1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * Copyright 2016-2019 HabanaLabs, Ltd.
4  * All Rights Reserved.
5  *
6  */
7 
8 #ifndef HABANALABSP_H_
9 #define HABANALABSP_H_
10 
11 #include "../include/common/cpucp_if.h"
12 #include "../include/common/qman_if.h"
13 #include "../include/hw_ip/mmu/mmu_general.h"
14 #include <uapi/misc/habanalabs.h>
15 
16 #include <linux/cdev.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqreturn.h>
19 #include <linux/dma-direction.h>
20 #include <linux/scatterlist.h>
21 #include <linux/hashtable.h>
22 #include <linux/debugfs.h>
23 #include <linux/bitfield.h>
24 #include <linux/genalloc.h>
25 #include <linux/sched/signal.h>
26 #include <linux/io-64-nonatomic-lo-hi.h>
27 #include <linux/coresight.h>
28 
29 #define HL_NAME				"habanalabs"
30 
31 /* Use upper bits of mmap offset to store habana driver specific information.
32  * bits[63:61] - Encode mmap type
33  * bits[45:0]  - mmap offset value
34  *
35  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
36  *  defines are w.r.t to PAGE_SIZE
37  */
38 #define HL_MMAP_TYPE_SHIFT		(61 - PAGE_SHIFT)
39 #define HL_MMAP_TYPE_MASK		(0x7ull << HL_MMAP_TYPE_SHIFT)
40 #define HL_MMAP_TYPE_BLOCK		(0x4ull << HL_MMAP_TYPE_SHIFT)
41 #define HL_MMAP_TYPE_CB			(0x2ull << HL_MMAP_TYPE_SHIFT)
42 
43 #define HL_MMAP_OFFSET_VALUE_MASK	(0x1FFFFFFFFFFFull >> PAGE_SHIFT)
44 #define HL_MMAP_OFFSET_VALUE_GET(off)	(off & HL_MMAP_OFFSET_VALUE_MASK)
45 
46 #define HL_PENDING_RESET_PER_SEC	10
47 #define HL_PENDING_RESET_MAX_TRIALS	60 /* 10 minutes */
48 #define HL_PENDING_RESET_LONG_SEC	60
49 
50 #define HL_HARD_RESET_MAX_TIMEOUT	120
51 
52 #define HL_DEVICE_TIMEOUT_USEC		1000000 /* 1 s */
53 
54 #define HL_HEARTBEAT_PER_USEC		5000000 /* 5 s */
55 
56 #define HL_PLL_LOW_JOB_FREQ_USEC	5000000 /* 5 s */
57 
58 #define HL_CPUCP_INFO_TIMEOUT_USEC	10000000 /* 10s */
59 #define HL_CPUCP_EEPROM_TIMEOUT_USEC	10000000 /* 10s */
60 
61 #define HL_PCI_ELBI_TIMEOUT_MSEC	10 /* 10ms */
62 
63 #define HL_SIM_MAX_TIMEOUT_US		10000000 /* 10s */
64 
65 #define HL_COMMON_USER_INTERRUPT_ID	0xFFF
66 
67 /* Memory */
68 #define MEM_HASH_TABLE_BITS		7 /* 1 << 7 buckets */
69 
70 /* MMU */
71 #define MMU_HASH_TABLE_BITS		7 /* 1 << 7 buckets */
72 
73 /**
74  * enum hl_mmu_page_table_locaion - mmu page table location
75  * @MMU_DR_PGT: page-table is located on device DRAM.
76  * @MMU_HR_PGT: page-table is located on host memory.
77  * @MMU_NUM_PGT_LOCATIONS: number of page-table locations currently supported.
78  */
79 enum hl_mmu_page_table_location {
80 	MMU_DR_PGT = 0,		/* device-dram-resident MMU PGT */
81 	MMU_HR_PGT,		/* host resident MMU PGT */
82 	MMU_NUM_PGT_LOCATIONS	/* num of PGT locations */
83 };
84 
85 /*
86  * HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream
87  * HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream
88  */
89 #define HL_RSVD_SOBS			2
90 #define HL_RSVD_MONS			1
91 
92 /*
93  * HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream
94  */
95 #define HL_COLLECTIVE_RSVD_MSTR_MONS	2
96 
97 #define HL_MAX_SOB_VAL			(1 << 15)
98 
99 #define IS_POWER_OF_2(n)		(n != 0 && ((n & (n - 1)) == 0))
100 #define IS_MAX_PENDING_CS_VALID(n)	(IS_POWER_OF_2(n) && (n > 1))
101 
102 #define HL_PCI_NUM_BARS			6
103 
104 #define HL_MAX_DCORES			4
105 
106 /*
107  * Reset Flags
108  *
109  * - HL_RESET_HARD
110  *       If set do hard reset to all engines. If not set reset just
111  *       compute/DMA engines.
112  *
113  * - HL_RESET_FROM_RESET_THREAD
114  *       Set if the caller is the hard-reset thread
115  *
116  * - HL_RESET_HEARTBEAT
117  *       Set if reset is due to heartbeat
118  */
119 #define HL_RESET_HARD			(1 << 0)
120 #define HL_RESET_FROM_RESET_THREAD	(1 << 1)
121 #define HL_RESET_HEARTBEAT		(1 << 2)
122 
123 #define HL_MAX_SOBS_PER_MONITOR	8
124 
125 /**
126  * struct hl_gen_wait_properties - properties for generating a wait CB
127  * @data: command buffer
128  * @q_idx: queue id is used to extract fence register address
129  * @size: offset in command buffer
130  * @sob_base: SOB base to use in this wait CB
131  * @sob_val: SOB value to wait for
132  * @mon_id: monitor to use in this wait CB
133  * @sob_mask: each bit represents a SOB offset from sob_base to be used
134  */
135 struct hl_gen_wait_properties {
136 	void	*data;
137 	u32	q_idx;
138 	u32	size;
139 	u16	sob_base;
140 	u16	sob_val;
141 	u16	mon_id;
142 	u8	sob_mask;
143 };
144 
145 /**
146  * struct pgt_info - MMU hop page info.
147  * @node: hash linked-list node for the pgts shadow hash of pgts.
148  * @phys_addr: physical address of the pgt.
149  * @shadow_addr: shadow hop in the host.
150  * @ctx: pointer to the owner ctx.
151  * @num_of_ptes: indicates how many ptes are used in the pgt.
152  *
153  * The MMU page tables hierarchy is placed on the DRAM. When a new level (hop)
154  * is needed during mapping, a new page is allocated and this structure holds
155  * its essential information. During unmapping, if no valid PTEs remained in the
156  * page, it is freed with its pgt_info structure.
157  */
158 struct pgt_info {
159 	struct hlist_node	node;
160 	u64			phys_addr;
161 	u64			shadow_addr;
162 	struct hl_ctx		*ctx;
163 	int			num_of_ptes;
164 };
165 
166 struct hl_device;
167 struct hl_fpriv;
168 
169 /**
170  * enum hl_pci_match_mode - pci match mode per region
171  * @PCI_ADDRESS_MATCH_MODE: address match mode
172  * @PCI_BAR_MATCH_MODE: bar match mode
173  */
174 enum hl_pci_match_mode {
175 	PCI_ADDRESS_MATCH_MODE,
176 	PCI_BAR_MATCH_MODE
177 };
178 
179 /**
180  * enum hl_fw_component - F/W components to read version through registers.
181  * @FW_COMP_UBOOT: u-boot.
182  * @FW_COMP_PREBOOT: preboot.
183  */
184 enum hl_fw_component {
185 	FW_COMP_UBOOT,
186 	FW_COMP_PREBOOT
187 };
188 
189 /**
190  * enum hl_fw_types - F/W types present in the system
191  * @FW_TYPE_LINUX: Linux image for device CPU
192  * @FW_TYPE_BOOT_CPU: Boot image for device CPU
193  * @FW_TYPE_PREBOOT_CPU: Indicates pre-loaded CPUs are present in the system
194  *                       (preboot, ppboot etc...)
195  * @FW_TYPE_ALL_TYPES: Mask for all types
196  */
197 enum hl_fw_types {
198 	FW_TYPE_LINUX = 0x1,
199 	FW_TYPE_BOOT_CPU = 0x2,
200 	FW_TYPE_PREBOOT_CPU = 0x4,
201 	FW_TYPE_ALL_TYPES =
202 		(FW_TYPE_LINUX | FW_TYPE_BOOT_CPU | FW_TYPE_PREBOOT_CPU)
203 };
204 
205 /**
206  * enum hl_queue_type - Supported QUEUE types.
207  * @QUEUE_TYPE_NA: queue is not available.
208  * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the
209  *                  host.
210  * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's
211  *			memories and/or operates the compute engines.
212  * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU.
213  * @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion
214  *                 notifications are sent by H/W.
215  */
216 enum hl_queue_type {
217 	QUEUE_TYPE_NA,
218 	QUEUE_TYPE_EXT,
219 	QUEUE_TYPE_INT,
220 	QUEUE_TYPE_CPU,
221 	QUEUE_TYPE_HW
222 };
223 
224 enum hl_cs_type {
225 	CS_TYPE_DEFAULT,
226 	CS_TYPE_SIGNAL,
227 	CS_TYPE_WAIT,
228 	CS_TYPE_COLLECTIVE_WAIT
229 };
230 
231 /*
232  * struct hl_inbound_pci_region - inbound region descriptor
233  * @mode: pci match mode for this region
234  * @addr: region target address
235  * @size: region size in bytes
236  * @offset_in_bar: offset within bar (address match mode)
237  * @bar: bar id
238  */
239 struct hl_inbound_pci_region {
240 	enum hl_pci_match_mode	mode;
241 	u64			addr;
242 	u64			size;
243 	u64			offset_in_bar;
244 	u8			bar;
245 };
246 
247 /*
248  * struct hl_outbound_pci_region - outbound region descriptor
249  * @addr: region target address
250  * @size: region size in bytes
251  */
252 struct hl_outbound_pci_region {
253 	u64	addr;
254 	u64	size;
255 };
256 
257 /*
258  * enum queue_cb_alloc_flags - Indicates queue support for CBs that
259  * allocated by Kernel or by User
260  * @CB_ALLOC_KERNEL: support only CBs that allocated by Kernel
261  * @CB_ALLOC_USER: support only CBs that allocated by User
262  */
263 enum queue_cb_alloc_flags {
264 	CB_ALLOC_KERNEL = 0x1,
265 	CB_ALLOC_USER   = 0x2
266 };
267 
268 /*
269  * struct hl_hw_sob - H/W SOB info.
270  * @hdev: habanalabs device structure.
271  * @kref: refcount of this SOB. The SOB will reset once the refcount is zero.
272  * @sob_id: id of this SOB.
273  * @q_idx: the H/W queue that uses this SOB.
274  */
275 struct hl_hw_sob {
276 	struct hl_device	*hdev;
277 	struct kref		kref;
278 	u32			sob_id;
279 	u32			q_idx;
280 };
281 
282 enum hl_collective_mode {
283 	HL_COLLECTIVE_NOT_SUPPORTED = 0x0,
284 	HL_COLLECTIVE_MASTER = 0x1,
285 	HL_COLLECTIVE_SLAVE = 0x2
286 };
287 
288 /**
289  * struct hw_queue_properties - queue information.
290  * @type: queue type.
291  * @queue_cb_alloc_flags: bitmap which indicates if the hw queue supports CB
292  *                        that allocated by the Kernel driver and therefore,
293  *                        a CB handle can be provided for jobs on this queue.
294  *                        Otherwise, a CB address must be provided.
295  * @collective_mode: collective mode of current queue
296  * @driver_only: true if only the driver is allowed to send a job to this queue,
297  *               false otherwise.
298  * @supports_sync_stream: True if queue supports sync stream
299  */
300 struct hw_queue_properties {
301 	enum hl_queue_type	type;
302 	enum queue_cb_alloc_flags cb_alloc_flags;
303 	enum hl_collective_mode	collective_mode;
304 	u8			driver_only;
305 	u8			supports_sync_stream;
306 };
307 
308 /**
309  * enum vm_type_t - virtual memory mapping request information.
310  * @VM_TYPE_USERPTR: mapping of user memory to device virtual address.
311  * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address.
312  */
313 enum vm_type_t {
314 	VM_TYPE_USERPTR = 0x1,
315 	VM_TYPE_PHYS_PACK = 0x2
316 };
317 
318 /**
319  * enum hl_device_hw_state - H/W device state. use this to understand whether
320  *                           to do reset before hw_init or not
321  * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset
322  * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute
323  *                            hw_init
324  */
325 enum hl_device_hw_state {
326 	HL_DEVICE_HW_STATE_CLEAN = 0,
327 	HL_DEVICE_HW_STATE_DIRTY
328 };
329 
330 #define HL_MMU_VA_ALIGNMENT_NOT_NEEDED 0
331 
332 /**
333  * struct hl_mmu_properties - ASIC specific MMU address translation properties.
334  * @start_addr: virtual start address of the memory region.
335  * @end_addr: virtual end address of the memory region.
336  * @hop0_shift: shift of hop 0 mask.
337  * @hop1_shift: shift of hop 1 mask.
338  * @hop2_shift: shift of hop 2 mask.
339  * @hop3_shift: shift of hop 3 mask.
340  * @hop4_shift: shift of hop 4 mask.
341  * @hop5_shift: shift of hop 5 mask.
342  * @hop0_mask: mask to get the PTE address in hop 0.
343  * @hop1_mask: mask to get the PTE address in hop 1.
344  * @hop2_mask: mask to get the PTE address in hop 2.
345  * @hop3_mask: mask to get the PTE address in hop 3.
346  * @hop4_mask: mask to get the PTE address in hop 4.
347  * @hop5_mask: mask to get the PTE address in hop 5.
348  * @page_size: default page size used to allocate memory.
349  * @num_hops: The amount of hops supported by the translation table.
350  * @host_resident: Should the MMU page table reside in host memory or in the
351  *                 device DRAM.
