1 /*
2  * Copyright (C) 2012 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-array.h"
8 #include "dm-space-map.h"
9 #include "dm-transaction-manager.h"
10 
11 #include <linux/export.h>
12 #include <linux/device-mapper.h>
13 
14 #define DM_MSG_PREFIX "array"
15 
16 /*----------------------------------------------------------------*/
17 
18 /*
19  * The array is implemented as a fully populated btree, which points to
20  * blocks that contain the packed values.  This is more space efficient
21  * than just using a btree since we don't store 1 key per value.
22  */
23 struct array_block {
24 	__le32 csum;
25 	__le32 max_entries;
26 	__le32 nr_entries;
27 	__le32 value_size;
28 	__le64 blocknr; /* Block this node is supposed to live in. */
29 } __packed;
30 
31 /*----------------------------------------------------------------*/
32 
33 /*
34  * Validator methods.  As usual we calculate a checksum, and also write the
35  * block location into the header (paranoia about ssds remapping areas by
36  * mistake).
37  */
38 #define CSUM_XOR 595846735
39 
array_block_prepare_for_write(struct dm_block_validator * v,struct dm_block * b,size_t size_of_block)40 static void array_block_prepare_for_write(struct dm_block_validator *v,
41 					  struct dm_block *b,
42 					  size_t size_of_block)
43 {
44 	struct array_block *bh_le = dm_block_data(b);
45 
46 	bh_le->blocknr = cpu_to_le64(dm_block_location(b));
47 	bh_le->csum = cpu_to_le32(dm_bm_checksum(&bh_le->max_entries,
48 						 size_of_block - sizeof(__le32),
49 						 CSUM_XOR));
50 }
51 
array_block_check(struct dm_block_validator * v,struct dm_block * b,size_t size_of_block)52 static int array_block_check(struct dm_block_validator *v,
53 			     struct dm_block *b,
54 			     size_t size_of_block)
55 {
56 	struct array_block *bh_le = dm_block_data(b);
57 	__le32 csum_disk;
58 
59 	if (dm_block_location(b) != le64_to_cpu(bh_le->blocknr)) {
60 		DMERR_LIMIT("array_block_check failed: blocknr %llu != wanted %llu",
61 			    (unsigned long long) le64_to_cpu(bh_le->blocknr),
62 			    (unsigned long long) dm_block_location(b));
63 		return -ENOTBLK;
64 	}
65 
66 	csum_disk = cpu_to_le32(dm_bm_checksum(&bh_le->max_entries,
67 					       size_of_block - sizeof(__le32),
68 					       CSUM_XOR));
69 	if (csum_disk != bh_le->csum) {
70 		DMERR_LIMIT("array_block_check failed: csum %u != wanted %u",
71 			    (unsigned) le32_to_cpu(csum_disk),
72 			    (unsigned) le32_to_cpu(bh_le->csum));
73 		return -EILSEQ;
74 	}
75 
76 	return 0;
77 }
78 
79 static struct dm_block_validator array_validator = {
80 	.name = "array",
81 	.prepare_for_write = array_block_prepare_for_write,
82 	.check = array_block_check
83 };
84 
85 /*----------------------------------------------------------------*/
86 
87 /*
88  * Functions for manipulating the array blocks.
89  */
90 
91 /*
92  * Returns a pointer to a value within an array block.
93  *
94  * index - The index into _this_ specific block.
95  */
element_at(struct dm_array_info * info,struct array_block * ab,unsigned index)96 static void *element_at(struct dm_array_info *info, struct array_block *ab,
97 			unsigned index)
98 {
99 	unsigned char *entry = (unsigned char *) (ab + 1);
100 
101 	entry += index * info->value_type.size;
102 
103 	return entry;
104 }
105 
106 /*
107  * Utility function that calls one of the value_type methods on every value
108  * in an array block.
109  */
on_entries(struct dm_array_info * info,struct array_block * ab,void (* fn)(void *,const void *))110 static void on_entries(struct dm_array_info *info, struct array_block *ab,
111 		       void (*fn)(void *, const void *))
112 {
113 	unsigned i, nr_entries = le32_to_cpu(ab->nr_entries);
114 
115 	for (i = 0; i < nr_entries; i++)
116 		fn(info->value_type.context, element_at(info, ab, i));
117 }
118 
119 /*
120  * Increment every value in an array block.
121  */
inc_ablock_entries(struct dm_array_info * info,struct array_block * ab)122 static void inc_ablock_entries(struct dm_array_info *info, struct array_block *ab)
123 {
124 	struct dm_btree_value_type *vt = &info->value_type;
125 
126 	if (vt->inc)
127 		on_entries(info, ab, vt->inc);
128 }
129 
130 /*
131  * Decrement every value in an array block.
