1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Freescale Management Complex (MC) bus driver
4  *
5  * Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
6  * Copyright 2019-2020 NXP
7  * Author: German Rivera <German.Rivera@freescale.com>
8  *
9  */
10 
11 #define pr_fmt(fmt) "fsl-mc: " fmt
12 
13 #include <linux/module.h>
14 #include <linux/of_device.h>
15 #include <linux/of_address.h>
16 #include <linux/ioport.h>
17 #include <linux/slab.h>
18 #include <linux/limits.h>
19 #include <linux/bitops.h>
20 #include <linux/msi.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/acpi.h>
23 #include <linux/iommu.h>
24 
25 #include "fsl-mc-private.h"
26 
27 /**
28  * Default DMA mask for devices on a fsl-mc bus
29  */
30 #define FSL_MC_DEFAULT_DMA_MASK	(~0ULL)
31 
32 static struct fsl_mc_version mc_version;
33 
34 /**
35  * struct fsl_mc - Private data of a "fsl,qoriq-mc" platform device
36  * @root_mc_bus_dev: fsl-mc device representing the root DPRC
37  * @num_translation_ranges: number of entries in addr_translation_ranges
38  * @translation_ranges: array of bus to system address translation ranges
39  */
40 struct fsl_mc {
41 	struct fsl_mc_device *root_mc_bus_dev;
42 	u8 num_translation_ranges;
43 	struct fsl_mc_addr_translation_range *translation_ranges;
44 	void __iomem *fsl_mc_regs;
45 };
46 
47 /**
48  * struct fsl_mc_addr_translation_range - bus to system address translation
49  * range
50  * @mc_region_type: Type of MC region for the range being translated
51  * @start_mc_offset: Start MC offset of the range being translated
52  * @end_mc_offset: MC offset of the first byte after the range (last MC
53  * offset of the range is end_mc_offset - 1)
54  * @start_phys_addr: system physical address corresponding to start_mc_addr
55  */
56 struct fsl_mc_addr_translation_range {
57 	enum dprc_region_type mc_region_type;
58 	u64 start_mc_offset;
59 	u64 end_mc_offset;
60 	phys_addr_t start_phys_addr;
61 };
62 
63 #define FSL_MC_GCR1	0x0
64 #define GCR1_P1_STOP	BIT(31)
65 
66 #define FSL_MC_FAPR	0x28
67 #define MC_FAPR_PL	BIT(18)
68 #define MC_FAPR_BMT	BIT(17)
69 
70 /**
71  * fsl_mc_bus_match - device to driver matching callback
72  * @dev: the fsl-mc device to match against
73  * @drv: the device driver to search for matching fsl-mc object type
74  * structures
75  *
76  * Returns 1 on success, 0 otherwise.
77  */
fsl_mc_bus_match(struct device * dev,struct device_driver * drv)78 static int fsl_mc_bus_match(struct device *dev, struct device_driver *drv)
79 {
80 	const struct fsl_mc_device_id *id;
81 	struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
82 	struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(drv);
83 	bool found = false;
84 
85 	/* When driver_override is set, only bind to the matching driver */
86 	if (mc_dev->driver_override) {
87 		found = !strcmp(mc_dev->driver_override, mc_drv->driver.name);
88 		goto out;
89 	}
90 
91 	if (!mc_drv->match_id_table)
92 		goto out;
93 
94 	/*
95 	 * If the object is not 'plugged' don't match.
96 	 * Only exception is the root DPRC, which is a special case.
97 	 */
98 	if ((mc_dev->obj_desc.state & FSL_MC_OBJ_STATE_PLUGGED) == 0 &&
99 	    !fsl_mc_is_root_dprc(&mc_dev->dev))
100 		goto out;
101 
102 	/*
103 	 * Traverse the match_id table of the given driver, trying to find
104 	 * a matching for the given device.
105 	 */
106 	for (id = mc_drv->match_id_table; id->vendor != 0x0; id++) {
107 		if (id->vendor == mc_dev->obj_desc.vendor &&
108 		    strcmp(id->obj_type, mc_dev->obj_desc.type) == 0) {
109 			found = true;
110 
111 			break;
112 		}
113 	}
114 
115 out:
116 	dev_dbg(dev, "%smatched\n", found ? "" : "not ");
117 	return found;
118 }
119 
120 /**
121  * fsl_mc_bus_uevent - callback invoked when a device is added
122  */
fsl_mc_bus_uevent(struct device * dev,struct kobj_uevent_env * env)123 static int fsl_mc_bus_uevent(struct device *dev, struct kobj_uevent_env *env)
124 {
125 	struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
126 
127 	if (add_uevent_var(env, "MODALIAS=fsl-mc:v%08Xd%s",
128 			   mc_dev->obj_desc.vendor,
129 			   mc_dev->obj_desc.type))
130 		return -ENOMEM;
131 
132 	return 0;
133 }
134 
fsl_mc_dma_configure(struct device * dev)135 static int fsl_mc_dma_configure(struct device *dev)
136 {
137 	struct device *dma_dev = dev;
138 	struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
139 	u32 input_id = mc_dev->icid;
140 
141 	while (dev_is_fsl_mc(dma_dev))
142 		dma_dev = dma_dev->parent;
143 
144 	if (dev_of_node(dma_dev))
145 		return of_dma_configure_id(dev, dma_dev->of_node, 0, &input_id);
146 
147 	return acpi_dma_configure_id(dev, DEV_DMA_COHERENT, &input_id);
148 }
149 
modalias_show(struct device * dev,struct device_attribute * attr,char * buf)150 static ssize_t modalias_show(struct device *dev, struct device_attribute *attr,
151 			     char *buf)
152 {
153 	struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
154 
155 	return sprintf(buf, "fsl-mc:v%08Xd%s\n", mc_dev->obj_desc.vendor,
156 		       mc_dev->obj_desc.type);
157 }
158 static DEVICE_ATTR_RO(modalias);
159 
driver_override_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)160 static ssize_t driver_override_store(struct device *dev,
161 				     struct device_attribute *attr,
162 				     const char *buf, size_t count)
163 {
164 	struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
