1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_base.h"
6 #include "ice_lib.h"
7 #include "ice_fltr.h"
8 #include "ice_flow.h"
9 #include "ice_virtchnl_allowlist.h"
10 
11 #define FIELD_SELECTOR(proto_hdr_field) \
12 		BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
13 
14 struct ice_vc_hdr_match_type {
15 	u32 vc_hdr;	/* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
16 	u32 ice_hdr;	/* ice headers (ICE_FLOW_SEG_HDR_XXX) */
17 };
18 
19 static const struct ice_vc_hdr_match_type ice_vc_hdr_list_os[] = {
20 	{VIRTCHNL_PROTO_HDR_NONE,	ICE_FLOW_SEG_HDR_NONE},
21 	{VIRTCHNL_PROTO_HDR_IPV4,	ICE_FLOW_SEG_HDR_IPV4 |
22 					ICE_FLOW_SEG_HDR_IPV_OTHER},
23 	{VIRTCHNL_PROTO_HDR_IPV6,	ICE_FLOW_SEG_HDR_IPV6 |
24 					ICE_FLOW_SEG_HDR_IPV_OTHER},
25 	{VIRTCHNL_PROTO_HDR_TCP,	ICE_FLOW_SEG_HDR_TCP},
26 	{VIRTCHNL_PROTO_HDR_UDP,	ICE_FLOW_SEG_HDR_UDP},
27 	{VIRTCHNL_PROTO_HDR_SCTP,	ICE_FLOW_SEG_HDR_SCTP},
28 };
29 
30 static const struct ice_vc_hdr_match_type ice_vc_hdr_list_comms[] = {
31 	{VIRTCHNL_PROTO_HDR_NONE,	ICE_FLOW_SEG_HDR_NONE},
32 	{VIRTCHNL_PROTO_HDR_ETH,	ICE_FLOW_SEG_HDR_ETH},
33 	{VIRTCHNL_PROTO_HDR_S_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
34 	{VIRTCHNL_PROTO_HDR_C_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
35 	{VIRTCHNL_PROTO_HDR_IPV4,	ICE_FLOW_SEG_HDR_IPV4 |
36 					ICE_FLOW_SEG_HDR_IPV_OTHER},
37 	{VIRTCHNL_PROTO_HDR_IPV6,	ICE_FLOW_SEG_HDR_IPV6 |
38 					ICE_FLOW_SEG_HDR_IPV_OTHER},
39 	{VIRTCHNL_PROTO_HDR_TCP,	ICE_FLOW_SEG_HDR_TCP},
40 	{VIRTCHNL_PROTO_HDR_UDP,	ICE_FLOW_SEG_HDR_UDP},
41 	{VIRTCHNL_PROTO_HDR_SCTP,	ICE_FLOW_SEG_HDR_SCTP},
42 	{VIRTCHNL_PROTO_HDR_PPPOE,	ICE_FLOW_SEG_HDR_PPPOE},
43 	{VIRTCHNL_PROTO_HDR_GTPU_IP,	ICE_FLOW_SEG_HDR_GTPU_IP},
44 	{VIRTCHNL_PROTO_HDR_GTPU_EH,	ICE_FLOW_SEG_HDR_GTPU_EH},
45 	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
46 					ICE_FLOW_SEG_HDR_GTPU_DWN},
47 	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
48 					ICE_FLOW_SEG_HDR_GTPU_UP},
49 	{VIRTCHNL_PROTO_HDR_L2TPV3,	ICE_FLOW_SEG_HDR_L2TPV3},
50 	{VIRTCHNL_PROTO_HDR_ESP,	ICE_FLOW_SEG_HDR_ESP},
51 	{VIRTCHNL_PROTO_HDR_AH,		ICE_FLOW_SEG_HDR_AH},
52 	{VIRTCHNL_PROTO_HDR_PFCP,	ICE_FLOW_SEG_HDR_PFCP_SESSION},
53 };
54 
55 struct ice_vc_hash_field_match_type {
56 	u32 vc_hdr;		/* virtchnl headers
57 				 * (VIRTCHNL_PROTO_HDR_XXX)
58 				 */
59 	u32 vc_hash_field;	/* virtchnl hash fields selector
60 				 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
61 				 */
62 	u64 ice_hash_field;	/* ice hash fields
63 				 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
64 				 */
65 };
66 
67 static const struct
68 ice_vc_hash_field_match_type ice_vc_hash_field_list_os[] = {
69 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
70 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
71 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
72 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
73 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
74 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
75 		ICE_FLOW_HASH_IPV4},
76 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
77 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
78 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
79 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
80 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
81 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
82 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
83 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
84 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
85 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
86 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
87 		ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
88 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
89 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
91 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
92 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
93 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
94 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
95 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
96 		ICE_FLOW_HASH_IPV6},
97 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
98 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
99 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
100 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
101 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
102 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
103 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
104 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
105 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
106 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
107 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
108 		ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
109 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
110 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111 	{VIRTCHNL_PROTO_HDR_TCP,
112 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
113 		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
114 	{VIRTCHNL_PROTO_HDR_TCP,
115 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
116 		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
117 	{VIRTCHNL_PROTO_HDR_TCP,
118 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
119 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
120 		ICE_FLOW_HASH_TCP_PORT},
121 	{VIRTCHNL_PROTO_HDR_UDP,
122 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
123 		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
124 	{VIRTCHNL_PROTO_HDR_UDP,
125 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
126 		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
127 	{VIRTCHNL_PROTO_HDR_UDP,
128 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
129 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
130 		ICE_FLOW_HASH_UDP_PORT},
131 	{VIRTCHNL_PROTO_HDR_SCTP,
132 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
133 		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
134 	{VIRTCHNL_PROTO_HDR_SCTP,
135 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
136 		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
137 	{VIRTCHNL_PROTO_HDR_SCTP,
138 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
139 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
140 		ICE_FLOW_HASH_SCTP_PORT},
141 };
142 
143 static const struct
144 ice_vc_hash_field_match_type ice_vc_hash_field_list_comms[] = {
145 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
146 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
147 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
148 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
149 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
150 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
151 		ICE_FLOW_HASH_ETH},
152 	{VIRTCHNL_PROTO_HDR_ETH,
153 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
154 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
155 	{VIRTCHNL_PROTO_HDR_S_VLAN,
156 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
157 		BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
158 	{VIRTCHNL_PROTO_HDR_C_VLAN,
159 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
160 		BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
161 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
162 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
163 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
164 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
165 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
166 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
167 		ICE_FLOW_HASH_IPV4},
168 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
169 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
170 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
171 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
172 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
173 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
174 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
175 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
176 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
177 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
178 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
179 		ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
180 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
181 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
182 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
183 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
184 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
185 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
186 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
187 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
188 		ICE_FLOW_HASH_IPV6},
189 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
190 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
191 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
192 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
193 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
194 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
195 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
196 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
197 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
198 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
199 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
200 		ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
201 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
202 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
203 	{VIRTCHNL_PROTO_HDR_TCP,
204 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
205 		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
206 	{VIRTCHNL_PROTO_HDR_TCP,
207 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
208 		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
209 	{VIRTCHNL_PROTO_HDR_TCP,
210 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
211 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
212 		ICE_FLOW_HASH_TCP_PORT},
213 	{VIRTCHNL_PROTO_HDR_UDP,
214 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
215 		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
216 	{VIRTCHNL_PROTO_HDR_UDP,
217 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
218 		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
219 	{VIRTCHNL_PROTO_HDR_UDP,
220 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
221 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
222 		ICE_FLOW_HASH_UDP_PORT},
223 	{VIRTCHNL_PROTO_HDR_SCTP,
224 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
225 		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
226 	{VIRTCHNL_PROTO_HDR_SCTP,
227 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
228 		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
229 	{VIRTCHNL_PROTO_HDR_SCTP,
230 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
231 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
232 		ICE_FLOW_HASH_SCTP_PORT},
233 	{VIRTCHNL_PROTO_HDR_PPPOE,
234 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
235 		BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
236 	{VIRTCHNL_PROTO_HDR_GTPU_IP,
237 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
238 		BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
239 	{VIRTCHNL_PROTO_HDR_L2TPV3,
240 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
241 		BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
242 	{VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
243 		BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
244 	{VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
245 		BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
246 	{VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
247 		BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
248 };
249 
250 /**
251  * ice_get_vf_vsi - get VF's VSI based on the stored index
252  * @vf: VF used to get VSI
253  */
ice_get_vf_vsi(struct ice_vf * vf)254 static struct ice_vsi *ice_get_vf_vsi(struct ice_vf *vf)
255 {
256 	return vf->pf->vsi[vf->lan_vsi_idx];
257 }
258 
259 /**
260  * ice_validate_vf_id - helper to check if VF ID is valid
261  * @pf: pointer to the PF structure
262  * @vf_id: the ID of the VF to check
263  */
ice_validate_vf_id(struct ice_pf * pf,u16 vf_id)264 static int ice_validate_vf_id(struct ice_pf *pf, u16 vf_id)
265 {
266 	/* vf_id range is only valid for 0-255, and should always be unsigned */
267 	if (vf_id >= pf->num_alloc_vfs) {
268 		dev_err(ice_pf_to_dev(pf), "Invalid VF ID: %u\n", vf_id);
269 		return -EINVAL;
270 	}
271 	return 0;
272 }
273 
274 /**
275  * ice_check_vf_init - helper to check if VF init complete
276  * @pf: pointer to the PF structure
277  * @vf: the pointer to the VF to check
278  */
ice_check_vf_init(struct ice_pf * pf,struct ice_vf * vf)279 static int ice_check_vf_init(struct ice_pf *pf, struct ice_vf *vf)
280 {
281 	if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
282 		dev_err(ice_pf_to_dev(pf), "VF ID: %u in reset. Try again.\n",
283 			vf->vf_id);
284 		return -EBUSY;
285 	}
286 	return 0;
287 }
288 
289 /**
290  * ice_err_to_virt_err - translate errors for VF return code
291  * @ice_err: error return code
292  */
ice_err_to_virt_err(enum ice_status ice_err)293 static enum virtchnl_status_code ice_err_to_virt_err(enum ice_status ice_err)
294 {
295 	switch (ice_err) {
296 	case ICE_SUCCESS:
297 		return VIRTCHNL_STATUS_SUCCESS;
298 	case ICE_ERR_BAD_PTR:
299 	case ICE_ERR_INVAL_SIZE:
300 	case ICE_ERR_DEVICE_NOT_SUPPORTED:
301 	case ICE_ERR_PARAM:
302 	case ICE_ERR_CFG:
303 		return VIRTCHNL_STATUS_ERR_PARAM;
304 	case ICE_ERR_NO_MEMORY:
305 		return VIRTCHNL_STATUS_ERR_NO_MEMORY;
306 	case ICE_ERR_NOT_READY:
307 	case ICE_ERR_RESET_FAILED:
308 	case ICE_ERR_FW_API_VER:
309 	case ICE_ERR_AQ_ERROR:
310 	case ICE_ERR_AQ_TIMEOUT:
311 	case ICE_ERR_AQ_FULL:
312 	case ICE_ERR_AQ_NO_WORK:
313 	case ICE_ERR_AQ_EMPTY:
314 		return VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
315 	default:
316 		return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
317 	}
318 }
319 
320 /**
321  * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
322  * @pf: pointer to the PF structure
323  * @v_opcode: operation code
324  * @v_retval: return value
325  * @msg: pointer to the msg buffer
326  * @msglen: msg length
327  */
328 static void
ice_vc_vf_broadcast(struct ice_pf * pf,enum virtchnl_ops v_opcode,enum virtchnl_status_code v_retval,u8 * msg,u16 msglen)329 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
330 		    enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
331 {
332 	struct ice_hw *hw = &pf->hw;
333 	unsigned int i;
334 
335 	ice_for_each_vf(pf, i) {
336 		struct ice_vf *vf = &pf->vf[i];
337 
338 		/* Not all vfs are enabled so skip the ones that are not */
339 		if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
340 		    !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
341 			continue;
342 
343 		/* Ignore return value on purpose - a given VF may fail, but
344 		 * we need to keep going and send to all of them
345 		 */
346 		ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
347 				      msglen, NULL);
348 	}
349 }
350 
351 /**
352  * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
353  * @vf: pointer to the VF structure
354  * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
355  * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
356  * @link_up: whether or not to set the link up/down
357  */
358 static void
ice_set_pfe_link(struct ice_vf * vf,struct virtchnl_pf_event * pfe,int ice_link_speed,bool link_up)359 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
360 		 int ice_link_speed, bool link_up)
361 {
362 	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
363 		pfe->event_data.link_event_adv.link_status = link_up;
364 		/* Speed in Mbps */
365 		pfe->event_data.link_event_adv.link_speed =
366 			ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
367 	} else {
368 		pfe->event_data.link_event.link_status = link_up;
369 		/* Legacy method for virtchnl link speeds */
370 		pfe->event_data.link_event.link_speed =
371 			(enum virtchnl_link_speed)
372 			ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
373 	}
374 }
375 
376 /**
377  * ice_vf_has_no_qs_ena - check if the VF has any Rx or Tx queues enabled
378  * @vf: the VF to check
379  *
380  * Returns true if the VF has no Rx and no Tx queues enabled and returns false
381  * otherwise
382  */
ice_vf_has_no_qs_ena(struct ice_vf * vf)383 static bool ice_vf_has_no_qs_ena(struct ice_vf *vf)
384 {
385 	return (!bitmap_weight(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF) &&
386 		!bitmap_weight(vf->txq_ena, ICE_MAX_RSS_QS_PER_VF));
387 }
388 
389 /**
390  * ice_is_vf_link_up - check if the VF's link is up
391  * @vf: VF to check if link is up
392  */
ice_is_vf_link_up(struct ice_vf * vf)393 static bool ice_is_vf_link_up(struct ice_vf *vf)
394 {
395 	struct ice_pf *pf = vf->pf;
396 
397 	if (ice_check_vf_init(pf, vf))
398 		return false;
399 
400 	if (ice_vf_has_no_qs_ena(vf))
401 		return false;
402 	else if (vf->link_forced)
403 		return vf->link_up;
404 	else
405 		return pf->hw.port_info->phy.link_info.link_info &
406 			ICE_AQ_LINK_UP;
407 }
408 
409 /**
410  * ice_vc_notify_vf_link_state - Inform a VF of link status
411  * @vf: pointer to the VF structure
412  *
413  * send a link status message to a single VF
414  */
ice_vc_notify_vf_link_state(struct ice_vf * vf)415 static void ice_vc_notify_vf_link_state(struct ice_vf *vf)
416 {
417 	struct virtchnl_pf_event pfe = { 0 };
418 	struct ice_hw *hw = &vf->pf->hw;
419 
420 	pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
421 	pfe.severity = PF_EVENT_SEVERITY_INFO;
422 
423 	if (ice_is_vf_link_up(vf))
424 		ice_set_pfe_link(vf, &pfe,
425 				 hw->port_info->phy.link_info.link_speed, true);
426 	else
427 		ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
428 
429 	ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
430 			      VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
431 			      sizeof(pfe), NULL);
432 }
433 
434 /**
435  * ice_vf_invalidate_vsi - invalidate vsi_idx/vsi_num to remove VSI access
436  * @vf: VF to remove access to VSI for
437  */
ice_vf_invalidate_vsi(struct ice_vf * vf)438 static void ice_vf_invalidate_vsi(struct ice_vf *vf)
439 {
440 	vf->lan_vsi_idx = ICE_NO_VSI;
441 	vf->lan_vsi_num = ICE_NO_VSI;
442 }
443 
444 /**
445  * ice_vf_vsi_release - invalidate the VF's VSI after freeing it
446  * @vf: invalidate this VF's VSI after freeing it
447  */
ice_vf_vsi_release(struct ice_vf * vf)448 static void ice_vf_vsi_release(struct ice_vf *vf)
449 {
450 	ice_vsi_release(ice_get_vf_vsi(vf));
451 	ice_vf_invalidate_vsi(vf);
452 }
453 
454 /**
455  * ice_vf_ctrl_invalidate_vsi - invalidate ctrl_vsi_idx to remove VSI access
456  * @vf: VF that control VSI is being invalidated on
457  */
ice_vf_ctrl_invalidate_vsi(struct ice_vf * vf)458 static void ice_vf_ctrl_invalidate_vsi(struct ice_vf *vf)
459 {
460 	vf->ctrl_vsi_idx = ICE_NO_VSI;
461 }
462 
463 /**
464  * ice_vf_ctrl_vsi_release - invalidate the VF's control VSI after freeing it
465  * @vf: VF that control VSI is being released on
466  */
ice_vf_ctrl_vsi_release(struct ice_vf * vf)467 static void ice_vf_ctrl_vsi_release(struct ice_vf *vf)
468 {
469 	ice_vsi_release(vf->pf->vsi[vf->ctrl_vsi_idx]);
470 	ice_vf_ctrl_invalidate_vsi(vf);
471 }
472 
473 /**
474  * ice_free_vf_res - Free a VF's resources
475  * @vf: pointer to the VF info
476  */
ice_free_vf_res(struct ice_vf * vf)477 static void ice_free_vf_res(struct ice_vf *vf)
478 {
479 	struct ice_pf *pf = vf->pf;
480 	int i, last_vector_idx;
481 
482 	/* First, disable VF's configuration API to prevent OS from
483 	 * accessing the VF's VSI after it's freed or invalidated.
484 	 */
485 	clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
486 	ice_vf_fdir_exit(vf);
487 	/* free VF control VSI */
488 	if (vf->ctrl_vsi_idx != ICE_NO_VSI)
489 		ice_vf_ctrl_vsi_release(vf);
490 
491 	/* free VSI and disconnect it from the parent uplink */
492 	if (vf->lan_vsi_idx != ICE_NO_VSI) {
493 		ice_vf_vsi_release(vf);
494 		vf->num_mac = 0;
495 	}
496 
497 	last_vector_idx = vf->first_vector_idx + pf->num_msix_per_vf - 1;
498 
499 	/* clear VF MDD event information */
500 	memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
501 	memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
502 
503 	/* Disable interrupts so that VF starts in a known state */
504 	for (i = vf->first_vector_idx; i <= last_vector_idx; i++) {
505 		wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M);
506 		ice_flush(&pf->hw);
507 	}
508 	/* reset some of the state variables keeping track of the resources */
509 	clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
510 	clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
511 }
512 
513 /**
514  * ice_dis_vf_mappings
515  * @vf: pointer to the VF structure
516  */
ice_dis_vf_mappings(struct ice_vf * vf)517 static void ice_dis_vf_mappings(struct ice_vf *vf)
518 {
519 	struct ice_pf *pf = vf->pf;
520 	struct ice_vsi *vsi;
521 	struct device *dev;
522 	int first, last, v;
523 	struct ice_hw *hw;
524 
525 	hw = &pf->hw;
526 	vsi = ice_get_vf_vsi(vf);
527 
528 	dev = ice_pf_to_dev(pf);
529 	wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
530 	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
531 
532 	first = vf->first_vector_idx;
533 	last = first + pf->num_msix_per_vf - 1;
534 	for (v = first; v <= last; v++) {
535 		u32 reg;
536 
537 		reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) &
538 			GLINT_VECT2FUNC_IS_PF_M) |
539 		       ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
540 			GLINT_VECT2FUNC_PF_NUM_M));
541 		wr32(hw, GLINT_VECT2FUNC(v), reg);
542 	}
543 
544 	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
545 		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
546 	else
547 		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
548 
549 	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
550 		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
551 	else
552 		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
553 }
554 
555 /**
556  * ice_sriov_free_msix_res - Reset/free any used MSIX resources
557  * @pf: pointer to the PF structure
558  *
559  * Since no MSIX entries are taken from the pf->irq_tracker then just clear
560  * the pf->sriov_base_vector.
561  *
562  * Returns 0 on success, and -EINVAL on error.
563  */
ice_sriov_free_msix_res(struct ice_pf * pf)564 static int ice_sriov_free_msix_res(struct ice_pf *pf)
565 {
566 	struct ice_res_tracker *res;
567 
568 	if (!pf)
569 		return -EINVAL;
570 
571 	res = pf->irq_tracker;
572 	if (!res)
573 		return -EINVAL;
574 
575 	/* give back irq_tracker resources used */
576 	WARN_ON(pf->sriov_base_vector < res->num_entries);
577 
578 	pf->sriov_base_vector = 0;
579 
580 	return 0;
581 }
582 
583 /**
584  * ice_set_vf_state_qs_dis - Set VF queues state to disabled
585  * @vf: pointer to the VF structure
586  */
ice_set_vf_state_qs_dis(struct ice_vf * vf)587 void ice_set_vf_state_qs_dis(struct ice_vf *vf)
588 {
589 	/* Clear Rx/Tx enabled queues flag */
590 	bitmap_zero(vf->txq_ena, ICE_MAX_RSS_QS_PER_VF);
591 	bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
592 	clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
593 }
594 
595 /**
596  * ice_dis_vf_qs - Disable the VF queues
597  * @vf: pointer to the VF structure
598  */
ice_dis_vf_qs(struct ice_vf * vf)599 static void ice_dis_vf_qs(struct ice_vf *vf)
600 {
601 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
602 
603 	ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, vf->vf_id);
604 	ice_vsi_stop_all_rx_rings(vsi);
605 	ice_set_vf_state_qs_dis(vf);
606 }
607 
608 /**
609  * ice_free_vfs - Free all VFs
610  * @pf: pointer to the PF structure
611  */
ice_free_vfs(struct ice_pf * pf)612 void ice_free_vfs(struct ice_pf *pf)
613 {
614 	struct device *dev = ice_pf_to_dev(pf);
615 	struct ice_hw *hw = &pf->hw;
616 	unsigned int tmp, i;
617 
618 	if (!pf->vf)
619 		return;
620 
621 	while (test_and_set_bit(ICE_VF_DIS, pf->state))
622 		usleep_range(1000, 2000);
623 
624 	/* Disable IOV before freeing resources. This lets any VF drivers
625 	 * running in the host get themselves cleaned up before we yank
626 	 * the carpet out from underneath their feet.