132  */
dec_ablock_entries(struct dm_array_info * info,struct array_block * ab)133 static void dec_ablock_entries(struct dm_array_info *info, struct array_block *ab)
134 {
135 	struct dm_btree_value_type *vt = &info->value_type;
136 
137 	if (vt->dec)
138 		on_entries(info, ab, vt->dec);
139 }
140 
141 /*
142  * Each array block can hold this many values.
143  */
calc_max_entries(size_t value_size,size_t size_of_block)144 static uint32_t calc_max_entries(size_t value_size, size_t size_of_block)
145 {
146 	return (size_of_block - sizeof(struct array_block)) / value_size;
147 }
148 
149 /*
150  * Allocate a new array block.  The caller will need to unlock block.
151  */
alloc_ablock(struct dm_array_info * info,size_t size_of_block,uint32_t max_entries,struct dm_block ** block,struct array_block ** ab)152 static int alloc_ablock(struct dm_array_info *info, size_t size_of_block,
153 			uint32_t max_entries,
154 			struct dm_block **block, struct array_block **ab)
155 {
156 	int r;
157 
158 	r = dm_tm_new_block(info->btree_info.tm, &array_validator, block);
159 	if (r)
160 		return r;
161 
162 	(*ab) = dm_block_data(*block);
163 	(*ab)->max_entries = cpu_to_le32(max_entries);
164 	(*ab)->nr_entries = cpu_to_le32(0);
165 	(*ab)->value_size = cpu_to_le32(info->value_type.size);
166 
167 	return 0;
168 }
169 
170 /*
171  * Pad an array block out with a particular value.  Every instance will
172  * cause an increment of the value_type.  new_nr must always be more than
173  * the current number of entries.
174  */
fill_ablock(struct dm_array_info * info,struct array_block * ab,const void * value,unsigned new_nr)175 static void fill_ablock(struct dm_array_info *info, struct array_block *ab,
176 			const void *value, unsigned new_nr)
177 {
178 	unsigned i;
179 	uint32_t nr_entries;
180 	struct dm_btree_value_type *vt = &info->value_type;
181 
182 	BUG_ON(new_nr > le32_to_cpu(ab->max_entries));
183 	BUG_ON(new_nr < le32_to_cpu(ab->nr_entries));
184 
185 	nr_entries = le32_to_cpu(ab->nr_entries);
186 	for (i = nr_entries; i < new_nr; i++) {
187 		if (vt->inc)
188 			vt->inc(vt->context, value);
189 		memcpy(element_at(info, ab, i), value, vt->size);
190 	}
191 	ab->nr_entries = cpu_to_le32(new_nr);
192 }
193 
194 /*
195  * Remove some entries from the back of an array block.  Every value
196  * removed will be decremented.  new_nr must be <= the current number of
197  * entries.
198  */
trim_ablock(struct dm_array_info * info,struct array_block * ab,unsigned new_nr)199 static void trim_ablock(struct dm_array_info *info, struct array_block *ab,
200 			unsigned new_nr)
201 {
202 	unsigned i;
203 	uint32_t nr_entries;
204 	struct dm_btree_value_type *vt = &info->value_type;
205 
206 	BUG_ON(new_nr > le32_to_cpu(ab->max_entries));
207 	BUG_ON(new_nr > le32_to_cpu(ab->nr_entries));
208 
209 	nr_entries = le32_to_cpu(ab->nr_entries);
210 	for (i = nr_entries; i > new_nr; i--)
211 		if (vt->dec)
212 			vt->dec(vt->context, element_at(info, ab, i - 1));
213 	ab->nr_entries = cpu_to_le32(new_nr);
214 }
215 
216 /*
217  * Read locks a block, and coerces it to an array block.  The caller must
218  * unlock 'block' when finished.
219  */
get_ablock(struct dm_array_info * info,dm_block_t b,struct dm_block ** block,struct array_block ** ab)220 static int get_ablock(struct dm_array_info *info, dm_block_t b,
221 		      struct dm_block **block, struct array_block **ab)
222 {
223 	int r;
224 
225 	r = dm_tm_read_lock(info->btree_info.tm, b, &array_validator, block);
226 	if (r)
227 		return r;
228 
229 	*ab = dm_block_data(*block);
230 	return 0;
231 }
232 
233 /*
234  * Unlocks an array block.
235  */
unlock_ablock(struct dm_array_info * info,struct dm_block * block)236 static void unlock_ablock(struct dm_array_info *info, struct dm_block *block)
237 {
238 	dm_tm_unlock(info->btree_info.tm, block);
239 }
240 
241 /*----------------------------------------------------------------*/
242 
243 /*
244  * Btree manipulation.