165 	char *driver_override, *old = mc_dev->driver_override;
166 	char *cp;
167 
168 	if (WARN_ON(dev->bus != &fsl_mc_bus_type))
169 		return -EINVAL;
170 
171 	if (count >= (PAGE_SIZE - 1))
172 		return -EINVAL;
173 
174 	driver_override = kstrndup(buf, count, GFP_KERNEL);
175 	if (!driver_override)
176 		return -ENOMEM;
177 
178 	cp = strchr(driver_override, '\n');
179 	if (cp)
180 		*cp = '\0';
181 
182 	if (strlen(driver_override)) {
183 		mc_dev->driver_override = driver_override;
184 	} else {
185 		kfree(driver_override);
186 		mc_dev->driver_override = NULL;
187 	}
188 
189 	kfree(old);
190 
191 	return count;
192 }
193 
driver_override_show(struct device * dev,struct device_attribute * attr,char * buf)194 static ssize_t driver_override_show(struct device *dev,
195 				    struct device_attribute *attr, char *buf)
196 {
197 	struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
198 
199 	return snprintf(buf, PAGE_SIZE, "%s\n", mc_dev->driver_override);
200 }
201 static DEVICE_ATTR_RW(driver_override);
202 
203 static struct attribute *fsl_mc_dev_attrs[] = {
204 	&dev_attr_modalias.attr,
205 	&dev_attr_driver_override.attr,
206 	NULL,
207 };
208 
209 ATTRIBUTE_GROUPS(fsl_mc_dev);
210 
scan_fsl_mc_bus(struct device * dev,void * data)211 static int scan_fsl_mc_bus(struct device *dev, void *data)
212 {
213 	struct fsl_mc_device *root_mc_dev;
214 	struct fsl_mc_bus *root_mc_bus;
215 
216 	if (!fsl_mc_is_root_dprc(dev))
217 		goto exit;
218 
219 	root_mc_dev = to_fsl_mc_device(dev);
220 	root_mc_bus = to_fsl_mc_bus(root_mc_dev);
221 	mutex_lock(&root_mc_bus->scan_mutex);
222 	dprc_scan_objects(root_mc_dev, NULL);
223 	mutex_unlock(&root_mc_bus->scan_mutex);
224 
225 exit:
226 	return 0;
227 }
228 
rescan_store(struct bus_type * bus,const char * buf,size_t count)229 static ssize_t rescan_store(struct bus_type *bus,
230 			    const char *buf, size_t count)
231 {
232 	unsigned long val;
233 
234 	if (kstrtoul(buf, 0, &val) < 0)
235 		return -EINVAL;
236 
237 	if (val)
238 		bus_for_each_dev(bus, NULL, NULL, scan_fsl_mc_bus);
239 
240 	return count;
241 }
242 static BUS_ATTR_WO(rescan);
243 
fsl_mc_bus_set_autorescan(struct device * dev,void * data)244 static int fsl_mc_bus_set_autorescan(struct device *dev, void *data)
245 {
246 	struct fsl_mc_device *root_mc_dev;
247 	unsigned long val;
248 	char *buf = data;
249 
250 	if (!fsl_mc_is_root_dprc(dev))
251 		goto exit;
252 
253 	root_mc_dev = to_fsl_mc_device(dev);
254 
255 	if (kstrtoul(buf, 0, &val) < 0)
256 		return -EINVAL;
257 
258 	if (val)
259 		enable_dprc_irq(root_mc_dev);
260 	else
261 		disable_dprc_irq(root_mc_dev);
262 
263 exit:
264 	return 0;
265 }
266 
fsl_mc_bus_get_autorescan(struct device * dev,void * data)267 static int fsl_mc_bus_get_autorescan(struct device *dev, void *data)
268 {
269 	struct fsl_mc_device *root_mc_dev;
270 	char *buf = data;
271 
272 	if (!fsl_mc_is_root_dprc(dev))
273 		goto exit;
274 
275 	root_mc_dev = to_fsl_mc_device(dev);
276 
277 	sprintf(buf, "%d\n", get_dprc_irq_state(root_mc_dev));
278 exit:
279 	return 0;
280 }
281 
autorescan_store(struct bus_type * bus,const char * buf,size_t count)282 static ssize_t autorescan_store(struct bus_type *bus,
283 				const char *buf, size_t count)
284 {
285 	bus_for_each_dev(bus, NULL, (void *)buf, fsl_mc_bus_set_autorescan);
286 
287 	return count;
288 }
289 
autorescan_show(struct bus_type * bus,char * buf)290 static ssize_t autorescan_show(struct bus_type *bus, char *buf)
291 {
292 	bus_for_each_dev(bus, NULL, (void *)buf, fsl_mc_bus_get_autorescan);
293 	return strlen(buf);
294 }
295 
296 static BUS_ATTR_RW(autorescan);
297 
298 static struct attribute *fsl_mc_bus_attrs[] = {
299 	&bus_attr_rescan.attr,
300 	&bus_attr_autorescan.attr,
301 	NULL,
302 };
303 
304 ATTRIBUTE_GROUPS(fsl_mc_bus);
305 
306 struct bus_type fsl_mc_bus_type = {
307 	.name = "fsl-mc",
308 	.match = fsl_mc_bus_match,
309 	.uevent = fsl_mc_bus_uevent,
310 	.dma_configure  = fsl_mc_dma_configure,
311 	.dev_groups = fsl_mc_dev_groups,
312 	.bus_groups = fsl_mc_bus_groups,
313 };
314 EXPORT_SYMBOL_GPL(fsl_mc_bus_type);
315 
316 struct device_type fsl_mc_bus_dprc_type = {
317 	.name = "fsl_mc_bus_dprc"
318 };
319 EXPORT_SYMBOL_GPL(fsl_mc_bus_dprc_type);
320 
321 struct device_type fsl_mc_bus_dpni_type = {
322 	.name = "fsl_mc_bus_dpni"
323 };
324 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpni_type);
325 
326 struct device_type fsl_mc_bus_dpio_type = {
327 	.name = "fsl_mc_bus_dpio"
328 };
329 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpio_type);
330 
331 struct device_type fsl_mc_bus_dpsw_type = {
332 	.name = "fsl_mc_bus_dpsw"
333 };
334 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpsw_type);
335 
336 struct device_type fsl_mc_bus_dpbp_type = {
337 	.name = "fsl_mc_bus_dpbp"
338 };
339 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpbp_type);
340 
341 struct device_type fsl_mc_bus_dpcon_type = {
342 	.name = "fsl_mc_bus_dpcon"
343 };
344 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpcon_type);
345 
346 struct device_type fsl_mc_bus_dpmcp_type = {
347 	.name = "fsl_mc_bus_dpmcp"
348 };
349 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpmcp_type);
350 
351 struct device_type fsl_mc_bus_dpmac_type = {
352 	.name = "fsl_mc_bus_dpmac"
353 };
354 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpmac_type);
355 