352  */
353 struct hl_mmu_properties {
354 	u64	start_addr;
355 	u64	end_addr;
356 	u64	hop0_shift;
357 	u64	hop1_shift;
358 	u64	hop2_shift;
359 	u64	hop3_shift;
360 	u64	hop4_shift;
361 	u64	hop5_shift;
362 	u64	hop0_mask;
363 	u64	hop1_mask;
364 	u64	hop2_mask;
365 	u64	hop3_mask;
366 	u64	hop4_mask;
367 	u64	hop5_mask;
368 	u32	page_size;
369 	u32	num_hops;
370 	u8	host_resident;
371 };
372 
373 /**
374  * struct asic_fixed_properties - ASIC specific immutable properties.
375  * @hw_queues_props: H/W queues properties.
376  * @cpucp_info: received various information from CPU-CP regarding the H/W, e.g.
377  *		available sensors.
378  * @uboot_ver: F/W U-boot version.
379  * @preboot_ver: F/W Preboot version.
380  * @dmmu: DRAM MMU address translation properties.
381  * @pmmu: PCI (host) MMU address translation properties.
382  * @pmmu_huge: PCI (host) MMU address translation properties for memory
383  *              allocated with huge pages.
384  * @sram_base_address: SRAM physical start address.
385  * @sram_end_address: SRAM physical end address.
386  * @sram_user_base_address - SRAM physical start address for user access.
387  * @dram_base_address: DRAM physical start address.
388  * @dram_end_address: DRAM physical end address.
389  * @dram_user_base_address: DRAM physical start address for user access.
390  * @dram_size: DRAM total size.
391  * @dram_pci_bar_size: size of PCI bar towards DRAM.
392  * @max_power_default: max power of the device after reset
393  * @dc_power_default: power consumed by the device in mode idle.
394  * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page
395  *                                      fault.
396  * @pcie_dbi_base_address: Base address of the PCIE_DBI block.
397  * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register.
398  * @mmu_pgt_addr: base physical address in DRAM of MMU page tables.
399  * @mmu_dram_default_page_addr: DRAM default page physical address.
400  * @cb_va_start_addr: virtual start address of command buffers which are mapped
401  *                    to the device's MMU.
402  * @cb_va_end_addr: virtual end address of command buffers which are mapped to
403  *                  the device's MMU.
404  * @mmu_pgt_size: MMU page tables total size.
405  * @mmu_pte_size: PTE size in MMU page tables.
406  * @mmu_hop_table_size: MMU hop table size.
407  * @mmu_hop0_tables_total_size: total size of MMU hop0 tables.
408  * @dram_page_size: page size for MMU DRAM allocation.
409  * @cfg_size: configuration space size on SRAM.
410  * @sram_size: total size of SRAM.
411  * @max_asid: maximum number of open contexts (ASIDs).
412  * @num_of_events: number of possible internal H/W IRQs.
413  * @psoc_pci_pll_nr: PCI PLL NR value.
414  * @psoc_pci_pll_nf: PCI PLL NF value.
415  * @psoc_pci_pll_od: PCI PLL OD value.
416  * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value.
417  * @psoc_timestamp_frequency: frequency of the psoc timestamp clock.
418  * @high_pll: high PLL frequency used by the device.
419  * @cb_pool_cb_cnt: number of CBs in the CB pool.
420  * @cb_pool_cb_size: size of each CB in the CB pool.
421  * @max_pending_cs: maximum of concurrent pending command submissions
422  * @max_queues: maximum amount of queues in the system
423  * @fw_boot_cpu_security_map: bitmap representation of boot cpu security status
424  *                            reported by FW, bit description can be found in
425  *                            CPU_BOOT_DEV_STS*
426  * @fw_app_security_map: bitmap representation of application security status
427  *                       reported by FW, bit description can be found in
428  *                       CPU_BOOT_DEV_STS*
429  * @collective_first_sob: first sync object available for collective use
430  * @collective_first_mon: first monitor available for collective use
431  * @sync_stream_first_sob: first sync object available for sync stream use
432  * @sync_stream_first_mon: first monitor available for sync stream use
433  * @first_available_user_sob: first sob available for the user
434  * @first_available_user_mon: first monitor available for the user
435  * @first_available_user_msix_interrupt: first available msix interrupt
436  *                                       reserved for the user
437  * @first_available_cq: first available CQ for the user.
438  * @user_interrupt_count: number of user interrupts.
439  * @tpc_enabled_mask: which TPCs are enabled.
440  * @completion_queues_count: number of completion queues.
441  * @fw_security_disabled: true if security measures are disabled in firmware,
442  *                        false otherwise
443  * @fw_security_status_valid: security status bits are valid and can be fetched
444  *                            from BOOT_DEV_STS0
445  * @dram_supports_virtual_memory: is there an MMU towards the DRAM
446  * @hard_reset_done_by_fw: true if firmware is handling hard reset flow
447  * @num_functional_hbms: number of functional HBMs in each DCORE.
448  * @iatu_done_by_fw: true if iATU configuration is being done by FW.
449  */
450 struct asic_fixed_properties {
451 	struct hw_queue_properties	*hw_queues_props;
452 	struct cpucp_info		cpucp_info;
453 	char				uboot_ver[VERSION_MAX_LEN];
454 	char				preboot_ver[VERSION_MAX_LEN];
455 	struct hl_mmu_properties	dmmu;
456 	struct hl_mmu_properties	pmmu;
457 	struct hl_mmu_properties	pmmu_huge;
458 	u64				sram_base_address;
459 	u64				sram_end_address;
460 	u64				sram_user_base_address;
461 	u64				dram_base_address;
462 	u64				dram_end_address;
463 	u64				dram_user_base_address;
464 	u64				dram_size;
465 	u64				dram_pci_bar_size;
466 	u64				max_power_default;
467 	u64				dc_power_default;
468 	u64				dram_size_for_default_page_mapping;
469 	u64				pcie_dbi_base_address;
470 	u64				pcie_aux_dbi_reg_addr;
471 	u64				mmu_pgt_addr;
472 	u64				mmu_dram_default_page_addr;
473 	u64				cb_va_start_addr;
474 	u64				cb_va_end_addr;
475 	u32				mmu_pgt_size;
476 	u32				mmu_pte_size;
477 	u32				mmu_hop_table_size;
478 	u32				mmu_hop0_tables_total_size;
479 	u32				dram_page_size;
480 	u32				cfg_size;
481 	u32				sram_size;
482 	u32				max_asid;
483 	u32				num_of_events;
484 	u32				psoc_pci_pll_nr;
485 	u32				psoc_pci_pll_nf;
486 	u32				psoc_pci_pll_od;
487 	u32				psoc_pci_pll_div_factor;
488 	u32				psoc_timestamp_frequency;
489 	u32				high_pll;
490 	u32				cb_pool_cb_cnt;
491 	u32				cb_pool_cb_size;
492 	u32				max_pending_cs;
493 	u32				max_queues;
494 	u32				fw_boot_cpu_security_map;
495 	u32				fw_app_security_map;
496 	u16				collective_first_sob;
497 	u16				collective_first_mon;
498 	u16				sync_stream_first_sob;
499 	u16				sync_stream_first_mon;
500 	u16				first_available_user_sob[HL_MAX_DCORES];
501 	u16				first_available_user_mon[HL_MAX_DCORES];
502 	u16				first_available_user_msix_interrupt;
503 	u16				first_available_cq[HL_MAX_DCORES];
504 	u16				user_interrupt_count;
505 	u8				tpc_enabled_mask;
506 	u8				completion_queues_count;
507 	u8				fw_security_disabled;
508 	u8				fw_security_status_valid;
509 	u8				dram_supports_virtual_memory;
510 	u8				hard_reset_done_by_fw;
511 	u8				num_functional_hbms;
512 	u8				iatu_done_by_fw;
513 };
514 
515 /**
516  * struct hl_fence - software synchronization primitive
517  * @completion: fence is implemented using completion
518  * @refcount: refcount for this fence
519  * @cs_sequence: sequence of the corresponding command submission
520  * @error: mark this fence with error
521  * @timestamp: timestamp upon completion
522  *
523  */
524 struct hl_fence {
525 	struct completion	completion;
526 	struct kref		refcount;
527 	u64			cs_sequence;
528 	int			error;
529 	ktime_t			timestamp;
530 };
531 
532 /**
533  * struct hl_cs_compl - command submission completion object.
534  * @sob_reset_work: workqueue object to run SOB reset flow.
535  * @base_fence: hl fence object.
536  * @lock: spinlock to protect fence.
537  * @hdev: habanalabs device structure.
538  * @hw_sob: the H/W SOB used in this signal/wait CS.
539  * @cs_seq: command submission sequence number.
540  * @type: type of the CS - signal/wait.
541  * @sob_val: the SOB value that is used in this signal/wait CS.
542  * @sob_group: the SOB group that is used in this collective wait CS.
543  */
544 struct hl_cs_compl {
545 	struct work_struct	sob_reset_work;
546 	struct hl_fence		base_fence;
547 	spinlock_t		lock;
548 	struct hl_device	*hdev;
549 	struct hl_hw_sob	*hw_sob;
550 	u64			cs_seq;
551 	enum hl_cs_type		type;
552 	u16			sob_val;
553 	u16			sob_group;
554 };
555 
556 /*
557  * Command Buffers
558  */
559 
560 /**
561  * struct hl_cb_mgr - describes a Command Buffer Manager.
562  * @cb_lock: protects cb_handles.
563  * @cb_handles: an idr to hold all command buffer handles.
564  */
565 struct hl_cb_mgr {
566 	spinlock_t		cb_lock;
567 	struct idr		cb_handles; /* protected by cb_lock */
568 };
569 
570 /**
571  * struct hl_cb - describes a Command Buffer.
572  * @refcount: reference counter for usage of the CB.
573  * @hdev: pointer to device this CB belongs to.
574  * @ctx: pointer to the CB owner's context.
575  * @lock: spinlock to protect mmap flows.
576  * @debugfs_list: node in debugfs list of command buffers.
577  * @pool_list: node in pool list of command buffers.
578  * @va_block_list: list of virtual addresses blocks of the CB if it is mapped to
579  *                 the device's MMU.
580  * @id: the CB's ID.
581  * @kernel_address: Holds the CB's kernel virtual address.
582  * @bus_address: Holds the CB's DMA address.
583  * @mmap_size: Holds the CB's size that was mmaped.
584  * @size: holds the CB's size.
585  * @cs_cnt: holds number of CS that this CB participates in.
586  * @mmap: true if the CB is currently mmaped to user.
587  * @is_pool: true if CB was acquired from the pool, false otherwise.
588  * @is_internal: internaly allocated
589  * @is_mmu_mapped: true if the CB is mapped to the device's MMU.
590  */
591 struct hl_cb {
592 	struct kref		refcount;
593 	struct hl_device	*hdev;
594 	struct hl_ctx		*ctx;
595 	spinlock_t		lock;
596 	struct list_head	debugfs_list;
597 	struct list_head	pool_list;
598 	struct list_head	va_block_list;
599 	u64			id;
600 	void			*kernel_address;
601 	dma_addr_t		bus_address;
602 	u32			mmap_size;
603 	u32			size;
604 	atomic_t		cs_cnt;
605 	u8			mmap;
606 	u8			is_pool;
607 	u8			is_internal;
608 	u8			is_mmu_mapped;
609 };
610 
611 
612 /*
613  * QUEUES
614  */
615 
616 struct hl_cs;
617 struct hl_cs_job;
618 
619 /* Queue length of external and HW queues */
620 #define HL_QUEUE_LENGTH			4096
621 #define HL_QUEUE_SIZE_IN_BYTES		(HL_QUEUE_LENGTH * HL_BD_SIZE)
622 
623 #if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH)
624 #error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS"
625 #endif
626 
627 /* HL_CQ_LENGTH is in units of struct hl_cq_entry */
628 #define HL_CQ_LENGTH			HL_QUEUE_LENGTH
629 #define HL_CQ_SIZE_IN_BYTES		(HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE)
630 
631 /* Must be power of 2 */
632 #define HL_EQ_LENGTH			64
633 #define HL_EQ_SIZE_IN_BYTES		(HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE)
634 
635 /* Host <-> CPU-CP shared memory size */
636 #define HL_CPU_ACCESSIBLE_MEM_SIZE	SZ_2M
637 
638 /**
639  * struct hl_sync_stream_properties -
640  *     describes a H/W queue sync stream properties
641  * @hw_sob: array of the used H/W SOBs by this H/W queue.
642  * @next_sob_val: the next value to use for the currently used SOB.
643  * @base_sob_id: the base SOB id of the SOBs used by this queue.
644  * @base_mon_id: the base MON id of the MONs used by this queue.
645  * @collective_mstr_mon_id: the MON ids of the MONs used by this master queue
646  *                          in order to sync with all slave queues.
647  * @collective_slave_mon_id: the MON id used by this slave queue in order to
648  *                           sync with its master queue.
649  * @collective_sob_id: current SOB id used by this collective slave queue
650  *                     to signal its collective master queue upon completion.
651  * @curr_sob_offset: the id offset to the currently used SOB from the
652  *                   HL_RSVD_SOBS that are being used by this queue.
653  */
654 struct hl_sync_stream_properties {
655 	struct hl_hw_sob hw_sob[HL_RSVD_SOBS];
656 	u16		next_sob_val;
657 	u16		base_sob_id;
658 	u16		base_mon_id;
659 	u16		collective_mstr_mon_id[HL_COLLECTIVE_RSVD_MSTR_MONS];
660 	u16		collective_slave_mon_id;
661 	u16		collective_sob_id;
662 	u8		curr_sob_offset;
663 };
664 
665 /**
666  * struct hl_hw_queue - describes a H/W transport queue.
667  * @shadow_queue: pointer to a shadow queue that holds pointers to jobs.
668  * @sync_stream_prop: sync stream queue properties
669  * @queue_type: type of queue.