245  */
246 
247 /*
248  * Looks up an array block in the btree, and then read locks it.
249  *
250  * index is the index of the index of the array_block, (ie. the array index
251  * / max_entries).
252  */
lookup_ablock(struct dm_array_info * info,dm_block_t root,unsigned index,struct dm_block ** block,struct array_block ** ab)253 static int lookup_ablock(struct dm_array_info *info, dm_block_t root,
254 			 unsigned index, struct dm_block **block,
255 			 struct array_block **ab)
256 {
257 	int r;
258 	uint64_t key = index;
259 	__le64 block_le;
260 
261 	r = dm_btree_lookup(&info->btree_info, root, &key, &block_le);
262 	if (r)
263 		return r;
264 
265 	return get_ablock(info, le64_to_cpu(block_le), block, ab);
266 }
267 
268 /*
269  * Insert an array block into the btree.  The block is _not_ unlocked.
270  */
insert_ablock(struct dm_array_info * info,uint64_t index,struct dm_block * block,dm_block_t * root)271 static int insert_ablock(struct dm_array_info *info, uint64_t index,
272 			 struct dm_block *block, dm_block_t *root)
273 {
274 	__le64 block_le = cpu_to_le64(dm_block_location(block));
275 
276 	__dm_bless_for_disk(block_le);
277 	return dm_btree_insert(&info->btree_info, *root, &index, &block_le, root);
278 }
279 
280 /*----------------------------------------------------------------*/
281 
__shadow_ablock(struct dm_array_info * info,dm_block_t b,struct dm_block ** block,struct array_block ** ab)282 static int __shadow_ablock(struct dm_array_info *info, dm_block_t b,
283 			   struct dm_block **block, struct array_block **ab)
284 {
285 	int inc;
286 	int r = dm_tm_shadow_block(info->btree_info.tm, b,
287 				   &array_validator, block, &inc);
288 	if (r)
289 		return r;
290 
291 	*ab = dm_block_data(*block);
292 	if (inc)
293 		inc_ablock_entries(info, *ab);
294 
295 	return 0;
296 }
297 
298 /*
299  * The shadow op will often be a noop.  Only insert if it really
300  * copied data.
301  */
__reinsert_ablock(struct dm_array_info * info,unsigned index,struct dm_block * block,dm_block_t b,dm_block_t * root)302 static int __reinsert_ablock(struct dm_array_info *info, unsigned index,
303 			     struct dm_block *block, dm_block_t b,
304 			     dm_block_t *root)
305 {
306 	int r = 0;
307 
308 	if (dm_block_location(block) != b) {
309 		/*
310 		 * dm_tm_shadow_block will have already decremented the old
311 		 * block, but it is still referenced by the btree.  We
312 		 * increment to stop the insert decrementing it below zero
313 		 * when overwriting the old value.
314 		 */
315 		dm_tm_inc(info->btree_info.tm, b);
316 		r = insert_ablock(info, index, block, root);
317 	}
318 
319 	return r;
320 }
321 
322 /*
323  * Looks up an array block in the btree.  Then shadows it, and updates the
324  * btree to point to this new shadow.  'root' is an input/output parameter
325  * for both the current root block, and the new one.
326  */
shadow_ablock(struct dm_array_info * info,dm_block_t * root,unsigned index,struct dm_block ** block,struct array_block ** ab)327 static int shadow_ablock(struct dm_array_info *info, dm_block_t *root,
328 			 unsigned index, struct dm_block **block,
329 			 struct array_block **ab)
330 {
331 	int r;
332 	uint64_t key = index;
333 	dm_block_t b;
334 	__le64 block_le;
335 
336 	r = dm_btree_lookup(&info->btree_info, *root, &key, &block_le);
337 	if (r)
338 		return r;
339 	b = le64_to_cpu(block_le);
340 
341 	r = __shadow_ablock(info, b, block, ab);
342 	if (r)
343 		return r;
344 
345 	return __reinsert_ablock(info, index, *block, b, root);
346 }
347 
348 /*
349  * Allocate an new array block, and fill it with some values.