356 struct device_type fsl_mc_bus_dprtc_type = {
357 	.name = "fsl_mc_bus_dprtc"
358 };
359 EXPORT_SYMBOL_GPL(fsl_mc_bus_dprtc_type);
360 
361 struct device_type fsl_mc_bus_dpseci_type = {
362 	.name = "fsl_mc_bus_dpseci"
363 };
364 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpseci_type);
365 
366 struct device_type fsl_mc_bus_dpdmux_type = {
367 	.name = "fsl_mc_bus_dpdmux"
368 };
369 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdmux_type);
370 
371 struct device_type fsl_mc_bus_dpdcei_type = {
372 	.name = "fsl_mc_bus_dpdcei"
373 };
374 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdcei_type);
375 
376 struct device_type fsl_mc_bus_dpaiop_type = {
377 	.name = "fsl_mc_bus_dpaiop"
378 };
379 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpaiop_type);
380 
381 struct device_type fsl_mc_bus_dpci_type = {
382 	.name = "fsl_mc_bus_dpci"
383 };
384 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpci_type);
385 
386 struct device_type fsl_mc_bus_dpdmai_type = {
387 	.name = "fsl_mc_bus_dpdmai"
388 };
389 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdmai_type);
390 
391 struct device_type fsl_mc_bus_dpdbg_type = {
392 	.name = "fsl_mc_bus_dpdbg"
393 };
394 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdbg_type);
395 
fsl_mc_get_device_type(const char * type)396 static struct device_type *fsl_mc_get_device_type(const char *type)
397 {
398 	static const struct {
399 		struct device_type *dev_type;
400 		const char *type;
401 	} dev_types[] = {
402 		{ &fsl_mc_bus_dprc_type, "dprc" },
403 		{ &fsl_mc_bus_dpni_type, "dpni" },
404 		{ &fsl_mc_bus_dpio_type, "dpio" },
405 		{ &fsl_mc_bus_dpsw_type, "dpsw" },
406 		{ &fsl_mc_bus_dpbp_type, "dpbp" },
407 		{ &fsl_mc_bus_dpcon_type, "dpcon" },
408 		{ &fsl_mc_bus_dpmcp_type, "dpmcp" },
409 		{ &fsl_mc_bus_dpmac_type, "dpmac" },
410 		{ &fsl_mc_bus_dprtc_type, "dprtc" },
411 		{ &fsl_mc_bus_dpseci_type, "dpseci" },
412 		{ &fsl_mc_bus_dpdmux_type, "dpdmux" },
413 		{ &fsl_mc_bus_dpdcei_type, "dpdcei" },
414 		{ &fsl_mc_bus_dpaiop_type, "dpaiop" },
415 		{ &fsl_mc_bus_dpci_type, "dpci" },
416 		{ &fsl_mc_bus_dpdmai_type, "dpdmai" },
417 		{ &fsl_mc_bus_dpdbg_type, "dpdbg" },
418 		{ NULL, NULL }
419 	};
420 	int i;
421 
422 	for (i = 0; dev_types[i].dev_type; i++)
423 		if (!strcmp(dev_types[i].type, type))
424 			return dev_types[i].dev_type;
425 
426 	return NULL;
427 }
428 
fsl_mc_driver_probe(struct device * dev)429 static int fsl_mc_driver_probe(struct device *dev)
430 {
431 	struct fsl_mc_driver *mc_drv;
432 	struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
433 	int error;
434 
435 	mc_drv = to_fsl_mc_driver(dev->driver);
436 
437 	error = mc_drv->probe(mc_dev);
438 	if (error < 0) {
439 		if (error != -EPROBE_DEFER)
440 			dev_err(dev, "%s failed: %d\n", __func__, error);
441 		return error;
442 	}
443 
444 	return 0;
445 }
446 
fsl_mc_driver_remove(struct device * dev)447 static int fsl_mc_driver_remove(struct device *dev)
448 {
449 	struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver);
450 	struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
451 	int error;
452 
453 	error = mc_drv->remove(mc_dev);
454 	if (error < 0) {
455 		dev_err(dev, "%s failed: %d\n", __func__, error);
456 		return error;
457 	}
458 
459 	return 0;
460 }
461 
fsl_mc_driver_shutdown(struct device * dev)462 static void fsl_mc_driver_shutdown(struct device *dev)
463 {
464 	struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver);
465 	struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
466 
467 	mc_drv->shutdown(mc_dev);
468 }
469 
470 /**
471  * __fsl_mc_driver_register - registers a child device driver with the
472  * MC bus
473  *
474  * This function is implicitly invoked from the registration function of
475  * fsl_mc device drivers, which is generated by the
476  * module_fsl_mc_driver() macro.
477  */
__fsl_mc_driver_register(struct fsl_mc_driver * mc_driver,struct module * owner)478 int __fsl_mc_driver_register(struct fsl_mc_driver *mc_driver,
479 			     struct module *owner)
480 {
481 	int error;
482 
483 	mc_driver->driver.owner = owner;
484 	mc_driver->driver.bus = &fsl_mc_bus_type;
485 
486 	if (mc_driver->probe)
487 		mc_driver->driver.probe = fsl_mc_driver_probe;
488 
489 	if (mc_driver->remove)
490 		mc_driver->driver.remove = fsl_mc_driver_remove;
491 
492 	if (mc_driver->shutdown)
493 		mc_driver->driver.shutdown = fsl_mc_driver_shutdown;
494 
495 	error = driver_register(&mc_driver->driver);
496 	if (error < 0) {
497 		pr_err("driver_register() failed for %s: %d\n",
498 		       mc_driver->driver.name, error);
499 		return error;
500 	}
501 
502 	return 0;
503 }
504 EXPORT_SYMBOL_GPL(__fsl_mc_driver_register);
505 
506 /**
507  * fsl_mc_driver_unregister - unregisters a device driver from the
508  * MC bus
509  */
fsl_mc_driver_unregister(struct fsl_mc_driver * mc_driver)510 void fsl_mc_driver_unregister(struct fsl_mc_driver *mc_driver)
511 {
512 	driver_unregister(&mc_driver->driver);
513 }
514 EXPORT_SYMBOL_GPL(fsl_mc_driver_unregister);
515 
516 /**
517  * mc_get_version() - Retrieves the Management Complex firmware
518  *			version information
519  * @mc_io:		Pointer to opaque I/O object
520  * @cmd_flags:		Command flags; one or more of 'MC_CMD_FLAG_'
521  * @mc_ver_info:	Returned version information structure
522  *
523  * Return:	'0' on Success; Error code otherwise.