627 	 */
628 	if (!pci_vfs_assigned(pf->pdev))
629 		pci_disable_sriov(pf->pdev);
630 	else
631 		dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n");
632 
633 	/* Avoid wait time by stopping all VFs at the same time */
634 	ice_for_each_vf(pf, i)
635 		if (test_bit(ICE_VF_STATE_QS_ENA, pf->vf[i].vf_states))
636 			ice_dis_vf_qs(&pf->vf[i]);
637 
638 	tmp = pf->num_alloc_vfs;
639 	pf->num_qps_per_vf = 0;
640 	pf->num_alloc_vfs = 0;
641 	for (i = 0; i < tmp; i++) {
642 		if (test_bit(ICE_VF_STATE_INIT, pf->vf[i].vf_states)) {
643 			/* disable VF qp mappings and set VF disable state */
644 			ice_dis_vf_mappings(&pf->vf[i]);
645 			set_bit(ICE_VF_STATE_DIS, pf->vf[i].vf_states);
646 			ice_free_vf_res(&pf->vf[i]);
647 		}
648 	}
649 
650 	if (ice_sriov_free_msix_res(pf))
651 		dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n");
652 
653 	devm_kfree(dev, pf->vf);
654 	pf->vf = NULL;
655 
656 	/* This check is for when the driver is unloaded while VFs are
657 	 * assigned. Setting the number of VFs to 0 through sysfs is caught
658 	 * before this function ever gets called.
659 	 */
660 	if (!pci_vfs_assigned(pf->pdev)) {
661 		unsigned int vf_id;
662 
663 		/* Acknowledge VFLR for all VFs. Without this, VFs will fail to
664 		 * work correctly when SR-IOV gets re-enabled.
665 		 */
666 		for (vf_id = 0; vf_id < tmp; vf_id++) {
667 			u32 reg_idx, bit_idx;
668 
669 			reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32;
670 			bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32;
671 			wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
672 		}
673 	}
674 
675 	/* clear malicious info if the VFs are getting released */
676 	for (i = 0; i < tmp; i++)
677 		if (ice_mbx_clear_malvf(&hw->mbx_snapshot, pf->malvfs,
678 					ICE_MAX_VF_COUNT, i))
679 			dev_dbg(dev, "failed to clear malicious VF state for VF %u\n",
680 				i);
681 
682 	clear_bit(ICE_VF_DIS, pf->state);
683 	clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
684 }
685 
686 /**
687  * ice_trigger_vf_reset - Reset a VF on HW
688  * @vf: pointer to the VF structure
689  * @is_vflr: true if VFLR was issued, false if not
690  * @is_pfr: true if the reset was triggered due to a previous PFR
691  *
692  * Trigger hardware to start a reset for a particular VF. Expects the caller
693  * to wait the proper amount of time to allow hardware to reset the VF before
694  * it cleans up and restores VF functionality.
695  */
ice_trigger_vf_reset(struct ice_vf * vf,bool is_vflr,bool is_pfr)696 static void ice_trigger_vf_reset(struct ice_vf *vf, bool is_vflr, bool is_pfr)
697 {
698 	struct ice_pf *pf = vf->pf;
699 	u32 reg, reg_idx, bit_idx;
700 	unsigned int vf_abs_id, i;
701 	struct device *dev;
702 	struct ice_hw *hw;
703 
704 	dev = ice_pf_to_dev(pf);
705 	hw = &pf->hw;
706 	vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
707 
708 	/* Inform VF that it is no longer active, as a warning */
709 	clear_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
710 
711 	/* Disable VF's configuration API during reset. The flag is re-enabled
712 	 * when it's safe again to access VF's VSI.
713 	 */
714 	clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
715 
716 	/* VF_MBX_ARQLEN is cleared by PFR, so the driver needs to clear it
717 	 * in the case of VFR. If this is done for PFR, it can mess up VF
718 	 * resets because the VF driver may already have started cleanup
719 	 * by the time we get here.
720 	 */
721 	if (!is_pfr)
722 		wr32(hw, VF_MBX_ARQLEN(vf->vf_id), 0);
723 
724 	/* In the case of a VFLR, the HW has already reset the VF and we
725 	 * just need to clean up, so don't hit the VFRTRIG register.
726 	 */
727 	if (!is_vflr) {
728 		/* reset VF using VPGEN_VFRTRIG reg */
729 		reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
730 		reg |= VPGEN_VFRTRIG_VFSWR_M;
731 		wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
732 	}
733 	/* clear the VFLR bit in GLGEN_VFLRSTAT */
734 	reg_idx = (vf_abs_id) / 32;
735 	bit_idx = (vf_abs_id) % 32;
736 	wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
737 	ice_flush(hw);
738 
739 	wr32(hw, PF_PCI_CIAA,
740 	     VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
741 	for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) {
742 		reg = rd32(hw, PF_PCI_CIAD);
743 		/* no transactions pending so stop polling */
744 		if ((reg & VF_TRANS_PENDING_M) == 0)
745 			break;
746 
747 		dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id);
748 		udelay(ICE_PCI_CIAD_WAIT_DELAY_US);
749 	}
750 }
751 
752 /**
753  * ice_vsi_manage_pvid - Enable or disable port VLAN for VSI
754  * @vsi: the VSI to update
755  * @pvid_info: VLAN ID and QoS used to set the PVID VSI context field
756  * @enable: true for enable PVID false for disable
757  */
ice_vsi_manage_pvid(struct ice_vsi * vsi,u16 pvid_info,bool enable)758 static int ice_vsi_manage_pvid(struct ice_vsi *vsi, u16 pvid_info, bool enable)
759 {
760 	struct ice_hw *hw = &vsi->back->hw;
761 	struct ice_aqc_vsi_props *info;
762 	struct ice_vsi_ctx *ctxt;
763 	enum ice_status status;
764 	int ret = 0;
765 
766 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
767 	if (!ctxt)
768 		return -ENOMEM;
769 
770 	ctxt->info = vsi->info;
771 	info = &ctxt->info;
772 	if (enable) {
773 		info->vlan_flags = ICE_AQ_VSI_VLAN_MODE_UNTAGGED |
774 			ICE_AQ_VSI_PVLAN_INSERT_PVID |
775 			ICE_AQ_VSI_VLAN_EMOD_STR;
776 		info->sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
777 	} else {
778 		info->vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING |
779 			ICE_AQ_VSI_VLAN_MODE_ALL;
780 		info->sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
781 	}
782 
783 	info->pvid = cpu_to_le16(pvid_info);
784 	info->valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
785 					   ICE_AQ_VSI_PROP_SW_VALID);
786 
787 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
788 	if (status) {
789 		dev_info(ice_hw_to_dev(hw), "update VSI for port VLAN failed, err %s aq_err %s\n",
790 			 ice_stat_str(status),
791 			 ice_aq_str(hw->adminq.sq_last_status));
792 		ret = -EIO;
793 		goto out;
794 	}
795 
796 	vsi->info.vlan_flags = info->vlan_flags;
797 	vsi->info.sw_flags2 = info->sw_flags2;
798 	vsi->info.pvid = info->pvid;
799 out:
800 	kfree(ctxt);
801 	return ret;
802 }
803 
804 /**
805  * ice_vf_get_port_info - Get the VF's port info structure
806  * @vf: VF used to get the port info structure for
807  */
ice_vf_get_port_info(struct ice_vf * vf)808 static struct ice_port_info *ice_vf_get_port_info(struct ice_vf *vf)
809 {
810 	return vf->pf->hw.port_info;
811 }
812 
813 /**
814  * ice_vf_vsi_setup - Set up a VF VSI
815  * @vf: VF to setup VSI for
816  *
817  * Returns pointer to the successfully allocated VSI struct on success,
818  * otherwise returns NULL on failure.
819  */
ice_vf_vsi_setup(struct ice_vf * vf)820 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf)
821 {
822 	struct ice_port_info *pi = ice_vf_get_port_info(vf);
823 	struct ice_pf *pf = vf->pf;
824 	struct ice_vsi *vsi;
825 
826 	vsi = ice_vsi_setup(pf, pi, ICE_VSI_VF, vf->vf_id);
827 
828 	if (!vsi) {
829 		dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n");
830 		ice_vf_invalidate_vsi(vf);
831 		return NULL;
832 	}
833 
834 	vf->lan_vsi_idx = vsi->idx;
835 	vf->lan_vsi_num = vsi->vsi_num;
836 
837 	return vsi;
838 }
839 
840 /**
841  * ice_vf_ctrl_vsi_setup - Set up a VF control VSI
842  * @vf: VF to setup control VSI for
843  *
844  * Returns pointer to the successfully allocated VSI struct on success,
845  * otherwise returns NULL on failure.
846  */
ice_vf_ctrl_vsi_setup(struct ice_vf * vf)847 struct ice_vsi *ice_vf_ctrl_vsi_setup(struct ice_vf *vf)
848 {
849 	struct ice_port_info *pi = ice_vf_get_port_info(vf);
850 	struct ice_pf *pf = vf->pf;
851 	struct ice_vsi *vsi;
852 
853 	vsi = ice_vsi_setup(pf, pi, ICE_VSI_CTRL, vf->vf_id);
854 	if (!vsi) {
855 		dev_err(ice_pf_to_dev(pf), "Failed to create VF control VSI\n");
856 		ice_vf_ctrl_invalidate_vsi(vf);
857 	}
858 
859 	return vsi;
860 }
861 
862 /**
863  * ice_calc_vf_first_vector_idx - Calculate MSIX vector index in the PF space
864  * @pf: pointer to PF structure
865  * @vf: pointer to VF that the first MSIX vector index is being calculated for
866  *
867  * This returns the first MSIX vector index in PF space that is used by this VF.
868  * This index is used when accessing PF relative registers such as
869  * GLINT_VECT2FUNC and GLINT_DYN_CTL.
870  * This will always be the OICR index in the AVF driver so any functionality
871  * using vf->first_vector_idx for queue configuration will have to increment by
872  * 1 to avoid meddling with the OICR index.
873  */
ice_calc_vf_first_vector_idx(struct ice_pf * pf,struct ice_vf * vf)874 static int ice_calc_vf_first_vector_idx(struct ice_pf *pf, struct ice_vf *vf)
875 {
876 	return pf->sriov_base_vector + vf->vf_id * pf->num_msix_per_vf;
877 }
878 
879 /**
880  * ice_vf_rebuild_host_vlan_cfg - add VLAN 0 filter or rebuild the Port VLAN
881  * @vf: VF to add MAC filters for
882  *
883  * Called after a VF VSI has been re-added/rebuilt during reset. The PF driver
884  * always re-adds either a VLAN 0 or port VLAN based filter after reset.
885  */
ice_vf_rebuild_host_vlan_cfg(struct ice_vf * vf)886 static int ice_vf_rebuild_host_vlan_cfg(struct ice_vf *vf)
887 {
888 	struct device *dev = ice_pf_to_dev(vf->pf);
889 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
890 	u16 vlan_id = 0;
891 	int err;
892 
893 	if (vf->port_vlan_info) {
894 		err = ice_vsi_manage_pvid(vsi, vf->port_vlan_info, true);
895 		if (err) {
896 			dev_err(dev, "failed to configure port VLAN via VSI parameters for VF %u, error %d\n",
897 				vf->vf_id, err);
898 			return err;
899 		}
900 
901 		vlan_id = vf->port_vlan_info & VLAN_VID_MASK;
902 	}
903 
904 	/* vlan_id will either be 0 or the port VLAN number */
905 	err = ice_vsi_add_vlan(vsi, vlan_id, ICE_FWD_TO_VSI);
906 	if (err) {
907 		dev_err(dev, "failed to add %s VLAN %u filter for VF %u, error %d\n",
908 			vf->port_vlan_info ? "port" : "", vlan_id, vf->vf_id,
909 			err);
910 		return err;
911 	}
912 
913 	return 0;
914 }
915 
916 /**
917  * ice_vf_rebuild_host_mac_cfg - add broadcast and the VF's perm_addr/LAA
918  * @vf: VF to add MAC filters for
919  *
920  * Called after a VF VSI has been re-added/rebuilt during reset. The PF driver
921  * always re-adds a broadcast filter and the VF's perm_addr/LAA after reset.
922  */
ice_vf_rebuild_host_mac_cfg(struct ice_vf * vf)923 static int ice_vf_rebuild_host_mac_cfg(struct ice_vf *vf)
924 {
925 	struct device *dev = ice_pf_to_dev(vf->pf);
926 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
927 	enum ice_status status;
928 	u8 broadcast[ETH_ALEN];
929 
930 	eth_broadcast_addr(broadcast);
931 	status = ice_fltr_add_mac(vsi, broadcast, ICE_FWD_TO_VSI);
932 	if (status) {
933 		dev_err(dev, "failed to add broadcast MAC filter for VF %u, error %s\n",
934 			vf->vf_id, ice_stat_str(status));
935 		return ice_status_to_errno(status);
936 	}
937 
938 	vf->num_mac++;
939 
940 	if (is_valid_ether_addr(vf->dflt_lan_addr.addr)) {
941 		status = ice_fltr_add_mac(vsi, vf->dflt_lan_addr.addr,
942 					  ICE_FWD_TO_VSI);
943 		if (status) {
944 			dev_err(dev, "failed to add default unicast MAC filter %pM for VF %u, error %s\n",
945 				&vf->dflt_lan_addr.addr[0], vf->vf_id,
946 				ice_stat_str(status));
947 			return ice_status_to_errno(status);
948 		}
949 		vf->num_mac++;
950 	}
951 
952 	return 0;
953 }
954 
955 /**
956  * ice_vf_set_host_trust_cfg - set trust setting based on pre-reset value
957  * @vf: VF to configure trust setting for
958  */
ice_vf_set_host_trust_cfg(struct ice_vf * vf)959 static void ice_vf_set_host_trust_cfg(struct ice_vf *vf)
960 {
961 	if (vf->trusted)
962 		set_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
963 	else
964 		clear_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
965 }
966 
967 /**
968  * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware
969  * @vf: VF to enable MSIX mappings for
970  *
971  * Some of the registers need to be indexed/configured using hardware global
972  * device values and other registers need 0-based values, which represent PF
973  * based values.
974  */
ice_ena_vf_msix_mappings(struct ice_vf * vf)975 static void ice_ena_vf_msix_mappings(struct ice_vf *vf)
976 {
977 	int device_based_first_msix, device_based_last_msix;
978 	int pf_based_first_msix, pf_based_last_msix, v;
979 	struct ice_pf *pf = vf->pf;
980 	int device_based_vf_id;
981 	struct ice_hw *hw;
982 	u32 reg;
983 
984 	hw = &pf->hw;
985 	pf_based_first_msix = vf->first_vector_idx;
986 	pf_based_last_msix = (pf_based_first_msix + pf->num_msix_per_vf) - 1;
987 
988 	device_based_first_msix = pf_based_first_msix +
989 		pf->hw.func_caps.common_cap.msix_vector_first_id;
990 	device_based_last_msix =
991 		(device_based_first_msix + pf->num_msix_per_vf) - 1;
992 	device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
993 
994 	reg = (((device_based_first_msix << VPINT_ALLOC_FIRST_S) &
995 		VPINT_ALLOC_FIRST_M) |
996 	       ((device_based_last_msix << VPINT_ALLOC_LAST_S) &
997 		VPINT_ALLOC_LAST_M) | VPINT_ALLOC_VALID_M);
998 	wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
999 
1000 	reg = (((device_based_first_msix << VPINT_ALLOC_PCI_FIRST_S)
1001 		 & VPINT_ALLOC_PCI_FIRST_M) |
1002 	       ((device_based_last_msix << VPINT_ALLOC_PCI_LAST_S) &
1003 		VPINT_ALLOC_PCI_LAST_M) | VPINT_ALLOC_PCI_VALID_M);
1004 	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
1005 
1006 	/* map the interrupts to its functions */
1007 	for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) {
1008 		reg = (((device_based_vf_id << GLINT_VECT2FUNC_VF_NUM_S) &
1009 			GLINT_VECT2FUNC_VF_NUM_M) |
1010 		       ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
1011 			GLINT_VECT2FUNC_PF_NUM_M));
1012 		wr32(hw, GLINT_VECT2FUNC(v), reg);
1013 	}
1014 
1015 	/* Map mailbox interrupt to VF MSI-X vector 0 */
1016 	wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M);
1017 }
1018 
1019 /**
1020  * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF
1021  * @vf: VF to enable the mappings for
1022  * @max_txq: max Tx queues allowed on the VF's VSI
1023  * @max_rxq: max Rx queues allowed on the VF's VSI
1024  */
ice_ena_vf_q_mappings(struct ice_vf * vf,u16 max_txq,u16 max_rxq)1025 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq)
1026 {
1027 	struct device *dev = ice_pf_to_dev(vf->pf);
1028 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
1029 	struct ice_hw *hw = &vf->pf->hw;
1030 	u32 reg;
1031 
1032 	/* set regardless of mapping mode */
1033 	wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);
1034 
1035 	/* VF Tx queues allocation */
1036 	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
1037 		/* set the VF PF Tx queue range
1038 		 * VFNUMQ value should be set to (number of queues - 1). A value
1039 		 * of 0 means 1 queue and a value of 255 means 256 queues
1040 		 */
1041 		reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) &
1042 			VPLAN_TX_QBASE_VFFIRSTQ_M) |
1043 		       (((max_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) &
1044 			VPLAN_TX_QBASE_VFNUMQ_M));
1045 		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
1046 	} else {
1047 		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
1048 	}
1049 
1050 	/* set regardless of mapping mode */
1051 	wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);
1052 
1053 	/* VF Rx queues allocation */
1054 	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
1055 		/* set the VF PF Rx queue range
1056 		 * VFNUMQ value should be set to (number of queues - 1). A value
1057 		 * of 0 means 1 queue and a value of 255 means 256 queues
1058 		 */
1059 		reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) &
1060 			VPLAN_RX_QBASE_VFFIRSTQ_M) |
1061 		       (((max_rxq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) &
1062 			VPLAN_RX_QBASE_VFNUMQ_M));
1063 		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
1064 	} else {
1065 		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
1066 	}
1067 }
1068 
1069 /**
1070  * ice_ena_vf_mappings - enable VF MSIX and queue mapping
1071  * @vf: pointer to the VF structure
1072  */
ice_ena_vf_mappings(struct ice_vf * vf)1073 static void ice_ena_vf_mappings(struct ice_vf *vf)
1074 {
1075 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
1076 
1077 	ice_ena_vf_msix_mappings(vf);
1078 	ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq);
1079 }
1080 
1081 /**
1082  * ice_determine_res
1083  * @pf: pointer to the PF structure
1084  * @avail_res: available resources in the PF structure
1085  * @max_res: maximum resources that can be given per VF
1086  * @min_res: minimum resources that can be given per VF
1087  *
1088  * Returns non-zero value if resources (queues/vectors) are available or
1089  * returns zero if PF cannot accommodate for all num_alloc_vfs.
1090  */
1091 static int
ice_determine_res(struct ice_pf * pf,u16 avail_res,u16 max_res,u16 min_res)1092 ice_determine_res(struct ice_pf *pf, u16 avail_res, u16 max_res, u16 min_res)
1093 {
1094 	bool checked_min_res = false;
1095 	int res;
1096 
1097 	/* start by checking if PF can assign max number of resources for
1098 	 * all num_alloc_vfs.
1099 	 * if yes, return number per VF
1100 	 * If no, divide by 2 and roundup, check again
1101 	 * repeat the loop till we reach a point where even minimum resources
1102 	 * are not available, in that case return 0
1103 	 */
1104 	res = max_res;
1105 	while ((res >= min_res) && !checked_min_res) {
1106 		int num_all_res;
1107 
1108 		num_all_res = pf->num_alloc_vfs * res;
1109 		if (num_all_res <= avail_res)
1110 			return res;
1111 
1112 		if (res == min_res)
1113 			checked_min_res = true;
1114 
1115 		res = DIV_ROUND_UP(res, 2);
1116 	}
1117 	return 0;
1118 }
1119 
1120 /**
1121  * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space
1122  * @vf: VF to calculate the register index for
1123  * @q_vector: a q_vector associated to the VF
1124  */
ice_calc_vf_reg_idx(struct ice_vf * vf,struct ice_q_vector * q_vector)1125 int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector)
1126 {
1127 	struct ice_pf *pf;
1128 
1129 	if (!vf || !q_vector)
1130 		return -EINVAL;
1131 
1132 	pf = vf->pf;
1133 
1134 	/* always add one to account for the OICR being the first MSIX */
1135 	return pf->sriov_base_vector + pf->num_msix_per_vf * vf->vf_id +
1136 		q_vector->v_idx + 1;
1137 }
1138 
1139 /**
1140  * ice_get_max_valid_res_idx - Get the max valid resource index
1141  * @res: pointer to the resource to find the max valid index for
1142  *
1143  * Start from the end of the ice_res_tracker and return right when we find the
1144  * first res->list entry with the ICE_RES_VALID_BIT set. This function is only
1145  * valid for SR-IOV because it is the only consumer that manipulates the
1146  * res->end and this is always called when res->end is set to res->num_entries.