350  */
insert_new_ablock(struct dm_array_info * info,size_t size_of_block,uint32_t max_entries,unsigned block_index,uint32_t nr,const void * value,dm_block_t * root)351 static int insert_new_ablock(struct dm_array_info *info, size_t size_of_block,
352 			     uint32_t max_entries,
353 			     unsigned block_index, uint32_t nr,
354 			     const void *value, dm_block_t *root)
355 {
356 	int r;
357 	struct dm_block *block;
358 	struct array_block *ab;
359 
360 	r = alloc_ablock(info, size_of_block, max_entries, &block, &ab);
361 	if (r)
362 		return r;
363 
364 	fill_ablock(info, ab, value, nr);
365 	r = insert_ablock(info, block_index, block, root);
366 	unlock_ablock(info, block);
367 
368 	return r;
369 }
370 
insert_full_ablocks(struct dm_array_info * info,size_t size_of_block,unsigned begin_block,unsigned end_block,unsigned max_entries,const void * value,dm_block_t * root)371 static int insert_full_ablocks(struct dm_array_info *info, size_t size_of_block,
372 			       unsigned begin_block, unsigned end_block,
373 			       unsigned max_entries, const void *value,
374 			       dm_block_t *root)
375 {
376 	int r = 0;
377 
378 	for (; !r && begin_block != end_block; begin_block++)
379 		r = insert_new_ablock(info, size_of_block, max_entries, begin_block, max_entries, value, root);
380 
381 	return r;
382 }
383 
384 /*
385  * There are a bunch of functions involved with resizing an array.  This
386  * structure holds information that commonly needed by them.  Purely here
387  * to reduce parameter count.
388  */
389 struct resize {
390 	/*
391 	 * Describes the array.
392 	 */
393 	struct dm_array_info *info;
394 
395 	/*
396 	 * The current root of the array.  This gets updated.
397 	 */
398 	dm_block_t root;
399 
400 	/*
401 	 * Metadata block size.  Used to calculate the nr entries in an
402 	 * array block.
403 	 */
404 	size_t size_of_block;
405 
406 	/*
407 	 * Maximum nr entries in an array block.
408 	 */
409 	unsigned max_entries;
410 
411 	/*
412 	 * nr of completely full blocks in the array.
413 	 *
414 	 * 'old' refers to before the resize, 'new' after.
415 	 */
416 	unsigned old_nr_full_blocks, new_nr_full_blocks;
417 
418 	/*
419 	 * Number of entries in the final block.  0 iff only full blocks in
420 	 * the array.
421 	 */
422 	unsigned old_nr_entries_in_last_block, new_nr_entries_in_last_block;
423 
424 	/*
425 	 * The default value used when growing the array.
426 	 */
427 	const void *value;
428 };
429 
430 /*
431  * Removes a consecutive set of array blocks from the btree.  The values
432  * in block are decremented as a side effect of the btree remove.
433  *
434  * begin_index - the index of the first array block to remove.
435  * end_index - the one-past-the-end value.  ie. this block is not removed.
436  */
drop_blocks(struct resize * resize,unsigned begin_index,unsigned end_index)437 static int drop_blocks(struct resize *resize, unsigned begin_index,
438 		       unsigned end_index)
439 {
440 	int r;
441 
442 	while (begin_index != end_index) {
443 		uint64_t key = begin_index++;
444 		r = dm_btree_remove(&resize->info->btree_info, resize->root,
445 				    &key, &resize->root);
446 		if (r)
447 			return r;
448 	}
449 
450 	return 0;
451 }
452 
453 /*
454  * Calculates how many blocks are needed for the array.
455  */
total_nr_blocks_needed(unsigned nr_full_blocks,unsigned nr_entries_in_last_block)456 static unsigned total_nr_blocks_needed(unsigned nr_full_blocks,
457 				       unsigned nr_entries_in_last_block)
458 {
459 	return nr_full_blocks + (nr_entries_in_last_block ? 1 : 0);
460 }
461 
462 /*
463  * Shrink an array.
464  */
shrink(struct resize * resize)465 static int shrink(struct resize *resize)
466 {
467 	int r;
468 	unsigned begin, end;
469 	struct dm_block *block;
470 	struct array_block *ab;
471 
472 	/*
473 	 * Lose some blocks from the back?
474 	 */
475 	if (resize->new_nr_full_blocks < resize->old_nr_full_blocks) {
476 		begin = total_nr_blocks_needed(resize->new_nr_full_blocks,
477 					       resize->new_nr_entries_in_last_block);
478 		end = total_nr_blocks_needed(resize->old_nr_full_blocks,
479 					     resize->old_nr_entries_in_last_block);
480 
481 		r = drop_blocks(resize, begin, end);
482 		if (r)
483 			return r;
484 	}
485 
486 	/*
487 	 * Trim the new tail block
488 	 */
489 	if (resize->new_nr_entries_in_last_block) {
490 		r = shadow_ablock(resize->info, &resize->root,
491 				  resize->new_nr_full_blocks, &block, &ab);
492 		if (r)
493 			return r;
494 
495 		trim_ablock(resize->info, ab, resize->new_nr_entries_in_last_block);
496 		unlock_ablock(resize->info, block);
497 	}
498 
499 	return 0;
500 }
501 
502 /*
503  * Grow an array.