524  */
mc_get_version(struct fsl_mc_io * mc_io,u32 cmd_flags,struct fsl_mc_version * mc_ver_info)525 static int mc_get_version(struct fsl_mc_io *mc_io,
526 			  u32 cmd_flags,
527 			  struct fsl_mc_version *mc_ver_info)
528 {
529 	struct fsl_mc_command cmd = { 0 };
530 	struct dpmng_rsp_get_version *rsp_params;
531 	int err;
532 
533 	/* prepare command */
534 	cmd.header = mc_encode_cmd_header(DPMNG_CMDID_GET_VERSION,
535 					  cmd_flags,
536 					  0);
537 
538 	/* send command to mc*/
539 	err = mc_send_command(mc_io, &cmd);
540 	if (err)
541 		return err;
542 
543 	/* retrieve response parameters */
544 	rsp_params = (struct dpmng_rsp_get_version *)cmd.params;
545 	mc_ver_info->revision = le32_to_cpu(rsp_params->revision);
546 	mc_ver_info->major = le32_to_cpu(rsp_params->version_major);
547 	mc_ver_info->minor = le32_to_cpu(rsp_params->version_minor);
548 
549 	return 0;
550 }
551 
552 /**
553  * fsl_mc_get_version - function to retrieve the MC f/w version information
554  *
555  * Return:	mc version when called after fsl-mc-bus probe; NULL otherwise.
556  */
fsl_mc_get_version(void)557 struct fsl_mc_version *fsl_mc_get_version(void)
558 {
559 	if (mc_version.major)
560 		return &mc_version;
561 
562 	return NULL;
563 }
564 EXPORT_SYMBOL_GPL(fsl_mc_get_version);
565 
566 /**
567  * fsl_mc_get_root_dprc - function to traverse to the root dprc
568  */
fsl_mc_get_root_dprc(struct device * dev,struct device ** root_dprc_dev)569 void fsl_mc_get_root_dprc(struct device *dev,
570 			 struct device **root_dprc_dev)
571 {
572 	if (!dev) {
573 		*root_dprc_dev = NULL;
574 	} else if (!dev_is_fsl_mc(dev)) {
575 		*root_dprc_dev = NULL;
576 	} else {
577 		*root_dprc_dev = dev;
578 		while (dev_is_fsl_mc((*root_dprc_dev)->parent))
579 			*root_dprc_dev = (*root_dprc_dev)->parent;
580 	}
581 }
582 
get_dprc_attr(struct fsl_mc_io * mc_io,int container_id,struct dprc_attributes * attr)583 static int get_dprc_attr(struct fsl_mc_io *mc_io,
584 			 int container_id, struct dprc_attributes *attr)
585 {
586 	u16 dprc_handle;
587 	int error;
588 
589 	error = dprc_open(mc_io, 0, container_id, &dprc_handle);
590 	if (error < 0) {
591 		dev_err(mc_io->dev, "dprc_open() failed: %d\n", error);
592 		return error;
593 	}
594 
595 	memset(attr, 0, sizeof(struct dprc_attributes));
596 	error = dprc_get_attributes(mc_io, 0, dprc_handle, attr);
597 	if (error < 0) {
598 		dev_err(mc_io->dev, "dprc_get_attributes() failed: %d\n",
599 			error);
600 		goto common_cleanup;
601 	}
602 
603 	error = 0;
604 
605 common_cleanup:
606 	(void)dprc_close(mc_io, 0, dprc_handle);
607 	return error;
608 }
609 
get_dprc_icid(struct fsl_mc_io * mc_io,int container_id,u32 * icid)610 static int get_dprc_icid(struct fsl_mc_io *mc_io,
611 			 int container_id, u32 *icid)
612 {
613 	struct dprc_attributes attr;
614 	int error;
615 
616 	error = get_dprc_attr(mc_io, container_id, &attr);
617 	if (error == 0)
618 		*icid = attr.icid;
619 
620 	return error;
621 }
622 
translate_mc_addr(struct fsl_mc_device * mc_dev,enum dprc_region_type mc_region_type,u64 mc_offset,phys_addr_t * phys_addr)623 static int translate_mc_addr(struct fsl_mc_device *mc_dev,
624 			     enum dprc_region_type mc_region_type,
625 			     u64 mc_offset, phys_addr_t *phys_addr)
626 {
627 	int i;
628 	struct device *root_dprc_dev;
629 	struct fsl_mc *mc;
630 
631 	fsl_mc_get_root_dprc(&mc_dev->dev, &root_dprc_dev);
632 	mc = dev_get_drvdata(root_dprc_dev->parent);
633 
634 	if (mc->num_translation_ranges == 0) {
635 		/*
636 		 * Do identity mapping:
637 		 */
638 		*phys_addr = mc_offset;
639 		return 0;
640 	}
641 
642 	for (i = 0; i < mc->num_translation_ranges; i++) {
643 		struct fsl_mc_addr_translation_range *range =
644 			&mc->translation_ranges[i];
645 
646 		if (mc_region_type == range->mc_region_type &&
647 		    mc_offset >= range->start_mc_offset &&
648 		    mc_offset < range->end_mc_offset) {
649 			*phys_addr = range->start_phys_addr +
650 				     (mc_offset - range->start_mc_offset);
651 			return 0;
652 		}
653 	}
654 
655 	return -EFAULT;
656 }
657 
fsl_mc_device_get_mmio_regions(struct fsl_mc_device * mc_dev,struct fsl_mc_device * mc_bus_dev)658 static int fsl_mc_device_get_mmio_regions(struct fsl_mc_device *mc_dev,
659 					  struct fsl_mc_device *mc_bus_dev)
660 {
661 	int i;
662 	int error;
663 	struct resource *regions;
664 	struct fsl_mc_obj_desc *obj_desc = &mc_dev->obj_desc;
665 	struct device *parent_dev = mc_dev->dev.parent;
666 	enum dprc_region_type mc_region_type;
667 
668 	if (is_fsl_mc_bus_dprc(mc_dev) ||
669 	    is_fsl_mc_bus_dpmcp(mc_dev)) {
670 		mc_region_type = DPRC_REGION_TYPE_MC_PORTAL;
671 	} else if (is_fsl_mc_bus_dpio(mc_dev)) {