670  * @collective_mode: collective mode of current queue
671  * @kernel_address: holds the queue's kernel virtual address.
672  * @bus_address: holds the queue's DMA address.
673  * @pi: holds the queue's pi value.
674  * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci).
675  * @hw_queue_id: the id of the H/W queue.
676  * @cq_id: the id for the corresponding CQ for this H/W queue.
677  * @msi_vec: the IRQ number of the H/W queue.
678  * @int_queue_len: length of internal queue (number of entries).
679  * @valid: is the queue valid (we have array of 32 queues, not all of them
680  *         exist).
681  * @supports_sync_stream: True if queue supports sync stream
682  */
683 struct hl_hw_queue {
684 	struct hl_cs_job			**shadow_queue;
685 	struct hl_sync_stream_properties	sync_stream_prop;
686 	enum hl_queue_type			queue_type;
687 	enum hl_collective_mode			collective_mode;
688 	void					*kernel_address;
689 	dma_addr_t				bus_address;
690 	u32					pi;
691 	atomic_t				ci;
692 	u32					hw_queue_id;
693 	u32					cq_id;
694 	u32					msi_vec;
695 	u16					int_queue_len;
696 	u8					valid;
697 	u8					supports_sync_stream;
698 };
699 
700 /**
701  * struct hl_cq - describes a completion queue
702  * @hdev: pointer to the device structure
703  * @kernel_address: holds the queue's kernel virtual address
704  * @bus_address: holds the queue's DMA address
705  * @cq_idx: completion queue index in array
706  * @hw_queue_id: the id of the matching H/W queue
707  * @ci: ci inside the queue
708  * @pi: pi inside the queue
709  * @free_slots_cnt: counter of free slots in queue
710  */
711 struct hl_cq {
712 	struct hl_device	*hdev;
713 	void			*kernel_address;
714 	dma_addr_t		bus_address;
715 	u32			cq_idx;
716 	u32			hw_queue_id;
717 	u32			ci;
718 	u32			pi;
719 	atomic_t		free_slots_cnt;
720 };
721 
722 /**
723  * struct hl_user_interrupt - holds user interrupt information
724  * @hdev: pointer to the device structure
725  * @wait_list_head: head to the list of user threads pending on this interrupt
726  * @wait_list_lock: protects wait_list_head
727  * @interrupt_id: msix interrupt id
728  */
729 struct hl_user_interrupt {
730 	struct hl_device	*hdev;
731 	struct list_head	wait_list_head;
732 	spinlock_t		wait_list_lock;
733 	u32			interrupt_id;
734 };
735 
736 /**
737  * struct hl_user_pending_interrupt - holds a context to a user thread
738  *                                    pending on an interrupt
739  * @wait_list_node: node in the list of user threads pending on an interrupt
740  * @fence: hl fence object for interrupt completion
741  */
742 struct hl_user_pending_interrupt {
743 	struct list_head	wait_list_node;
744 	struct hl_fence		fence;
745 };
746 
747 /**
748  * struct hl_eq - describes the event queue (single one per device)
749  * @hdev: pointer to the device structure
750  * @kernel_address: holds the queue's kernel virtual address
751  * @bus_address: holds the queue's DMA address
752  * @ci: ci inside the queue
753  */
754 struct hl_eq {
755 	struct hl_device	*hdev;
756 	void			*kernel_address;
757 	dma_addr_t		bus_address;
758 	u32			ci;
759 };
760 
761 
762 /*
763  * ASICs
764  */
765 
766 /**
767  * enum hl_asic_type - supported ASIC types.
768  * @ASIC_INVALID: Invalid ASIC type.
769  * @ASIC_GOYA: Goya device.
770  * @ASIC_GAUDI: Gaudi device.
771  * @ASIC_GAUDI_SEC: Gaudi secured device (HL-2000).
772  */
773 enum hl_asic_type {
774 	ASIC_INVALID,
775 	ASIC_GOYA,
776 	ASIC_GAUDI,
777 	ASIC_GAUDI_SEC
778 };
779 
780 struct hl_cs_parser;
781 
782 /**
783  * enum hl_pm_mng_profile - power management profile.
784  * @PM_AUTO: internal clock is set by the Linux driver.
785  * @PM_MANUAL: internal clock is set by the user.
786  * @PM_LAST: last power management type.
787  */
788 enum hl_pm_mng_profile {
789 	PM_AUTO = 1,
790 	PM_MANUAL,
791 	PM_LAST
792 };
793 
794 /**
795  * enum hl_pll_frequency - PLL frequency.
796  * @PLL_HIGH: high frequency.
797  * @PLL_LOW: low frequency.
798  * @PLL_LAST: last frequency values that were configured by the user.
799  */
800 enum hl_pll_frequency {
801 	PLL_HIGH = 1,
802 	PLL_LOW,
803 	PLL_LAST
804 };
805 
806 #define PLL_REF_CLK 50
807 
808 enum div_select_defs {
809 	DIV_SEL_REF_CLK = 0,
810 	DIV_SEL_PLL_CLK = 1,
811 	DIV_SEL_DIVIDED_REF = 2,
812 	DIV_SEL_DIVIDED_PLL = 3,
813 };
814 
815 /**
816  * struct hl_asic_funcs - ASIC specific functions that are can be called from
817  *                        common code.
818  * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W.
819  * @early_fini: tears down what was done in early_init.
820  * @late_init: sets up late driver/hw state (post hw_init) - Optional.
821  * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional.
822  * @sw_init: sets up driver state, does not configure H/W.
823  * @sw_fini: tears down driver state, does not configure H/W.
824  * @hw_init: sets up the H/W state.
825  * @hw_fini: tears down the H/W state.
826  * @halt_engines: halt engines, needed for reset sequence. This also disables
827  *                interrupts from the device. Should be called before
828  *                hw_fini and before CS rollback.
829  * @suspend: handles IP specific H/W or SW changes for suspend.
830  * @resume: handles IP specific H/W or SW changes for resume.
831  * @cb_mmap: maps a CB.
832  * @ring_doorbell: increment PI on a given QMAN.
833  * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific
834  *             function because the PQs are located in different memory areas
835  *             per ASIC (SRAM, DRAM, Host memory) and therefore, the method of
836  *             writing the PQE must match the destination memory area
837  *             properties.
838  * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling
839  *                           dma_alloc_coherent(). This is ASIC function because
840  *                           its implementation is not trivial when the driver
841  *                           is loaded in simulation mode (not upstreamed).
842  * @asic_dma_free_coherent:  Free coherent DMA memory by calling
843  *                           dma_free_coherent(). This is ASIC function because
844  *                           its implementation is not trivial when the driver
845  *                           is loaded in simulation mode (not upstreamed).
846  * @scrub_device_mem: Scrub device memory given an address and size
847  * @get_int_queue_base: get the internal queue base address.
848  * @test_queues: run simple test on all queues for sanity check.
849  * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool.
850  *                        size of allocation is HL_DMA_POOL_BLK_SIZE.
851  * @asic_dma_pool_free: free small DMA allocation from pool.
852  * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool.
853  * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool.
854  * @hl_dma_unmap_sg: DMA unmap scatter-gather list.
855  * @cs_parser: parse Command Submission.
856  * @asic_dma_map_sg: DMA map scatter-gather list.
857  * @get_dma_desc_list_size: get number of LIN_DMA packets required for CB.
858  * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it.
859  * @update_eq_ci: update event queue CI.
860  * @context_switch: called upon ASID context switch.
861  * @restore_phase_topology: clear all SOBs amd MONs.
862  * @debugfs_read32: debug interface for reading u32 from DRAM/SRAM/Host memory.
863  * @debugfs_write32: debug interface for writing u32 to DRAM/SRAM/Host memory.
864  * @debugfs_read64: debug interface for reading u64 from DRAM/SRAM/Host memory.
865  * @debugfs_write64: debug interface for writing u64 to DRAM/SRAM/Host memory.
866  * @debugfs_read_dma: debug interface for reading up to 2MB from the device's
867  *                    internal memory via DMA engine.
868  * @add_device_attr: add ASIC specific device attributes.
869  * @handle_eqe: handle event queue entry (IRQ) from CPU-CP.
870  * @set_pll_profile: change PLL profile (manual/automatic).
871  * @get_events_stat: retrieve event queue entries histogram.
872  * @read_pte: read MMU page table entry from DRAM.
873  * @write_pte: write MMU page table entry to DRAM.
874  * @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft
875  *                        (L1 only) or hard (L0 & L1) flush.
876  * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with
877  *                              ASID-VA-size mask.
878  * @send_heartbeat: send is-alive packet to CPU-CP and verify response.
879  * @set_clock_gating: enable/disable clock gating per engine according to
880  *                    clock gating mask in hdev
881  * @disable_clock_gating: disable clock gating completely
882  * @debug_coresight: perform certain actions on Coresight for debugging.
883  * @is_device_idle: return true if device is idle, false otherwise.
884  * @soft_reset_late_init: perform certain actions needed after soft reset.
885  * @hw_queues_lock: acquire H/W queues lock.
886  * @hw_queues_unlock: release H/W queues lock.
887  * @get_pci_id: retrieve PCI ID.
888  * @get_eeprom_data: retrieve EEPROM data from F/W.
889  * @send_cpu_message: send message to F/W. If the message is timedout, the
890  *                    driver will eventually reset the device. The timeout can
891  *                    be determined by the calling function or it can be 0 and
892  *                    then the timeout is the default timeout for the specific
893  *                    ASIC
894  * @get_hw_state: retrieve the H/W state
895  * @pci_bars_map: Map PCI BARs.
896  * @init_iatu: Initialize the iATU unit inside the PCI controller.
897  * @rreg: Read a register. Needed for simulator support.
898  * @wreg: Write a register. Needed for simulator support.
899  * @halt_coresight: stop the ETF and ETR traces.
900  * @ctx_init: context dependent initialization.
901  * @ctx_fini: context dependent cleanup.
902  * @get_clk_rate: Retrieve the ASIC current and maximum clock rate in MHz
903  * @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index.
904  * @read_device_fw_version: read the device's firmware versions that are
905  *                          contained in registers
906  * @load_firmware_to_device: load the firmware to the device's memory
907  * @load_boot_fit_to_device: load boot fit to device's memory
908  * @get_signal_cb_size: Get signal CB size.
909  * @get_wait_cb_size: Get wait CB size.
910  * @gen_signal_cb: Generate a signal CB.
911  * @gen_wait_cb: Generate a wait CB.
912  * @reset_sob: Reset a SOB.
913  * @reset_sob_group: Reset SOB group
914  * @set_dma_mask_from_fw: set the DMA mask in the driver according to the
915  *                        firmware configuration
916  * @get_device_time: Get the device time.
917  * @collective_wait_init_cs: Generate collective master/slave packets
918  *                           and place them in the relevant cs jobs
919  * @collective_wait_create_jobs: allocate collective wait cs jobs
920  * @scramble_addr: Routine to scramble the address prior of mapping it
921  *                 in the MMU.
922  * @descramble_addr: Routine to de-scramble the address prior of
923  *                   showing it to users.
924  * @ack_protection_bits_errors: ack and dump all security violations
925  * @get_hw_block_id: retrieve a HW block id to be used by the user to mmap it.
926  *                   also returns the size of the block if caller supplies
927  *                   a valid pointer for it
928  * @hw_block_mmap: mmap a HW block with a given id.