504  */
grow_extend_tail_block(struct resize * resize,uint32_t new_nr_entries)505 static int grow_extend_tail_block(struct resize *resize, uint32_t new_nr_entries)
506 {
507 	int r;
508 	struct dm_block *block;
509 	struct array_block *ab;
510 
511 	r = shadow_ablock(resize->info, &resize->root,
512 			  resize->old_nr_full_blocks, &block, &ab);
513 	if (r)
514 		return r;
515 
516 	fill_ablock(resize->info, ab, resize->value, new_nr_entries);
517 	unlock_ablock(resize->info, block);
518 
519 	return r;
520 }
521 
grow_add_tail_block(struct resize * resize)522 static int grow_add_tail_block(struct resize *resize)
523 {
524 	return insert_new_ablock(resize->info, resize->size_of_block,
525 				 resize->max_entries,
526 				 resize->new_nr_full_blocks,
527 				 resize->new_nr_entries_in_last_block,
528 				 resize->value, &resize->root);
529 }
530 
grow_needs_more_blocks(struct resize * resize)531 static int grow_needs_more_blocks(struct resize *resize)
532 {
533 	int r;
534 	unsigned old_nr_blocks = resize->old_nr_full_blocks;
535 
536 	if (resize->old_nr_entries_in_last_block > 0) {
537 		old_nr_blocks++;
538 
539 		r = grow_extend_tail_block(resize, resize->max_entries);
540 		if (r)
541 			return r;
542 	}
543 
544 	r = insert_full_ablocks(resize->info, resize->size_of_block,
545 				old_nr_blocks,
546 				resize->new_nr_full_blocks,
547 				resize->max_entries, resize->value,
548 				&resize->root);
549 	if (r)
550 		return r;
551 
552 	if (resize->new_nr_entries_in_last_block)
553 		r = grow_add_tail_block(resize);
554 
555 	return r;
556 }
557 
grow(struct resize * resize)558 static int grow(struct resize *resize)
559 {
560 	if (resize->new_nr_full_blocks > resize->old_nr_full_blocks)
561 		return grow_needs_more_blocks(resize);
562 
563 	else if (resize->old_nr_entries_in_last_block)
564 		return grow_extend_tail_block(resize, resize->new_nr_entries_in_last_block);
565 
566 	else
567 		return grow_add_tail_block(resize);
568 }
569 
570 /*----------------------------------------------------------------*/
571 
572 /*
573  * These are the value_type functions for the btree elements, which point
574  * to array blocks.
575  */
block_inc(void * context,const void * value)576 static void block_inc(void *context, const void *value)
577 {
578 	__le64 block_le;
579 	struct dm_array_info *info = context;
580 
581 	memcpy(&block_le, value, sizeof(block_le));
582 	dm_tm_inc(info->btree_info.tm, le64_to_cpu(block_le));
583 }
584 
block_dec(void * context,const void * value)585 static void block_dec(void *context, const void *value)
586 {
587 	int r;
588 	uint64_t b;
589 	__le64 block_le;
590 	uint32_t ref_count;
591 	struct dm_block *block;
592 	struct array_block *ab;
593 	struct dm_array_info *info = context;
594 
595 	memcpy(&block_le, value, sizeof(block_le));
596 	b = le64_to_cpu(block_le);
597 
598 	r = dm_tm_ref(info->btree_info.tm, b, &ref_count);
599 	if (r) {
600 		DMERR_LIMIT("couldn't get reference count for block %llu",
601 			    (unsigned long long) b);
602 		return;
603 	}
604 
605 	if (ref_count == 1) {
606 		/*
607 		 * We're about to drop the last reference to this ablock.
608 		 * So we need to decrement the ref count of the contents.