672 		mc_region_type = DPRC_REGION_TYPE_QBMAN_PORTAL;
673 	} else {
674 		/*
675 		 * This function should not have been called for this MC object
676 		 * type, as this object type is not supposed to have MMIO
677 		 * regions
678 		 */
679 		return -EINVAL;
680 	}
681 
682 	regions = kmalloc_array(obj_desc->region_count,
683 				sizeof(regions[0]), GFP_KERNEL);
684 	if (!regions)
685 		return -ENOMEM;
686 
687 	for (i = 0; i < obj_desc->region_count; i++) {
688 		struct dprc_region_desc region_desc;
689 
690 		error = dprc_get_obj_region(mc_bus_dev->mc_io,
691 					    0,
692 					    mc_bus_dev->mc_handle,
693 					    obj_desc->type,
694 					    obj_desc->id, i, &region_desc);
695 		if (error < 0) {
696 			dev_err(parent_dev,
697 				"dprc_get_obj_region() failed: %d\n", error);
698 			goto error_cleanup_regions;
699 		}
700 		/*
701 		 * Older MC only returned region offset and no base address
702 		 * If base address is in the region_desc use it otherwise
703 		 * revert to old mechanism
704 		 */
705 		if (region_desc.base_address)
706 			regions[i].start = region_desc.base_address +
707 						region_desc.base_offset;
708 		else
709 			error = translate_mc_addr(mc_dev, mc_region_type,
710 					  region_desc.base_offset,
711 					  &regions[i].start);
712 
713 		if (error < 0) {
714 			dev_err(parent_dev,
715 				"Invalid MC offset: %#x (for %s.%d\'s region %d)\n",
716 				region_desc.base_offset,
717 				obj_desc->type, obj_desc->id, i);
718 			goto error_cleanup_regions;
719 		}
720 
721 		regions[i].end = regions[i].start + region_desc.size - 1;
722 		regions[i].name = "fsl-mc object MMIO region";
723 		regions[i].flags = region_desc.flags & IORESOURCE_BITS;
724 		regions[i].flags |= IORESOURCE_MEM;
725 	}
726 
727 	mc_dev->regions = regions;
728 	return 0;
729 
730 error_cleanup_regions:
731 	kfree(regions);
732 	return error;
733 }
734 
735 /**
736  * fsl_mc_is_root_dprc - function to check if a given device is a root dprc
737  */
fsl_mc_is_root_dprc(struct device * dev)738 bool fsl_mc_is_root_dprc(struct device *dev)
739 {
740 	struct device *root_dprc_dev;
741 
742 	fsl_mc_get_root_dprc(dev, &root_dprc_dev);
743 	if (!root_dprc_dev)
744 		return false;
745 	return dev == root_dprc_dev;
746 }
747 
fsl_mc_device_release(struct device * dev)748 static void fsl_mc_device_release(struct device *dev)
749 {
750 	struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
751 
752 	kfree(mc_dev->regions);
753 
754 	if (is_fsl_mc_bus_dprc(mc_dev))
755 		kfree(to_fsl_mc_bus(mc_dev));
756 	else
757 		kfree(mc_dev);
758 }
759 
760 /**
761  * Add a newly discovered fsl-mc device to be visible in Linux
762  */
fsl_mc_device_add(struct fsl_mc_obj_desc * obj_desc,struct fsl_mc_io * mc_io,struct device * parent_dev,struct fsl_mc_device ** new_mc_dev)763 int fsl_mc_device_add(struct fsl_mc_obj_desc *obj_desc,
764 		      struct fsl_mc_io *mc_io,
765 		      struct device *parent_dev,
766 		      struct fsl_mc_device **new_mc_dev)
767 {
768 	int error;
769 	struct fsl_mc_device *mc_dev = NULL;
770 	struct fsl_mc_bus *mc_bus = NULL;
771 	struct fsl_mc_device *parent_mc_dev;
772 
773 	if (dev_is_fsl_mc(parent_dev))
774 		parent_mc_dev = to_fsl_mc_device(parent_dev);
775 	else
776 		parent_mc_dev = NULL;
777 
778 	if (strcmp(obj_desc->type, "dprc") == 0) {
779 		/*
780 		 * Allocate an MC bus device object:
781 		 */
782 		mc_bus = kzalloc(sizeof(*mc_bus), GFP_KERNEL);
783 		if (!mc_bus)
784 			return -ENOMEM;
785 
786 		mutex_init(&mc_bus->scan_mutex);
787 		mc_dev = &mc_bus->mc_dev;
788 	} else {
789 		/*
790 		 * Allocate a regular fsl_mc_device object:
791 		 */
792 		mc_dev = kzalloc(sizeof(*mc_dev), GFP_KERNEL);
793 		if (!mc_dev)
794 			return -ENOMEM;
795 	}
796 
797 	mc_dev->obj_desc = *obj_desc;
798 	mc_dev->mc_io = mc_io;
799 	device_initialize(&mc_dev->dev);
800 	mc_dev->dev.parent = parent_dev;
801 	mc_dev->dev.bus = &fsl_mc_bus_type;
802 	mc_dev->dev.release = fsl_mc_device_release;
803 	mc_dev->dev.type = fsl_mc_get_device_type(obj_desc->type);
804 	if (!mc_dev->dev.type) {
805 		error = -ENODEV;
806 		dev_err(parent_dev, "unknown device type %s\n", obj_desc->type);
807 		goto error_cleanup_dev;
808 	}
809 	dev_set_name(&mc_dev->dev, "%s.%d", obj_desc->type, obj_desc->id);
810 
811 	if (strcmp(obj_desc->type, "dprc") == 0) {
812 		struct fsl_mc_io *mc_io2;
813 
814 		mc_dev->flags |= FSL_MC_IS_DPRC;
815 
816 		/*
817 		 * To get the DPRC's ICID, we need to open the DPRC
818 		 * in get_dprc_icid(). For child DPRCs, we do so using the
819 		 * parent DPRC's MC portal instead of the child DPRC's MC
820 		 * portal, in case the child DPRC is already opened with
821 		 * its own portal (e.g., the DPRC used by AIOP).