1147  */
ice_get_max_valid_res_idx(struct ice_res_tracker * res)1148 static int ice_get_max_valid_res_idx(struct ice_res_tracker *res)
1149 {
1150 	int i;
1151 
1152 	if (!res)
1153 		return -EINVAL;
1154 
1155 	for (i = res->num_entries - 1; i >= 0; i--)
1156 		if (res->list[i] & ICE_RES_VALID_BIT)
1157 			return i;
1158 
1159 	return 0;
1160 }
1161 
1162 /**
1163  * ice_sriov_set_msix_res - Set any used MSIX resources
1164  * @pf: pointer to PF structure
1165  * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs
1166  *
1167  * This function allows SR-IOV resources to be taken from the end of the PF's
1168  * allowed HW MSIX vectors so that the irq_tracker will not be affected. We
1169  * just set the pf->sriov_base_vector and return success.
1170  *
1171  * If there are not enough resources available, return an error. This should
1172  * always be caught by ice_set_per_vf_res().
1173  *
1174  * Return 0 on success, and -EINVAL when there are not enough MSIX vectors
1175  * in the PF's space available for SR-IOV.
1176  */
ice_sriov_set_msix_res(struct ice_pf * pf,u16 num_msix_needed)1177 static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed)
1178 {
1179 	u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
1180 	int vectors_used = pf->irq_tracker->num_entries;
1181 	int sriov_base_vector;
1182 
1183 	sriov_base_vector = total_vectors - num_msix_needed;
1184 
1185 	/* make sure we only grab irq_tracker entries from the list end and
1186 	 * that we have enough available MSIX vectors
1187 	 */
1188 	if (sriov_base_vector < vectors_used)
1189 		return -EINVAL;
1190 
1191 	pf->sriov_base_vector = sriov_base_vector;
1192 
1193 	return 0;
1194 }
1195 
1196 /**
1197  * ice_set_per_vf_res - check if vectors and queues are available
1198  * @pf: pointer to the PF structure
1199  *
1200  * First, determine HW interrupts from common pool. If we allocate fewer VFs, we
1201  * get more vectors and can enable more queues per VF. Note that this does not
1202  * grab any vectors from the SW pool already allocated. Also note, that all
1203  * vector counts include one for each VF's miscellaneous interrupt vector
1204  * (i.e. OICR).
1205  *
1206  * Minimum VFs - 2 vectors, 1 queue pair
1207  * Small VFs - 5 vectors, 4 queue pairs
1208  * Medium VFs - 17 vectors, 16 queue pairs
1209  *
1210  * Second, determine number of queue pairs per VF by starting with a pre-defined
1211  * maximum each VF supports. If this is not possible, then we adjust based on
1212  * queue pairs available on the device.
1213  *
1214  * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used
1215  * by each VF during VF initialization and reset.
1216  */
ice_set_per_vf_res(struct ice_pf * pf)1217 static int ice_set_per_vf_res(struct ice_pf *pf)
1218 {
1219 	int max_valid_res_idx = ice_get_max_valid_res_idx(pf->irq_tracker);
1220 	int msix_avail_per_vf, msix_avail_for_sriov;
1221 	struct device *dev = ice_pf_to_dev(pf);
1222 	u16 num_msix_per_vf, num_txq, num_rxq;
1223 
1224 	if (!pf->num_alloc_vfs || max_valid_res_idx < 0)
1225 		return -EINVAL;
1226 
1227 	/* determine MSI-X resources per VF */
1228 	msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors -
1229 		pf->irq_tracker->num_entries;
1230 	msix_avail_per_vf = msix_avail_for_sriov / pf->num_alloc_vfs;
1231 	if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) {
1232 		num_msix_per_vf = ICE_NUM_VF_MSIX_MED;
1233 	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) {
1234 		num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL;
1235 	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) {
1236 		num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN;
1237 	} else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) {
1238 		num_msix_per_vf = ICE_MIN_INTR_PER_VF;
1239 	} else {
1240 		dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n",
1241 			msix_avail_for_sriov, ICE_MIN_INTR_PER_VF,
1242 			pf->num_alloc_vfs);
1243 		return -EIO;
1244 	}
1245 
1246 	/* determine queue resources per VF */
1247 	num_txq = ice_determine_res(pf, ice_get_avail_txq_count(pf),
1248 				    min_t(u16,
1249 					  num_msix_per_vf - ICE_NONQ_VECS_VF,
1250 					  ICE_MAX_RSS_QS_PER_VF),
1251 				    ICE_MIN_QS_PER_VF);
1252 
1253 	num_rxq = ice_determine_res(pf, ice_get_avail_rxq_count(pf),
1254 				    min_t(u16,
1255 					  num_msix_per_vf - ICE_NONQ_VECS_VF,
1256 					  ICE_MAX_RSS_QS_PER_VF),
1257 				    ICE_MIN_QS_PER_VF);
1258 
1259 	if (!num_txq || !num_rxq) {
1260 		dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n",
1261 			ICE_MIN_QS_PER_VF, pf->num_alloc_vfs);
1262 		return -EIO;
1263 	}
1264 
1265 	if (ice_sriov_set_msix_res(pf, num_msix_per_vf * pf->num_alloc_vfs)) {
1266 		dev_err(dev, "Unable to set MSI-X resources for %d VFs\n",
1267 			pf->num_alloc_vfs);
1268 		return -EINVAL;
1269 	}
1270 
1271 	/* only allow equal Tx/Rx queue count (i.e. queue pairs) */
1272 	pf->num_qps_per_vf = min_t(int, num_txq, num_rxq);
1273 	pf->num_msix_per_vf = num_msix_per_vf;
1274 	dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n",
1275 		 pf->num_alloc_vfs, pf->num_msix_per_vf, pf->num_qps_per_vf);
1276 
1277 	return 0;
1278 }
1279 
1280 /**
1281  * ice_clear_vf_reset_trigger - enable VF to access hardware
1282  * @vf: VF to enabled hardware access for
1283  */
ice_clear_vf_reset_trigger(struct ice_vf * vf)1284 static void ice_clear_vf_reset_trigger(struct ice_vf *vf)
1285 {
1286 	struct ice_hw *hw = &vf->pf->hw;
1287 	u32 reg;
1288 
1289 	reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
1290 	reg &= ~VPGEN_VFRTRIG_VFSWR_M;
1291 	wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
1292 	ice_flush(hw);
1293 }
1294 
1295 /**
1296  * ice_vf_set_vsi_promisc - set given VF VSI to given promiscuous mode(s)
1297  * @vf: pointer to the VF info
1298  * @vsi: the VSI being configured
1299  * @promisc_m: mask of promiscuous config bits
1300  * @rm_promisc: promisc flag request from the VF to remove or add filter
1301  *
1302  * This function configures VF VSI promiscuous mode, based on the VF requests,
1303  * for Unicast, Multicast and VLAN
1304  */
1305 static enum ice_status
ice_vf_set_vsi_promisc(struct ice_vf * vf,struct ice_vsi * vsi,u8 promisc_m,bool rm_promisc)1306 ice_vf_set_vsi_promisc(struct ice_vf *vf, struct ice_vsi *vsi, u8 promisc_m,
1307 		       bool rm_promisc)
1308 {
1309 	struct ice_pf *pf = vf->pf;
1310 	enum ice_status status = 0;
1311 	struct ice_hw *hw;
1312 
1313 	hw = &pf->hw;
1314 	if (vsi->num_vlan) {
1315 		status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
1316 						  rm_promisc);
1317 	} else if (vf->port_vlan_info) {
1318 		if (rm_promisc)
1319 			status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
1320 						       vf->port_vlan_info);
1321 		else
1322 			status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
1323 						     vf->port_vlan_info);
1324 	} else {
1325 		if (rm_promisc)
1326 			status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
1327 						       0);
1328 		else
1329 			status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
1330 						     0);
1331 	}
1332 
1333 	return status;
1334 }
1335 
ice_vf_clear_counters(struct ice_vf * vf)1336 static void ice_vf_clear_counters(struct ice_vf *vf)
1337 {
1338 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
1339 
1340 	vf->num_mac = 0;
1341 	vsi->num_vlan = 0;
1342 	memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
1343 	memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
1344 }
1345 
1346 /**
1347  * ice_vf_pre_vsi_rebuild - tasks to be done prior to VSI rebuild
1348  * @vf: VF to perform pre VSI rebuild tasks
1349  *
1350  * These tasks are items that don't need to be amortized since they are most
1351  * likely called in a for loop with all VF(s) in the reset_all_vfs() case.
1352  */
ice_vf_pre_vsi_rebuild(struct ice_vf * vf)1353 static void ice_vf_pre_vsi_rebuild(struct ice_vf *vf)
1354 {
1355 	ice_vf_clear_counters(vf);
1356 	ice_clear_vf_reset_trigger(vf);
1357 }
1358 
1359 /**
1360  * ice_vf_rebuild_aggregator_node_cfg - rebuild aggregator node config
1361  * @vsi: Pointer to VSI
1362  *
1363  * This function moves VSI into corresponding scheduler aggregator node
1364  * based on cached value of "aggregator node info" per VSI
1365  */
ice_vf_rebuild_aggregator_node_cfg(struct ice_vsi * vsi)1366 static void ice_vf_rebuild_aggregator_node_cfg(struct ice_vsi *vsi)
1367 {
1368 	struct ice_pf *pf = vsi->back;
1369 	enum ice_status status;
1370 	struct device *dev;
1371 
1372 	if (!vsi->agg_node)
1373 		return;
1374 
1375 	dev = ice_pf_to_dev(pf);
1376 	if (vsi->agg_node->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
1377 		dev_dbg(dev,
1378 			"agg_id %u already has reached max_num_vsis %u\n",
1379 			vsi->agg_node->agg_id, vsi->agg_node->num_vsis);
1380 		return;
1381 	}
1382 
1383 	status = ice_move_vsi_to_agg(pf->hw.port_info, vsi->agg_node->agg_id,
1384 				     vsi->idx, vsi->tc_cfg.ena_tc);
1385 	if (status)
1386 		dev_dbg(dev, "unable to move VSI idx %u into aggregator %u node",
1387 			vsi->idx, vsi->agg_node->agg_id);
1388 	else
1389 		vsi->agg_node->num_vsis++;
1390 }
1391 
1392 /**
1393  * ice_vf_rebuild_host_cfg - host admin configuration is persistent across reset
1394  * @vf: VF to rebuild host configuration on
1395  */
ice_vf_rebuild_host_cfg(struct ice_vf * vf)1396 static void ice_vf_rebuild_host_cfg(struct ice_vf *vf)
1397 {
1398 	struct device *dev = ice_pf_to_dev(vf->pf);
1399 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
1400 
1401 	ice_vf_set_host_trust_cfg(vf);
1402 
1403 	if (ice_vf_rebuild_host_mac_cfg(vf))
1404 		dev_err(dev, "failed to rebuild default MAC configuration for VF %d\n",
1405 			vf->vf_id);
1406 
1407 	if (ice_vf_rebuild_host_vlan_cfg(vf))
1408 		dev_err(dev, "failed to rebuild VLAN configuration for VF %u\n",
1409 			vf->vf_id);
1410 	/* rebuild aggregator node config for main VF VSI */
1411 	ice_vf_rebuild_aggregator_node_cfg(vsi);
1412 }
1413 
1414 /**
1415  * ice_vf_rebuild_vsi_with_release - release and setup the VF's VSI
1416  * @vf: VF to release and setup the VSI for
1417  *
1418  * This is only called when a single VF is being reset (i.e. VFR, VFLR, host VF
1419  * configuration change, etc.).
1420  */
ice_vf_rebuild_vsi_with_release(struct ice_vf * vf)1421 static int ice_vf_rebuild_vsi_with_release(struct ice_vf *vf)
1422 {
1423 	ice_vf_vsi_release(vf);
1424 	if (!ice_vf_vsi_setup(vf))
1425 		return -ENOMEM;
1426 
1427 	return 0;
1428 }
1429 
1430 /**
1431  * ice_vf_rebuild_vsi - rebuild the VF's VSI
1432  * @vf: VF to rebuild the VSI for
1433  *
1434  * This is only called when all VF(s) are being reset (i.e. PCIe Reset on the
1435  * host, PFR, CORER, etc.).
1436  */
ice_vf_rebuild_vsi(struct ice_vf * vf)1437 static int ice_vf_rebuild_vsi(struct ice_vf *vf)
1438 {
1439 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
1440 	struct ice_pf *pf = vf->pf;
1441 
1442 	if (ice_vsi_rebuild(vsi, true)) {
1443 		dev_err(ice_pf_to_dev(pf), "failed to rebuild VF %d VSI\n",
1444 			vf->vf_id);
1445 		return -EIO;
1446 	}
1447 	/* vsi->idx will remain the same in this case so don't update
1448 	 * vf->lan_vsi_idx
1449 	 */
1450 	vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
1451 	vf->lan_vsi_num = vsi->vsi_num;
1452 
1453 	return 0;
1454 }
1455 
1456 /**
1457  * ice_vf_set_initialized - VF is ready for VIRTCHNL communication
1458  * @vf: VF to set in initialized state
1459  *
1460  * After this function the VF will be ready to receive/handle the
1461  * VIRTCHNL_OP_GET_VF_RESOURCES message
1462  */
ice_vf_set_initialized(struct ice_vf * vf)1463 static void ice_vf_set_initialized(struct ice_vf *vf)
1464 {
1465 	ice_set_vf_state_qs_dis(vf);
1466 	clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
1467 	clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
1468 	clear_bit(ICE_VF_STATE_DIS, vf->vf_states);
1469 	set_bit(ICE_VF_STATE_INIT, vf->vf_states);
1470 }
1471 
1472 /**
1473  * ice_vf_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt
1474  * @vf: VF to perform tasks on
1475  */
ice_vf_post_vsi_rebuild(struct ice_vf * vf)1476 static void ice_vf_post_vsi_rebuild(struct ice_vf *vf)
1477 {
1478 	struct ice_pf *pf = vf->pf;
1479 	struct ice_hw *hw;
1480 
1481 	hw = &pf->hw;
1482 
1483 	ice_vf_rebuild_host_cfg(vf);
1484 
1485 	ice_vf_set_initialized(vf);
1486 	ice_ena_vf_mappings(vf);
1487 	wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
1488 }
1489 
1490 /**
1491  * ice_reset_all_vfs - reset all allocated VFs in one go
1492  * @pf: pointer to the PF structure
1493  * @is_vflr: true if VFLR was issued, false if not
1494  *
1495  * First, tell the hardware to reset each VF, then do all the waiting in one
1496  * chunk, and finally finish restoring each VF after the wait. This is useful
1497  * during PF routines which need to reset all VFs, as otherwise it must perform
1498  * these resets in a serialized fashion.
1499  *
1500  * Returns true if any VFs were reset, and false otherwise.
1501  */
ice_reset_all_vfs(struct ice_pf * pf,bool is_vflr)1502 bool ice_reset_all_vfs(struct ice_pf *pf, bool is_vflr)
1503 {
1504 	struct device *dev = ice_pf_to_dev(pf);
1505 	struct ice_hw *hw = &pf->hw;
1506 	struct ice_vf *vf;
1507 	int v, i;
1508 
1509 	/* If we don't have any VFs, then there is nothing to reset */
1510 	if (!pf->num_alloc_vfs)
1511 		return false;
1512 
1513 	/* clear all malicious info if the VFs are getting reset */
1514 	ice_for_each_vf(pf, i)
1515 		if (ice_mbx_clear_malvf(&hw->mbx_snapshot, pf->malvfs, ICE_MAX_VF_COUNT, i))
1516 			dev_dbg(dev, "failed to clear malicious VF state for VF %u\n", i);
1517 
1518 	/* If VFs have been disabled, there is no need to reset */
1519 	if (test_and_set_bit(ICE_VF_DIS, pf->state))
1520 		return false;
1521 
1522 	/* Begin reset on all VFs at once */
1523 	ice_for_each_vf(pf, v)
1524 		ice_trigger_vf_reset(&pf->vf[v], is_vflr, true);
1525 
1526 	/* HW requires some time to make sure it can flush the FIFO for a VF
1527 	 * when it resets it. Poll the VPGEN_VFRSTAT register for each VF in
1528 	 * sequence to make sure that it has completed. We'll keep track of
1529 	 * the VFs using a simple iterator that increments once that VF has
1530 	 * finished resetting.
1531 	 */
1532 	for (i = 0, v = 0; i < 10 && v < pf->num_alloc_vfs; i++) {
1533 		/* Check each VF in sequence */
1534 		while (v < pf->num_alloc_vfs) {
1535 			u32 reg;
1536 
1537 			vf = &pf->vf[v];
1538 			reg = rd32(hw, VPGEN_VFRSTAT(vf->vf_id));
1539 			if (!(reg & VPGEN_VFRSTAT_VFRD_M)) {
1540 				/* only delay if the check failed */
1541 				usleep_range(10, 20);
1542 				break;
1543 			}
1544 
1545 			/* If the current VF has finished resetting, move on
1546 			 * to the next VF in sequence.
1547 			 */
1548 			v++;
1549 		}
1550 	}
1551 
1552 	/* Display a warning if at least one VF didn't manage to reset in
1553 	 * time, but continue on with the operation.
1554 	 */
1555 	if (v < pf->num_alloc_vfs)
1556 		dev_warn(dev, "VF reset check timeout\n");
1557 
1558 	/* free VF resources to begin resetting the VSI state */
1559 	ice_for_each_vf(pf, v) {
1560 		vf = &pf->vf[v];
1561 
1562 		vf->driver_caps = 0;
1563 		ice_vc_set_default_allowlist(vf);
1564 
1565 		ice_vf_fdir_exit(vf);
1566 		/* clean VF control VSI when resetting VFs since it should be
1567 		 * setup only when VF creates its first FDIR rule.
1568 		 */
1569 		if (vf->ctrl_vsi_idx != ICE_NO_VSI)
1570 			ice_vf_ctrl_invalidate_vsi(vf);
1571 
1572 		ice_vf_pre_vsi_rebuild(vf);
1573 		ice_vf_rebuild_vsi(vf);
1574 		ice_vf_post_vsi_rebuild(vf);
1575 	}
1576 
1577 	ice_flush(hw);
1578 	clear_bit(ICE_VF_DIS, pf->state);
1579 
1580 	return true;
1581 }
1582 
1583 /**
1584  * ice_is_vf_disabled
1585  * @vf: pointer to the VF info
1586  *
1587  * Returns true if the PF or VF is disabled, false otherwise.
1588  */
ice_is_vf_disabled(struct ice_vf * vf)1589 static bool ice_is_vf_disabled(struct ice_vf *vf)
1590 {
1591 	struct ice_pf *pf = vf->pf;
1592 
1593 	/* If the PF has been disabled, there is no need resetting VF until
1594 	 * PF is active again. Similarly, if the VF has been disabled, this
1595 	 * means something else is resetting the VF, so we shouldn't continue.
1596 	 * Otherwise, set disable VF state bit for actual reset, and continue.
1597 	 */
1598 	return (test_bit(ICE_VF_DIS, pf->state) ||
1599 		test_bit(ICE_VF_STATE_DIS, vf->vf_states));
1600 }
1601 
1602 /**
1603  * ice_reset_vf - Reset a particular VF
1604  * @vf: pointer to the VF structure
1605  * @is_vflr: true if VFLR was issued, false if not
1606  *
1607  * Returns true if the VF is currently in reset, resets successfully, or resets
1608  * are disabled and false otherwise.
1609  */
ice_reset_vf(struct ice_vf * vf,bool is_vflr)1610 bool ice_reset_vf(struct ice_vf *vf, bool is_vflr)
1611 {
1612 	struct ice_pf *pf = vf->pf;
1613 	struct ice_vsi *vsi;
1614 	struct device *dev;
1615 	struct ice_hw *hw;
1616 	bool rsd = false;
1617 	u8 promisc_m;
1618 	u32 reg;
1619 	int i;
1620 
1621 	dev = ice_pf_to_dev(pf);
1622 
1623 	if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
1624 		dev_dbg(dev, "Trying to reset VF %d, but all VF resets are disabled\n",
1625 			vf->vf_id);
1626 		return true;
1627 	}
1628 
1629 	if (ice_is_vf_disabled(vf)) {
1630 		dev_dbg(dev, "VF is already disabled, there is no need for resetting it, telling VM, all is fine %d\n",
1631 			vf->vf_id);
1632 		return true;
1633 	}
1634 
1635 	/* Set VF disable bit state here, before triggering reset */
1636 	set_bit(ICE_VF_STATE_DIS, vf->vf_states);
1637 	ice_trigger_vf_reset(vf, is_vflr, false);
1638 
1639 	vsi = ice_get_vf_vsi(vf);
1640 
1641 	if (test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states))
1642 		ice_dis_vf_qs(vf);
1643 
1644 	/* Call Disable LAN Tx queue AQ whether or not queues are
1645 	 * enabled. This is needed for successful completion of VFR.
1646 	 */
1647 	ice_dis_vsi_txq(vsi->port_info, vsi->idx, 0, 0, NULL, NULL,
1648 			NULL, ICE_VF_RESET, vf->vf_id, NULL);
1649 
1650 	hw = &pf->hw;
1651 	/* poll VPGEN_VFRSTAT reg to make sure
1652 	 * that reset is complete
1653 	 */
1654 	for (i = 0; i < 10; i++) {
1655 		/* VF reset requires driver to first reset the VF and then
1656 		 * poll the status register to make sure that the reset
1657 		 * completed successfully.