609 		 */
610 		r = get_ablock(info, b, &block, &ab);
611 		if (r) {
612 			DMERR_LIMIT("couldn't get array block %llu",
613 				    (unsigned long long) b);
614 			return;
615 		}
616 
617 		dec_ablock_entries(info, ab);
618 		unlock_ablock(info, block);
619 	}
620 
621 	dm_tm_dec(info->btree_info.tm, b);
622 }
623 
block_equal(void * context,const void * value1,const void * value2)624 static int block_equal(void *context, const void *value1, const void *value2)
625 {
626 	return !memcmp(value1, value2, sizeof(__le64));
627 }
628 
629 /*----------------------------------------------------------------*/
630 
dm_array_info_init(struct dm_array_info * info,struct dm_transaction_manager * tm,struct dm_btree_value_type * vt)631 void dm_array_info_init(struct dm_array_info *info,
632 			struct dm_transaction_manager *tm,
633 			struct dm_btree_value_type *vt)
634 {
635 	struct dm_btree_value_type *bvt = &info->btree_info.value_type;
636 
637 	memcpy(&info->value_type, vt, sizeof(info->value_type));
638 	info->btree_info.tm = tm;
639 	info->btree_info.levels = 1;
640 
641 	bvt->context = info;
642 	bvt->size = sizeof(__le64);
643 	bvt->inc = block_inc;
644 	bvt->dec = block_dec;
645 	bvt->equal = block_equal;
646 }
647 EXPORT_SYMBOL_GPL(dm_array_info_init);
648 
dm_array_empty(struct dm_array_info * info,dm_block_t * root)649 int dm_array_empty(struct dm_array_info *info, dm_block_t *root)
650 {
651 	return dm_btree_empty(&info->btree_info, root);
652 }
653 EXPORT_SYMBOL_GPL(dm_array_empty);
654 
array_resize(struct dm_array_info * info,dm_block_t root,uint32_t old_size,uint32_t new_size,const void * value,dm_block_t * new_root)655 static int array_resize(struct dm_array_info *info, dm_block_t root,
656 			uint32_t old_size, uint32_t new_size,
657 			const void *value, dm_block_t *new_root)
658 {
659 	int r;
660 	struct resize resize;
661 
662 	if (old_size == new_size) {
663 		*new_root = root;
664 		return 0;
665 	}
666 
667 	resize.info = info;
668 	resize.root = root;
669 	resize.size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
670 	resize.max_entries = calc_max_entries(info->value_type.size,
671 					      resize.size_of_block);
672 
673 	resize.old_nr_full_blocks = old_size / resize.max_entries;
674 	resize.old_nr_entries_in_last_block = old_size % resize.max_entries;
675 	resize.new_nr_full_blocks = new_size / resize.max_entries;
676 	resize.new_nr_entries_in_last_block = new_size % resize.max_entries;
677 	resize.value = value;
678 
679 	r = ((new_size > old_size) ? grow : shrink)(&resize);
680 	if (r)
681 		return r;
682 
683 	*new_root = resize.root;
684 	return 0;
685 }
686 
dm_array_resize(struct dm_array_info * info,dm_block_t root,uint32_t old_size,uint32_t new_size,const void * value,dm_block_t * new_root)687 int dm_array_resize(struct dm_array_info *info, dm_block_t root,
688 		    uint32_t old_size, uint32_t new_size,
689 		    const void *value, dm_block_t *new_root)
690 		    __dm_written_to_disk(value)
691 {
692 	int r = array_resize(info, root, old_size, new_size, value, new_root);
693 	__dm_unbless_for_disk(value);
694 	return r;
695 }
696 EXPORT_SYMBOL_GPL(dm_array_resize);
697 
populate_ablock_with_values(struct dm_array_info * info,struct array_block * ab,value_fn fn,void * context,unsigned base,unsigned new_nr)698 static int populate_ablock_with_values(struct dm_array_info *info, struct array_block *ab,
699 				       value_fn fn, void *context, unsigned base, unsigned new_nr)
700 {
701 	int r;
702 	unsigned i;
703 	struct dm_btree_value_type *vt = &info->value_type;
704 
705 	BUG_ON(le32_to_cpu(ab->nr_entries));
706 	BUG_ON(new_nr > le32_to_cpu(ab->max_entries));
707 
708 	for (i = 0; i < new_nr; i++) {
709 		r = fn(base + i, element_at(info, ab, i), context);
710 		if (r)
711 			return r;
712 
713 		if (vt->inc)
714 			vt->inc(vt->context, element_at(info, ab, i));
715 	}
716 
717 	ab->nr_entries = cpu_to_le32(new_nr);
718 	return 0;
719 }
720 
dm_array_new(struct dm_array_info * info,dm_block_t * root,uint32_t size,value_fn fn,void * context)721 int dm_array_new(struct dm_array_info *info, dm_block_t *root,