822 		 *
823 		 * NOTE: There cannot be more than one active open for a
824 		 * given MC object, using the same MC portal.
825 		 */
826 		if (parent_mc_dev) {
827 			/*
828 			 * device being added is a child DPRC device
829 			 */
830 			mc_io2 = parent_mc_dev->mc_io;
831 		} else {
832 			/*
833 			 * device being added is the root DPRC device
834 			 */
835 			if (!mc_io) {
836 				error = -EINVAL;
837 				goto error_cleanup_dev;
838 			}
839 
840 			mc_io2 = mc_io;
841 		}
842 
843 		error = get_dprc_icid(mc_io2, obj_desc->id, &mc_dev->icid);
844 		if (error < 0)
845 			goto error_cleanup_dev;
846 	} else {
847 		/*
848 		 * A non-DPRC object has to be a child of a DPRC, use the
849 		 * parent's ICID and interrupt domain.
850 		 */
851 		mc_dev->icid = parent_mc_dev->icid;
852 		mc_dev->dma_mask = FSL_MC_DEFAULT_DMA_MASK;
853 		mc_dev->dev.dma_mask = &mc_dev->dma_mask;
854 		mc_dev->dev.coherent_dma_mask = mc_dev->dma_mask;
855 		dev_set_msi_domain(&mc_dev->dev,
856 				   dev_get_msi_domain(&parent_mc_dev->dev));
857 	}
858 
859 	/*
860 	 * Get MMIO regions for the device from the MC:
861 	 *
862 	 * NOTE: the root DPRC is a special case as its MMIO region is
863 	 * obtained from the device tree
864 	 */
865 	if (parent_mc_dev && obj_desc->region_count != 0) {
866 		error = fsl_mc_device_get_mmio_regions(mc_dev,
867 						       parent_mc_dev);
868 		if (error < 0)
869 			goto error_cleanup_dev;
870 	}
871 
872 	/*
873 	 * The device-specific probe callback will get invoked by device_add()
874 	 */
875 	error = device_add(&mc_dev->dev);
876 	if (error < 0) {
877 		dev_err(parent_dev,
878 			"device_add() failed for device %s: %d\n",
879 			dev_name(&mc_dev->dev), error);
880 		goto error_cleanup_dev;
881 	}
882 
883 	dev_dbg(parent_dev, "added %s\n", dev_name(&mc_dev->dev));
884 
885 	*new_mc_dev = mc_dev;
886 	return 0;
887 
888 error_cleanup_dev:
889 	kfree(mc_dev->regions);
890 	kfree(mc_bus);
891 	kfree(mc_dev);
892 
893 	return error;
894 }
895 EXPORT_SYMBOL_GPL(fsl_mc_device_add);
896 
897 /**
898  * fsl_mc_device_remove - Remove an fsl-mc device from being visible to
899  * Linux
900  *
901  * @mc_dev: Pointer to an fsl-mc device
902  */
fsl_mc_device_remove(struct fsl_mc_device * mc_dev)903 void fsl_mc_device_remove(struct fsl_mc_device *mc_dev)
904 {
905 	kfree(mc_dev->driver_override);
906 	mc_dev->driver_override = NULL;
907 
908 	/*
909 	 * The device-specific remove callback will get invoked by device_del()
910 	 */
911 	device_del(&mc_dev->dev);
912 	put_device(&mc_dev->dev);
913 }
914 EXPORT_SYMBOL_GPL(fsl_mc_device_remove);
915 
fsl_mc_get_endpoint(struct fsl_mc_device * mc_dev)916 struct fsl_mc_device *fsl_mc_get_endpoint(struct fsl_mc_device *mc_dev)
917 {
918 	struct fsl_mc_device *mc_bus_dev, *endpoint;
919 	struct fsl_mc_obj_desc endpoint_desc = {{ 0 }};
920 	struct dprc_endpoint endpoint1 = {{ 0 }};
921 	struct dprc_endpoint endpoint2 = {{ 0 }};
922 	int state, err;
923 
924 	mc_bus_dev = to_fsl_mc_device(mc_dev->dev.parent);
925 	strcpy(endpoint1.type, mc_dev->obj_desc.type);
926 	endpoint1.id = mc_dev->obj_desc.id;
927 
928 	err = dprc_get_connection(mc_bus_dev->mc_io, 0,
929 				  mc_bus_dev->mc_handle,
930 				  &endpoint1, &endpoint2,
931 				  &state);
932 
933 	if (err == -ENOTCONN || state == -1)
934 		return ERR_PTR(-ENOTCONN);
935 
936 	if (err < 0) {
937 		dev_err(&mc_bus_dev->dev, "dprc_get_connection() = %d\n", err);
938 		return ERR_PTR(err);
939 	}
940 
941 	strcpy(endpoint_desc.type, endpoint2.type);
942 	endpoint_desc.id = endpoint2.id;
943 	endpoint = fsl_mc_device_lookup(&endpoint_desc, mc_bus_dev);
944 
945 	/*
946 	 * We know that the device has an endpoint because we verified by
947 	 * interrogating the firmware. This is the case when the device was not
948 	 * yet discovered by the fsl-mc bus, thus the lookup returned NULL.
949 	 * Differentiate this case by returning EPROBE_DEFER.