1658 		 */
1659 		reg = rd32(hw, VPGEN_VFRSTAT(vf->vf_id));
1660 		if (reg & VPGEN_VFRSTAT_VFRD_M) {
1661 			rsd = true;
1662 			break;
1663 		}
1664 
1665 		/* only sleep if the reset is not done */
1666 		usleep_range(10, 20);
1667 	}
1668 
1669 	vf->driver_caps = 0;
1670 	ice_vc_set_default_allowlist(vf);
1671 
1672 	/* Display a warning if VF didn't manage to reset in time, but need to
1673 	 * continue on with the operation.
1674 	 */
1675 	if (!rsd)
1676 		dev_warn(dev, "VF reset check timeout on VF %d\n", vf->vf_id);
1677 
1678 	/* disable promiscuous modes in case they were enabled
1679 	 * ignore any error if disabling process failed
1680 	 */
1681 	if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
1682 	    test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) {
1683 		if (vf->port_vlan_info || vsi->num_vlan)
1684 			promisc_m = ICE_UCAST_VLAN_PROMISC_BITS;
1685 		else
1686 			promisc_m = ICE_UCAST_PROMISC_BITS;
1687 
1688 		vsi = ice_get_vf_vsi(vf);
1689 		if (ice_vf_set_vsi_promisc(vf, vsi, promisc_m, true))
1690 			dev_err(dev, "disabling promiscuous mode failed\n");
1691 	}
1692 
1693 	ice_vf_fdir_exit(vf);
1694 	/* clean VF control VSI when resetting VF since it should be setup
1695 	 * only when VF creates its first FDIR rule.
1696 	 */
1697 	if (vf->ctrl_vsi_idx != ICE_NO_VSI)
1698 		ice_vf_ctrl_vsi_release(vf);
1699 
1700 	ice_vf_pre_vsi_rebuild(vf);
1701 	ice_vf_rebuild_vsi_with_release(vf);
1702 	ice_vf_post_vsi_rebuild(vf);
1703 
1704 	/* if the VF has been reset allow it to come up again */
1705 	if (ice_mbx_clear_malvf(&hw->mbx_snapshot, pf->malvfs, ICE_MAX_VF_COUNT, vf->vf_id))
1706 		dev_dbg(dev, "failed to clear malicious VF state for VF %u\n", i);
1707 
1708 	return true;
1709 }
1710 
1711 /**
1712  * ice_vc_notify_link_state - Inform all VFs on a PF of link status
1713  * @pf: pointer to the PF structure
1714  */
ice_vc_notify_link_state(struct ice_pf * pf)1715 void ice_vc_notify_link_state(struct ice_pf *pf)
1716 {
1717 	int i;
1718 
1719 	ice_for_each_vf(pf, i)
1720 		ice_vc_notify_vf_link_state(&pf->vf[i]);
1721 }
1722 
1723 /**
1724  * ice_vc_notify_reset - Send pending reset message to all VFs
1725  * @pf: pointer to the PF structure
1726  *
1727  * indicate a pending reset to all VFs on a given PF
1728  */
ice_vc_notify_reset(struct ice_pf * pf)1729 void ice_vc_notify_reset(struct ice_pf *pf)
1730 {
1731 	struct virtchnl_pf_event pfe;
1732 
1733 	if (!pf->num_alloc_vfs)
1734 		return;
1735 
1736 	pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
1737 	pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
1738 	ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
1739 			    (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
1740 }
1741 
1742 /**
1743  * ice_vc_notify_vf_reset - Notify VF of a reset event
1744  * @vf: pointer to the VF structure
1745  */
ice_vc_notify_vf_reset(struct ice_vf * vf)1746 static void ice_vc_notify_vf_reset(struct ice_vf *vf)
1747 {
1748 	struct virtchnl_pf_event pfe;
1749 	struct ice_pf *pf;
1750 
1751 	if (!vf)
1752 		return;
1753 
1754 	pf = vf->pf;
1755 	if (ice_validate_vf_id(pf, vf->vf_id))
1756 		return;
1757 
1758 	/* Bail out if VF is in disabled state, neither initialized, nor active
1759 	 * state - otherwise proceed with notifications
1760 	 */
1761 	if ((!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
1762 	     !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) ||
1763 	    test_bit(ICE_VF_STATE_DIS, vf->vf_states))
1764 		return;
1765 
1766 	pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
1767 	pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
1768 	ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, VIRTCHNL_OP_EVENT,
1769 			      VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, sizeof(pfe),
1770 			      NULL);
1771 }
1772 
1773 /**
1774  * ice_init_vf_vsi_res - initialize/setup VF VSI resources
1775  * @vf: VF to initialize/setup the VSI for
1776  *
1777  * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the
1778  * VF VSI's broadcast filter and is only used during initial VF creation.
1779  */
ice_init_vf_vsi_res(struct ice_vf * vf)1780 static int ice_init_vf_vsi_res(struct ice_vf *vf)
1781 {
1782 	struct ice_pf *pf = vf->pf;
1783 	u8 broadcast[ETH_ALEN];
1784 	enum ice_status status;
1785 	struct ice_vsi *vsi;
1786 	struct device *dev;
1787 	int err;
1788 
1789 	vf->first_vector_idx = ice_calc_vf_first_vector_idx(pf, vf);
1790 
1791 	dev = ice_pf_to_dev(pf);
1792 	vsi = ice_vf_vsi_setup(vf);
1793 	if (!vsi)
1794 		return -ENOMEM;
1795 
1796 	err = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI);
1797 	if (err) {
1798 		dev_warn(dev, "Failed to add VLAN 0 filter for VF %d\n",
1799 			 vf->vf_id);
1800 		goto release_vsi;
1801 	}
1802 
1803 	eth_broadcast_addr(broadcast);
1804 	status = ice_fltr_add_mac(vsi, broadcast, ICE_FWD_TO_VSI);
1805 	if (status) {
1806 		dev_err(dev, "Failed to add broadcast MAC filter for VF %d, status %s\n",
1807 			vf->vf_id, ice_stat_str(status));
1808 		err = ice_status_to_errno(status);
1809 		goto release_vsi;
1810 	}
1811 
1812 	vf->num_mac = 1;
1813 
1814 	return 0;
1815 
1816 release_vsi:
1817 	ice_vf_vsi_release(vf);
1818 	return err;
1819 }
1820 
1821 /**
1822  * ice_start_vfs - start VFs so they are ready to be used by SR-IOV
1823  * @pf: PF the VFs are associated with
1824  */
ice_start_vfs(struct ice_pf * pf)1825 static int ice_start_vfs(struct ice_pf *pf)
1826 {
1827 	struct ice_hw *hw = &pf->hw;
1828 	int retval, i;
1829 
1830 	ice_for_each_vf(pf, i) {
1831 		struct ice_vf *vf = &pf->vf[i];
1832 
1833 		ice_clear_vf_reset_trigger(vf);
1834 
1835 		retval = ice_init_vf_vsi_res(vf);
1836 		if (retval) {
1837 			dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n",
1838 				vf->vf_id, retval);
1839 			goto teardown;
1840 		}
1841 
1842 		set_bit(ICE_VF_STATE_INIT, vf->vf_states);
1843 		ice_ena_vf_mappings(vf);
1844 		wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
1845 	}
1846 
1847 	ice_flush(hw);
1848 	return 0;
1849 
1850 teardown:
1851 	for (i = i - 1; i >= 0; i--) {
1852 		struct ice_vf *vf = &pf->vf[i];
1853 
1854 		ice_dis_vf_mappings(vf);
1855 		ice_vf_vsi_release(vf);
1856 	}
1857 
1858 	return retval;
1859 }
1860 
1861 /**
1862  * ice_set_dflt_settings_vfs - set VF defaults during initialization/creation
1863  * @pf: PF holding reference to all VFs for default configuration
1864  */
ice_set_dflt_settings_vfs(struct ice_pf * pf)1865 static void ice_set_dflt_settings_vfs(struct ice_pf *pf)
1866 {
1867 	int i;
1868 
1869 	ice_for_each_vf(pf, i) {
1870 		struct ice_vf *vf = &pf->vf[i];
1871 
1872 		vf->pf = pf;
1873 		vf->vf_id = i;
1874 		vf->vf_sw_id = pf->first_sw;
1875 		/* assign default capabilities */
1876 		set_bit(ICE_VIRTCHNL_VF_CAP_L2, &vf->vf_caps);
1877 		vf->spoofchk = true;
1878 		vf->num_vf_qs = pf->num_qps_per_vf;
1879 		ice_vc_set_default_allowlist(vf);
1880 
1881 		/* ctrl_vsi_idx will be set to a valid value only when VF
1882 		 * creates its first fdir rule.
1883 		 */
1884 		ice_vf_ctrl_invalidate_vsi(vf);
1885 		ice_vf_fdir_init(vf);
1886 	}
1887 }
1888 
1889 /**
1890  * ice_alloc_vfs - allocate num_vfs in the PF structure
1891  * @pf: PF to store the allocated VFs in
1892  * @num_vfs: number of VFs to allocate
1893  */
ice_alloc_vfs(struct ice_pf * pf,int num_vfs)1894 static int ice_alloc_vfs(struct ice_pf *pf, int num_vfs)
1895 {
1896 	struct ice_vf *vfs;
1897 
1898 	vfs = devm_kcalloc(ice_pf_to_dev(pf), num_vfs, sizeof(*vfs),
1899 			   GFP_KERNEL);
1900 	if (!vfs)
1901 		return -ENOMEM;
1902 
1903 	pf->vf = vfs;
1904 	pf->num_alloc_vfs = num_vfs;
1905 
1906 	return 0;
1907 }
1908 
1909 /**
1910  * ice_ena_vfs - enable VFs so they are ready to be used
1911  * @pf: pointer to the PF structure
1912  * @num_vfs: number of VFs to enable
1913  */
ice_ena_vfs(struct ice_pf * pf,u16 num_vfs)1914 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs)
1915 {
1916 	struct device *dev = ice_pf_to_dev(pf);
1917 	struct ice_hw *hw = &pf->hw;
1918 	int ret;
1919 
1920 	/* Disable global interrupt 0 so we don't try to handle the VFLR. */
1921 	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
1922 	     ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
1923 	set_bit(ICE_OICR_INTR_DIS, pf->state);
1924 	ice_flush(hw);
1925 
1926 	ret = pci_enable_sriov(pf->pdev, num_vfs);
1927 	if (ret) {
1928 		pf->num_alloc_vfs = 0;
1929 		goto err_unroll_intr;
1930 	}
1931 
1932 	ret = ice_alloc_vfs(pf, num_vfs);
1933 	if (ret)
1934 		goto err_pci_disable_sriov;
1935 
1936 	if (ice_set_per_vf_res(pf)) {
1937 		dev_err(dev, "Not enough resources for %d VFs, try with fewer number of VFs\n",
1938 			num_vfs);
1939 		ret = -ENOSPC;
1940 		goto err_unroll_sriov;
1941 	}
1942 
1943 	ice_set_dflt_settings_vfs(pf);
1944 
1945 	if (ice_start_vfs(pf)) {
1946 		dev_err(dev, "Failed to start VF(s)\n");
1947 		ret = -EAGAIN;
1948 		goto err_unroll_sriov;
1949 	}
1950 
1951 	clear_bit(ICE_VF_DIS, pf->state);
1952 	return 0;
1953 
1954 err_unroll_sriov:
1955 	devm_kfree(dev, pf->vf);
1956 	pf->vf = NULL;
1957 	pf->num_alloc_vfs = 0;
1958 err_pci_disable_sriov:
1959 	pci_disable_sriov(pf->pdev);
1960 err_unroll_intr:
1961 	/* rearm interrupts here */
1962 	ice_irq_dynamic_ena(hw, NULL, NULL);
1963 	clear_bit(ICE_OICR_INTR_DIS, pf->state);
1964 	return ret;
1965 }
1966 
1967 /**
1968  * ice_pci_sriov_ena - Enable or change number of VFs
1969  * @pf: pointer to the PF structure
1970  * @num_vfs: number of VFs to allocate
1971  *
1972  * Returns 0 on success and negative on failure
1973  */
ice_pci_sriov_ena(struct ice_pf * pf,int num_vfs)1974 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
1975 {
1976 	int pre_existing_vfs = pci_num_vf(pf->pdev);
1977 	struct device *dev = ice_pf_to_dev(pf);
1978 	int err;
1979 
1980 	if (pre_existing_vfs && pre_existing_vfs != num_vfs)
1981 		ice_free_vfs(pf);
1982 	else if (pre_existing_vfs && pre_existing_vfs == num_vfs)
1983 		return 0;
1984 
1985 	if (num_vfs > pf->num_vfs_supported) {
1986 		dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
1987 			num_vfs, pf->num_vfs_supported);
1988 		return -EOPNOTSUPP;
1989 	}
1990 
1991 	dev_info(dev, "Enabling %d VFs\n", num_vfs);
1992 	err = ice_ena_vfs(pf, num_vfs);
1993 	if (err) {
1994 		dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
1995 		return err;
1996 	}
1997 
1998 	set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
1999 	return 0;
2000 }
2001 
2002 /**
2003  * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks
2004  * @pf: PF to enabled SR-IOV on
2005  */
ice_check_sriov_allowed(struct ice_pf * pf)2006 static int ice_check_sriov_allowed(struct ice_pf *pf)
2007 {
2008 	struct device *dev = ice_pf_to_dev(pf);
2009 
2010 	if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
2011 		dev_err(dev, "This device is not capable of SR-IOV\n");
2012 		return -EOPNOTSUPP;
2013 	}
2014 
2015 	if (ice_is_safe_mode(pf)) {
2016 		dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n");
2017 		return -EOPNOTSUPP;
2018 	}
2019 
2020 	if (!ice_pf_state_is_nominal(pf)) {
2021 		dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
2022 		return -EBUSY;
2023 	}
2024 
2025 	return 0;
2026 }
2027 
2028 /**
2029  * ice_sriov_configure - Enable or change number of VFs via sysfs
2030  * @pdev: pointer to a pci_dev structure
2031  * @num_vfs: number of VFs to allocate or 0 to free VFs
2032  *
2033  * This function is called when the user updates the number of VFs in sysfs. On
2034  * success return whatever num_vfs was set to by the caller. Return negative on
2035  * failure.
2036  */
ice_sriov_configure(struct pci_dev * pdev,int num_vfs)2037 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
2038 {
2039 	struct ice_pf *pf = pci_get_drvdata(pdev);
2040 	struct device *dev = ice_pf_to_dev(pf);
2041 	enum ice_status status;
2042 	int err;
2043 
2044 	err = ice_check_sriov_allowed(pf);
2045 	if (err)
2046 		return err;
2047 
2048 	if (!num_vfs) {
2049 		if (!pci_vfs_assigned(pdev)) {
2050 			ice_mbx_deinit_snapshot(&pf->hw);
2051 			ice_free_vfs(pf);
2052 			if (pf->lag)
2053 				ice_enable_lag(pf->lag);
2054 			return 0;
2055 		}
2056 
2057 		dev_err(dev, "can't free VFs because some are assigned to VMs.\n");
2058 		return -EBUSY;
2059 	}
2060 
2061 	status = ice_mbx_init_snapshot(&pf->hw, num_vfs);
2062 	if (status)
2063 		return ice_status_to_errno(status);
2064 
2065 	err = ice_pci_sriov_ena(pf, num_vfs);
2066 	if (err) {
2067 		ice_mbx_deinit_snapshot(&pf->hw);
2068 		return err;
2069 	}
2070 
2071 	if (pf->lag)
2072 		ice_disable_lag(pf->lag);
2073 	return num_vfs;
2074 }
2075 
2076 /**
2077  * ice_process_vflr_event - Free VF resources via IRQ calls
2078  * @pf: pointer to the PF structure
2079  *
2080  * called from the VFLR IRQ handler to
2081  * free up VF resources and state variables
2082  */
ice_process_vflr_event(struct ice_pf * pf)2083 void ice_process_vflr_event(struct ice_pf *pf)
2084 {
2085 	struct ice_hw *hw = &pf->hw;
2086 	unsigned int vf_id;
2087 	u32 reg;
2088 
2089 	if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2090 	    !pf->num_alloc_vfs)
2091 		return;
2092 
2093 	ice_for_each_vf(pf, vf_id) {
2094 		struct ice_vf *vf = &pf->vf[vf_id];
2095 		u32 reg_idx, bit_idx;
2096 
2097 		reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32;
2098 		bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32;
2099 		/* read GLGEN_VFLRSTAT register to find out the flr VFs */
2100 		reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
2101 		if (reg & BIT(bit_idx))
2102 			/* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
2103 			ice_reset_vf(vf, true);
2104 	}
2105 }
2106 
2107 /**
2108  * ice_vc_reset_vf - Perform software reset on the VF after informing the AVF
2109  * @vf: pointer to the VF info
2110  */
ice_vc_reset_vf(struct ice_vf * vf)2111 static void ice_vc_reset_vf(struct ice_vf *vf)
2112 {
2113 	ice_vc_notify_vf_reset(vf);
2114 	ice_reset_vf(vf, false);
2115 }
2116 
2117 /**
2118  * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in
2119  * @pf: PF used to index all VFs
2120  * @pfq: queue index relative to the PF's function space
2121  *
2122  * If no VF is found who owns the pfq then return NULL, otherwise return a
2123  * pointer to the VF who owns the pfq
2124  */
ice_get_vf_from_pfq(struct ice_pf * pf,u16 pfq)2125 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq)
2126 {
2127 	unsigned int vf_id;
2128 
2129 	ice_for_each_vf(pf, vf_id) {
2130 		struct ice_vf *vf = &pf->vf[vf_id];
2131 		struct ice_vsi *vsi;
2132 		u16 rxq_idx;
2133 
2134 		vsi = ice_get_vf_vsi(vf);
2135 
2136 		ice_for_each_rxq(vsi, rxq_idx)
2137 			if (vsi->rxq_map[rxq_idx] == pfq)
2138 				return vf;
2139 	}
2140 
2141 	return NULL;
2142 }
2143 
2144 /**
2145  * ice_globalq_to_pfq - convert from global queue index to PF space queue index
2146  * @pf: PF used for conversion
2147  * @globalq: global queue index used to convert to PF space queue index
2148  */
ice_globalq_to_pfq(struct ice_pf * pf,u32 globalq)2149 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq)
2150 {
2151 	return globalq - pf->hw.func_caps.common_cap.rxq_first_id;
2152 }
2153 
2154 /**
2155  * ice_vf_lan_overflow_event - handle LAN overflow event for a VF
2156  * @pf: PF that the LAN overflow event happened on
2157  * @event: structure holding the event information for the LAN overflow event
2158  *
2159  * Determine if the LAN overflow event was caused by a VF queue. If it was not
2160  * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a
2161  * reset on the offending VF.
2162  */
2163 void
ice_vf_lan_overflow_event(struct ice_pf * pf,struct ice_rq_event_info * event)2164 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event)
2165 {
2166 	u32 gldcb_rtctq, queue;
2167 	struct ice_vf *vf;
2168 
2169 	gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq);
2170 	dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq);
2171 
2172 	/* event returns device global Rx queue number */
2173 	queue = (gldcb_rtctq & GLDCB_RTCTQ_RXQNUM_M) >>
2174 		GLDCB_RTCTQ_RXQNUM_S;
2175 
2176 	vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue));
2177 	if (!vf)
2178 		return;
2179 
2180 	ice_vc_reset_vf(vf);
2181 }
2182 
2183 /**
2184  * ice_vc_send_msg_to_vf - Send message to VF
2185  * @vf: pointer to the VF info
2186  * @v_opcode: virtual channel opcode
2187  * @v_retval: virtual channel return value
2188  * @msg: pointer to the msg buffer
2189  * @msglen: msg length
2190  *
2191  * send msg to VF
2192  */
2193 int
ice_vc_send_msg_to_vf(struct ice_vf * vf,u32 v_opcode,enum virtchnl_status_code v_retval,u8 * msg,u16 msglen)2194 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
2195 		      enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
2196 {
2197 	enum ice_status aq_ret;
2198 	struct device *dev;
2199 	struct ice_pf *pf;
2200 
2201 	if (!vf)
2202 		return -EINVAL;
2203 
2204 	pf = vf->pf;
2205 	if (ice_validate_vf_id(pf, vf->vf_id))
2206 		return -EINVAL;
2207 
2208 	dev = ice_pf_to_dev(pf);
2209 
2210 	/* single place to detect unsuccessful return values */
2211 	if (v_retval) {
2212 		vf->num_inval_msgs++;
2213 		dev_info(dev, "VF %d failed opcode %d, retval: %d\n", vf->vf_id,
2214 			 v_opcode, v_retval);
2215 		if (vf->num_inval_msgs > ICE_DFLT_NUM_INVAL_MSGS_ALLOWED) {
2216 			dev_err(dev, "Number of invalid messages exceeded for VF %d\n",
2217 				vf->vf_id);
2218 			dev_err(dev, "Use PF Control I/F to enable the VF\n");
2219 			set_bit(ICE_VF_STATE_DIS, vf->vf_states);
2220 			return -EIO;
2221 		}
2222 	} else {
2223 		vf->num_valid_msgs++;
2224 		/* reset the invalid counter, if a valid message is received. */
2225 		vf->num_inval_msgs = 0;
2226 	}
2227 
2228 	aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
2229 				       msg, msglen, NULL);
2230 	if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
2231 		dev_info(dev, "Unable to send the message to VF %d ret %s aq_err %s\n",
2232 			 vf->vf_id, ice_stat_str(aq_ret),
2233 			 ice_aq_str(pf->hw.mailboxq.sq_last_status));
2234 		return -EIO;
2235 	}
2236 
2237 	return 0;
2238 }
2239 
2240 /**
2241  * ice_vc_get_ver_msg
2242  * @vf: pointer to the VF info
2243  * @msg: pointer to the msg buffer
2244  *
2245  * called from the VF to request the API version used by the PF
2246  */
ice_vc_get_ver_msg(struct ice_vf * vf,u8 * msg)2247 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
2248 {
2249 	struct virtchnl_version_info info = {
2250 		VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
2251 	};
2252 
2253 	vf->vf_ver = *(struct virtchnl_version_info *)msg;
2254 	/* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
2255 	if (VF_IS_V10(&vf->vf_ver))
2256 		info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
2257 
2258 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
2259 				     VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
2260 				     sizeof(struct virtchnl_version_info));
2261 }
2262 
2263 /**
2264  * ice_vc_get_max_frame_size - get max frame size allowed for VF
2265  * @vf: VF used to determine max frame size
2266  *
2267  * Max frame size is determined based on the current port's max frame size and
2268  * whether a port VLAN is configured on this VF. The VF is not aware whether
2269  * it's in a port VLAN so the PF needs to account for this in max frame size
2270  * checks and sending the max frame size to the VF.