722 		 uint32_t size, value_fn fn, void *context)
723 {
724 	int r;
725 	struct dm_block *block;
726 	struct array_block *ab;
727 	unsigned block_index, end_block, size_of_block, max_entries;
728 
729 	r = dm_array_empty(info, root);
730 	if (r)
731 		return r;
732 
733 	size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
734 	max_entries = calc_max_entries(info->value_type.size, size_of_block);
735 	end_block = dm_div_up(size, max_entries);
736 
737 	for (block_index = 0; block_index != end_block; block_index++) {
738 		r = alloc_ablock(info, size_of_block, max_entries, &block, &ab);
739 		if (r)
740 			break;
741 
742 		r = populate_ablock_with_values(info, ab, fn, context,
743 						block_index * max_entries,
744 						min(max_entries, size));
745 		if (r) {
746 			unlock_ablock(info, block);
747 			break;
748 		}
749 
750 		r = insert_ablock(info, block_index, block, root);
751 		unlock_ablock(info, block);
752 		if (r)
753 			break;
754 
755 		size -= max_entries;
756 	}
757 
758 	return r;
759 }
760 EXPORT_SYMBOL_GPL(dm_array_new);
761 
dm_array_del(struct dm_array_info * info,dm_block_t root)762 int dm_array_del(struct dm_array_info *info, dm_block_t root)
763 {
764 	return dm_btree_del(&info->btree_info, root);
765 }
766 EXPORT_SYMBOL_GPL(dm_array_del);
767 
dm_array_get_value(struct dm_array_info * info,dm_block_t root,uint32_t index,void * value_le)768 int dm_array_get_value(struct dm_array_info *info, dm_block_t root,
769 		       uint32_t index, void *value_le)
770 {
771 	int r;
772 	struct dm_block *block;
773 	struct array_block *ab;
774 	size_t size_of_block;
775 	unsigned entry, max_entries;
776 
777 	size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
778 	max_entries = calc_max_entries(info->value_type.size, size_of_block);
779 
780 	r = lookup_ablock(info, root, index / max_entries, &block, &ab);
781 	if (r)
782 		return r;
783 
784 	entry = index % max_entries;
785 	if (entry >= le32_to_cpu(ab->nr_entries))
786 		r = -ENODATA;
787 	else
788 		memcpy(value_le, element_at(info, ab, entry),
789 		       info->value_type.size);
790 
791 	unlock_ablock(info, block);
792 	return r;
793 }
794 EXPORT_SYMBOL_GPL(dm_array_get_value);
795 
array_set_value(struct dm_array_info * info,dm_block_t root,uint32_t index,const void * value,dm_block_t * new_root)796 static int array_set_value(struct dm_array_info *info, dm_block_t root,
797 			   uint32_t index, const void *value, dm_block_t *new_root)
798 {
799 	int r;
800 	struct dm_block *block;
801 	struct array_block *ab;
802 	size_t size_of_block;
803 	unsigned max_entries;
804 	unsigned entry;
805 	void *old_value;
806 	struct dm_btree_value_type *vt = &info->value_type;
807 
808 	size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
809 	max_entries = calc_max_entries(info->value_type.size, size_of_block);
810 
811 	r = shadow_ablock(info, &root, index / max_entries, &block, &ab);
812 	if (r)
813 		return r;
814 	*new_root = root;
815 
816 	entry = index % max_entries;
817 	if (entry >= le32_to_cpu(ab->nr_entries)) {
818 		r = -ENODATA;
819 		goto out;
820 	}
821 
822 	old_value = element_at(info, ab, entry);
823 	if (vt->dec &&
824 	    (!vt->equal || !vt->equal(vt->context, old_value, value))) {
825 		vt->dec(vt->context, old_value);
826 		if (vt->inc)
827 			vt->inc(vt->context, value);
828 	}
829 
830 	memcpy(old_value, value, info->value_type.size);
831 
832 out:
833 	unlock_ablock(info, block);
834 	return r;
835 }
836 
dm_array_set_value(struct dm_array_info * info,dm_block_t root,uint32_t index,const void * value,dm_block_t * new_root)837 int dm_array_set_value(struct dm_array_info *info, dm_block_t root,
838 		 uint32_t index, const void *value, dm_block_t *new_root)
839 		 __dm_written_to_disk(value)
840 {
841 	int r;
842 
843 	r = array_set_value(info, root, index, value, new_root);
844 	__dm_unbless_for_disk(value);
845 	return r;
846 }
847 EXPORT_SYMBOL_GPL(dm_array_set_value);
848 
849 struct walk_info {
850 	struct dm_array_info *info;
851 	int (*fn)(void *context, uint64_t key, void *leaf);
852 	void *context;
853 };
854 