950 	 */
951 	if (!endpoint)
952 		return ERR_PTR(-EPROBE_DEFER);
953 
954 	return endpoint;
955 }
956 EXPORT_SYMBOL_GPL(fsl_mc_get_endpoint);
957 
parse_mc_ranges(struct device * dev,int * paddr_cells,int * mc_addr_cells,int * mc_size_cells,const __be32 ** ranges_start)958 static int parse_mc_ranges(struct device *dev,
959 			   int *paddr_cells,
960 			   int *mc_addr_cells,
961 			   int *mc_size_cells,
962 			   const __be32 **ranges_start)
963 {
964 	const __be32 *prop;
965 	int range_tuple_cell_count;
966 	int ranges_len;
967 	int tuple_len;
968 	struct device_node *mc_node = dev->of_node;
969 
970 	*ranges_start = of_get_property(mc_node, "ranges", &ranges_len);
971 	if (!(*ranges_start) || !ranges_len) {
972 		dev_warn(dev,
973 			 "missing or empty ranges property for device tree node '%pOFn'\n",
974 			 mc_node);
975 		return 0;
976 	}
977 
978 	*paddr_cells = of_n_addr_cells(mc_node);
979 
980 	prop = of_get_property(mc_node, "#address-cells", NULL);
981 	if (prop)
982 		*mc_addr_cells = be32_to_cpup(prop);
983 	else
984 		*mc_addr_cells = *paddr_cells;
985 
986 	prop = of_get_property(mc_node, "#size-cells", NULL);
987 	if (prop)
988 		*mc_size_cells = be32_to_cpup(prop);
989 	else
990 		*mc_size_cells = of_n_size_cells(mc_node);
991 
992 	range_tuple_cell_count = *paddr_cells + *mc_addr_cells +
993 				 *mc_size_cells;
994 
995 	tuple_len = range_tuple_cell_count * sizeof(__be32);
996 	if (ranges_len % tuple_len != 0) {
997 		dev_err(dev, "malformed ranges property '%pOFn'\n", mc_node);
998 		return -EINVAL;
999 	}
1000 
1001 	return ranges_len / tuple_len;
1002 }
1003 
get_mc_addr_translation_ranges(struct device * dev,struct fsl_mc_addr_translation_range ** ranges,u8 * num_ranges)1004 static int get_mc_addr_translation_ranges(struct device *dev,
1005 					  struct fsl_mc_addr_translation_range
1006 						**ranges,
1007 					  u8 *num_ranges)
1008 {
1009 	int ret;
1010 	int paddr_cells;
1011 	int mc_addr_cells;
1012 	int mc_size_cells;
1013 	int i;
1014 	const __be32 *ranges_start;
1015 	const __be32 *cell;
1016 
1017 	ret = parse_mc_ranges(dev,
1018 			      &paddr_cells,
1019 			      &mc_addr_cells,
1020 			      &mc_size_cells,
1021 			      &ranges_start);
1022 	if (ret < 0)
1023 		return ret;
1024 
1025 	*num_ranges = ret;
1026 	if (!ret) {
1027 		/*
1028 		 * Missing or empty ranges property ("ranges;") for the
1029 		 * 'fsl,qoriq-mc' node. In this case, identity mapping
1030 		 * will be used.
1031 		 */
1032 		*ranges = NULL;
1033 		return 0;
1034 	}
1035 
1036 	*ranges = devm_kcalloc(dev, *num_ranges,
1037 			       sizeof(struct fsl_mc_addr_translation_range),
1038 			       GFP_KERNEL);
1039 	if (!(*ranges))
1040 		return -ENOMEM;
1041 
1042 	cell = ranges_start;
1043 	for (i = 0; i < *num_ranges; ++i) {
1044 		struct fsl_mc_addr_translation_range *range = &(*ranges)[i];
1045 
1046 		range->mc_region_type = of_read_number(cell, 1);
1047 		range->start_mc_offset = of_read_number(cell + 1,
1048 							mc_addr_cells - 1);
1049 		cell += mc_addr_cells;
1050 		range->start_phys_addr = of_read_number(cell, paddr_cells);
1051 		cell += paddr_cells;
1052 		range->end_mc_offset = range->start_mc_offset +
1053 				     of_read_number(cell, mc_size_cells);
1054 
1055 		cell += mc_size_cells;
1056 	}
1057 
1058 	return 0;
1059 }
1060 
1061 /**
1062  * fsl_mc_bus_probe - callback invoked when the root MC bus is being
1063  * added
1064  */
fsl_mc_bus_probe(struct platform_device * pdev)1065 static int fsl_mc_bus_probe(struct platform_device *pdev)
1066 {
1067 	struct fsl_mc_obj_desc obj_desc;
1068 	int error;
1069 	struct fsl_mc *mc;
1070 	struct fsl_mc_device *mc_bus_dev = NULL;
1071 	struct fsl_mc_io *mc_io = NULL;
1072 	int container_id;
1073 	phys_addr_t mc_portal_phys_addr;
1074 	u32 mc_portal_size, mc_stream_id;
1075 	struct resource *plat_res;
1076 
1077 	mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL);
1078 	if (!mc)
1079 		return -ENOMEM;
1080 
1081 	platform_set_drvdata(pdev, mc);
1082 
1083 	plat_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1084 	if (plat_res) {
1085 		mc->fsl_mc_regs = devm_ioremap_resource(&pdev->dev, plat_res);
1086 		if (IS_ERR(mc->fsl_mc_regs))
1087 			return PTR_ERR(mc->fsl_mc_regs);
1088 	}
1089 
1090 	if (mc->fsl_mc_regs) {
1091 		/*
1092 		 * Some bootloaders pause the MC firmware before booting the
1093 		 * kernel so that MC will not cause faults as soon as the
1094 		 * SMMU probes due to the fact that there's no configuration
1095 		 * in place for MC.
1096 		 * At this point MC should have all its SMMU setup done so make
1097 		 * sure it is resumed.
1098 		 */
1099 		writel(readl(mc->fsl_mc_regs + FSL_MC_GCR1) & (~GCR1_P1_STOP),
1100 		       mc->fsl_mc_regs + FSL_MC_GCR1);
1101 
1102 		if (IS_ENABLED(CONFIG_ACPI) && !dev_of_node(&pdev->dev)) {
1103 			mc_stream_id = readl(mc->fsl_mc_regs + FSL_MC_FAPR);
1104 			/*
1105 			 * HW ORs the PL and BMT bit, places the result in bit
1106 			 * 14 of the StreamID and ORs in the ICID. Calculate it
1107 			 * accordingly.
1108 			 */
1109 			mc_stream_id = (mc_stream_id & 0xffff) |
1110 				((mc_stream_id & (MC_FAPR_PL | MC_FAPR_BMT)) ?