2271  */
ice_vc_get_max_frame_size(struct ice_vf * vf)2272 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
2273 {
2274 	struct ice_port_info *pi = ice_vf_get_port_info(vf);
2275 	u16 max_frame_size;
2276 
2277 	max_frame_size = pi->phy.link_info.max_frame_size;
2278 
2279 	if (vf->port_vlan_info)
2280 		max_frame_size -= VLAN_HLEN;
2281 
2282 	return max_frame_size;
2283 }
2284 
2285 /**
2286  * ice_vc_get_vf_res_msg
2287  * @vf: pointer to the VF info
2288  * @msg: pointer to the msg buffer
2289  *
2290  * called from the VF to request its resources
2291  */
ice_vc_get_vf_res_msg(struct ice_vf * vf,u8 * msg)2292 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
2293 {
2294 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2295 	struct virtchnl_vf_resource *vfres = NULL;
2296 	struct ice_pf *pf = vf->pf;
2297 	struct ice_vsi *vsi;
2298 	int len = 0;
2299 	int ret;
2300 
2301 	if (ice_check_vf_init(pf, vf)) {
2302 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2303 		goto err;
2304 	}
2305 
2306 	len = sizeof(struct virtchnl_vf_resource);
2307 
2308 	vfres = kzalloc(len, GFP_KERNEL);
2309 	if (!vfres) {
2310 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2311 		len = 0;
2312 		goto err;
2313 	}
2314 	if (VF_IS_V11(&vf->vf_ver))
2315 		vf->driver_caps = *(u32 *)msg;
2316 	else
2317 		vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
2318 				  VIRTCHNL_VF_OFFLOAD_RSS_REG |
2319 				  VIRTCHNL_VF_OFFLOAD_VLAN;
2320 
2321 	vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
2322 	vsi = ice_get_vf_vsi(vf);
2323 	if (!vsi) {
2324 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2325 		goto err;
2326 	}
2327 
2328 	if (!vsi->info.pvid)
2329 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN;
2330 
2331 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2332 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
2333 	} else {
2334 		if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ)
2335 			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ;
2336 		else
2337 			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG;
2338 	}
2339 
2340 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
2341 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
2342 
2343 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
2344 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
2345 
2346 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
2347 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
2348 
2349 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
2350 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
2351 
2352 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
2353 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
2354 
2355 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2356 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
2357 
2358 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
2359 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
2360 
2361 	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
2362 		vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
2363 
2364 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
2365 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
2366 
2367 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
2368 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
2369 
2370 	vfres->num_vsis = 1;
2371 	/* Tx and Rx queue are equal for VF */
2372 	vfres->num_queue_pairs = vsi->num_txq;
2373 	vfres->max_vectors = pf->num_msix_per_vf;
2374 	vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
2375 	vfres->rss_lut_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
2376 	vfres->max_mtu = ice_vc_get_max_frame_size(vf);
2377 
2378 	vfres->vsi_res[0].vsi_id = vf->lan_vsi_num;
2379 	vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
2380 	vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
2381 	ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
2382 			vf->dflt_lan_addr.addr);
2383 
2384 	/* match guest capabilities */
2385 	vf->driver_caps = vfres->vf_cap_flags;
2386 
2387 	ice_vc_set_caps_allowlist(vf);
2388 	ice_vc_set_working_allowlist(vf);
2389 
2390 	set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
2391 
2392 err:
2393 	/* send the response back to the VF */
2394 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
2395 				    (u8 *)vfres, len);
2396 
2397 	kfree(vfres);
2398 	return ret;
2399 }
2400 
2401 /**
2402  * ice_vc_reset_vf_msg
2403  * @vf: pointer to the VF info
2404  *
2405  * called from the VF to reset itself,
2406  * unlike other virtchnl messages, PF driver
2407  * doesn't send the response back to the VF
2408  */
ice_vc_reset_vf_msg(struct ice_vf * vf)2409 static void ice_vc_reset_vf_msg(struct ice_vf *vf)
2410 {
2411 	if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
2412 		ice_reset_vf(vf, false);
2413 }
2414 
2415 /**
2416  * ice_find_vsi_from_id
2417  * @pf: the PF structure to search for the VSI
2418  * @id: ID of the VSI it is searching for
2419  *
2420  * searches for the VSI with the given ID
2421  */
ice_find_vsi_from_id(struct ice_pf * pf,u16 id)2422 static struct ice_vsi *ice_find_vsi_from_id(struct ice_pf *pf, u16 id)
2423 {
2424 	int i;
2425 
2426 	ice_for_each_vsi(pf, i)
2427 		if (pf->vsi[i] && pf->vsi[i]->vsi_num == id)
2428 			return pf->vsi[i];
2429 
2430 	return NULL;
2431 }
2432 
2433 /**
2434  * ice_vc_isvalid_vsi_id
2435  * @vf: pointer to the VF info
2436  * @vsi_id: VF relative VSI ID
2437  *
2438  * check for the valid VSI ID
2439  */
ice_vc_isvalid_vsi_id(struct ice_vf * vf,u16 vsi_id)2440 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
2441 {
2442 	struct ice_pf *pf = vf->pf;
2443 	struct ice_vsi *vsi;
2444 
2445 	vsi = ice_find_vsi_from_id(pf, vsi_id);
2446 
2447 	return (vsi && (vsi->vf_id == vf->vf_id));
2448 }
2449 
2450 /**
2451  * ice_vc_isvalid_q_id
2452  * @vf: pointer to the VF info
2453  * @vsi_id: VSI ID
2454  * @qid: VSI relative queue ID
2455  *
2456  * check for the valid queue ID
2457  */
ice_vc_isvalid_q_id(struct ice_vf * vf,u16 vsi_id,u8 qid)2458 static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid)
2459 {
2460 	struct ice_vsi *vsi = ice_find_vsi_from_id(vf->pf, vsi_id);
2461 	/* allocated Tx and Rx queues should be always equal for VF VSI */
2462 	return (vsi && (qid < vsi->alloc_txq));
2463 }
2464 
2465 /**
2466  * ice_vc_isvalid_ring_len
2467  * @ring_len: length of ring
2468  *
2469  * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
2470  * or zero
2471  */
ice_vc_isvalid_ring_len(u16 ring_len)2472 static bool ice_vc_isvalid_ring_len(u16 ring_len)
2473 {
2474 	return ring_len == 0 ||
2475 	       (ring_len >= ICE_MIN_NUM_DESC &&
2476 		ring_len <= ICE_MAX_NUM_DESC &&
2477 		!(ring_len % ICE_REQ_DESC_MULTIPLE));
2478 }
2479 
2480 /**
2481  * ice_vc_parse_rss_cfg - parses hash fields and headers from
2482  * a specific virtchnl RSS cfg
2483  * @hw: pointer to the hardware
2484  * @rss_cfg: pointer to the virtchnl RSS cfg
2485  * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*)
2486  * to configure
2487  * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure
2488  *
2489  * Return true if all the protocol header and hash fields in the RSS cfg could
2490  * be parsed, else return false
2491  *
2492  * This function parses the virtchnl RSS cfg to be the intended
2493  * hash fields and the intended header for RSS configuration
2494  */
2495 static bool
ice_vc_parse_rss_cfg(struct ice_hw * hw,struct virtchnl_rss_cfg * rss_cfg,u32 * addl_hdrs,u64 * hash_flds)2496 ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg,
2497 		     u32 *addl_hdrs, u64 *hash_flds)
2498 {
2499 	const struct ice_vc_hash_field_match_type *hf_list;
2500 	const struct ice_vc_hdr_match_type *hdr_list;
2501 	int i, hf_list_len, hdr_list_len;
2502 
2503 	if (!strncmp(hw->active_pkg_name, "ICE COMMS Package",
2504 		     sizeof(hw->active_pkg_name))) {
2505 		hf_list = ice_vc_hash_field_list_comms;
2506 		hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list_comms);
2507 		hdr_list = ice_vc_hdr_list_comms;
2508 		hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list_comms);
2509 	} else {
2510 		hf_list = ice_vc_hash_field_list_os;
2511 		hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list_os);
2512 		hdr_list = ice_vc_hdr_list_os;
2513 		hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list_os);
2514 	}
2515 
2516 	for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
2517 		struct virtchnl_proto_hdr *proto_hdr =
2518 					&rss_cfg->proto_hdrs.proto_hdr[i];
2519 		bool hdr_found = false;
2520 		int j;
2521 
2522 		/* Find matched ice headers according to virtchnl headers. */
2523 		for (j = 0; j < hdr_list_len; j++) {
2524 			struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
2525 
2526 			if (proto_hdr->type == hdr_map.vc_hdr) {
2527 				*addl_hdrs |= hdr_map.ice_hdr;
2528 				hdr_found = true;
2529 			}
2530 		}
2531 
2532 		if (!hdr_found)
2533 			return false;
2534 
2535 		/* Find matched ice hash fields according to
2536 		 * virtchnl hash fields.
2537 		 */
2538 		for (j = 0; j < hf_list_len; j++) {
2539 			struct ice_vc_hash_field_match_type hf_map = hf_list[j];
2540 
2541 			if (proto_hdr->type == hf_map.vc_hdr &&
2542 			    proto_hdr->field_selector == hf_map.vc_hash_field) {
2543 				*hash_flds |= hf_map.ice_hash_field;
2544 				break;
2545 			}
2546 		}
2547 	}
2548 
2549 	return true;
2550 }
2551 
2552 /**
2553  * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
2554  * RSS offloads
2555  * @caps: VF driver negotiated capabilities
2556  *
2557  * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
2558  * else return false
2559  */
ice_vf_adv_rss_offload_ena(u32 caps)2560 static bool ice_vf_adv_rss_offload_ena(u32 caps)
2561 {
2562 	return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
2563 }
2564 
2565 /**
2566  * ice_vc_handle_rss_cfg
2567  * @vf: pointer to the VF info
2568  * @msg: pointer to the message buffer
2569  * @add: add a RSS config if true, otherwise delete a RSS config
2570  *
2571  * This function adds/deletes a RSS config
2572  */
ice_vc_handle_rss_cfg(struct ice_vf * vf,u8 * msg,bool add)2573 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
2574 {
2575 	u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
2576 	struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
2577 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2578 	struct device *dev = ice_pf_to_dev(vf->pf);
2579 	struct ice_hw *hw = &vf->pf->hw;
2580 	struct ice_vsi *vsi;
2581 
2582 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2583 		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
2584 			vf->vf_id);
2585 		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
2586 		goto error_param;
2587 	}
2588 
2589 	if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
2590 		dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
2591 			vf->vf_id);
2592 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2593 		goto error_param;
2594 	}
2595 
2596 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2597 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2598 		goto error_param;
2599 	}
2600 
2601 	if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
2602 	    rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
2603 	    rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
2604 		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
2605 			vf->vf_id);
2606 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2607 		goto error_param;
2608 	}
2609 
2610 	vsi = ice_get_vf_vsi(vf);
2611 	if (!vsi) {
2612 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2613 		goto error_param;
2614 	}
2615 
2616 	if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
2617 		struct ice_vsi_ctx *ctx;
2618 		enum ice_status status;
2619 		u8 lut_type, hash_type;
2620 
2621 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
2622 		hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_XOR :
2623 				ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
2624 
2625 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2626 		if (!ctx) {
2627 			v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2628 			goto error_param;
2629 		}
2630 
2631 		ctx->info.q_opt_rss = ((lut_type <<
2632 					ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
2633 				       ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
2634 				       (hash_type &
2635 					ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
2636 
2637 		/* Preserve existing queueing option setting */
2638 		ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
2639 					  ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
2640 		ctx->info.q_opt_tc = vsi->info.q_opt_tc;
2641 		ctx->info.q_opt_flags = vsi->info.q_opt_rss;
2642 
2643 		ctx->info.valid_sections =
2644 				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
2645 
2646 		status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
2647 		if (status) {
2648 			dev_err(dev, "update VSI for RSS failed, err %s aq_err %s\n",
2649 				ice_stat_str(status),
2650 				ice_aq_str(hw->adminq.sq_last_status));
2651 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2652 		} else {
2653 			vsi->info.q_opt_rss = ctx->info.q_opt_rss;
2654 		}
2655 
2656 		kfree(ctx);
2657 	} else {
2658 		u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
2659 		u64 hash_flds = ICE_HASH_INVALID;
2660 
2661 		if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs,
2662 					  &hash_flds)) {
2663 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2664 			goto error_param;
2665 		}
2666 
2667 		if (add) {
2668 			if (ice_add_rss_cfg(hw, vsi->idx, hash_flds,
2669 					    addl_hdrs)) {
2670 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2671 				dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
2672 					vsi->vsi_num, v_ret);
2673 			}
2674 		} else {
2675 			enum ice_status status;
2676 
2677 			status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds,
2678 						 addl_hdrs);
2679 			/* We just ignore ICE_ERR_DOES_NOT_EXIST, because
2680 			 * if two configurations share the same profile remove
2681 			 * one of them actually removes both, since the
2682 			 * profile is deleted.
2683 			 */
2684 			if (status && status != ICE_ERR_DOES_NOT_EXIST) {
2685 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2686 				dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%s\n",
2687 					vf->vf_id, ice_stat_str(status));
2688 			}
2689 		}
2690 	}
2691 
2692 error_param:
2693 	return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
2694 }
2695 
2696 /**
2697  * ice_vc_config_rss_key
2698  * @vf: pointer to the VF info
2699  * @msg: pointer to the msg buffer
2700  *
2701  * Configure the VF's RSS key
2702  */
ice_vc_config_rss_key(struct ice_vf * vf,u8 * msg)2703 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
2704 {
2705 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2706 	struct virtchnl_rss_key *vrk =
2707 		(struct virtchnl_rss_key *)msg;
2708 	struct ice_vsi *vsi;
2709 
2710 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2711 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2712 		goto error_param;
2713 	}
2714 
2715 	if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
2716 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2717 		goto error_param;
2718 	}
2719 
2720 	if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
2721 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2722 		goto error_param;
2723 	}
2724 
2725 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2726 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2727 		goto error_param;
2728 	}
2729 
2730 	vsi = ice_get_vf_vsi(vf);
2731 	if (!vsi) {
2732 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2733 		goto error_param;
2734 	}
2735 
2736 	if (ice_set_rss_key(vsi, vrk->key))
2737 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2738 error_param:
2739 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
2740 				     NULL, 0);
2741 }
2742 
2743 /**
2744  * ice_vc_config_rss_lut
2745  * @vf: pointer to the VF info
2746  * @msg: pointer to the msg buffer
2747  *
2748  * Configure the VF's RSS LUT
2749  */
ice_vc_config_rss_lut(struct ice_vf * vf,u8 * msg)2750 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
2751 {
2752 	struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
2753 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2754 	struct ice_vsi *vsi;
2755 
2756 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2757 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2758 		goto error_param;
2759 	}
2760 
2761 	if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
2762 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2763 		goto error_param;
2764 	}
2765 
2766 	if (vrl->lut_entries != ICE_VSIQF_HLUT_ARRAY_SIZE) {
2767 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2768 		goto error_param;
2769 	}
2770 
2771 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2772 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2773 		goto error_param;
2774 	}
2775 
2776 	vsi = ice_get_vf_vsi(vf);
2777 	if (!vsi) {
2778 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2779 		goto error_param;
2780 	}
2781 
2782 	if (ice_set_rss_lut(vsi, vrl->lut, ICE_VSIQF_HLUT_ARRAY_SIZE))
2783 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2784 error_param:
2785 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
2786 				     NULL, 0);
2787 }
2788 
2789 /**
2790  * ice_wait_on_vf_reset - poll to make sure a given VF is ready after reset
2791  * @vf: The VF being resseting
2792  *
2793  * The max poll time is about ~800ms, which is about the maximum time it takes
2794  * for a VF to be reset and/or a VF driver to be removed.
2795  */
ice_wait_on_vf_reset(struct ice_vf * vf)2796 static void ice_wait_on_vf_reset(struct ice_vf *vf)
2797 {
2798 	int i;
2799 
2800 	for (i = 0; i < ICE_MAX_VF_RESET_TRIES; i++) {
2801 		if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
2802 			break;
2803 		msleep(ICE_MAX_VF_RESET_SLEEP_MS);
2804 	}
2805 }
2806 
2807 /**
2808  * ice_check_vf_ready_for_cfg - check if VF is ready to be configured/queried
2809  * @vf: VF to check if it's ready to be configured/queried
2810  *
2811  * The purpose of this function is to make sure the VF is not in reset, not
2812  * disabled, and initialized so it can be configured and/or queried by a host
2813  * administrator.
