memblock_region *reg)
519 {
520 	return PFN_UP(reg->base);
521 }
522 
523 /**
524  * memblock_region_memory_end_pfn - get the end pfn of the memory region
525  * @reg: memblock_region structure
526  *
527  * Return: the end_pfn of the reserved region
528  */
memblock_region_memory_end_pfn(const struct memblock_region * reg)529 static inline unsigned long memblock_region_memory_end_pfn(const struct memblock_region *reg)
530 {
531 	return PFN_DOWN(reg->base + reg->size);
532 }
533 
534 /**
535  * memblock_region_reserved_base_pfn - get the lowest pfn of the reserved region
536  * @reg: memblock_region structure
537  *
538  * Return: the lowest pfn intersecting with the reserved region
539  */
memblock_region_reserved_base_pfn(const struct memblock_region * reg)540 static inline unsigned long memblock_region_reserved_base_pfn(const struct memblock_region *reg)
541 {
542 	return PFN_DOWN(reg->base);
543 }
544 
545 /**
546  * memblock_region_reserved_end_pfn - get the end pfn of the reserved region
547  * @reg: memblock_region structure
548  *
549  * Return: the end_pfn of the reserved region
550  */
memblock_region_reserved_end_pfn(const struct memblock_region * reg)551 static inline unsigned long memblock_region_reserved_end_pfn(const struct memblock_region *reg)
552 {
553 	return PFN_UP(reg->base + reg->size);
554 }
555 
556 /**
557  * for_each_mem_region - itereate over memory regions
558  * @region: loop variable
559  */
560 #define for_each_mem_region(region)					\
561 	for (region = memblock.memory.regions;				\
562 	     region < (memblock.memory.regions + memblock.memory.cnt);	\
563 	     region++)
564 
565 /**
566  * for_each_reserved_mem_region - itereate over reserved memory regions
567  * @region: loop variable
568  */
569 #define for_each_reserved_mem_region(region)				\
570 	for (region = memblock.reserved.regions;			\
571 	     region < (memblock.reserved.regions + memblock.reserved.cnt); \
572 	     region++)
573 
574 extern void *alloc_large_system_hash(const char *tablename,
575 				     unsigned long bucketsize,
576 				     unsigned long numentries,
577 				     int scale,
578 				     int flags,
579 				     unsigned int *_hash_shift,
580 				     unsigned int *_hash_mask,
581 				     unsigned long low_limit,
582 				     unsigned long high_limit);
583 
584 #define HASH_EARLY	0x00000001	/* Allocating during early boot? */
585 #define HASH_SMALL	0x00000002	/* sub-page allocation allowed, min
586 					 * shift passed via *_hash_shift */
587 #define HASH_ZERO	0x00000004	/* Zero allocated hash table */
588 
589 /* Only NUMA needs hash distribution. 64bit NUMA architectures have
590  * sufficient vmalloc space.
591  */
592 #ifdef CONFIG_NUMA
593 #define HASHDIST_DEFAULT IS_ENABLED(CONFIG_64BIT)
594 extern int hashdist;		/* Distribute hashes across NUMA nodes? */
595 #else
596 #define hashdist (0)
597 #endif
598 
599 #ifdef CONFIG_MEMTEST
600 extern void early_memtest(phys_addr_t start, phys_addr_t end);
601 #else
early_memtest(phys_addr_t start,phys_addr_t end)602 static inline void early_memtest(phys_addr_t start, phys_addr_t end)
603 {
604 }
605 #endif
606 
607 #endif /* __KERNEL__ */
608 
609 #endif /* _LINUX_MEMBLOCK_H */
610