929  * @enable_events_from_fw: send interrupt to firmware to notify them the
930  *                         driver is ready to receive asynchronous events. This
931  *                         function should be called during the first init and
932  *                         after every hard-reset of the device
933  */
934 struct hl_asic_funcs {
935 	int (*early_init)(struct hl_device *hdev);
936 	int (*early_fini)(struct hl_device *hdev);
937 	int (*late_init)(struct hl_device *hdev);
938 	void (*late_fini)(struct hl_device *hdev);
939 	int (*sw_init)(struct hl_device *hdev);
940 	int (*sw_fini)(struct hl_device *hdev);
941 	int (*hw_init)(struct hl_device *hdev);
942 	void (*hw_fini)(struct hl_device *hdev, bool hard_reset);
943 	void (*halt_engines)(struct hl_device *hdev, bool hard_reset);
944 	int (*suspend)(struct hl_device *hdev);
945 	int (*resume)(struct hl_device *hdev);
946 	int (*cb_mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
947 			void *cpu_addr, dma_addr_t dma_addr, size_t size);
948 	void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi);
949 	void (*pqe_write)(struct hl_device *hdev, __le64 *pqe,
950 			struct hl_bd *bd);
951 	void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size,
952 					dma_addr_t *dma_handle, gfp_t flag);
953 	void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size,
954 					void *cpu_addr, dma_addr_t dma_handle);
955 	int (*scrub_device_mem)(struct hl_device *hdev, u64 addr, u64 size);
956 	void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id,
957 				dma_addr_t *dma_handle, u16 *queue_len);
958 	int (*test_queues)(struct hl_device *hdev);
959 	void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size,
960 				gfp_t mem_flags, dma_addr_t *dma_handle);
961 	void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr,
962 				dma_addr_t dma_addr);
963 	void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev,
964 				size_t size, dma_addr_t *dma_handle);
965 	void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev,
966 				size_t size, void *vaddr);
967 	void (*hl_dma_unmap_sg)(struct hl_device *hdev,
968 				struct scatterlist *sgl, int nents,
969 				enum dma_data_direction dir);
970 	int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser);
971 	int (*asic_dma_map_sg)(struct hl_device *hdev,
972 				struct scatterlist *sgl, int nents,
973 				enum dma_data_direction dir);
974 	u32 (*get_dma_desc_list_size)(struct hl_device *hdev,
975 					struct sg_table *sgt);
976 	void (*add_end_of_cb_packets)(struct hl_device *hdev,
977 					void *kernel_address, u32 len,
978 					u64 cq_addr, u32 cq_val, u32 msix_num,
979 					bool eb);
980 	void (*update_eq_ci)(struct hl_device *hdev, u32 val);
981 	int (*context_switch)(struct hl_device *hdev, u32 asid);
982 	void (*restore_phase_topology)(struct hl_device *hdev);
983 	int (*debugfs_read32)(struct hl_device *hdev, u64 addr,
984 				bool user_address, u32 *val);
985 	int (*debugfs_write32)(struct hl_device *hdev, u64 addr,
986 				bool user_address, u32 val);
987 	int (*debugfs_read64)(struct hl_device *hdev, u64 addr,
988 				bool user_address, u64 *val);
989 	int (*debugfs_write64)(struct hl_device *hdev, u64 addr,
990 				bool user_address, u64 val);
991 	int (*debugfs_read_dma)(struct hl_device *hdev, u64 addr, u32 size,
992 				void *blob_addr);
993 	void (*add_device_attr)(struct hl_device *hdev,
994 				struct attribute_group *dev_attr_grp);
995 	void (*handle_eqe)(struct hl_device *hdev,
996 				struct hl_eq_entry *eq_entry);
997 	void (*set_pll_profile)(struct hl_device *hdev,
998 			enum hl_pll_frequency freq);
999 	void* (*get_events_stat)(struct hl_device *hdev, bool aggregate,
1000 				u32 *size);
1001 	u64 (*read_pte)(struct hl_device *hdev, u64 addr);
1002 	void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val);
1003 	int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard,
1004 					u32 flags);
1005 	int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard,
1006 			u32 asid, u64 va, u64 size);
1007 	int (*send_heartbeat)(struct hl_device *hdev);
1008 	void (*set_clock_gating)(struct hl_device *hdev);
1009 	void (*disable_clock_gating)(struct hl_device *hdev);
1010 	int (*debug_coresight)(struct hl_device *hdev, void *data);
1011 	bool (*is_device_idle)(struct hl_device *hdev, u64 *mask_arr,
1012 					u8 mask_len, struct seq_file *s);
1013 	int (*soft_reset_late_init)(struct hl_device *hdev);
1014 	void (*hw_queues_lock)(struct hl_device *hdev);
1015 	void (*hw_queues_unlock)(struct hl_device *hdev);
1016 	u32 (*get_pci_id)(struct hl_device *hdev);
1017 	int (*get_eeprom_data)(struct hl_device *hdev, void *data,
1018 				size_t max_size);
1019 	int (*send_cpu_message)(struct hl_device *hdev, u32 *msg,
1020 				u16 len, u32 timeout, u64 *result);
1021 	int (*pci_bars_map)(struct hl_device *hdev);
1022 	int (*init_iatu)(struct hl_device *hdev);
1023 	u32 (*rreg)(struct hl_device *hdev, u32 reg);
1024 	void (*wreg)(struct hl_device *hdev, u32 reg, u32 val);
1025 	void (*halt_coresight)(struct hl_device *hdev);
1026 	int (*ctx_init)(struct hl_ctx *ctx);
1027 	void (*ctx_fini)(struct hl_ctx *ctx);
1028 	int (*get_clk_rate)(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk);
1029 	u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx);
1030 	int (*read_device_fw_version)(struct hl_device *hdev,
1031 					enum hl_fw_component fwc);
1032 	int (*load_firmware_to_device)(struct hl_device *hdev);
1033 	int (*load_boot_fit_to_device)(struct hl_device *hdev);
1034 	u32 (*get_signal_cb_size)(struct hl_device *hdev);
1035 	u32 (*get_wait_cb_size)(struct hl_device *hdev);
1036 	u32 (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id,
1037 			u32 size, bool eb);
1038 	u32 (*gen_wait_cb)(struct hl_device *hdev,
1039 			struct hl_gen_wait_properties *prop);
1040 	void (*reset_sob)(struct hl_device *hdev, void *data);
1041 	void (*reset_sob_group)(struct hl_device *hdev, u16 sob_group);
1042 	void (*set_dma_mask_from_fw)(struct hl_device *hdev);
1043 	u64 (*get_device_time)(struct hl_device *hdev);
1044 	void (*collective_wait_init_cs)(struct hl_cs *cs);
1045 	int (*collective_wait_create_jobs)(struct hl_device *hdev,
1046 			struct hl_ctx *ctx, struct hl_cs *cs, u32 wait_queue_id,
1047 			u32 collective_engine_id);
1048 	u64 (*scramble_addr)(struct hl_device *hdev, u64 addr);
1049 	u64 (*descramble_addr)(struct hl_device *hdev, u64 addr);
1050 	void (*ack_protection_bits_errors)(struct hl_device *hdev);
1051 	int (*get_hw_block_id)(struct hl_device *hdev, u64 block_addr,
1052 				u32 *block_size, u32 *block_id);
1053 	int (*hw_block_mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
1054 			u32 block_id, u32 block_size);
1055 	void (*enable_events_from_fw)(struct hl_device *hdev);
1056 	void (*get_msi_info)(u32 *table);
1057 };
1058 
1059 
1060 /*
1061  * CONTEXTS
1062  */
1063 
1064 #define HL_KERNEL_ASID_ID	0
1065 
1066 /**
1067  * enum hl_va_range_type - virtual address range type.
1068  * @HL_VA_RANGE_TYPE_HOST: range type of host pages
1069  * @HL_VA_RANGE_TYPE_HOST_HUGE: range type of host huge pages
1070  * @HL_VA_RANGE_TYPE_DRAM: range type of dram pages
1071  */
1072 enum hl_va_range_type {
1073 	HL_VA_RANGE_TYPE_HOST,
1074 	HL_VA_RANGE_TYPE_HOST_HUGE,
1075 	HL_VA_RANGE_TYPE_DRAM,
1076 	HL_VA_RANGE_TYPE_MAX
1077 };
1078 
1079 /**
1080  * struct hl_va_range - virtual addresses range.
1081  * @lock: protects the virtual addresses list.
1082  * @list: list of virtual addresses blocks available for mappings.
1083  * @start_addr: range start address.
1084  * @end_addr: range end address.
1085  * @page_size: page size of this va range.
1086  */
1087 struct hl_va_range {
1088 	struct mutex		lock;
1089 	struct list_head	list;
1090 	u64			start_addr;
1091 	u64			end_addr;
1092 	u32			page_size;
1093 };
1094 
1095 /**
1096  * struct hl_cs_counters_atomic - command submission counters
1097  * @out_of_mem_drop_cnt: dropped due to memory allocation issue
1098  * @parsing_drop_cnt: dropped due to error in packet parsing
1099  * @queue_full_drop_cnt: dropped due to queue full
1100  * @device_in_reset_drop_cnt: dropped due to device in reset
1101  * @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight
1102  * @validation_drop_cnt: dropped due to error in validation
1103  */
1104 struct hl_cs_counters_atomic {
1105 	atomic64_t out_of_mem_drop_cnt;
1106 	atomic64_t parsing_drop_cnt;
1107 	atomic64_t queue_full_drop_cnt;
1108 	atomic64_t device_in_reset_drop_cnt;
1109 	atomic64_t max_cs_in_flight_drop_cnt;
1110 	atomic64_t validation_drop_cnt;
1111 };
1112 
1113 /**
1114  * struct hl_pending_cb - pending command buffer structure
1115  * @cb_node: cb node in pending cb list
1116  * @cb: command buffer to send in next submission
1117  * @cb_size: command buffer size
1118  * @hw_queue_id: destination queue id
1119  */
1120 struct hl_pending_cb {
1121 	struct list_head	cb_node;
1122 	struct hl_cb		*cb;
1123 	u32			cb_size;
1124 	u32			hw_queue_id;
1125 };
1126 
1127 /**
1128  * struct hl_ctx - user/kernel context.
1129  * @mem_hash: holds mapping from virtual address to virtual memory area
1130  *		descriptor (hl_vm_phys_pg_list or hl_userptr).
1131  * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure.
1132  * @hpriv: pointer to the private (Kernel Driver) data of the process (fd).
1133  * @hdev: pointer to the device structure.
1134  * @refcount: reference counter for the context. Context is released only when
1135  *		this hits 0l. It is incremented on CS and CS_WAIT.
1136  * @cs_pending: array of hl fence objects representing pending CS.
1137  * @va_range: holds available virtual addresses for host and dram mappings.
1138  * @mem_hash_lock: protects the mem_hash.
1139  * @mmu_lock: protects the MMU page tables. Any change to the PGT, modifying the
1140  *            MMU hash or walking the PGT requires talking this lock.
1141  * @hw_block_list_lock: protects the HW block memory list.
1142  * @debugfs_list: node in debugfs list of contexts.
1143  * pending_cb_list: list of pending command buffers waiting to be sent upon
1144  *                  next user command submission context.
1145  * @hw_block_mem_list: list of HW block virtual mapped addresses.
1146  * @cs_counters: context command submission counters.
1147  * @cb_va_pool: device VA pool for command buffers which are mapped to the
1148  *              device's MMU.
1149  * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed
1150  *			to user so user could inquire about CS. It is used as
1151  *			index to cs_pending array.
1152  * @dram_default_hops: array that holds all hops addresses needed for default
1153  *                     DRAM mapping.
1154  * @pending_cb_lock: spinlock to protect pending cb list
1155  * @cs_lock: spinlock to protect cs_sequence.
1156  * @dram_phys_mem: amount of used physical DRAM memory by this context.
1157  * @thread_ctx_switch_token: token to prevent multiple threads of the same
1158  *				context	from running the context switch phase.
1159  *				Only a single thread should run it.
1160  * @thread_pending_cb_token: token to prevent multiple threads from processing
1161  *				the pending CB list. Only a single thread should
1162  *				process the list since it is protected by a
1163  *				spinlock and we don't want to halt the entire
1164  *				command submission sequence.
1165  * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run
1166  *				the context switch phase from moving to their
1167  *				execution phase before the context switch phase
1168  *				has finished.
1169  * @asid: context's unique address space ID in the device's MMU.
1170  * @handle: context's opaque handle for user
1171  */
1172 struct hl_ctx {
1173 	DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS);
1174 	DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS);
1175 	struct hl_fpriv			*hpriv;
1176 	struct hl_device		*hdev;
1177 	struct kref			refcount;
1178 	struct hl_fence			**cs_pending;
1179 	struct hl_va_range		*va_range[HL_VA_RANGE_TYPE_MAX];
1180 	struct mutex			mem_hash_lock;
1181 	struct mutex			mmu_lock;
1182 	struct mutex			hw_block_list_lock;
1183 	struct list_head		debugfs_list;
1184 	struct list_head		pending_cb_list;
1185 	struct list_head		hw_block_mem_list;
1186 	struct hl_cs_counters_atomic	cs_counters;
1187 	struct gen_pool			*cb_va_pool;
1188 	u64				cs_sequence;
1189 	u64				*dram_default_hops;
1190 	spinlock_t			pending_cb_lock;
1191 	spinlock_t			cs_lock;
1192 	atomic64_t			dram_phys_mem;
1193 	atomic_t			thread_ctx_switch_token;
1194 	atomic_t			thread_pending_cb_token;
1195 	u32				thread_ctx_switch_wait_token;
1196 	u32				asid;
1197 	u32				handle;
1198 };
1199 
1200 /**
1201  * struct hl_ctx_mgr - for handling multiple contexts.
1202  * @ctx_lock: protects ctx_handles.
1203  * @ctx_handles: idr to hold all ctx handles.
1204  */
1205 struct hl_ctx_mgr {
1206 	struct mutex		ctx_lock;
1207 	struct idr		ctx_handles;
1208 };
1209 
1210 
1211 
1212 /*
1213  * COMMAND SUBMISSIONS
1214  */
1215 
1216 /**
1217  * struct hl_userptr - memory mapping chunk information
1218  * @vm_type: type of the VM.
1219  * @job_node: linked-list node for hanging the object on the Job's list.
1220  * @pages: pointer to struct page array
1221  * @npages: size of @pages array
1222  * @sgt: pointer to the scatter-gather table that holds the pages.
1223  * @dir: for DMA unmapping, the direction must be supplied, so save it.
1224  * @debugfs_list: node in debugfs list of command submissions.
1225  * @addr: user-space virtual address of the start of the memory area.
1226  * @size: size of the memory area to pin & map.
1227  * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise.
1228  */
1229 struct hl_userptr {
1230 	enum vm_type_t		vm_type; /* must be first */
1231 	struct list_head	job_node;
1232 	struct page		**pages;
1233 	unsigned int		npages;
1234 	struct sg_table		*sgt;
1235 	enum dma_data_direction dir;
1236 	struct list_head	debugfs_list;
1237 	u64			addr;
1238 	u32			size;
1239 	u8			dma_mapped;
1240 };
1241 
1242 /**
1243  * struct hl_cs - command submission.
1244  * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs.
1245  * @ctx: the context this CS belongs to.
1246  * @job_list: list of the CS's jobs in the various queues.
1247  * @job_lock: spinlock for the CS's jobs list. Needed for free_job.
1248  * @refcount: reference counter for usage of the CS.
1249  * @fence: pointer to the fence object of this CS.
1250  * @signal_fence: pointer to the fence object of the signal CS (used by wait
1251  *                CS only).
1252  * @finish_work: workqueue object to run when CS is completed by H/W.
1253  * @work_tdr: delayed work node for TDR.
1254  * @mirror_node : node in device mirror list of command submissions.
1255  * @staged_cs_node: node in the staged cs list.
1256  * @debugfs_list: node in debugfs list of command submissions.
1257  * @sequence: the sequence number of this CS.
1258  * @staged_sequence: the sequence of the staged submission this CS is part of,
1259  *                   relevant only if staged_cs is set.
1260  * @timeout_jiffies: cs timeout in jiffies.
1261  * @type: CS_TYPE_*.
1262  * @submitted: true if CS was submitted to H/W.
1263  * @completed: true if CS was completed by device.
1264  * @timedout : true if CS was timedout.
1265  * @tdr_active: true if TDR was activated for this CS (to prevent
1266  *		double TDR activation).