2814  */
ice_check_vf_ready_for_cfg(struct ice_vf * vf)2815 static int ice_check_vf_ready_for_cfg(struct ice_vf *vf)
2816 {
2817 	struct ice_pf *pf;
2818 
2819 	ice_wait_on_vf_reset(vf);
2820 
2821 	if (ice_is_vf_disabled(vf))
2822 		return -EINVAL;
2823 
2824 	pf = vf->pf;
2825 	if (ice_check_vf_init(pf, vf))
2826 		return -EBUSY;
2827 
2828 	return 0;
2829 }
2830 
2831 /**
2832  * ice_set_vf_spoofchk
2833  * @netdev: network interface device structure
2834  * @vf_id: VF identifier
2835  * @ena: flag to enable or disable feature
2836  *
2837  * Enable or disable VF spoof checking
2838  */
ice_set_vf_spoofchk(struct net_device * netdev,int vf_id,bool ena)2839 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
2840 {
2841 	struct ice_netdev_priv *np = netdev_priv(netdev);
2842 	struct ice_pf *pf = np->vsi->back;
2843 	struct ice_vsi_ctx *ctx;
2844 	struct ice_vsi *vf_vsi;
2845 	enum ice_status status;
2846 	struct device *dev;
2847 	struct ice_vf *vf;
2848 	int ret;
2849 
2850 	dev = ice_pf_to_dev(pf);
2851 	if (ice_validate_vf_id(pf, vf_id))
2852 		return -EINVAL;
2853 
2854 	vf = &pf->vf[vf_id];
2855 	ret = ice_check_vf_ready_for_cfg(vf);
2856 	if (ret)
2857 		return ret;
2858 
2859 	vf_vsi = ice_get_vf_vsi(vf);
2860 	if (!vf_vsi) {
2861 		netdev_err(netdev, "VSI %d for VF %d is null\n",
2862 			   vf->lan_vsi_idx, vf->vf_id);
2863 		return -EINVAL;
2864 	}
2865 
2866 	if (vf_vsi->type != ICE_VSI_VF) {
2867 		netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n",
2868 			   vf_vsi->type, vf_vsi->vsi_num, vf->vf_id);
2869 		return -ENODEV;
2870 	}
2871 
2872 	if (ena == vf->spoofchk) {
2873 		dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF");
2874 		return 0;
2875 	}
2876 
2877 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2878 	if (!ctx)
2879 		return -ENOMEM;
2880 
2881 	ctx->info.sec_flags = vf_vsi->info.sec_flags;
2882 	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
2883 	if (ena) {
2884 		ctx->info.sec_flags |=
2885 			ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
2886 			(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
2887 			 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
2888 	} else {
2889 		ctx->info.sec_flags &=
2890 			~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
2891 			  (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
2892 			   ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S));
2893 	}
2894 
2895 	status = ice_update_vsi(&pf->hw, vf_vsi->idx, ctx, NULL);
2896 	if (status) {
2897 		dev_err(dev, "Failed to %sable spoofchk on VF %d VSI %d\n error %s\n",
2898 			ena ? "en" : "dis", vf->vf_id, vf_vsi->vsi_num,
2899 			ice_stat_str(status));
2900 		ret = -EIO;
2901 		goto out;
2902 	}
2903 
2904 	/* only update spoofchk state and VSI context on success */
2905 	vf_vsi->info.sec_flags = ctx->info.sec_flags;
2906 	vf->spoofchk = ena;
2907 
2908 out:
2909 	kfree(ctx);
2910 	return ret;
2911 }
2912 
2913 /**
2914  * ice_is_any_vf_in_promisc - check if any VF(s) are in promiscuous mode
2915  * @pf: PF structure for accessing VF(s)
2916  *
2917  * Return false if no VF(s) are in unicast and/or multicast promiscuous mode,
2918  * else return true
2919  */
ice_is_any_vf_in_promisc(struct ice_pf * pf)2920 bool ice_is_any_vf_in_promisc(struct ice_pf *pf)
2921 {
2922 	int vf_idx;
2923 
2924 	ice_for_each_vf(pf, vf_idx) {
2925 		struct ice_vf *vf = &pf->vf[vf_idx];
2926 
2927 		/* found a VF that has promiscuous mode configured */
2928 		if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2929 		    test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
2930 			return true;
2931 	}
2932 
2933 	return false;
2934 }
2935 
2936 /**
2937  * ice_vc_cfg_promiscuous_mode_msg
2938  * @vf: pointer to the VF info
2939  * @msg: pointer to the msg buffer
2940  *
2941  * called from the VF to configure VF VSIs promiscuous mode
2942  */
ice_vc_cfg_promiscuous_mode_msg(struct ice_vf * vf,u8 * msg)2943 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
2944 {
2945 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2946 	bool rm_promisc, alluni = false, allmulti = false;
2947 	struct virtchnl_promisc_info *info =
2948 	    (struct virtchnl_promisc_info *)msg;
2949 	struct ice_pf *pf = vf->pf;
2950 	struct ice_vsi *vsi;
2951 	struct device *dev;
2952 	int ret = 0;
2953 
2954 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2955 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2956 		goto error_param;
2957 	}
2958 
2959 	if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
2960 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2961 		goto error_param;
2962 	}
2963 
2964 	vsi = ice_get_vf_vsi(vf);
2965 	if (!vsi) {
2966 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2967 		goto error_param;
2968 	}
2969 
2970 	dev = ice_pf_to_dev(pf);
2971 	if (!test_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps)) {
2972 		dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
2973 			vf->vf_id);
2974 		/* Leave v_ret alone, lie to the VF on purpose. */
2975 		goto error_param;
2976 	}
2977 
2978 	if (info->flags & FLAG_VF_UNICAST_PROMISC)
2979 		alluni = true;
2980 
2981 	if (info->flags & FLAG_VF_MULTICAST_PROMISC)
2982 		allmulti = true;
2983 
2984 	rm_promisc = !allmulti && !alluni;
2985 
2986 	if (vsi->num_vlan || vf->port_vlan_info) {
2987 		struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
2988 		struct net_device *pf_netdev;
2989 
2990 		if (!pf_vsi) {
2991 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2992 			goto error_param;
2993 		}
2994 
2995 		pf_netdev = pf_vsi->netdev;
2996 
2997 		ret = ice_set_vf_spoofchk(pf_netdev, vf->vf_id, rm_promisc);
2998 		if (ret) {
2999 			dev_err(dev, "Failed to update spoofchk to %s for VF %d VSI %d when setting promiscuous mode\n",
3000 				rm_promisc ? "ON" : "OFF", vf->vf_id,
3001 				vsi->vsi_num);
3002 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3003 		}
3004 
3005 		ret = ice_cfg_vlan_pruning(vsi, true, !rm_promisc);
3006 		if (ret) {
3007 			dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
3008 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3009 			goto error_param;
3010 		}
3011 	}
3012 
3013 	if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
3014 		bool set_dflt_vsi = alluni || allmulti;
3015 
3016 		if (set_dflt_vsi && !ice_is_dflt_vsi_in_use(pf->first_sw))
3017 			/* only attempt to set the default forwarding VSI if
3018 			 * it's not currently set
3019 			 */
3020 			ret = ice_set_dflt_vsi(pf->first_sw, vsi);
3021 		else if (!set_dflt_vsi &&
3022 			 ice_is_vsi_dflt_vsi(pf->first_sw, vsi))
3023 			/* only attempt to free the default forwarding VSI if we
3024 			 * are the owner
3025 			 */
3026 			ret = ice_clear_dflt_vsi(pf->first_sw);
3027 
3028 		if (ret) {
3029 			dev_err(dev, "%sable VF %d as the default VSI failed, error %d\n",
3030 				set_dflt_vsi ? "en" : "dis", vf->vf_id, ret);
3031 			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
3032 			goto error_param;
3033 		}
3034 	} else {
3035 		enum ice_status status;
3036 		u8 promisc_m;
3037 
3038 		if (alluni) {
3039 			if (vf->port_vlan_info || vsi->num_vlan)
3040 				promisc_m = ICE_UCAST_VLAN_PROMISC_BITS;
3041 			else
3042 				promisc_m = ICE_UCAST_PROMISC_BITS;
3043 		} else if (allmulti) {
3044 			if (vf->port_vlan_info || vsi->num_vlan)
3045 				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
3046 			else
3047 				promisc_m = ICE_MCAST_PROMISC_BITS;
3048 		} else {
3049 			if (vf->port_vlan_info || vsi->num_vlan)
3050 				promisc_m = ICE_UCAST_VLAN_PROMISC_BITS;
3051 			else
3052 				promisc_m = ICE_UCAST_PROMISC_BITS;
3053 		}
3054 
3055 		/* Configure multicast/unicast with or without VLAN promiscuous
3056 		 * mode
3057 		 */
3058 		status = ice_vf_set_vsi_promisc(vf, vsi, promisc_m, rm_promisc);
3059 		if (status) {
3060 			dev_err(dev, "%sable Tx/Rx filter promiscuous mode on VF-%d failed, error: %s\n",
3061 				rm_promisc ? "dis" : "en", vf->vf_id,
3062 				ice_stat_str(status));
3063 			v_ret = ice_err_to_virt_err(status);
3064 			goto error_param;
3065 		} else {
3066 			dev_dbg(dev, "%sable Tx/Rx filter promiscuous mode on VF-%d succeeded\n",
3067 				rm_promisc ? "dis" : "en", vf->vf_id);
3068 		}
3069 	}
3070 
3071 	if (allmulti &&
3072 	    !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
3073 		dev_info(dev, "VF %u successfully set multicast promiscuous mode\n", vf->vf_id);
3074 	else if (!allmulti && test_and_clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
3075 		dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n", vf->vf_id);
3076 
3077 	if (alluni && !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
3078 		dev_info(dev, "VF %u successfully set unicast promiscuous mode\n", vf->vf_id);
3079 	else if (!alluni && test_and_clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
3080 		dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n", vf->vf_id);
3081 
3082 error_param:
3083 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
3084 				     v_ret, NULL, 0);
3085 }
3086 
3087 /**
3088  * ice_vc_get_stats_msg
3089  * @vf: pointer to the VF info
3090  * @msg: pointer to the msg buffer
3091  *
3092  * called from the VF to get VSI stats
3093  */
ice_vc_get_stats_msg(struct ice_vf * vf,u8 * msg)3094 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
3095 {
3096 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3097 	struct virtchnl_queue_select *vqs =
3098 		(struct virtchnl_queue_select *)msg;
3099 	struct ice_eth_stats stats = { 0 };
3100 	struct ice_vsi *vsi;
3101 
3102 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3103 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3104 		goto error_param;
3105 	}
3106 
3107 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
3108 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3109 		goto error_param;
3110 	}
3111 
3112 	vsi = ice_get_vf_vsi(vf);
3113 	if (!vsi) {
3114 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3115 		goto error_param;
3116 	}
3117 
3118 	ice_update_eth_stats(vsi);
3119 
3120 	stats = vsi->eth_stats;
3121 
3122 error_param:
3123 	/* send the response to the VF */
3124 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
3125 				     (u8 *)&stats, sizeof(stats));
3126 }
3127 
3128 /**
3129  * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
3130  * @vqs: virtchnl_queue_select structure containing bitmaps to validate
3131  *
3132  * Return true on successful validation, else false
3133  */
ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select * vqs)3134 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
3135 {
3136 	if ((!vqs->rx_queues && !vqs->tx_queues) ||
3137 	    vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
3138 	    vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
3139 		return false;
3140 
3141 	return true;
3142 }
3143 
3144 /**
3145  * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
3146  * @vsi: VSI of the VF to configure
3147  * @q_idx: VF queue index used to determine the queue in the PF's space
3148  */
ice_vf_ena_txq_interrupt(struct ice_vsi * vsi,u32 q_idx)3149 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
3150 {
3151 	struct ice_hw *hw = &vsi->back->hw;
3152 	u32 pfq = vsi->txq_map[q_idx];
3153 	u32 reg;
3154 
3155 	reg = rd32(hw, QINT_TQCTL(pfq));
3156 
3157 	/* MSI-X index 0 in the VF's space is always for the OICR, which means
3158 	 * this is most likely a poll mode VF driver, so don't enable an
3159 	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
3160 	 */
3161 	if (!(reg & QINT_TQCTL_MSIX_INDX_M))
3162 		return;
3163 
3164 	wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
3165 }
3166 
3167 /**
3168  * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
3169  * @vsi: VSI of the VF to configure
3170  * @q_idx: VF queue index used to determine the queue in the PF's space
3171  */
ice_vf_ena_rxq_interrupt(struct ice_vsi * vsi,u32 q_idx)3172 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
3173 {
3174 	struct ice_hw *hw = &vsi->back->hw;
3175 	u32 pfq = vsi->rxq_map[q_idx];
3176 	u32 reg;
3177 
3178 	reg = rd32(hw, QINT_RQCTL(pfq));
3179 
3180 	/* MSI-X index 0 in the VF's space is always for the OICR, which means
3181 	 * this is most likely a poll mode VF driver, so don't enable an
3182 	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
3183 	 */
3184 	if (!(reg & QINT_RQCTL_MSIX_INDX_M))
3185 		return;
3186 
3187 	wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
3188 }
3189 
3190 /**
3191  * ice_vc_ena_qs_msg
3192  * @vf: pointer to the VF info
3193  * @msg: pointer to the msg buffer
3194  *
3195  * called from the VF to enable all or specific queue(s)
3196  */
ice_vc_ena_qs_msg(struct ice_vf * vf,u8 * msg)3197 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
3198 {
3199 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3200 	struct virtchnl_queue_select *vqs =
3201 	    (struct virtchnl_queue_select *)msg;
3202 	struct ice_vsi *vsi;
3203 	unsigned long q_map;
3204 	u16 vf_q_id;
3205 
3206 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3207 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3208 		goto error_param;
3209 	}
3210 
3211 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
3212 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3213 		goto error_param;
3214 	}
3215 
3216 	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
3217 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3218 		goto error_param;
3219 	}
3220 
3221 	vsi = ice_get_vf_vsi(vf);
3222 	if (!vsi) {
3223 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3224 		goto error_param;
3225 	}
3226 
3227 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
3228 	 * Tx queue group list was configured and the context bits were
3229 	 * programmed using ice_vsi_cfg_txqs
3230 	 */
3231 	q_map = vqs->rx_queues;
3232 	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
3233 		if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
3234 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3235 			goto error_param;
3236 		}
3237 
3238 		/* Skip queue if enabled */
3239 		if (test_bit(vf_q_id, vf->rxq_ena))
3240 			continue;
3241 
3242 		if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
3243 			dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
3244 				vf_q_id, vsi->vsi_num);
3245 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3246 			goto error_param;
3247 		}
3248 
3249 		ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
3250 		set_bit(vf_q_id, vf->rxq_ena);
3251 	}
3252 
3253 	q_map = vqs->tx_queues;
3254 	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
3255 		if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
3256 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3257 			goto error_param;
3258 		}
3259 
3260 		/* Skip queue if enabled */
3261 		if (test_bit(vf_q_id, vf->txq_ena))
3262 			continue;
3263 
3264 		ice_vf_ena_txq_interrupt(vsi, vf_q_id);
3265 		set_bit(vf_q_id, vf->txq_ena);
3266 	}
3267 
3268 	/* Set flag to indicate that queues are enabled */
3269 	if (v_ret == VIRTCHNL_STATUS_SUCCESS)
3270 		set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
3271 
3272 error_param:
3273 	/* send the response to the VF */
3274 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
3275 				     NULL, 0);
3276 }
3277 
3278 /**
3279  * ice_vc_dis_qs_msg
3280  * @vf: pointer to the VF info
3281  * @msg: pointer to the msg buffer
3282  *
3283  * called from the VF to disable all or specific
3284  * queue(s)
3285  */
ice_vc_dis_qs_msg(struct ice_vf * vf,u8 * msg)3286 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
3287 {
3288 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3289 	struct virtchnl_queue_select *vqs =
3290 	    (struct virtchnl_queue_select *)msg;
3291 	struct ice_vsi *vsi;
3292 	unsigned long q_map;
3293 	u16 vf_q_id;
3294 
3295 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
3296 	    !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
3297 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3298 		goto error_param;
3299 	}
3300 
3301 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
3302 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3303 		goto error_param;
3304 	}
3305 
3306 	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
3307 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3308 		goto error_param;
3309 	}
3310 
3311 	vsi = ice_get_vf_vsi(vf);
3312 	if (!vsi) {
3313 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3314 		goto error_param;
3315 	}
3316 
3317 	if (vqs->tx_queues) {
3318 		q_map = vqs->tx_queues;
3319 
3320 		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
3321 			struct ice_ring *ring = vsi->tx_rings[vf_q_id];
3322 			struct ice_txq_meta txq_meta = { 0 };
3323 
3324 			if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
3325 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3326 				goto error_param;
3327 			}
3328 
3329 			/* Skip queue if not enabled */
3330 			if (!test_bit(vf_q_id, vf->txq_ena))
3331 				continue;
3332 
3333 			ice_fill_txq_meta(vsi, ring, &txq_meta);
3334 
3335 			if (ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id,
3336 						 ring, &txq_meta)) {
3337 				dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
3338 					vf_q_id, vsi->vsi_num);
3339 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3340 				goto error_param;
3341 			}
3342 
3343 			/* Clear enabled queues flag */
3344 			clear_bit(vf_q_id, vf->txq_ena);
3345 		}
3346 	}
3347 
3348 	q_map = vqs->rx_queues;
3349 	/* speed up Rx queue disable by batching them if possible */
3350 	if (q_map &&
3351 	    bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
3352 		if (ice_vsi_stop_all_rx_rings(vsi)) {
3353 			dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
3354 				vsi->vsi_num);
3355 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3356 			goto error_param;
3357 		}
3358 
3359 		bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
3360 	} else if (q_map) {
3361 		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
3362 			if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
3363 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3364 				goto error_param;
3365 			}
3366 
3367 			/* Skip queue if not enabled */
3368 			if (!test_bit(vf_q_id, vf->rxq_ena))
3369 				continue;
3370 
3371 			if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
3372 						     true)) {
3373 				dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
3374 					vf_q_id, vsi->vsi_num);
3375 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3376 				goto error_param;
3377 			}
3378 
3379 			/* Clear enabled queues flag */
3380 			clear_bit(vf_q_id, vf->rxq_ena);
3381 		}
3382 	}
3383 
3384 	/* Clear enabled queues flag */
3385 	if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
3386 		clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
3387 
3388 error_param:
3389 	/* send the response to the VF */
3390 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
3391 				     NULL, 0);
3392 }
3393 
3394 /**
3395  * ice_cfg_interrupt
3396  * @vf: pointer to the VF info
3397  * @vsi: the VSI being configured
3398  * @vector_id: vector ID
3399  * @map: vector map for mapping vectors to queues
3400  * @q_vector: structure for interrupt vector
3401  * configure the IRQ to queue map
3402  */
3403 static int
ice_cfg_interrupt(struct ice_vf * vf,struct ice_vsi * vsi,u16 vector_id,struct virtchnl_vector_map * map,struct ice_q_vector * q_vector)3404 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id,
3405 		  struct virtchnl_vector_map *map,
3406 		  struct ice_q_vector *q_vector)
3407 {
3408 	u16 vsi_q_id, vsi_q_id_idx;
3409 	unsigned long qmap;
3410 
3411 	q_vector->num_ring_rx = 0;
3412 	q_vector->num_ring_tx = 0;
3413 
3414 	qmap = map->rxq_map;
3415 	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
3416 		vsi_q_id = vsi_q_id_idx;
3417 
3418 		if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
3419 			return VIRTCHNL_STATUS_ERR_PARAM;
3420 
3421 		q_vector->num_ring_rx++;
3422 		q_vector->rx.itr_idx = map->rxitr_idx;
3423 		vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
3424 		ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
3425 				      q_vector->rx.itr_idx);
3426 	}
3427 
3428 	qmap = map->txq_map;
3429 	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
3430 		vsi_q_id = vsi_q_id_idx;
3431 
3432 		if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
3433 			return VIRTCHNL_STATUS_ERR_PARAM;
3434 
3435 		q_vector->num_ring_tx++;
3436 		q_vector->tx.itr_idx = map->txitr_idx;
3437 		vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
3438 		ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
3439 				      q_vector->tx.itr_idx);
3440 	}
3441 
3442 	return VIRTCHNL_STATUS_SUCCESS;
3443 }
3444 
3445 /**
3446  * ice_vc_cfg_irq_map_msg
3447  * @vf: pointer to the VF info
3448  * @msg: pointer to the msg buffer
3449  *
3450  * called from the VF to configure the IRQ to queue map
3451  */
ice_vc_cfg_irq_map_msg(struct ice_vf * vf,u8 * msg)3452 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
3453 {
3454 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3455 	u16 num_q_vectors_mapped, vsi_id, vector_id;
3456 	struct virtchnl_irq_map_info *irqmap_info;
3457 	struct virtchnl_vector_map *map;
3458 	struct ice_pf *pf = vf->pf;
3459 	struct ice_vsi *vsi;
3460 	int i;
3461 
3462 	irqmap_info = (struct virtchnl_irq_map_info *)msg;
3463 	num_q_vectors_mapped = irqmap_info->num_vectors;
3464 
3465 	/* Check to make sure number of VF vectors mapped is not greater than
3466 	 * number of VF vectors originally allocated, and check that
3467 	 * there is actually at least a single VF queue vector mapped
3468 	 */
3469 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
3470 	    pf->num_msix_per_vf < num_q_vectors_mapped ||
3471 	    !num_q_vectors_mapped) {
3472 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3473 		goto error_param;
3474 	}
3475 
3476 	vsi = ice_get_vf_vsi(vf);
3477 	if (!vsi) {
3478 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3479 		goto error_param;
3480 	}
3481 
3482 	for (i = 0; i < num_q_vectors_mapped; i++) {
3483 		struct ice_q_vector *q_vector;
3484 
3485 		map = &irqmap_info->vecmap[i];
3486 
3487 		vector_id = map->vector_id;
3488 		vsi_id = map->vsi_id;
3489 		/* vector_id is always 0-based for each VF, and can never be
3490 		 * larger than or equal to the max allowed interrupts per VF
3491 		 */
3492 		if (!(vector_id < pf->num_msix_per_vf) ||
3493 		    !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
3494 		    (!vector_id && (map->rxq_map || map->txq_map))) {
3495 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3496 			goto error_param;
3497 		}
3498 
3499 		/* No need to map VF miscellaneous or rogue vector */
3500 		if (!vector_id)
3501 			continue;
3502 
3503 		/* Subtract non queue vector from vector_id passed by VF
3504 		 * to get actual number of VSI queue vector array index
3505 		 */
3506 		q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
3507 		if (!q_vector) {
3508 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3509 			goto error_param;
3510 		}
3511 
3512 		/* lookout for the invalid queue index */
3513 		v_ret = (enum virtchnl_status_code)
3514 			ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector);
3515 		if (v_ret)
3516 			goto error_param;
3517 	}
3518 
3519 error_param:
3520 	/* send the response to the VF */
3521 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
3522 				     NULL, 0);
3523 }
3524 
3525 /**
3526  * ice_vc_cfg_qs_msg
3527  * @vf: pointer to the VF info
3528  * @msg: pointer to the msg buffer
3529  *
3530  * called from the VF to configure the Rx/Tx queues
3531  */
ice_vc_cfg_qs_msg(struct ice_vf * vf,u8 * msg)3532 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
3533 {
3534 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3535 	struct virtchnl_vsi_queue_config_info *qci =
3536 	    (struct virtchnl_vsi_queue_config_info *)msg;
3537 	struct virtchnl_queue_pair_info *qpi;
3538 	u16 num_rxq = 0, num_txq = 0;
3539 	struct ice_pf *pf = vf->pf;
3540 	struct ice_vsi *vsi;
3541 	int i;
3542 
3543 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3544 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3545 		goto error_param;
3546 	}
3547 
3548 	if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) {
3549 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3550 		goto error_param;
3551 	}
3552 
3553 	vsi = ice_get_vf_vsi(vf);
3554 	if (!vsi) {
3555 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3556 		goto error_param;
3557 	}
3558 
3559 	if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
3560 	    qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
3561 		dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
3562 			vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
3563 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3564 		goto error_param;
3565 	}
3566 
3567 	for (i = 0; i < qci->num_queue_pairs; i++) {
3568 		qpi = &qci->qpair[i];
3569 		if (qpi->txq.vsi_id != qci->vsi_id ||
3570 		    qpi->rxq.vsi_id != qci->vsi_id ||
3571 		    qpi->rxq.queue_id != qpi->txq.queue_id ||
3572 		    qpi->txq.headwb_enabled ||
3573 		    !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
3574 		    !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
3575 		    !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) {
3576 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3577 			goto error_param;
3578 		}
3579 		/* copy Tx queue info from VF into VSI */
3580 		if (qpi->txq.ring_len > 0) {
3581 			num_txq++;
3582 			vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
3583 			vsi->tx_rings[i]->count = qpi->txq.ring_len;
3584 		}
3585 
3586 		/* copy Rx queue info from VF into VSI */
3587 		if (qpi->rxq.ring_len > 0) {
3588 			u16 max_frame_size = ice_vc_get_max_frame_size(vf);
3589 
3590 			num_rxq++;
3591 			vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
3592 			vsi->rx_rings[i]->count = qpi->rxq.ring_len;
3593 
3594 			if (qpi->rxq.databuffer_size != 0 &&
3595 			    (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
3596 			     qpi->rxq.databuffer_size < 1024)) {
3597 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3598 				goto error_param;
3599 			}
3600 			vsi->rx_buf_len = qpi->rxq.databuffer_size;
3601 			vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
3602 			if (qpi->rxq.max_pkt_size > max_frame_size ||
3603 			    qpi->rxq.max_pkt_size < 64) {
3604 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3605 				goto error_param;
3606 			}
3607 		}
3608 
3609 		vsi->max_frame = qpi->rxq.max_pkt_size;
3610 		/* add space for the port VLAN since the VF driver is not
3611 		 * expected to account for it in the MTU calculation
3612 		 */
3613 		if (vf->port_vlan_info)
3614 			vsi->max_frame += VLAN_HLEN;
3615 	}
3616 
3617 	/* VF can request to configure less than allocated queues or default
3618 	 * allocated queues. So update the VSI with new number
3619 	 */
3620 	vsi->num_txq = num_txq;
3621 	vsi->num_rxq = num_rxq;
3622 	/* All queues of VF VSI are in TC 0 */
3623 	vsi->tc_cfg.tc_info[0].qcount_tx = num_txq;
3624 	vsi->tc_cfg.tc_info[0].qcount_rx = num_rxq;
3625 
3626 	if (ice_vsi_cfg_lan_txqs(vsi) || ice_vsi_cfg_rxqs(vsi))
3627 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
3628 
3629 error_param:
3630 	/* send the response to the VF */
3631 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, v_ret,
3632 				     NULL, 0);
3633 }
3634 
3635 /**
3636  * ice_is_vf_trusted
3637  * @vf: pointer to the VF info
3638  */
ice_is_vf_trusted(struct ice_vf * vf)3639 static bool ice_is_vf_trusted(struct ice_vf *vf)
3640 {
3641 	return test_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
3642 }
3643 
3644 /**
3645  * ice_can_vf_change_mac
3646  * @vf: pointer to the VF info
3647  *
3648  * Return true if the VF is allowed to change its MAC filters, false otherwise
3649  */
ice_can_vf_change_mac(struct ice_vf * vf)3650 static bool ice_can_vf_change_mac(struct ice_vf *vf)
3651 {
3652 	/* If the VF MAC address has been set administratively (via the
3653 	 * ndo_set_vf_mac command), then deny permission to the VF to
3654 	 * add/delete unicast MAC addresses, unless the VF is trusted
3655 	 */
3656 	if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
3657 		return false;
3658 
3659 	return true;
3660 }
3661 
3662 /**
3663  * ice_vc_add_mac_addr - attempt to add the MAC address passed in
3664  * @vf: pointer to the VF info
3665  * @vsi: pointer to the VF's VSI
3666  * @mac_addr: MAC address to add
3667  */
3668 static int
ice_vc_add_mac_addr(struct ice_vf * vf,struct ice_vsi * vsi,u8 * mac_addr)3669 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, u8 *mac_addr)
3670 {
3671 	struct device *dev = ice_pf_to_dev(vf->pf);
3672 	enum ice_status status;
3673 
3674 	/* default unicast MAC already added */
3675 	if (ether_addr_equal(mac_addr, vf->dflt_lan_addr.addr))
3676 		return 0;
3677 
3678 	if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
3679 		dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
3680 		return -EPERM;
3681 	}
3682 
3683 	status = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
3684 	if (status == ICE_ERR_ALREADY_EXISTS) {
3685 		dev_err(dev, "MAC %pM already exists for VF %d\n", mac_addr,
3686 			vf->vf_id);
3687 		return -EEXIST;
3688 	} else if (status) {
3689 		dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %s\n",
3690 			mac_addr, vf->vf_id, ice_stat_str(status));
3691 		return -EIO;
3692 	}
3693 
3694 	/* Set the default LAN address to the latest unicast MAC address added
3695 	 * by the VF. The default LAN address is reported by the PF via
3696 	 * ndo_get_vf_config.