1111 					BIT(14) : 0);
1112 			error = acpi_dma_configure_id(&pdev->dev,
1113 						      DEV_DMA_COHERENT,
1114 						      &mc_stream_id);
1115 			if (error)
1116 				dev_warn(&pdev->dev,
1117 					 "failed to configure dma: %d.\n",
1118 					 error);
1119 		}
1120 	}
1121 
1122 	/*
1123 	 * Get physical address of MC portal for the root DPRC:
1124 	 */
1125 	plat_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1126 	mc_portal_phys_addr = plat_res->start;
1127 	mc_portal_size = resource_size(plat_res);
1128 	error = fsl_create_mc_io(&pdev->dev, mc_portal_phys_addr,
1129 				 mc_portal_size, NULL,
1130 				 FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, &mc_io);
1131 	if (error < 0)
1132 		return error;
1133 
1134 	error = mc_get_version(mc_io, 0, &mc_version);
1135 	if (error != 0) {
1136 		dev_err(&pdev->dev,
1137 			"mc_get_version() failed with error %d\n", error);
1138 		goto error_cleanup_mc_io;
1139 	}
1140 
1141 	dev_info(&pdev->dev, "MC firmware version: %u.%u.%u\n",
1142 		 mc_version.major, mc_version.minor, mc_version.revision);
1143 
1144 	if (dev_of_node(&pdev->dev)) {
1145 		error = get_mc_addr_translation_ranges(&pdev->dev,
1146 						&mc->translation_ranges,
1147 						&mc->num_translation_ranges);
1148 		if (error < 0)
1149 			goto error_cleanup_mc_io;
1150 	}
1151 
1152 	error = dprc_get_container_id(mc_io, 0, &container_id);
1153 	if (error < 0) {
1154 		dev_err(&pdev->dev,
1155 			"dprc_get_container_id() failed: %d\n", error);
1156 		goto error_cleanup_mc_io;
1157 	}
1158 
1159 	memset(&obj_desc, 0, sizeof(struct fsl_mc_obj_desc));
1160 	error = dprc_get_api_version(mc_io, 0,
1161 				     &obj_desc.ver_major,
1162 				     &obj_desc.ver_minor);
1163 	if (error < 0)
1164 		goto error_cleanup_mc_io;
1165 
1166 	obj_desc.vendor = FSL_MC_VENDOR_FREESCALE;
1167 	strcpy(obj_desc.type, "dprc");
1168 	obj_desc.id = container_id;
1169 	obj_desc.irq_count = 1;
1170 	obj_desc.region_count = 0;
1171 
1172 	error = fsl_mc_device_add(&obj_desc, mc_io, &pdev->dev, &mc_bus_dev);
1173 	if (error < 0)
1174 		goto error_cleanup_mc_io;
1175 
1176 	mc->root_mc_bus_dev = mc_bus_dev;
1177 	mc_bus_dev->dev.fwnode = pdev->dev.fwnode;
1178 	return 0;
1179 
1180 error_cleanup_mc_io:
1181 	fsl_destroy_mc_io(mc_io);
1182 	return error;
1183 }
1184 
1185 /**
1186  * fsl_mc_bus_remove - callback invoked when the root MC bus is being
1187  * removed
1188  */
fsl_mc_bus_remove(struct platform_device * pdev)1189 static int fsl_mc_bus_remove(struct platform_device *pdev)
1190 {
1191 	struct fsl_mc *mc = platform_get_drvdata(pdev);
1192 
1193 	if (!fsl_mc_is_root_dprc(&mc->root_mc_bus_dev->dev))
1194 		return -EINVAL;
1195 
1196 	fsl_mc_device_remove(mc->root_mc_bus_dev);
1197 
1198 	fsl_destroy_mc_io(mc->root_mc_bus_dev->mc_io);
1199 	mc->root_mc_bus_dev->mc_io = NULL;
1200 
1201 	return 0;
1202 }
1203 
1204 static const struct of_device_id fsl_mc_bus_match_table[] = {
1205 	{.compatible = "fsl,qoriq-mc",},
1206 	{},
1207 };
1208 
1209 MODULE_DEVICE_TABLE(of, fsl_mc_bus_match_table);
1210 
1211 static const struct acpi_device_id fsl_mc_bus_acpi_match_table[] = {
1212 	{"NXP0008", 0 },
1213 	{ }
1214 };
1215 MODULE_DEVICE_TABLE(acpi, fsl_mc_bus_acpi_match_table);
1216 
1217 static struct platform_driver fsl_mc_bus_driver = {
1218 	.driver = {
1219 		   .name = "fsl_mc_bus",
1220 		   .pm = NULL,
1221 		   .of_match_table = fsl_mc_bus_match_table,
1222 		   .acpi_match_table = fsl_mc_bus_acpi_match_table,
1223 		   },
1224 	.probe = fsl_mc_bus_probe,
1225 	.remove = fsl_mc_bus_remove,
1226 };
1227 
fsl_mc_bus_driver_init(void)1228 static int __init fsl_mc_bus_driver_init(void)
1229 {
1230 	int error;
1231 
1232 	error = bus_register(&fsl_mc_bus_type);
1233 	if (error < 0) {
1234 		pr_err("bus type registration failed: %d\n", error);
1235 		goto error_cleanup_cache;
1236 	}
1237 
1238 	error = platform_driver_register(&fsl_mc_bus_driver);
1239 	if (error < 0) {
1240 		pr_err("platform_driver_register() failed: %d\n", error);
1241 		goto error_cleanup_bus;
1242 	}
1243 
1244 	error = dprc_driver_init();
1245 	if (error < 0)
1246 		goto error_cleanup_driver;
1247 
1248 	error = fsl_mc_allocator_driver_init();
1249 	if (error < 0)
1250 		goto error_cleanup_dprc_driver;
1251 
1252 	return 0;
1253 
1254 error_cleanup_dprc_driver:
1255 	dprc_driver_exit();
1256 
1257 error_cleanup_driver:
1258 	platform_driver_unregister(&fsl_mc_bus_driver);
1259 
1260 error_cleanup_bus:
1261 	bus_unregister(&fsl_mc_bus_type);
1262 
1263 error_cleanup_cache:
1264 	return error;
1265 }
1266 postcore_initcall(fsl_mc_bus_driver_init);
1267