walk_ablock(void * context,uint64_t * keys,void * leaf)855 static int walk_ablock(void *context, uint64_t *keys, void *leaf)
856 {
857 	struct walk_info *wi = context;
858 
859 	int r;
860 	unsigned i;
861 	__le64 block_le;
862 	unsigned nr_entries, max_entries;
863 	struct dm_block *block;
864 	struct array_block *ab;
865 
866 	memcpy(&block_le, leaf, sizeof(block_le));
867 	r = get_ablock(wi->info, le64_to_cpu(block_le), &block, &ab);
868 	if (r)
869 		return r;
870 
871 	max_entries = le32_to_cpu(ab->max_entries);
872 	nr_entries = le32_to_cpu(ab->nr_entries);
873 	for (i = 0; i < nr_entries; i++) {
874 		r = wi->fn(wi->context, keys[0] * max_entries + i,
875 			   element_at(wi->info, ab, i));
876 
877 		if (r)
878 			break;
879 	}
880 
881 	unlock_ablock(wi->info, block);
882 	return r;
883 }
884 
dm_array_walk(struct dm_array_info * info,dm_block_t root,int (* fn)(void *,uint64_t key,void * leaf),void * context)885 int dm_array_walk(struct dm_array_info *info, dm_block_t root,
886 		  int (*fn)(void *, uint64_t key, void *leaf),
887 		  void *context)
888 {
889 	struct walk_info wi;
890 
891 	wi.info = info;
892 	wi.fn = fn;
893 	wi.context = context;
894 
895 	return dm_btree_walk(&info->btree_info, root, walk_ablock, &wi);
896 }
897 EXPORT_SYMBOL_GPL(dm_array_walk);
898 
899 /*----------------------------------------------------------------*/
900 
load_ablock(struct dm_array_cursor * c)901 static int load_ablock(struct dm_array_cursor *c)
902 {
903 	int r;
904 	__le64 value_le;
905 	uint64_t key;
906 
907 	if (c->block)
908 		unlock_ablock(c->info, c->block);
909 
910 	c->block = NULL;
911 	c->ab = NULL;
912 	c->index = 0;
913 
914 	r = dm_btree_cursor_get_value(&c->cursor, &key, &value_le);
915 	if (r) {
916 		DMERR("dm_btree_cursor_get_value failed");
917 		dm_btree_cursor_end(&c->cursor);
918 
919 	} else {
920 		r = get_ablock(c->info, le64_to_cpu(value_le), &c->block, &c->ab);
921 		if (r) {
922 			DMERR("get_ablock failed");
923 			dm_btree_cursor_end(&c->cursor);
924 		}
925 	}
926 
927 	return r;
928 }
929 
dm_array_cursor_begin(struct dm_array_info * info,dm_block_t root,struct dm_array_cursor * c)930 int dm_array_cursor_begin(struct dm_array_info *info, dm_block_t root,
931 			  struct dm_array_cursor *c)
932 {
933 	int r;
934 
935 	memset(c, 0, sizeof(*c));
936 	c->info = info;
937 	r = dm_btree_cursor_begin(&info->btree_info, root, true, &c->cursor);
938 	if (r) {
939 		DMERR("couldn't create btree cursor");
940 		return r;
941 	}
942 
943 	return load_ablock(c);
944 }
945 EXPORT_SYMBOL_GPL(dm_array_cursor_begin);
946 
dm_array_cursor_end(struct dm_array_cursor * c)947 void dm_array_cursor_end(struct dm_array_cursor *c)
948 {
949 	if (c->block) {
950 		unlock_ablock(c->info, c->block);
951 		dm_btree_cursor_end(&c->cursor);
952 	}
953 }
954 EXPORT_SYMBOL_GPL(dm_array_cursor_end);
955 
dm_array_cursor_next(struct dm_array_cursor * c)956 int dm_array_cursor_next(struct dm_array_cursor *c)
957 {
958 	int r;
959 
960 	if (!c->block)
961 		return -ENODATA;
962 
963 	c->index++;
964 
965 	if (c->index >= le32_to_cpu(c->ab->nr_entries)) {
966 		r = dm_btree_cursor_next(&c->cursor);
967 		if (r)
968 			return r;
969 
970 		r = load_ablock(c);
971 		if (r)
972 			return r;
973 	}
974 
975 	return 0;
976 }
977 EXPORT_SYMBOL_GPL(dm_array_cursor_next);
978 
dm_array_cursor_skip(struct dm_array_cursor * c,uint32_t count)979 int dm_array_cursor_skip(struct dm_array_cursor *c, uint32_t count)
980 {
981 	int r;
982 
983 	do {
984 		uint32_t remaining = le32_to_cpu(c->ab->nr_entries) - c->index;
985 
986 		if (count < remaining) {
987 			c->index += count;
988 			return 0;
989 		}
990 
991 		count -= remaining;
992 		r = dm_array_cursor_next(c);
993 
994 	} while (!r);
995 
996 	return r;
997 }
998 EXPORT_SYMBOL_GPL(dm_array_cursor_skip);
999 
dm_array_cursor_get_value(struct dm_array_cursor * c,void ** value_le)1000 void dm_array_cursor_get_value(struct dm_array_cursor *c, void **value_le)
1001 {
1002 	*value_le = element_at(c->info, c->ab, c->index);
1003 }
1004 EXPORT_SYMBOL_GPL(dm_array_cursor_get_value);
1005 
1006 /*----------------------------------------------------------------*/
1007