3697 	 */
3698 	if (is_unicast_ether_addr(mac_addr))
3699 		ether_addr_copy(vf->dflt_lan_addr.addr, mac_addr);
3700 
3701 	vf->num_mac++;
3702 
3703 	return 0;
3704 }
3705 
3706 /**
3707  * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
3708  * @vf: pointer to the VF info
3709  * @vsi: pointer to the VF's VSI
3710  * @mac_addr: MAC address to delete
3711  */
3712 static int
ice_vc_del_mac_addr(struct ice_vf * vf,struct ice_vsi * vsi,u8 * mac_addr)3713 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, u8 *mac_addr)
3714 {
3715 	struct device *dev = ice_pf_to_dev(vf->pf);
3716 	enum ice_status status;
3717 
3718 	if (!ice_can_vf_change_mac(vf) &&
3719 	    ether_addr_equal(mac_addr, vf->dflt_lan_addr.addr))
3720 		return 0;
3721 
3722 	status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
3723 	if (status == ICE_ERR_DOES_NOT_EXIST) {
3724 		dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
3725 			vf->vf_id);
3726 		return -ENOENT;
3727 	} else if (status) {
3728 		dev_err(dev, "Failed to delete MAC %pM for VF %d, error %s\n",
3729 			mac_addr, vf->vf_id, ice_stat_str(status));
3730 		return -EIO;
3731 	}
3732 
3733 	if (ether_addr_equal(mac_addr, vf->dflt_lan_addr.addr))
3734 		eth_zero_addr(vf->dflt_lan_addr.addr);
3735 
3736 	vf->num_mac--;
3737 
3738 	return 0;
3739 }
3740 
3741 /**
3742  * ice_vc_handle_mac_addr_msg
3743  * @vf: pointer to the VF info
3744  * @msg: pointer to the msg buffer
3745  * @set: true if MAC filters are being set, false otherwise
3746  *
3747  * add guest MAC address filter
3748  */
3749 static int
ice_vc_handle_mac_addr_msg(struct ice_vf * vf,u8 * msg,bool set)3750 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
3751 {
3752 	int (*ice_vc_cfg_mac)
3753 		(struct ice_vf *vf, struct ice_vsi *vsi, u8 *mac_addr);
3754 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3755 	struct virtchnl_ether_addr_list *al =
3756 	    (struct virtchnl_ether_addr_list *)msg;
3757 	struct ice_pf *pf = vf->pf;
3758 	enum virtchnl_ops vc_op;
3759 	struct ice_vsi *vsi;
3760 	int i;
3761 
3762 	if (set) {
3763 		vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
3764 		ice_vc_cfg_mac = ice_vc_add_mac_addr;
3765 	} else {
3766 		vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
3767 		ice_vc_cfg_mac = ice_vc_del_mac_addr;
3768 	}
3769 
3770 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
3771 	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
3772 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3773 		goto handle_mac_exit;
3774 	}
3775 
3776 	/* If this VF is not privileged, then we can't add more than a
3777 	 * limited number of addresses. Check to make sure that the
3778 	 * additions do not push us over the limit.
3779 	 */
3780 	if (set && !ice_is_vf_trusted(vf) &&
3781 	    (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
3782 		dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
3783 			vf->vf_id);
3784 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3785 		goto handle_mac_exit;
3786 	}
3787 
3788 	vsi = ice_get_vf_vsi(vf);
3789 	if (!vsi) {
3790 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3791 		goto handle_mac_exit;
3792 	}
3793 
3794 	for (i = 0; i < al->num_elements; i++) {
3795 		u8 *mac_addr = al->list[i].addr;
3796 		int result;
3797 
3798 		if (is_broadcast_ether_addr(mac_addr) ||
3799 		    is_zero_ether_addr(mac_addr))
3800 			continue;
3801 
3802 		result = ice_vc_cfg_mac(vf, vsi, mac_addr);
3803 		if (result == -EEXIST || result == -ENOENT) {
3804 			continue;
3805 		} else if (result) {
3806 			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
3807 			goto handle_mac_exit;
3808 		}
3809 	}
3810 
3811 handle_mac_exit:
3812 	/* send the response to the VF */
3813 	return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
3814 }
3815 
3816 /**
3817  * ice_vc_add_mac_addr_msg
3818  * @vf: pointer to the VF info
3819  * @msg: pointer to the msg buffer
3820  *
3821  * add guest MAC address filter
3822  */
ice_vc_add_mac_addr_msg(struct ice_vf * vf,u8 * msg)3823 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
3824 {
3825 	return ice_vc_handle_mac_addr_msg(vf, msg, true);
3826 }
3827 
3828 /**
3829  * ice_vc_del_mac_addr_msg
3830  * @vf: pointer to the VF info
3831  * @msg: pointer to the msg buffer
3832  *
3833  * remove guest MAC address filter
3834  */
ice_vc_del_mac_addr_msg(struct ice_vf * vf,u8 * msg)3835 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
3836 {
3837 	return ice_vc_handle_mac_addr_msg(vf, msg, false);
3838 }
3839 
3840 /**
3841  * ice_vc_request_qs_msg
3842  * @vf: pointer to the VF info
3843  * @msg: pointer to the msg buffer
3844  *
3845  * VFs get a default number of queues but can use this message to request a
3846  * different number. If the request is successful, PF will reset the VF and
3847  * return 0. If unsuccessful, PF will send message informing VF of number of
3848  * available queue pairs via virtchnl message response to VF.
3849  */
ice_vc_request_qs_msg(struct ice_vf * vf,u8 * msg)3850 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
3851 {
3852 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3853 	struct virtchnl_vf_res_request *vfres =
3854 		(struct virtchnl_vf_res_request *)msg;
3855 	u16 req_queues = vfres->num_queue_pairs;
3856 	struct ice_pf *pf = vf->pf;
3857 	u16 max_allowed_vf_queues;
3858 	u16 tx_rx_queue_left;
3859 	struct device *dev;
3860 	u16 cur_queues;
3861 
3862 	dev = ice_pf_to_dev(pf);
3863 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3864 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3865 		goto error_param;
3866 	}
3867 
3868 	cur_queues = vf->num_vf_qs;
3869 	tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
3870 				 ice_get_avail_rxq_count(pf));
3871 	max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
3872 	if (!req_queues) {
3873 		dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
3874 			vf->vf_id);
3875 	} else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
3876 		dev_err(dev, "VF %d tried to request more than %d queues.\n",
3877 			vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
3878 		vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
3879 	} else if (req_queues > cur_queues &&
3880 		   req_queues - cur_queues > tx_rx_queue_left) {
3881 		dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
3882 			 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
3883 		vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
3884 					       ICE_MAX_RSS_QS_PER_VF);
3885 	} else {
3886 		/* request is successful, then reset VF */
3887 		vf->num_req_qs = req_queues;
3888 		ice_vc_reset_vf(vf);
3889 		dev_info(dev, "VF %d granted request of %u queues.\n",
3890 			 vf->vf_id, req_queues);
3891 		return 0;
3892 	}
3893 
3894 error_param:
3895 	/* send the response to the VF */
3896 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
3897 				     v_ret, (u8 *)vfres, sizeof(*vfres));
3898 }
3899 
3900 /**
3901  * ice_set_vf_port_vlan
3902  * @netdev: network interface device structure
3903  * @vf_id: VF identifier
3904  * @vlan_id: VLAN ID being set
3905  * @qos: priority setting
3906  * @vlan_proto: VLAN protocol
3907  *
3908  * program VF Port VLAN ID and/or QoS
3909  */
3910 int
ice_set_vf_port_vlan(struct net_device * netdev,int vf_id,u16 vlan_id,u8 qos,__be16 vlan_proto)3911 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
3912 		     __be16 vlan_proto)
3913 {
3914 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3915 	struct device *dev;
3916 	struct ice_vf *vf;
3917 	u16 vlanprio;
3918 	int ret;
3919 
3920 	dev = ice_pf_to_dev(pf);
3921 	if (ice_validate_vf_id(pf, vf_id))
3922 		return -EINVAL;
3923 
3924 	if (vlan_id >= VLAN_N_VID || qos > 7) {
3925 		dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n",
3926 			vf_id, vlan_id, qos);
3927 		return -EINVAL;
3928 	}
3929 
3930 	if (vlan_proto != htons(ETH_P_8021Q)) {
3931 		dev_err(dev, "VF VLAN protocol is not supported\n");
3932 		return -EPROTONOSUPPORT;
3933 	}
3934 
3935 	vf = &pf->vf[vf_id];
3936 	ret = ice_check_vf_ready_for_cfg(vf);
3937 	if (ret)
3938 		return ret;
3939 
3940 	vlanprio = vlan_id | (qos << VLAN_PRIO_SHIFT);
3941 
3942 	if (vf->port_vlan_info == vlanprio) {
3943 		/* duplicate request, so just return success */
3944 		dev_dbg(dev, "Duplicate pvid %d request\n", vlanprio);
3945 		return 0;
3946 	}
3947 
3948 	vf->port_vlan_info = vlanprio;
3949 
3950 	if (vf->port_vlan_info)
3951 		dev_info(dev, "Setting VLAN %d, QoS 0x%x on VF %d\n",
3952 			 vlan_id, qos, vf_id);
3953 	else
3954 		dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id);
3955 
3956 	ice_vc_reset_vf(vf);
3957 
3958 	return 0;
3959 }
3960 
3961 /**
3962  * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
3963  * @caps: VF driver negotiated capabilities
3964  *
3965  * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
3966  */
ice_vf_vlan_offload_ena(u32 caps)3967 static bool ice_vf_vlan_offload_ena(u32 caps)
3968 {
3969 	return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
3970 }
3971 
3972 /**
3973  * ice_vc_process_vlan_msg
3974  * @vf: pointer to the VF info
3975  * @msg: pointer to the msg buffer
3976  * @add_v: Add VLAN if true, otherwise delete VLAN
3977  *
3978  * Process virtchnl op to add or remove programmed guest VLAN ID
3979  */
ice_vc_process_vlan_msg(struct ice_vf * vf,u8 * msg,bool add_v)3980 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
3981 {
3982 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3983 	struct virtchnl_vlan_filter_list *vfl =
3984 	    (struct virtchnl_vlan_filter_list *)msg;
3985 	struct ice_pf *pf = vf->pf;
3986 	bool vlan_promisc = false;
3987 	struct ice_vsi *vsi;
3988 	struct device *dev;
3989 	struct ice_hw *hw;
3990 	int status = 0;
3991 	u8 promisc_m;
3992 	int i;
3993 
3994 	dev = ice_pf_to_dev(pf);
3995 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3996 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3997 		goto error_param;
3998 	}
3999 
4000 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
4001 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4002 		goto error_param;
4003 	}
4004 
4005 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
4006 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4007 		goto error_param;
4008 	}
4009 
4010 	for (i = 0; i < vfl->num_elements; i++) {
4011 		if (vfl->vlan_id[i] >= VLAN_N_VID) {
4012 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4013 			dev_err(dev, "invalid VF VLAN id %d\n",
4014 				vfl->vlan_id[i]);
4015 			goto error_param;
4016 		}
4017 	}
4018 
4019 	hw = &pf->hw;
4020 	vsi = ice_get_vf_vsi(vf);
4021 	if (!vsi) {
4022 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4023 		goto error_param;
4024 	}
4025 
4026 	if (add_v && !ice_is_vf_trusted(vf) &&
4027 	    vsi->num_vlan >= ICE_MAX_VLAN_PER_VF) {
4028 		dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
4029 			 vf->vf_id);
4030 		/* There is no need to let VF know about being not trusted,
4031 		 * so we can just return success message here
4032 		 */
4033 		goto error_param;
4034 	}
4035 
4036 	if (vsi->info.pvid) {
4037 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4038 		goto error_param;
4039 	}
4040 
4041 	if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
4042 	     test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
4043 	    test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags))
4044 		vlan_promisc = true;
4045 
4046 	if (add_v) {
4047 		for (i = 0; i < vfl->num_elements; i++) {
4048 			u16 vid = vfl->vlan_id[i];
4049 
4050 			if (!ice_is_vf_trusted(vf) &&
4051 			    vsi->num_vlan >= ICE_MAX_VLAN_PER_VF) {
4052 				dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
4053 					 vf->vf_id);
4054 				/* There is no need to let VF know about being
4055 				 * not trusted, so we can just return success
4056 				 * message here as well.
4057 				 */
4058 				goto error_param;
4059 			}
4060 
4061 			/* we add VLAN 0 by default for each VF so we can enable
4062 			 * Tx VLAN anti-spoof without triggering MDD events so
4063 			 * we don't need to add it again here
4064 			 */
4065 			if (!vid)
4066 				continue;
4067 
4068 			status = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI);
4069 			if (status) {
4070 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4071 				goto error_param;
4072 			}
4073 
4074 			/* Enable VLAN pruning when non-zero VLAN is added */
4075 			if (!vlan_promisc && vid &&
4076 			    !ice_vsi_is_vlan_pruning_ena(vsi)) {
4077 				status = ice_cfg_vlan_pruning(vsi, true, false);
4078 				if (status) {
4079 					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4080 					dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
4081 						vid, status);
4082 					goto error_param;
4083 				}
4084 			} else if (vlan_promisc) {
4085 				/* Enable Ucast/Mcast VLAN promiscuous mode */
4086 				promisc_m = ICE_PROMISC_VLAN_TX |
4087 					    ICE_PROMISC_VLAN_RX;
4088 
4089 				status = ice_set_vsi_promisc(hw, vsi->idx,
4090 							     promisc_m, vid);
4091 				if (status) {
4092 					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4093 					dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
4094 						vid, status);
4095 				}
4096 			}
4097 		}
4098 	} else {
4099 		/* In case of non_trusted VF, number of VLAN elements passed
4100 		 * to PF for removal might be greater than number of VLANs
4101 		 * filter programmed for that VF - So, use actual number of
4102 		 * VLANS added earlier with add VLAN opcode. In order to avoid
4103 		 * removing VLAN that doesn't exist, which result to sending
4104 		 * erroneous failed message back to the VF
4105 		 */
4106 		int num_vf_vlan;
4107 
4108 		num_vf_vlan = vsi->num_vlan;
4109 		for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
4110 			u16 vid = vfl->vlan_id[i];
4111 
4112 			/* we add VLAN 0 by default for each VF so we can enable
4113 			 * Tx VLAN anti-spoof without triggering MDD events so
4114 			 * we don't want a VIRTCHNL request to remove it
4115 			 */
4116 			if (!vid)
4117 				continue;
4118 
4119 			/* Make sure ice_vsi_kill_vlan is successful before
4120 			 * updating VLAN information
4121 			 */
4122 			status = ice_vsi_kill_vlan(vsi, vid);
4123 			if (status) {
4124 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4125 				goto error_param;
4126 			}
4127 
4128 			/* Disable VLAN pruning when only VLAN 0 is left */
4129 			if (vsi->num_vlan == 1 &&
4130 			    ice_vsi_is_vlan_pruning_ena(vsi))
4131 				ice_cfg_vlan_pruning(vsi, false, false);
4132 
4133 			/* Disable Unicast/Multicast VLAN promiscuous mode */
4134 			if (vlan_promisc) {
4135 				promisc_m = ICE_PROMISC_VLAN_TX |
4136 					    ICE_PROMISC_VLAN_RX;
4137 
4138 				ice_clear_vsi_promisc(hw, vsi->idx,
4139 						      promisc_m, vid);
4140 			}
4141 		}
4142 	}
4143 
4144 error_param:
4145 	/* send the response to the VF */
4146 	if (add_v)
4147 		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
4148 					     NULL, 0);
4149 	else
4150 		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
4151 					     NULL, 0);
4152 }
4153 
4154 /**
4155  * ice_vc_add_vlan_msg
4156  * @vf: pointer to the VF info
4157  * @msg: pointer to the msg buffer
4158  *
4159  * Add and program guest VLAN ID
4160  */
ice_vc_add_vlan_msg(struct ice_vf * vf,u8 * msg)4161 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
4162 {
4163 	return ice_vc_process_vlan_msg(vf, msg, true);
4164 }
4165 
4166 /**
4167  * ice_vc_remove_vlan_msg
4168  * @vf: pointer to the VF info
4169  * @msg: pointer to the msg buffer
4170  *
4171  * remove programmed guest VLAN ID
4172  */
ice_vc_remove_vlan_msg(struct ice_vf * vf,u8 * msg)4173 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
4174 {
4175 	return ice_vc_process_vlan_msg(vf, msg, false);
4176 }
4177 
4178 /**
4179  * ice_vc_ena_vlan_stripping
4180  * @vf: pointer to the VF info
4181  *
4182  * Enable VLAN header stripping for a given VF
4183  */
ice_vc_ena_vlan_stripping(struct ice_vf * vf)4184 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
4185 {
4186 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
4187 	struct ice_vsi *vsi;
4188 
4189 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
4190 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4191 		goto error_param;
4192 	}
4193 
4194 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
4195 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4196 		goto error_param;
4197 	}
4198 
4199 	vsi = ice_get_vf_vsi(vf);
4200 	if (ice_vsi_manage_vlan_stripping(vsi, true))
4201 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4202 
4203 error_param:
4204 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
4205 				     v_ret, NULL, 0);
4206 }
4207 
4208 /**
4209  * ice_vc_dis_vlan_stripping
4210  * @vf: pointer to the VF info
4211  *
4212  * Disable VLAN header stripping for a given VF
4213  */
ice_vc_dis_vlan_stripping(struct ice_vf * vf)4214 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
4215 {
4216 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
4217 	struct ice_vsi *vsi;
4218 
4219 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
4220 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4221 		goto error_param;
4222 	}
4223 
4224 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
4225 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4226 		goto error_param;
4227 	}
4228 
4229 	vsi = ice_get_vf_vsi(vf);
4230 	if (!vsi) {
4231 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4232 		goto error_param;
4233 	}
4234 
4235 	if (ice_vsi_manage_vlan_stripping(vsi, false))
4236 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4237 
4238 error_param:
4239 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
4240 				     v_ret, NULL, 0);
4241 }
4242 
4243 /**
4244  * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
4245  * @vf: VF to enable/disable VLAN stripping for on initialization
4246  *
4247  * If the VIRTCHNL_VF_OFFLOAD_VLAN flag is set enable VLAN stripping, else if
4248  * the flag is cleared then we want to disable stripping. For example, the flag
4249  * will be cleared when port VLANs are configured by the administrator before
4250  * passing the VF to the guest or if the AVF driver doesn't support VLAN
4251  * offloads.