1267  * @aborted: true if CS was aborted due to some device error.
1268  * @timestamp: true if a timestmap must be captured upon completion.
1269  * @staged_last: true if this is the last staged CS and needs completion.
1270  * @staged_first: true if this is the first staged CS and we need to receive
1271  *                timeout for this CS.
1272  * @staged_cs: true if this CS is part of a staged submission.
1273  */
1274 struct hl_cs {
1275 	u16			*jobs_in_queue_cnt;
1276 	struct hl_ctx		*ctx;
1277 	struct list_head	job_list;
1278 	spinlock_t		job_lock;
1279 	struct kref		refcount;
1280 	struct hl_fence		*fence;
1281 	struct hl_fence		*signal_fence;
1282 	struct work_struct	finish_work;
1283 	struct delayed_work	work_tdr;
1284 	struct list_head	mirror_node;
1285 	struct list_head	staged_cs_node;
1286 	struct list_head	debugfs_list;
1287 	u64			sequence;
1288 	u64			staged_sequence;
1289 	u64			timeout_jiffies;
1290 	enum hl_cs_type		type;
1291 	u8			submitted;
1292 	u8			completed;
1293 	u8			timedout;
1294 	u8			tdr_active;
1295 	u8			aborted;
1296 	u8			timestamp;
1297 	u8			staged_last;
1298 	u8			staged_first;
1299 	u8			staged_cs;
1300 };
1301 
1302 /**
1303  * struct hl_cs_job - command submission job.
1304  * @cs_node: the node to hang on the CS jobs list.
1305  * @cs: the CS this job belongs to.
1306  * @user_cb: the CB we got from the user.
1307  * @patched_cb: in case of patching, this is internal CB which is submitted on
1308  *		the queue instead of the CB we got from the IOCTL.
1309  * @finish_work: workqueue object to run when job is completed.
1310  * @userptr_list: linked-list of userptr mappings that belong to this job and
1311  *			wait for completion.
1312  * @debugfs_list: node in debugfs list of command submission jobs.
1313  * @refcount: reference counter for usage of the CS job.
1314  * @queue_type: the type of the H/W queue this job is submitted to.
1315  * @id: the id of this job inside a CS.
1316  * @hw_queue_id: the id of the H/W queue this job is submitted to.
1317  * @user_cb_size: the actual size of the CB we got from the user.
1318  * @job_cb_size: the actual size of the CB that we put on the queue.
1319  * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
1320  *                          handle to a kernel-allocated CB object, false
1321  *                          otherwise (SRAM/DRAM/host address).
1322  * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
1323  *                    info is needed later, when adding the 2xMSG_PROT at the
1324  *                    end of the JOB, to know which barriers to put in the
1325  *                    MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
1326  *                    have streams so the engine can't be busy by another
1327  *                    stream.
1328  */
1329 struct hl_cs_job {
1330 	struct list_head	cs_node;
1331 	struct hl_cs		*cs;
1332 	struct hl_cb		*user_cb;
1333 	struct hl_cb		*patched_cb;
1334 	struct work_struct	finish_work;
1335 	struct list_head	userptr_list;
1336 	struct list_head	debugfs_list;
1337 	struct kref		refcount;
1338 	enum hl_queue_type	queue_type;
1339 	u32			id;
1340 	u32			hw_queue_id;
1341 	u32			user_cb_size;
1342 	u32			job_cb_size;
1343 	u8			is_kernel_allocated_cb;
1344 	u8			contains_dma_pkt;
1345 };
1346 
1347 /**
1348  * struct hl_cs_parser - command submission parser properties.
1349  * @user_cb: the CB we got from the user.
1350  * @patched_cb: in case of patching, this is internal CB which is submitted on
1351  *		the queue instead of the CB we got from the IOCTL.
1352  * @job_userptr_list: linked-list of userptr mappings that belong to the related
1353  *			job and wait for completion.
1354  * @cs_sequence: the sequence number of the related CS.
1355  * @queue_type: the type of the H/W queue this job is submitted to.
1356  * @ctx_id: the ID of the context the related CS belongs to.
1357  * @hw_queue_id: the id of the H/W queue this job is submitted to.
1358  * @user_cb_size: the actual size of the CB we got from the user.
1359  * @patched_cb_size: the size of the CB after parsing.
1360  * @job_id: the id of the related job inside the related CS.
1361  * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
1362  *                          handle to a kernel-allocated CB object, false
1363  *                          otherwise (SRAM/DRAM/host address).
1364  * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
1365  *                    info is needed later, when adding the 2xMSG_PROT at the
1366  *                    end of the JOB, to know which barriers to put in the
1367  *                    MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
1368  *                    have streams so the engine can't be busy by another
1369  *                    stream.
1370  * @completion: true if we need completion for this CS.
1371  */
1372 struct hl_cs_parser {
1373 	struct hl_cb		*user_cb;
1374 	struct hl_cb		*patched_cb;
1375 	struct list_head	*job_userptr_list;
1376 	u64			cs_sequence;
1377 	enum hl_queue_type	queue_type;
1378 	u32			ctx_id;
1379 	u32			hw_queue_id;
1380 	u32			user_cb_size;
1381 	u32			patched_cb_size;
1382 	u8			job_id;
1383 	u8			is_kernel_allocated_cb;
1384 	u8			contains_dma_pkt;
1385 	u8			completion;
1386 };
1387 
1388 /*
1389  * MEMORY STRUCTURE
1390  */
1391 
1392 /**
1393  * struct hl_vm_hash_node - hash element from virtual address to virtual
1394  *				memory area descriptor (hl_vm_phys_pg_list or
1395  *				hl_userptr).
1396  * @node: node to hang on the hash table in context object.
1397  * @vaddr: key virtual address.
1398  * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr).
1399  */
1400 struct hl_vm_hash_node {
1401 	struct hlist_node	node;
1402 	u64			vaddr;
1403 	void			*ptr;
1404 };
1405 
1406 /**
1407  * struct hl_vm_hw_block_list_node - list element from user virtual address to
1408  *				HW block id.
1409  * @node: node to hang on the list in context object.
1410  * @ctx: the context this node belongs to.
1411  * @vaddr: virtual address of the HW block.
1412  * @size: size of the block.
1413  * @id: HW block id (handle).
1414  */
1415 struct hl_vm_hw_block_list_node {
1416 	struct list_head	node;
1417 	struct hl_ctx		*ctx;
1418 	unsigned long		vaddr;
1419 	u32			size;
1420 	u32			id;
1421 };
1422 
1423 /**
1424  * struct hl_vm_phys_pg_pack - physical page pack.
1425  * @vm_type: describes the type of the virtual area descriptor.
1426  * @pages: the physical page array.
1427  * @npages: num physical pages in the pack.
1428  * @total_size: total size of all the pages in this list.
1429  * @mapping_cnt: number of shared mappings.
1430  * @asid: the context related to this list.
1431  * @page_size: size of each page in the pack.
1432  * @flags: HL_MEM_* flags related to this list.
1433  * @handle: the provided handle related to this list.
1434  * @offset: offset from the first page.
1435  * @contiguous: is contiguous physical memory.
1436  * @created_from_userptr: is product of host virtual address.
1437  */
1438 struct hl_vm_phys_pg_pack {
1439 	enum vm_type_t		vm_type; /* must be first */
1440 	u64			*pages;
1441 	u64			npages;
1442 	u64			total_size;
1443 	atomic_t		mapping_cnt;
1444 	u32			asid;
1445 	u32			page_size;
1446 	u32			flags;
1447 	u32			handle;
1448 	u32			offset;
1449 	u8			contiguous;
1450 	u8			created_from_userptr;
1451 };
1452 
1453 /**
1454  * struct hl_vm_va_block - virtual range block information.
1455  * @node: node to hang on the virtual range list in context object.
1456  * @start: virtual range start address.
1457  * @end: virtual range end address.
1458  * @size: virtual range size.
1459  */
1460 struct hl_vm_va_block {
1461 	struct list_head	node;
1462 	u64			start;
1463 	u64			end;
1464 	u64			size;
1465 };
1466 
1467 /**
1468  * struct hl_vm - virtual memory manager for MMU.
1469  * @dram_pg_pool: pool for DRAM physical pages of 2MB.
1470  * @dram_pg_pool_refcount: reference counter for the pool usage.
1471  * @idr_lock: protects the phys_pg_list_handles.
1472  * @phys_pg_pack_handles: idr to hold all device allocations handles.
1473  * @init_done: whether initialization was done. We need this because VM
1474  *		initialization might be skipped during device initialization.
1475  */
1476 struct hl_vm {
1477 	struct gen_pool		*dram_pg_pool;
1478 	struct kref		dram_pg_pool_refcount;
1479 	spinlock_t		idr_lock;
1480 	struct idr		phys_pg_pack_handles;
1481 	u8			init_done;
1482 };
1483 
1484 
1485 /*
1486  * DEBUG, PROFILING STRUCTURE
1487  */
1488 
1489 /**
1490  * struct hl_debug_params - Coresight debug parameters.
1491  * @input: pointer to component specific input parameters.
1492  * @output: pointer to component specific output parameters.
1493  * @output_size: size of output buffer.
1494  * @reg_idx: relevant register ID.
1495  * @op: component operation to execute.
1496  * @enable: true if to enable component debugging, false otherwise.
1497  */
1498 struct hl_debug_params {
1499 	void *input;
1500 	void *output;
1501 	u32 output_size;
1502 	u32 reg_idx;
1503 	u32 op;
1504 	bool enable;
1505 };
1506 
1507 /*
1508  * FILE PRIVATE STRUCTURE
1509  */
1510 
1511 /**
1512  * struct hl_fpriv - process information stored in FD private data.
1513  * @hdev: habanalabs device structure.
1514  * @filp: pointer to the given file structure.
1515  * @taskpid: current process ID.
1516  * @ctx: current executing context. TODO: remove for multiple ctx per process
1517  * @ctx_mgr: context manager to handle multiple context for this FD.
1518  * @cb_mgr: command buffer manager to handle multiple buffers for this FD.
1519  * @debugfs_list: list of relevant ASIC debugfs.
1520  * @dev_node: node in the device list of file private data
1521  * @refcount: number of related contexts.
1522  * @restore_phase_mutex: lock for context switch and restore phase.
1523  * @is_control: true for control device, false otherwise
1524  */
1525 struct hl_fpriv {
1526 	struct hl_device	*hdev;
1527 	struct file		*filp;
1528 	struct pid		*taskpid;
1529 	struct hl_ctx		*ctx;
1530 	struct hl_ctx_mgr	ctx_mgr;
1531 	struct hl_cb_mgr	cb_mgr;
1532 	struct list_head	debugfs_list;
1533 	struct list_head	dev_node;
1534 	struct kref		refcount;
1535 	struct mutex		restore_phase_mutex;
1536 	u8			is_control;
1537 };
1538 
1539 
1540 /*
1541  * DebugFS
1542  */
1543 
1544 /**
1545  * struct hl_info_list - debugfs file ops.
1546  * @name: file name.
1547  * @show: function to output information.
1548  * @write: function to write to the file.
1549  */
1550 struct hl_info_list {
1551 	const char	*name;
1552 	int		(*show)(struct seq_file *s, void *data);
1553 	ssize_t		(*write)(struct file *file, const char __user *buf,
1554 				size_t count, loff_t *f_pos);
1555 };
1556 
1557 /**
1558  * struct hl_debugfs_entry - debugfs dentry wrapper.
1559  * @info_ent: dentry realted ops.
1560  * @dev_entry: ASIC specific debugfs manager.
1561  */
1562 struct hl_debugfs_entry {
1563 	const struct hl_info_list	*info_ent;
1564 	struct hl_dbg_device_entry	*dev_entry;
1565 };
1566 
1567 /**
1568  * struct hl_dbg_device_entry - ASIC specific debugfs manager.
1569  * @root: root dentry.
1570  * @hdev: habanalabs device structure.
1571  * @entry_arr: array of available hl_debugfs_entry.
1572  * @file_list: list of available debugfs files.
1573  * @file_mutex: protects file_list.
1574  * @cb_list: list of available CBs.
1575  * @cb_spinlock: protects cb_list.
1576  * @cs_list: list of available CSs.
1577  * @cs_spinlock: protects cs_list.
1578  * @cs_job_list: list of available CB jobs.
1579  * @cs_job_spinlock: protects cs_job_list.
1580  * @userptr_list: list of available userptrs (virtual memory chunk descriptor).
1581  * @userptr_spinlock: protects userptr_list.
1582  * @ctx_mem_hash_list: list of available contexts with MMU mappings.
1583  * @ctx_mem_hash_spinlock: protects cb_list.
1584  * @blob_desc: descriptor of blob
1585  * @addr: next address to read/write from/to in read/write32.
1586  * @mmu_addr: next virtual address to translate to physical address in mmu_show.
1587  * @mmu_asid: ASID to use while translating in mmu_show.
1588  * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read.
1589  * @i2c_addr: generic u8 debugfs file for address value to use in i2c_data_read.
1590  * @i2c_reg: generic u8 debugfs file for register value to use in i2c_data_read.
1591  */
1592 struct hl_dbg_device_entry {
1593 	struct dentry			*root;
1594 	struct hl_device		*hdev;
1595 	struct hl_debugfs_entry		*entry_arr;
1596 	struct list_head		file_list;
1597 	struct mutex			file_mutex;
1598 	struct list_head		cb_list;
1599 	spinlock_t			cb_spinlock;
1600 	struct list_head		cs_list;
1601 	spinlock_t			cs_spinlock;
1602 	struct list_head		cs_job_list;
1603 	spinlock_t			cs_job_spinlock;
1604 	struct list_head		userptr_list;
1605 	spinlock_t			userptr_spinlock;
1606 	struct list_head		ctx_mem_hash_list;
1607 	spinlock_t			ctx_mem_hash_spinlock;
1608 	struct debugfs_blob_wrapper	blob_desc;
1609 	u64				addr;
1610 	u64				mmu_addr;
1611 	u32				mmu_asid;
1612 	u8				i2c_bus;
1613 	u8				i2c_addr;
1614 	u8				i2c_reg;
1615 };
1616 
1617 
1618 /*
1619  * DEVICES
1620  */
1621 
1622 #define HL_STR_MAX	32
1623 
1624 #define HL_DEV_STS_MAX (HL_DEVICE_STATUS_NEEDS_RESET + 1)
1625 
1626 /* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe
1627  * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards.