4252  */
ice_vf_init_vlan_stripping(struct ice_vf * vf)4253 static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
4254 {
4255 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
4256 
4257 	if (!vsi)
4258 		return -EINVAL;
4259 
4260 	/* don't modify stripping if port VLAN is configured */
4261 	if (vsi->info.pvid)
4262 		return 0;
4263 
4264 	if (ice_vf_vlan_offload_ena(vf->driver_caps))
4265 		return ice_vsi_manage_vlan_stripping(vsi, true);
4266 	else
4267 		return ice_vsi_manage_vlan_stripping(vsi, false);
4268 }
4269 
4270 /**
4271  * ice_vc_process_vf_msg - Process request from VF
4272  * @pf: pointer to the PF structure
4273  * @event: pointer to the AQ event
4274  *
4275  * called from the common asq/arq handler to
4276  * process request from VF
4277  */
ice_vc_process_vf_msg(struct ice_pf * pf,struct ice_rq_event_info * event)4278 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event)
4279 {
4280 	u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
4281 	s16 vf_id = le16_to_cpu(event->desc.retval);
4282 	u16 msglen = event->msg_len;
4283 	u8 *msg = event->msg_buf;
4284 	struct ice_vf *vf = NULL;
4285 	struct device *dev;
4286 	int err = 0;
4287 
4288 	dev = ice_pf_to_dev(pf);
4289 	if (ice_validate_vf_id(pf, vf_id)) {
4290 		err = -EINVAL;
4291 		goto error_handler;
4292 	}
4293 
4294 	vf = &pf->vf[vf_id];
4295 
4296 	/* Check if VF is disabled. */
4297 	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
4298 		err = -EPERM;
4299 		goto error_handler;
4300 	}
4301 
4302 	/* Perform basic checks on the msg */
4303 	err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
4304 	if (err) {
4305 		if (err == VIRTCHNL_STATUS_ERR_PARAM)
4306 			err = -EPERM;
4307 		else
4308 			err = -EINVAL;
4309 	}
4310 
4311 	if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
4312 		ice_vc_send_msg_to_vf(vf, v_opcode,
4313 				      VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
4314 				      0);
4315 		return;
4316 	}
4317 
4318 error_handler:
4319 	if (err) {
4320 		ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
4321 				      NULL, 0);
4322 		dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
4323 			vf_id, v_opcode, msglen, err);
4324 		return;
4325 	}
4326 
4327 	switch (v_opcode) {
4328 	case VIRTCHNL_OP_VERSION:
4329 		err = ice_vc_get_ver_msg(vf, msg);
4330 		break;
4331 	case VIRTCHNL_OP_GET_VF_RESOURCES:
4332 		err = ice_vc_get_vf_res_msg(vf, msg);
4333 		if (ice_vf_init_vlan_stripping(vf))
4334 			dev_err(dev, "Failed to initialize VLAN stripping for VF %d\n",
4335 				vf->vf_id);
4336 		ice_vc_notify_vf_link_state(vf);
4337 		break;
4338 	case VIRTCHNL_OP_RESET_VF:
4339 		ice_vc_reset_vf_msg(vf);
4340 		break;
4341 	case VIRTCHNL_OP_ADD_ETH_ADDR:
4342 		err = ice_vc_add_mac_addr_msg(vf, msg);
4343 		break;
4344 	case VIRTCHNL_OP_DEL_ETH_ADDR:
4345 		err = ice_vc_del_mac_addr_msg(vf, msg);
4346 		break;
4347 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
4348 		err = ice_vc_cfg_qs_msg(vf, msg);
4349 		break;
4350 	case VIRTCHNL_OP_ENABLE_QUEUES:
4351 		err = ice_vc_ena_qs_msg(vf, msg);
4352 		ice_vc_notify_vf_link_state(vf);
4353 		break;
4354 	case VIRTCHNL_OP_DISABLE_QUEUES:
4355 		err = ice_vc_dis_qs_msg(vf, msg);
4356 		break;
4357 	case VIRTCHNL_OP_REQUEST_QUEUES:
4358 		err = ice_vc_request_qs_msg(vf, msg);
4359 		break;
4360 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
4361 		err = ice_vc_cfg_irq_map_msg(vf, msg);
4362 		break;
4363 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
4364 		err = ice_vc_config_rss_key(vf, msg);
4365 		break;
4366 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
4367 		err = ice_vc_config_rss_lut(vf, msg);
4368 		break;
4369 	case VIRTCHNL_OP_GET_STATS:
4370 		err = ice_vc_get_stats_msg(vf, msg);
4371 		break;
4372 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
4373 		err = ice_vc_cfg_promiscuous_mode_msg(vf, msg);
4374 		break;
4375 	case VIRTCHNL_OP_ADD_VLAN:
4376 		err = ice_vc_add_vlan_msg(vf, msg);
4377 		break;
4378 	case VIRTCHNL_OP_DEL_VLAN:
4379 		err = ice_vc_remove_vlan_msg(vf, msg);
4380 		break;
4381 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
4382 		err = ice_vc_ena_vlan_stripping(vf);
4383 		break;
4384 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
4385 		err = ice_vc_dis_vlan_stripping(vf);
4386 		break;
4387 	case VIRTCHNL_OP_ADD_FDIR_FILTER:
4388 		err = ice_vc_add_fdir_fltr(vf, msg);
4389 		break;
4390 	case VIRTCHNL_OP_DEL_FDIR_FILTER:
4391 		err = ice_vc_del_fdir_fltr(vf, msg);
4392 		break;
4393 	case VIRTCHNL_OP_ADD_RSS_CFG:
4394 		err = ice_vc_handle_rss_cfg(vf, msg, true);
4395 		break;
4396 	case VIRTCHNL_OP_DEL_RSS_CFG:
4397 		err = ice_vc_handle_rss_cfg(vf, msg, false);
4398 		break;
4399 	case VIRTCHNL_OP_UNKNOWN:
4400 	default:
4401 		dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
4402 			vf_id);
4403 		err = ice_vc_send_msg_to_vf(vf, v_opcode,
4404 					    VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4405 					    NULL, 0);
4406 		break;
4407 	}
4408 	if (err) {
4409 		/* Helper function cares less about error return values here
4410 		 * as it is busy with pending work.
4411 		 */
4412 		dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
4413 			 vf_id, v_opcode, err);
4414 	}
4415 }
4416 
4417 /**
4418  * ice_get_vf_cfg
4419  * @netdev: network interface device structure
4420  * @vf_id: VF identifier
4421  * @ivi: VF configuration structure
4422  *
4423  * return VF configuration
4424  */
4425 int
ice_get_vf_cfg(struct net_device * netdev,int vf_id,struct ifla_vf_info * ivi)4426 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi)
4427 {
4428 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
4429 	struct ice_vf *vf;
4430 
4431 	if (ice_validate_vf_id(pf, vf_id))
4432 		return -EINVAL;
4433 
4434 	vf = &pf->vf[vf_id];
4435 
4436 	if (ice_check_vf_init(pf, vf))
4437 		return -EBUSY;
4438 
4439 	ivi->vf = vf_id;
4440 	ether_addr_copy(ivi->mac, vf->dflt_lan_addr.addr);
4441 
4442 	/* VF configuration for VLAN and applicable QoS */
4443 	ivi->vlan = vf->port_vlan_info & VLAN_VID_MASK;
4444 	ivi->qos = (vf->port_vlan_info & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
4445 
4446 	ivi->trusted = vf->trusted;
4447 	ivi->spoofchk = vf->spoofchk;
4448 	if (!vf->link_forced)
4449 		ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
4450 	else if (vf->link_up)
4451 		ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
4452 	else
4453 		ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
4454 	ivi->max_tx_rate = vf->tx_rate;
4455 	ivi->min_tx_rate = 0;
4456 	return 0;
4457 }
4458 
4459 /**
4460  * ice_unicast_mac_exists - check if the unicast MAC exists on the PF's switch
4461  * @pf: PF used to reference the switch's rules
4462  * @umac: unicast MAC to compare against existing switch rules
4463  *
4464  * Return true on the first/any match, else return false
4465  */
ice_unicast_mac_exists(struct ice_pf * pf,u8 * umac)4466 static bool ice_unicast_mac_exists(struct ice_pf *pf, u8 *umac)
4467 {
4468 	struct ice_sw_recipe *mac_recipe_list =
4469 		&pf->hw.switch_info->recp_list[ICE_SW_LKUP_MAC];
4470 	struct ice_fltr_mgmt_list_entry *list_itr;
4471 	struct list_head *rule_head;
4472 	struct mutex *rule_lock; /* protect MAC filter list access */
4473 
4474 	rule_head = &mac_recipe_list->filt_rules;
4475 	rule_lock = &mac_recipe_list->filt_rule_lock;
4476 
4477 	mutex_lock(rule_lock);
4478 	list_for_each_entry(list_itr, rule_head, list_entry) {
4479 		u8 *existing_mac = &list_itr->fltr_info.l_data.mac.mac_addr[0];
4480 
4481 		if (ether_addr_equal(existing_mac, umac)) {
4482 			mutex_unlock(rule_lock);
4483 			return true;
4484 		}
4485 	}
4486 
4487 	mutex_unlock(rule_lock);
4488 
4489 	return false;
4490 }
4491 
4492 /**
4493  * ice_set_vf_mac
4494  * @netdev: network interface device structure
4495  * @vf_id: VF identifier
4496  * @mac: MAC address
4497  *
4498  * program VF MAC address
4499  */
ice_set_vf_mac(struct net_device * netdev,int vf_id,u8 * mac)4500 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
4501 {
4502 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
4503 	struct ice_vf *vf;
4504 	int ret;
4505 
4506 	if (ice_validate_vf_id(pf, vf_id))
4507 		return -EINVAL;
4508 
4509 	if (is_multicast_ether_addr(mac)) {
4510 		netdev_err(netdev, "%pM not a valid unicast address\n", mac);
4511 		return -EINVAL;
4512 	}
4513 
4514 	vf = &pf->vf[vf_id];
4515 	/* nothing left to do, unicast MAC already set */
4516 	if (ether_addr_equal(vf->dflt_lan_addr.addr, mac))
4517 		return 0;
4518 
4519 	ret = ice_check_vf_ready_for_cfg(vf);
4520 	if (ret)
4521 		return ret;
4522 
4523 	if (ice_unicast_mac_exists(pf, mac)) {
4524 		netdev_err(netdev, "Unicast MAC %pM already exists on this PF. Preventing setting VF %u unicast MAC address to %pM\n",
4525 			   mac, vf_id, mac);
4526 		return -EINVAL;
4527 	}
4528 
4529 	/* VF is notified of its new MAC via the PF's response to the
4530 	 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset
4531 	 */
4532 	ether_addr_copy(vf->dflt_lan_addr.addr, mac);
4533 	if (is_zero_ether_addr(mac)) {
4534 		/* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */
4535 		vf->pf_set_mac = false;
4536 		netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n",
4537 			    vf->vf_id);
4538 	} else {
4539 		/* PF will add MAC rule for the VF */
4540 		vf->pf_set_mac = true;
4541 		netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n",
4542 			    mac, vf_id);
4543 	}
4544 
4545 	ice_vc_reset_vf(vf);
4546 	return 0;
4547 }
4548 
4549 /**
4550  * ice_set_vf_trust
4551  * @netdev: network interface device structure
4552  * @vf_id: VF identifier
4553  * @trusted: Boolean value to enable/disable trusted VF
4554  *
4555  * Enable or disable a given VF as trusted
4556  */
ice_set_vf_trust(struct net_device * netdev,int vf_id,bool trusted)4557 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
4558 {
4559 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
4560 	struct ice_vf *vf;
4561 	int ret;
4562 
4563 	if (ice_validate_vf_id(pf, vf_id))
4564 		return -EINVAL;
4565 
4566 	vf = &pf->vf[vf_id];
4567 	ret = ice_check_vf_ready_for_cfg(vf);
4568 	if (ret)
4569 		return ret;
4570 
4571 	/* Check if already trusted */
4572 	if (trusted == vf->trusted)
4573 		return 0;
4574 
4575 	vf->trusted = trusted;
4576 	ice_vc_reset_vf(vf);
4577 	dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n",
4578 		 vf_id, trusted ? "" : "un");
4579 
4580 	return 0;
4581 }
4582 
4583 /**
4584  * ice_set_vf_link_state
4585  * @netdev: network interface device structure
4586  * @vf_id: VF identifier
4587  * @link_state: required link state
4588  *
4589  * Set VF's link state, irrespective of physical link state status
4590  */
ice_set_vf_link_state(struct net_device * netdev,int vf_id,int link_state)4591 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
4592 {
4593 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
4594 	struct ice_vf *vf;
4595 	int ret;
4596 
4597 	if (ice_validate_vf_id(pf, vf_id))
4598 		return -EINVAL;
4599 
4600 	vf = &pf->vf[vf_id];
4601 	ret = ice_check_vf_ready_for_cfg(vf);
4602 	if (ret)
4603 		return ret;
4604 
4605 	switch (link_state) {
4606 	case IFLA_VF_LINK_STATE_AUTO:
4607 		vf->link_forced = false;
4608 		break;
4609 	case IFLA_VF_LINK_STATE_ENABLE:
4610 		vf->link_forced = true;
4611 		vf->link_up = true;
4612 		break;
4613 	case IFLA_VF_LINK_STATE_DISABLE:
4614 		vf->link_forced = true;
4615 		vf->link_up = false;
4616 		break;
4617 	default:
4618 		return -EINVAL;
4619 	}
4620 
4621 	ice_vc_notify_vf_link_state(vf);
4622 
4623 	return 0;
4624 }
4625 
4626 /**
4627  * ice_get_vf_stats - populate some stats for the VF
4628  * @netdev: the netdev of the PF
4629  * @vf_id: the host OS identifier (0-255)
4630  * @vf_stats: pointer to the OS memory to be initialized
4631  */
ice_get_vf_stats(struct net_device * netdev,int vf_id,struct ifla_vf_stats * vf_stats)4632 int ice_get_vf_stats(struct net_device *netdev, int vf_id,
4633 		     struct ifla_vf_stats *vf_stats)
4634 {
4635 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
4636 	struct ice_eth_stats *stats;
4637 	struct ice_vsi *vsi;
4638 	struct ice_vf *vf;
4639 	int ret;
4640 
4641 	if (ice_validate_vf_id(pf, vf_id))
4642 		return -EINVAL;
4643 
4644 	vf = &pf->vf[vf_id];
4645 	ret = ice_check_vf_ready_for_cfg(vf);
4646 	if (ret)
4647 		return ret;
4648 
4649 	vsi = ice_get_vf_vsi(vf);
4650 	if (!vsi)
4651 		return -EINVAL;
4652 
4653 	ice_update_eth_stats(vsi);
4654 	stats = &vsi->eth_stats;
4655 
4656 	memset(vf_stats, 0, sizeof(*vf_stats));
4657 
4658 	vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast +
4659 		stats->rx_multicast;
4660 	vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast +
4661 		stats->tx_multicast;
4662 	vf_stats->rx_bytes   = stats->rx_bytes;
4663 	vf_stats->tx_bytes   = stats->tx_bytes;
4664 	vf_stats->broadcast  = stats->rx_broadcast;
4665 	vf_stats->multicast  = stats->rx_multicast;
4666 	vf_stats->rx_dropped = stats->rx_discards;
4667 	vf_stats->tx_dropped = stats->tx_discards;
4668 
4669 	return 0;
4670 }
4671 
4672 /**
4673  * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event
4674  * @vf: pointer to the VF structure
4675  */
ice_print_vf_rx_mdd_event(struct ice_vf * vf)4676 void ice_print_vf_rx_mdd_event(struct ice_vf *vf)
4677 {
4678 	struct ice_pf *pf = vf->pf;
4679 	struct device *dev;
4680 
4681 	dev = ice_pf_to_dev(pf);
4682 
4683 	dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
4684 		 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id,
4685 		 vf->dflt_lan_addr.addr,
4686 		 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
4687 			  ? "on" : "off");
4688 }
4689 
4690 /**
4691  * ice_print_vfs_mdd_events - print VFs malicious driver detect event
4692  * @pf: pointer to the PF structure
4693  *
4694  * Called from ice_handle_mdd_event to rate limit and print VFs MDD events.
4695  */
ice_print_vfs_mdd_events(struct ice_pf * pf)4696 void ice_print_vfs_mdd_events(struct ice_pf *pf)
4697 {
4698 	struct device *dev = ice_pf_to_dev(pf);
4699 	struct ice_hw *hw = &pf->hw;
4700 	int i;
4701 
4702 	/* check that there are pending MDD events to print */
4703 	if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state))
4704 		return;
4705 
4706 	/* VF MDD event logs are rate limited to one second intervals */
4707 	if (time_is_after_jiffies(pf->last_printed_mdd_jiffies + HZ * 1))
4708 		return;
4709 
4710 	pf->last_printed_mdd_jiffies = jiffies;
4711 
4712 	ice_for_each_vf(pf, i) {
4713 		struct ice_vf *vf = &pf->vf[i];
4714 
4715 		/* only print Rx MDD event message if there are new events */
4716 		if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) {
4717 			vf->mdd_rx_events.last_printed =
4718 							vf->mdd_rx_events.count;
4719 			ice_print_vf_rx_mdd_event(vf);
4720 		}
4721 
4722 		/* only print Tx MDD event message if there are new events */
4723 		if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) {
4724 			vf->mdd_tx_events.last_printed =
4725 							vf->mdd_tx_events.count;
4726 
4727 			dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n",
4728 				 vf->mdd_tx_events.count, hw->pf_id, i,
4729 				 vf->dflt_lan_addr.addr);
4730 		}
4731 	}
4732 }
4733 
4734 /**
4735  * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR
4736  * @pdev: pointer to a pci_dev structure
4737  *
4738  * Called when recovering from a PF FLR to restore interrupt capability to
4739  * the VFs.
4740  */
ice_restore_all_vfs_msi_state(struct pci_dev * pdev)4741 void ice_restore_all_vfs_msi_state(struct pci_dev *pdev)
4742 {
4743 	u16 vf_id;
4744 	int pos;
4745 
4746 	if (!pci_num_vf(pdev))
4747 		return;
4748 
4749 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
4750 	if (pos) {
4751 		struct pci_dev *vfdev;
4752 
4753 		pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID,
4754 				     &vf_id);
4755 		vfdev = pci_get_device(pdev->vendor, vf_id, NULL);
4756 		while (vfdev) {
4757 			if (vfdev->is_virtfn && vfdev->physfn == pdev)
4758 				pci_restore_msi_state(vfdev);
4759 			vfdev = pci_get_device(pdev->vendor, vf_id,
4760 					       vfdev);
4761 		}
4762 	}
4763 }
4764 
4765 /**
4766  * ice_is_malicious_vf - helper function to detect a malicious VF
4767  * @pf: ptr to struct ice_pf
4768  * @event: pointer to the AQ event
4769  * @num_msg_proc: the number of messages processed so far
4770  * @num_msg_pending: the number of messages peinding in admin queue
4771  */
4772 bool
ice_is_malicious_vf(struct ice_pf * pf,struct ice_rq_event_info * event,u16 num_msg_proc,u16 num_msg_pending)4773 ice_is_malicious_vf(struct ice_pf *pf, struct ice_rq_event_info *event,
4774 		    u16 num_msg_proc, u16 num_msg_pending)
4775 {
4776 	s16 vf_id = le16_to_cpu(event->desc.retval);
4777 	struct device *dev = ice_pf_to_dev(pf);
4778 	struct ice_mbx_data mbxdata;
4779 	enum ice_status status;
4780 	bool malvf = false;
4781 	struct ice_vf *vf;
4782 
4783 	if (ice_validate_vf_id(pf, vf_id))
4784 		return false;
4785 
4786 	vf = &pf->vf[vf_id];
4787 	/* Check if VF is disabled. */
4788 	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
4789 		return false;
4790 
4791 	mbxdata.num_msg_proc = num_msg_proc;
4792 	mbxdata.num_pending_arq = num_msg_pending;
4793 	mbxdata.max_num_msgs_mbx = pf->hw.mailboxq.num_rq_entries;
4794 #define ICE_MBX_OVERFLOW_WATERMARK 64
4795 	mbxdata.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK;
4796 
4797 	/* check to see if we have a malicious VF */
4798 	status = ice_mbx_vf_state_handler(&pf->hw, &mbxdata, vf_id, &malvf);
4799 	if (status)
4800 		return false;
4801 
4802 	if (malvf) {
4803 		bool report_vf = false;
4804 
4805 		/* if the VF is malicious and we haven't let the user
4806 		 * know about it, then let them know now
4807 		 */
4808 		status = ice_mbx_report_malvf(&pf->hw, pf->malvfs,
4809 					      ICE_MAX_VF_COUNT, vf_id,
4810 					      &report_vf);
4811 		if (status)
4812 			dev_dbg(dev, "Error reporting malicious VF\n");
4813 
4814 		if (report_vf) {
4815 			struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
4816 
4817 			if (pf_vsi)
4818 				dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
4819 					 &vf->dflt_lan_addr.addr[0],
4820 					 pf_vsi->netdev->dev_addr);
4821 		}
4822 
4823 		return true;
4824 	}
4825 
4826 	/* if there was an error in detection or the VF is not malicious then
4827 	 * return false
4828 	 */
4829 	return false;
4830 }
4831