1628  */
1629 #define HL_MAX_MINORS	256
1630 
1631 /*
1632  * Registers read & write functions.
1633  */
1634 
1635 u32 hl_rreg(struct hl_device *hdev, u32 reg);
1636 void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);
1637 
1638 #define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg))
1639 #define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v))
1640 #define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n",	\
1641 			hdev->asic_funcs->rreg(hdev, (reg)))
1642 
1643 #define WREG32_P(reg, val, mask)				\
1644 	do {							\
1645 		u32 tmp_ = RREG32(reg);				\
1646 		tmp_ &= (mask);					\
1647 		tmp_ |= ((val) & ~(mask));			\
1648 		WREG32(reg, tmp_);				\
1649 	} while (0)
1650 #define WREG32_AND(reg, and) WREG32_P(reg, 0, and)
1651 #define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or))
1652 
1653 #define RMWREG32(reg, val, mask)				\
1654 	do {							\
1655 		u32 tmp_ = RREG32(reg);				\
1656 		tmp_ &= ~(mask);				\
1657 		tmp_ |= ((val) << __ffs(mask));			\
1658 		WREG32(reg, tmp_);				\
1659 	} while (0)
1660 
1661 #define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask))
1662 
1663 #define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT
1664 #define REG_FIELD_MASK(reg, field) reg##_##field##_MASK
1665 #define WREG32_FIELD(reg, offset, field, val)	\
1666 	WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \
1667 				~REG_FIELD_MASK(reg, field)) | \
1668 				(val) << REG_FIELD_SHIFT(reg, field))
1669 
1670 /* Timeout should be longer when working with simulator but cap the
1671  * increased timeout to some maximum
1672  */
1673 #define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \
1674 ({ \
1675 	ktime_t __timeout; \
1676 	if (hdev->pdev) \
1677 		__timeout = ktime_add_us(ktime_get(), timeout_us); \
1678 	else \
1679 		__timeout = ktime_add_us(ktime_get(),\
1680 				min((u64)(timeout_us * 10), \
1681 					(u64) HL_SIM_MAX_TIMEOUT_US)); \
1682 	might_sleep_if(sleep_us); \
1683 	for (;;) { \
1684 		(val) = RREG32(addr); \
1685 		if (cond) \
1686 			break; \
1687 		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
1688 			(val) = RREG32(addr); \
1689 			break; \
1690 		} \
1691 		if (sleep_us) \
1692 			usleep_range((sleep_us >> 2) + 1, sleep_us); \
1693 	} \
1694 	(cond) ? 0 : -ETIMEDOUT; \
1695 })
1696 
1697 /*
1698  * address in this macro points always to a memory location in the
1699  * host's (server's) memory. That location is updated asynchronously
1700  * either by the direct access of the device or by another core.
1701  *
1702  * To work both in LE and BE architectures, we need to distinguish between the
1703  * two states (device or another core updates the memory location). Therefore,
1704  * if mem_written_by_device is true, the host memory being polled will be
1705  * updated directly by the device. If false, the host memory being polled will
1706  * be updated by host CPU. Required so host knows whether or not the memory
1707  * might need to be byte-swapped before returning value to caller.
1708  */
1709 #define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \
1710 				mem_written_by_device) \
1711 ({ \
1712 	ktime_t __timeout; \
1713 	if (hdev->pdev) \
1714 		__timeout = ktime_add_us(ktime_get(), timeout_us); \
1715 	else \
1716 		__timeout = ktime_add_us(ktime_get(),\
1717 				min((u64)(timeout_us * 10), \
1718 					(u64) HL_SIM_MAX_TIMEOUT_US)); \
1719 	might_sleep_if(sleep_us); \
1720 	for (;;) { \
1721 		/* Verify we read updates done by other cores or by device */ \
1722 		mb(); \
1723 		(val) = *((u32 *)(addr)); \
1724 		if (mem_written_by_device) \
1725 			(val) = le32_to_cpu(*(__le32 *) &(val)); \
1726 		if (cond) \
1727 			break; \
1728 		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
1729 			(val) = *((u32 *)(addr)); \
1730 			if (mem_written_by_device) \
1731 				(val) = le32_to_cpu(*(__le32 *) &(val)); \
1732 			break; \
1733 		} \
1734 		if (sleep_us) \
1735 			usleep_range((sleep_us >> 2) + 1, sleep_us); \
1736 	} \
1737 	(cond) ? 0 : -ETIMEDOUT; \
1738 })
1739 
1740 #define hl_poll_timeout_device_memory(hdev, addr, val, cond, sleep_us, \
1741 					timeout_us) \
1742 ({ \
1743 	ktime_t __timeout; \
1744 	if (hdev->pdev) \
1745 		__timeout = ktime_add_us(ktime_get(), timeout_us); \
1746 	else \
1747 		__timeout = ktime_add_us(ktime_get(),\
1748 				min((u64)(timeout_us * 10), \
1749 					(u64) HL_SIM_MAX_TIMEOUT_US)); \
1750 	might_sleep_if(sleep_us); \
1751 	for (;;) { \
1752 		(val) = readl(addr); \
1753 		if (cond) \
1754 			break; \
1755 		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
1756 			(val) = readl(addr); \
1757 			break; \
1758 		} \
1759 		if (sleep_us) \
1760 			usleep_range((sleep_us >> 2) + 1, sleep_us); \
1761 	} \
1762 	(cond) ? 0 : -ETIMEDOUT; \
1763 })
1764 
1765 struct hwmon_chip_info;
1766 
1767 /**
1768  * struct hl_device_reset_work - reset workqueue task wrapper.
1769  * @wq: work queue for device reset procedure.
1770  * @reset_work: reset work to be done.
1771  * @hdev: habanalabs device structure.
1772  */
1773 struct hl_device_reset_work {
1774 	struct workqueue_struct		*wq;
1775 	struct delayed_work		reset_work;
1776 	struct hl_device		*hdev;
1777 };
1778 
1779 /**
1780  * struct hr_mmu_hop_addrs - used for holding per-device host-resident mmu hop
1781  * information.
1782  * @virt_addr: the virtual address of the hop.
1783  * @phys-addr: the physical address of the hop (used by the device-mmu).
1784  * @shadow_addr: The shadow of the hop used by the driver for walking the hops.
1785  */
1786 struct hr_mmu_hop_addrs {
1787 	u64 virt_addr;
1788 	u64 phys_addr;
1789 	u64 shadow_addr;
1790 };
1791 
1792 /**
1793  * struct hl_mmu_hr_pgt_priv - used for holding per-device mmu host-resident
1794  * page-table internal information.
1795  * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops.
1796  * @mmu_shadow_hop0: shadow array of hop0 tables.
1797  */
1798 struct hl_mmu_hr_priv {
1799 	struct gen_pool *mmu_pgt_pool;
1800 	struct hr_mmu_hop_addrs *mmu_shadow_hop0;
1801 };
1802 
1803 /**
1804  * struct hl_mmu_dr_pgt_priv - used for holding per-device mmu device-resident
1805  * page-table internal information.
1806  * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops.
1807  * @mmu_shadow_hop0: shadow array of hop0 tables.
1808  */
1809 struct hl_mmu_dr_priv {
1810 	struct gen_pool *mmu_pgt_pool;
1811 	void *mmu_shadow_hop0;
1812 };
1813 
1814 /**
1815  * struct hl_mmu_priv - used for holding per-device mmu internal information.
1816  * @dr: information on the device-resident MMU, when exists.
1817  * @hr: information on the host-resident MMU, when exists.
1818  */
1819 struct hl_mmu_priv {
1820 	struct hl_mmu_dr_priv dr;
1821 	struct hl_mmu_hr_priv hr;
1822 };
1823 
1824 /**
1825  * struct hl_mmu_per_hop_info - A structure describing one TLB HOP and its entry
1826  *                that was created in order to translate a virtual address to a
1827  *                physical one.
1828  * @hop_addr: The address of the hop.
1829  * @hop_pte_addr: The address of the hop entry.
1830  * @hop_pte_val: The value in the hop entry.
1831  */
1832 struct hl_mmu_per_hop_info {
1833 	u64 hop_addr;
1834 	u64 hop_pte_addr;
1835 	u64 hop_pte_val;
1836 };
1837 
1838 /**
1839  * struct hl_mmu_hop_info - A structure describing the TLB hops and their
1840  * hop-entries that were created in order to translate a virtual address to a
1841  * physical one.
1842  * @scrambled_vaddr: The value of the virtual address after scrambling. This
1843  *                   address replaces the original virtual-address when mapped
1844  *                   in the MMU tables.
1845  * @unscrambled_paddr: The un-scrambled physical address.
1846  * @hop_info: Array holding the per-hop information used for the translation.
1847  * @used_hops: The number of hops used for the translation.
1848  * @range_type: virtual address range type.
1849  */
1850 struct hl_mmu_hop_info {
1851 	u64 scrambled_vaddr;
1852 	u64 unscrambled_paddr;
1853 	struct hl_mmu_per_hop_info hop_info[MMU_ARCH_5_HOPS];
1854 	u32 used_hops;
1855 	enum hl_va_range_type range_type;
1856 };
1857 
1858 /**
1859  * struct hl_mmu_funcs - Device related MMU functions.
1860  * @init: initialize the MMU module.
1861  * @fini: release the MMU module.
1862  * @ctx_init: Initialize a context for using the MMU module.
1863  * @ctx_fini: disable a ctx from using the mmu module.
1864  * @map: maps a virtual address to physical address for a context.
1865  * @unmap: unmap a virtual address of a context.
1866  * @flush: flush all writes from all cores to reach device MMU.
1867  * @swap_out: marks all mapping of the given context as swapped out.
1868  * @swap_in: marks all mapping of the given context as swapped in.
1869  * @get_tlb_info: returns the list of hops and hop-entries used that were
1870  *                created in order to translate the giver virtual address to a
1871  *                physical one.
1872  */
1873 struct hl_mmu_funcs {
1874 	int (*init)(struct hl_device *hdev);
1875 	void (*fini)(struct hl_device *hdev);
1876 	int (*ctx_init)(struct hl_ctx *ctx);
1877 	void (*ctx_fini)(struct hl_ctx *ctx);
1878 	int (*map)(struct hl_ctx *ctx,
1879 			u64 virt_addr, u64 phys_addr, u32 page_size,
1880 			bool is_dram_addr);
1881 	int (*unmap)(struct hl_ctx *ctx,
1882 			u64 virt_addr, bool is_dram_addr);
1883 	void (*flush)(struct hl_ctx *ctx);
1884 	void (*swap_out)(struct hl_ctx *ctx);
1885 	void (*swap_in)(struct hl_ctx *ctx);
1886 	int (*get_tlb_info)(struct hl_ctx *ctx,
1887 			u64 virt_addr, struct hl_mmu_hop_info *hops);
1888 };
1889 
1890 /**
1891  * struct hl_device - habanalabs device structure.
1892  * @pdev: pointer to PCI device, can be NULL in case of simulator device.
1893  * @pcie_bar_phys: array of available PCIe bars physical addresses.
1894  *		   (required only for PCI address match mode)
1895  * @pcie_bar: array of available PCIe bars virtual addresses.
1896  * @rmmio: configuration area address on SRAM.
1897  * @cdev: related char device.
1898  * @cdev_ctrl: char device for control operations only (INFO IOCTL)
1899  * @dev: related kernel basic device structure.
1900  * @dev_ctrl: related kernel device structure for the control device
1901  * @work_freq: delayed work to lower device frequency if possible.
1902  * @work_heartbeat: delayed work for CPU-CP is-alive check.
1903  * @device_reset_work: delayed work which performs hard reset
1904  * @asic_name: ASIC specific name.
1905  * @asic_type: ASIC specific type.
1906  * @completion_queue: array of hl_cq.
1907  * @user_interrupt: array of hl_user_interrupt. upon the corresponding user
1908  *                  interrupt, driver will monitor the list of fences
1909  *                  registered to this interrupt.
1910  * @common_user_interrupt: common user interrupt for all user interrupts.
1911  *                         upon any user interrupt, driver will monitor the
1912  *                         list of fences registered to this common structure.
1913  * @cq_wq: work queues of completion queues for executing work in process
1914  *         context.
1915  * @eq_wq: work queue of event queue for executing work in process context.
1916  * @sob_reset_wq: work queue for sob reset executions.
1917  * @kernel_ctx: Kernel driver context structure.
1918  * @kernel_queues: array of hl_hw_queue.
1919  * @cs_mirror_list: CS mirror list for TDR.
1920  * @cs_mirror_lock: protects cs_mirror_list.
1921  * @kernel_cb_mgr: command buffer manager for creating/destroying/handling CGs.
1922  * @event_queue: event queue for IRQ from CPU-CP.
1923  * @dma_pool: DMA pool for small allocations.
1924  * @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address.
1925  * @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address.
1926  * @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool.
1927  * @asid_bitmap: holds used/available ASIDs.
1928  * @asid_mutex: protects asid_bitmap.
1929  * @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue.
1930  * @debug_lock: protects critical section of setting debug mode for device
1931  * @asic_prop: ASIC specific immutable properties.
1932  * @asic_funcs: ASIC specific functions.
1933  * @asic_specific: ASIC specific information to use only from ASIC files.
1934  * @vm: virtual memory manager for MMU.
1935  * @hwmon_dev: H/W monitor device.
1936  * @pm_mng_profile: current power management profile.
1937  * @hl_chip_info: ASIC's sensors information.
1938  * @device_status_description: device status description.
1939  * @hl_debugfs: device's debugfs manager.
1940  * @cb_pool: list of preallocated CBs.
1941  * @cb_pool_lock: protects the CB pool.
1942  * @internal_cb_pool_virt_addr: internal command buffer pool virtual address.
1943  * @internal_cb_pool_dma_addr: internal command buffer pool dma address.
1944  * @internal_cb_pool: internal command buffer memory pool.
1945  * @internal_cb_va_base: internal cb pool mmu virtual address base
1946  * @fpriv_list: list of file private data structures. Each structure is created
1947  *              when a user opens the device
1948  * @fpriv_list_lock: protects the fpriv_list
1949  * @compute_ctx: current compute context executing.
1950  * @aggregated_cs_counters: aggregated cs counters among all contexts
1951  * @mmu_priv: device-specific MMU data.
1952  * @mmu_func: device-related MMU functions.
1953  * @legacy_pll_map: map holding map between dynamic (common) PLL indexes and
1954  *                  static (asic specific) PLL indexes.
1955  * @dram_used_mem: current DRAM memory consumption.
1956  * @timeout_jiffies: device CS timeout value.
1957  * @max_power: the max power of the device, as configured by the sysadmin. This
1958  *             value is saved so in case of hard-reset, the driver will restore
1959  *             this value and update the F/W after the re-initialization
1960  * @clock_gating_mask: is clock gating enabled. bitmask that represents the
1961  *                     different engines. See debugfs-driver-habanalabs for
1962  *                     details.
1963  * @in_reset: is device in reset flow.
1964  * @curr_pll_profile: current PLL profile.
1965  * @card_type: Various ASICs have several card types. This indicates the card
1966  *             type of the current device.
1967  * @major: habanalabs kernel driver major.
1968  * @high_pll: high PLL profile frequency.
1969  * @soft_reset_cnt: number of soft reset since the driver was loaded.
1970  * @hard_reset_cnt: number of hard reset since the driver was loaded.
1971  * @clk_throttling_reason: bitmask represents the current clk throttling reasons
1972  * @id: device minor.
1973  * @id_control: minor of the control device
1974  * @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit
1975  *                    addresses.
1976  * @disabled: is device disabled.
1977  * @late_init_done: is late init stage was done during initialization.
1978  * @hwmon_initialized: is H/W monitor sensors was initialized.
1979  * @hard_reset_pending: is there a hard reset work pending.
1980  * @heartbeat: is heartbeat sanity check towards CPU-CP enabled.
1981  * @reset_on_lockup: true if a reset should be done in case of stuck CS, false
1982  *                   otherwise.
1983  * @dram_default_page_mapping: is DRAM default page mapping enabled.
1984  * @memory_scrub: true to perform device memory scrub in various locations,
1985  *                such as context-switch, context close, page free, etc.
1986  * @pmmu_huge_range: is a different virtual addresses range used for PMMU with
1987  *                   huge pages.
1988  * @init_done: is the initialization of the device done.
1989  * @device_cpu_disabled: is the device CPU disabled (due to timeouts)
1990  * @dma_mask: the dma mask that was set for this device
1991  * @in_debug: is device under debug. This, together with fpriv_list, enforces
1992  *            that only a single user is configuring the debug infrastructure.
1993  * @power9_64bit_dma_enable: true to enable 64-bit DMA mask support. Relevant
1994  *                           only to POWER9 machines.
1995  * @cdev_sysfs_created: were char devices and sysfs nodes created.
1996  * @stop_on_err: true if engines should stop on error.
1997  * @supports_sync_stream: is sync stream supported.
1998  * @sync_stream_queue_idx: helper index for sync stream queues initialization.
1999  * @collective_mon_idx: helper index for collective initialization
2000  * @supports_coresight: is CoreSight supported.
2001  * @supports_soft_reset: is soft reset supported.
2002  * @supports_cb_mapping: is mapping a CB to the device's MMU supported.
2003  * @needs_reset: true if reset_on_lockup is false and device should be reset
2004  *               due to lockup.
2005  * @process_kill_trial_cnt: number of trials reset thread tried killing
2006  *                          user processes
2007  * @device_fini_pending: true if device_fini was called and might be
2008  *                       waiting for the reset thread to finish
2009  * @supports_staged_submission: true if staged submissions are supported
2010  */
2011 struct hl_device {
2012 	struct pci_dev			*pdev;
2013 	u64				pcie_bar_phys[HL_PCI_NUM_BARS];
2014 	void __iomem			*pcie_bar[HL_PCI_NUM_BARS];
2015 	void __iomem			*rmmio;
2016 	struct cdev			cdev;
2017 	struct cdev			cdev_ctrl;
2018 	struct device			*dev;
2019 	struct device			*dev_ctrl;
2020 	struct delayed_work		work_freq;
2021 	struct delayed_work		work_heartbeat;
2022 	struct hl_device_reset_work	device_reset_work;
2023 	char				asic_name[HL_STR_MAX];
2024 	char				status[HL_DEV_STS_MAX][HL_STR_MAX];
2025 	enum hl_asic_type		asic_type;
2026 	struct hl_cq			*completion_queue;
2027 	struct hl_user_interrupt	*user_interrupt;
2028 	struct hl_user_interrupt	common_user_interrupt;
2029 	struct workqueue_struct		**cq_wq;
2030 	struct workqueue_struct		*eq_wq;
2031 	struct workqueue_struct		*sob_reset_wq;
2032 	struct hl_ctx			*kernel_ctx;
2033 	struct hl_hw_queue		*kernel_queues;
2034 	struct list_head		cs_mirror_list;
2035 	spinlock_t			cs_mirror_lock;
2036 	struct hl_cb_mgr		kernel_cb_mgr;
2037 	struct hl_eq			event_queue;
2038 	struct dma_pool			*dma_pool;
2039 	void				*cpu_accessible_dma_mem;
2040 	dma_addr_t			cpu_accessible_dma_address;
2041 	struct gen_pool			*cpu_accessible_dma_pool;
2042 	unsigned long			*asid_bitmap;
2043 	struct mutex			asid_mutex;
2044 	struct mutex			send_cpu_message_lock;
2045 	struct mutex			debug_lock;
2046 	struct asic_fixed_properties	asic_prop;
2047 	const struct hl_asic_funcs	*asic_funcs;
2048 	void				*asic_specific;
2049 	struct hl_vm			vm;
2050 	struct device			*hwmon_dev;
2051 	enum hl_pm_mng_profile		pm_mng_profile;
2052 	struct hwmon_chip_info		*hl_chip_info;
2053 
2054 	struct hl_dbg_device_entry	hl_debugfs;
2055 
2056 	struct list_head		cb_pool;
2057 	spinlock_t			cb_pool_lock;
2058 
2059 	void				*internal_cb_pool_virt_addr;
2060 	dma_addr_t			internal_cb_pool_dma_addr;
2061 	struct gen_pool			*internal_cb_pool;
2062 	u64				internal_cb_va_base;
2063 
2064 	struct list_head		fpriv_list;
2065 	struct mutex			fpriv_list_lock;
2066 
2067 	struct hl_ctx			*compute_ctx;
2068 
2069 	struct hl_cs_counters_atomic	aggregated_cs_counters;
2070 
2071 	struct hl_mmu_priv		mmu_priv;
2072 	struct hl_mmu_funcs		mmu_func[MMU_NUM_PGT_LOCATIONS];
2073 
2074 	enum pll_index			*legacy_pll_map;
2075 
2076 	atomic64_t			dram_used_mem;
2077 	u64				timeout_jiffies;
2078 	u64				max_power;
2079 	u64				clock_gating_mask;
2080 	atomic_t			in_reset;
2081 	enum hl_pll_frequency		curr_pll_profile;
2082 	enum cpucp_card_types		card_type;
2083 	u32				major;
2084 	u32				high_pll;
2085 	u32				soft_reset_cnt;
2086 	u32				hard_reset_cnt;
2087 	u32				clk_throttling_reason;
2088 	u16				id;
2089 	u16				id_control;
2090 	u16				cpu_pci_msb_addr;
2091 	u8				disabled;
2092 	u8				late_init_done;
2093 	u8				hwmon_initialized;
2094 	u8				hard_reset_pending;
2095 	u8				heartbeat;
2096 	u8				reset_on_lockup;
2097 	u8				dram_default_page_mapping;
2098 	u8				memory_scrub;
2099 	u8				pmmu_huge_range;
2100 	u8				init_done;
2101 	u8				device_cpu_disabled;
2102 	u8				dma_mask;
2103 	u8				in_debug;
2104 	u8				power9_64bit_dma_enable;
2105 	u8				cdev_sysfs_created;
2106 	u8				stop_on_err;
2107 	u8				supports_sync_stream;
2108 	u8				sync_stream_queue_idx;
2109 	u8				collective_mon_idx;
2110 	u8				supports_coresight;
2111 	u8				supports_soft_reset;
2112 	u8				supports_cb_mapping;
2113 	u8				needs_reset;
2114 	u8				process_kill_trial_cnt;
2115 	u8				device_fini_pending;
2116 	u8				supports_staged_submission;
2117 
2118 	/* Parameters for bring-up */
2119 	u64				nic_ports_mask;
2120 	u64				fw_components;
2121 	u8				mmu_enable;
2122 	u8				mmu_huge_page_opt;
2123 	u8				reset_pcilink;
2124 	u8				cpu_queues_enable;
2125 	u8				pldm;
2126 	u8				axi_drain;
2127 	u8				sram_scrambler_enable;
2128 	u8				dram_scrambler_enable;
2129 	u8				hard_reset_on_fw_events;
2130 	u8				bmc_enable;
2131 	u8				rl_enable;
2132 	u8				reset_on_preboot_fail;
2133 	u8				reset_upon_device_release;
2134 };
2135 
2136 
2137 /*
2138  * IOCTLs
2139  */
2140 
2141 /**
2142  * typedef hl_ioctl_t - typedef for ioctl function in the driver
2143  * @hpriv: pointer to the FD's private data, which contains state of
2144  *		user process
2145  * @data: pointer to the input/output arguments structure of the IOCTL
2146  *
2147  * Return: 0 for success, negative value for error
2148  */
2149 typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data);
2150 
2151 /**
2152  * struct hl_ioctl_desc - describes an IOCTL entry of the driver.
2153  * @cmd: the IOCTL code as created by the kernel macros.
2154  * @func: pointer to the driver's function that should be called for this IOCTL.
2155  */
2156 struct hl_ioctl_desc {
2157 	unsigned int cmd;
2158 	hl_ioctl_t *func;
2159 };
2160 
2161 
2162 /*
2163  * Kernel module functions that can be accessed by entire module
2164  */
2165 
2166 /**
2167  * hl_mem_area_inside_range() - Checks whether address+size are inside a range.
2168  * @address: The start address of the area we want to validate.
2169  * @size: The size in bytes of the area we want to validate.
2170  * @range_start_address: The start address of the valid range.
2171  * @range_end_address: The end address of the valid range.
2172  *
2173  * Return: true if the area is inside the valid range, false otherwise.
2174  */
hl_mem_area_inside_range(u64 address,u64 size,u64 range_start_address,u64 range_end_address)2175 static inline bool hl_mem_area_inside_range(u64 address, u64 size,
2176 				u64 range_start_address, u64 range_end_address)
2177 {
2178 	u64 end_address = address + size;
2179 
2180 	if ((address >= range_start_address) &&
2181 			(end_address <= range_end_address) &&
2182 			(end_address > address))
2183 		return true;
2184 
2185 	return false;
2186 }
2187 
2188 /**
2189  * hl_mem_area_crosses_range() - Checks whether address+size crossing a range.
2190  * @address: The start address of the area we want to validate.
2191  * @size: The size in bytes of the area we want to validate.
2192  * @range_start_address: The start address of the valid range.
2193  * @range_end_address: The end address of the valid range.
2194  *
2195  * Return: true if the area overlaps part or all of the valid range,
2196  *		false otherwise.
2197  */
hl_mem_area_crosses_range(u64 address,u32 size,u64 range_start_address,u64 range_end_address)2198 static inline bool hl_mem_area_crosses_range(u64 address, u32 size,
2199 				u64 range_start_address, u64 range_end_address)
2200 {
2201 	u64 end_address = address + size;
2202 
2203 	if ((address >= range_start_address) &&
2204 			(address < range_end_address))
2205 		return true;
2206 
2207 	if ((end_address >= range_start_address) &&
2208 			(end_address < range_end_address))
2209 		return true;
2210 
2211 	if ((address < range_start_address) &&
2212 			(end_address >= range_end_address))
2213 		return true;
2214 
2215 	return false;
2216 }
2217 
2218 int hl_device_open(struct inode *inode, struct file *filp);
2219 int hl_device_open_ctrl(struct inode *inode, struct file *filp);
2220 bool hl_device_operational(struct hl_device *hdev,
2221 		enum hl_device_status *status);
2222 enum hl_device_status hl_device_status(struct hl_device *hdev);
2223 int hl_device_set_debug_mode(struct hl_device *hdev, bool enable);
2224 int create_hdev(struct hl_device **dev, struct pci_dev *pdev,
2225 		enum hl_asic_type asic_type, int minor);
2226 void destroy_hdev(struct hl_device *hdev);
2227 int hl_hw_queues_create(struct hl_device *hdev);
2228 void hl_hw_queues_destroy(struct hl_device *hdev);
2229 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
2230 				u32 cb_size, u64 cb_ptr);
2231 int hl_hw_queue_schedule_cs(struct hl_cs *cs);
2232 u32 hl_hw_queue_add_ptr(u32 ptr, u16 val);
2233 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id);
2234 void hl_hw_queue_update_ci(struct hl_cs *cs);
2235 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset);
2236 
2237 #define hl_queue_inc_ptr(p)		hl_hw_queue_add_ptr(p, 1)
2238 #define hl_pi_2_offset(pi)		((pi) & (HL_QUEUE_LENGTH - 1))
2239 
2240 int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id);
2241 void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q);
2242 int hl_eq_init(struct hl_device *hdev, struct hl_eq *q);
2243 void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q);
2244 void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q);
2245 void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q);
2246 irqreturn_t hl_irq_handler_cq(int irq, void *arg);
2247 irqreturn_t hl_irq_handler_eq(int irq, void *arg);
2248 irqreturn_t hl_irq_handler_user_cq(int irq, void *arg);
2249 irqreturn_t hl_irq_handler_default(int irq, void *arg);
2250 u32 hl_cq_inc_ptr(u32 ptr);
2251 
2252 int hl_asid_init(struct hl_device *hdev);
2253 void hl_asid_fini(struct hl_device *hdev);
2254 unsigned long hl_asid_alloc(struct hl_device *hdev);
2255 void hl_asid_free(struct hl_device *hdev, unsigned long asid);
2256 
2257 int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv);
2258 void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx);
2259 int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx);
2260 void hl_ctx_do_release(struct kref *ref);
2261 void hl_ctx_get(struct hl_device *hdev,	struct hl_ctx *ctx);
2262 int hl_ctx_put(struct hl_ctx *ctx);
2263 struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq);
2264 void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr);
2265 void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr);
2266 
2267 int hl_device_init(struct hl_device *hdev, struct class *hclass);
2268 void hl_device_fini(struct hl_device *hdev);
2269 int hl_device_suspend(struct hl_device *hdev);
2270 int hl_device_resume(struct hl_device *hdev);
2271 int hl_device_reset(struct hl_device *hdev, u32 flags);
2272 void hl_hpriv_get(struct hl_fpriv *hpriv);
2273 int hl_hpriv_put(struct hl_fpriv *hpriv);
2274 int hl_device_set_frequency(struct hl_device *hdev, enum hl_pll_frequency freq);
2275 int hl_device_utilization(struct hl_device *hdev, u32 *utilization);
2276 
2277 int hl_build_hwmon_channel_info(struct hl_device *hdev,
2278 		struct cpucp_sensor *sensors_arr);
2279 
2280 int hl_sysfs_init(struct hl_device *hdev);
2281 void hl_sysfs_fini(struct hl_device *hdev);
2282 
2283 int hl_hwmon_init(struct hl_device *hdev);
2284 void hl_hwmon_fini(struct hl_device *hdev);
2285 
2286 int hl_cb_create(struct hl_device *hdev, struct hl_cb_mgr *mgr,
2287 			struct hl_ctx *ctx, u32 cb_size, bool internal_cb,
2288 			bool map_cb, u64 *handle);
2289 int hl_cb_destroy(struct hl_device *hdev, struct hl_cb_mgr *mgr, u64 cb_handle);
2290 int hl_cb_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
2291 int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
2292 struct hl_cb *hl_cb_get(struct hl_device *hdev,	struct hl_cb_mgr *mgr,
2293 			u32 handle);
2294 void hl_cb_put(struct hl_cb *cb);
2295 void hl_cb_mgr_init(struct hl_cb_mgr *mgr);
2296 void hl_cb_mgr_fini(struct hl_device *hdev, struct hl_cb_mgr *mgr);
2297 struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size,
2298 					bool internal_cb);
2299 int hl_cb_pool_init(struct hl_device *hdev);
2300 int hl_cb_pool_fini(struct hl_device *hdev);
2301 int hl_cb_va_pool_init(struct hl_ctx *ctx);
2302 void hl_cb_va_pool_fini(struct hl_ctx *ctx);
2303 
2304 void hl_cs_rollback_all(struct hl_device *hdev);
2305 void hl_pending_cb_list_flush(struct hl_ctx *ctx);
2306 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
2307 		enum hl_queue_type queue_type, bool is_kernel_allocated_cb);
2308 void hl_sob_reset_error(struct kref *ref);
2309 int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask);
2310 void hl_fence_put(struct hl_fence *fence);
2311 void hl_fence_get(struct hl_fence *fence);
2312 void cs_get(struct hl_cs *cs);
2313 bool cs_needs_completion(struct hl_cs *cs);
2314 bool cs_needs_timeout(struct hl_cs *cs);
2315 bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs);
2316 struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq);
2317 
2318 void goya_set_asic_funcs(struct hl_device *hdev);
2319 void gaudi_set_asic_funcs(struct hl_device *hdev);
2320 
2321 int hl_vm_ctx_init(struct hl_ctx *ctx);
2322 void hl_vm_ctx_fini(struct hl_ctx *ctx);
2323 
2324 int hl_vm_init(struct hl_device *hdev);
2325 void hl_vm_fini(struct hl_device *hdev);
2326 
2327 void hl_hw_block_mem_init(struct hl_ctx *ctx);
2328 void hl_hw_block_mem_fini(struct hl_ctx *ctx);
2329 
2330 u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
2331 		enum hl_va_range_type type, u32 size, u32 alignment);
2332 int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
2333 		u64 start_addr, u64 size);
2334 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
2335 			struct hl_userptr *userptr);
2336 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr);
2337 void hl_userptr_delete_list(struct hl_device *hdev,
2338 				struct list_head *userptr_list);
2339 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size,
2340 				struct list_head *userptr_list,
2341 				struct hl_userptr **userptr);
2342 
2343 int hl_mmu_init(struct hl_device *hdev);
2344 void hl_mmu_fini(struct hl_device *hdev);
2345 int hl_mmu_ctx_init(struct hl_ctx *ctx);
2346 void hl_mmu_ctx_fini(struct hl_ctx *ctx);
2347 int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
2348 		u32 page_size, bool flush_pte);
2349 int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size,
2350 		bool flush_pte);
2351 int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
2352 					u64 phys_addr, u32 size);
2353 int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size);
2354 void hl_mmu_swap_out(struct hl_ctx *ctx);
2355 void hl_mmu_swap_in(struct hl_ctx *ctx);
2356 int hl_mmu_if_set_funcs(struct hl_device *hdev);
2357 void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
2358 int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr);
2359 int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
2360 			struct hl_mmu_hop_info *hops);
2361 u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr);
2362 u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr);
2363 bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr);
2364 
2365 int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name,
2366 				void __iomem *dst, u32 src_offset, u32 size);
2367 int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode);
2368 int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
2369 				u16 len, u32 timeout, u64 *result);
2370 int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type);
2371 int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr,
2372 		size_t irq_arr_size);
2373 int hl_fw_test_cpu_queue(struct hl_device *hdev);
2374 void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
2375 						dma_addr_t *dma_handle);
2376 void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
2377 					void *vaddr);
2378 int hl_fw_send_heartbeat(struct hl_device *hdev);
2379 int hl_fw_cpucp_info_get(struct hl_device *hdev,
2380 			u32 cpu_security_boot_status_reg,
2381 			u32 boot_err0_reg);
2382 int hl_fw_cpucp_handshake(struct hl_device *hdev,
2383 			u32 cpu_security_boot_status_reg,
2384 			u32 boot_err0_reg);
2385 int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size);
2386 int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev,
2387 		struct hl_info_pci_counters *counters);
2388 int hl_fw_cpucp_total_energy_get(struct hl_device *hdev,
2389 			u64 *total_energy);
2390 int get_used_pll_index(struct hl_device *hdev, enum pll_index input_pll_index,
2391 						enum pll_index *pll_index);
2392 int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, enum pll_index pll_index,
2393 		u16 *pll_freq_arr);
2394 int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power);
2395 int hl_fw_init_cpu(struct hl_device *hdev, u32 cpu_boot_status_reg,
2396 			u32 msg_to_cpu_reg, u32 cpu_msg_status_reg,
2397 			u32 cpu_security_boot_status_reg, u32 boot_err0_reg,
2398 			bool skip_bmc, u32 cpu_timeout, u32 boot_fit_timeout);
2399 int hl_fw_read_preboot_status(struct hl_device *hdev, u32 cpu_boot_status_reg,
2400 		u32 cpu_security_boot_status_reg, u32 boot_err0_reg,
2401 		u32 timeout);
2402 
2403 int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3],
2404 			bool is_wc[3]);
2405 int hl_pci_elbi_read(struct hl_device *hdev, u64 addr, u32 *data);
2406 int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data);
2407 int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region,
2408 		struct hl_inbound_pci_region *pci_region);
2409 int hl_pci_set_outbound_region(struct hl_device *hdev,
2410 		struct hl_outbound_pci_region *pci_region);
2411 int hl_pci_init(struct hl_device *hdev);
2412 void hl_pci_fini(struct hl_device *hdev);
2413 
2414 long hl_get_frequency(struct hl_device *hdev, enum pll_index pll_index,
2415 								bool curr);
2416 void hl_set_frequency(struct hl_device *hdev, enum pll_index pll_index,
2417 								u64 freq);
2418 int hl_get_temperature(struct hl_device *hdev,
2419 		       int sensor_index, u32 attr, long *value);
2420 int hl_set_temperature(struct hl_device *hdev,
2421 		       int sensor_index, u32 attr, long value);
2422 int hl_get_voltage(struct hl_device *hdev,
2423 		   int sensor_index, u32 attr, long *value);
2424 int hl_get_current(struct hl_device *hdev,
2425 		   int sensor_index, u32 attr, long *value);
2426 int hl_get_fan_speed(struct hl_device *hdev,
2427 		     int sensor_index, u32 attr, long *value);
2428 int hl_get_pwm_info(struct hl_device *hdev,
2429 		    int sensor_index, u32 attr, long *value);
2430 void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr,
2431 			long value);
2432 u64 hl_get_max_power(struct hl_device *hdev);
2433 void hl_set_max_power(struct hl_device *hdev);
2434 int hl_set_voltage(struct hl_device *hdev,
2435 			int sensor_index, u32 attr, long value);
2436 int hl_set_current(struct hl_device *hdev,
2437 			int sensor_index, u32 attr, long value);
2438 void hl_release_pending_user_interrupts(struct hl_device *hdev);
2439 
2440 #ifdef CONFIG_DEBUG_FS
2441 
2442 void hl_debugfs_init(void);
2443 void hl_debugfs_fini(void);
2444 void hl_debugfs_add_device(struct hl_device *hdev);
2445 void hl_debugfs_remove_device(struct hl_device *hdev);
2446 void hl_debugfs_add_file(struct hl_fpriv *hpriv);
2447 void hl_debugfs_remove_file(struct hl_fpriv *hpriv);
2448 void hl_debugfs_add_cb(struct hl_cb *cb);
2449 void hl_debugfs_remove_cb(struct hl_cb *cb);
2450 void hl_debugfs_add_cs(struct hl_cs *cs);
2451 void hl_debugfs_remove_cs(struct hl_cs *cs);
2452 void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job);
2453 void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job);
2454 void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr);
2455 void hl_debugfs_remove_userptr(struct hl_device *hdev,
2456 				struct hl_userptr *userptr);
2457 void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
2458 void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
2459 
2460 #else
2461 
hl_debugfs_init(void)2462 static inline void __init hl_debugfs_init(void)
2463 {
2464 }
2465 
hl_debugfs_fini(void)2466 static inline void hl_debugfs_fini(void)
2467 {
2468 }
2469 
hl_debugfs_add_device(struct hl_device * hdev)2470 static inline void hl_debugfs_add_device(struct hl_device *hdev)
2471 {
2472 }
2473 
hl_debugfs_remove_device(struct hl_device * hdev)2474 static inline void hl_debugfs_remove_device(struct hl_device *hdev)
2475 {
2476 }
2477 
hl_debugfs_add_file(struct hl_fpriv * hpriv)2478 static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv)
2479 {
2480 }
2481 
hl_debugfs_remove_file(struct hl_fpriv * hpriv)2482 static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv)
2483 {
2484 }
2485 
hl_debugfs_add_cb(struct hl_cb * cb)2486 static inline void hl_debugfs_add_cb(struct hl_cb *cb)
2487 {
2488 }
2489 
hl_debugfs_remove_cb(struct hl_cb * cb)2490 static inline void hl_debugfs_remove_cb(struct hl_cb *cb)
2491 {
2492 }
2493 
hl_debugfs_add_cs(struct hl_cs * cs)2494 static inline void hl_debugfs_add_cs(struct hl_cs *cs)
2495 {
2496 }
2497 
hl_debugfs_remove_cs(struct hl_cs * cs)2498 static inline void hl_debugfs_remove_cs(struct hl_cs *cs)
2499 {
2500 }
2501 
hl_debugfs_add_job(struct hl_device * hdev,struct hl_cs_job * job)2502 static inline void hl_debugfs_add_job(struct hl_device *hdev,
2503 					struct hl_cs_job *job)
2504 {
2505 }
2506 
hl_debugfs_remove_job(struct hl_device * hdev,struct hl_cs_job * job)2507 static inline void hl_debugfs_remove_job(struct hl_device *hdev,
2508 					struct hl_cs_job *job)
2509 {
2510 }
2511 
hl_debugfs_add_userptr(struct hl_device * hdev,struct hl_userptr * userptr)2512 static inline void hl_debugfs_add_userptr(struct hl_device *hdev,
2513 					struct hl_userptr *userptr)
2514 {
2515 }
2516 
hl_debugfs_remove_userptr(struct hl_device * hdev,struct hl_userptr * userptr)2517 static inline void hl_debugfs_remove_userptr(struct hl_device *hdev,
2518 					struct hl_userptr *userptr)
2519 {
2520 }
2521 
hl_debugfs_add_ctx_mem_hash(struct hl_device * hdev,struct hl_ctx * ctx)2522 static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev,
2523 					struct hl_ctx *ctx)
2524 {
2525 }
2526 
hl_debugfs_remove_ctx_mem_hash(struct hl_device * hdev,struct hl_ctx * ctx)2527 static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev,
2528 					struct hl_ctx *ctx)
2529 {
2530 }
2531 
2532 #endif
2533 
2534 /* IOCTLs */
2535 long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg);
2536 long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg);
2537 int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data);
2538 int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data);
2539 int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data);
2540 int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data);
2541 
2542 #endif /* HABANALABSP_H_ */
2543