1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2005-2014, 2018-2020 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #include <linux/types.h>
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/etherdevice.h>
11 #include <linux/pci.h>
12 #include <linux/firmware.h>
13 
14 #include "iwl-drv.h"
15 #include "iwl-modparams.h"
16 #include "iwl-nvm-parse.h"
17 #include "iwl-prph.h"
18 #include "iwl-io.h"
19 #include "iwl-csr.h"
20 #include "fw/acpi.h"
21 #include "fw/api/nvm-reg.h"
22 #include "fw/api/commands.h"
23 #include "fw/api/cmdhdr.h"
24 #include "fw/img.h"
25 
26 /* NVM offsets (in words) definitions */
27 enum nvm_offsets {
28 	/* NVM HW-Section offset (in words) definitions */
29 	SUBSYSTEM_ID = 0x0A,
30 	HW_ADDR = 0x15,
31 
32 	/* NVM SW-Section offset (in words) definitions */
33 	NVM_SW_SECTION = 0x1C0,
34 	NVM_VERSION = 0,
35 	RADIO_CFG = 1,
36 	SKU = 2,
37 	N_HW_ADDRS = 3,
38 	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
39 
40 	/* NVM calibration section offset (in words) definitions */
41 	NVM_CALIB_SECTION = 0x2B8,
42 	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
43 
44 	/* NVM REGULATORY -Section offset (in words) definitions */
45 	NVM_CHANNELS_SDP = 0,
46 };
47 
48 enum ext_nvm_offsets {
49 	/* NVM HW-Section offset (in words) definitions */
50 	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
51 
52 	/* NVM SW-Section offset (in words) definitions */
53 	NVM_VERSION_EXT_NVM = 0,
54 	N_HW_ADDRS_FAMILY_8000 = 3,
55 
56 	/* NVM PHY_SKU-Section offset (in words) definitions */
57 	RADIO_CFG_FAMILY_EXT_NVM = 0,
58 	SKU_FAMILY_8000 = 2,
59 
60 	/* NVM REGULATORY -Section offset (in words) definitions */
61 	NVM_CHANNELS_EXTENDED = 0,
62 	NVM_LAR_OFFSET_OLD = 0x4C7,
63 	NVM_LAR_OFFSET = 0x507,
64 	NVM_LAR_ENABLED = 0x7,
65 };
66 
67 /* SKU Capabilities (actual values from NVM definition) */
68 enum nvm_sku_bits {
69 	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
70 	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
71 	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
72 	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
73 	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
74 };
75 
76 /*
77  * These are the channel numbers in the order that they are stored in the NVM
78  */
79 static const u16 iwl_nvm_channels[] = {
80 	/* 2.4 GHz */
81 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
82 	/* 5 GHz */
83 	36, 40, 44 , 48, 52, 56, 60, 64,
84 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
85 	149, 153, 157, 161, 165
86 };
87 
88 static const u16 iwl_ext_nvm_channels[] = {
89 	/* 2.4 GHz */
90 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
91 	/* 5 GHz */
92 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
93 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
94 	149, 153, 157, 161, 165, 169, 173, 177, 181
95 };
96 
97 static const u16 iwl_uhb_nvm_channels[] = {
98 	/* 2.4 GHz */
99 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
100 	/* 5 GHz */
101 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
102 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
103 	149, 153, 157, 161, 165, 169, 173, 177, 181,
104 	/* 6-7 GHz */
105 	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
106 	73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
107 	133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
108 	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
109 };
110 
111 #define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
112 #define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
113 #define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
114 #define NUM_2GHZ_CHANNELS		14
115 #define NUM_5GHZ_CHANNELS		37
116 #define FIRST_2GHZ_HT_MINUS		5
117 #define LAST_2GHZ_HT_PLUS		9
118 #define N_HW_ADDR_MASK			0xF
119 
120 /* rate data (static) */
121 static struct ieee80211_rate iwl_cfg80211_rates[] = {
122 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
123 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
124 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
125 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
126 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
127 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
128 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
129 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
130 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
131 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
132 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
133 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
134 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
135 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
136 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
137 };
138 #define RATES_24_OFFS	0
139 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
140 #define RATES_52_OFFS	4
141 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
142 
143 /**
144  * enum iwl_nvm_channel_flags - channel flags in NVM
145  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
146  * @NVM_CHANNEL_IBSS: usable as an IBSS channel
147  * @NVM_CHANNEL_ACTIVE: active scanning allowed
148  * @NVM_CHANNEL_RADAR: radar detection required
149  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
150  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
151  *	on same channel on 2.4 or same UNII band on 5.2
152  * @NVM_CHANNEL_UNIFORM: uniform spreading required
153  * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
154  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
155  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
156  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
157  * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
158  */
159 enum iwl_nvm_channel_flags {
160 	NVM_CHANNEL_VALID		= BIT(0),
161 	NVM_CHANNEL_IBSS		= BIT(1),
162 	NVM_CHANNEL_ACTIVE		= BIT(3),
163 	NVM_CHANNEL_RADAR		= BIT(4),
164 	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
165 	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
166 	NVM_CHANNEL_UNIFORM		= BIT(7),
167 	NVM_CHANNEL_20MHZ		= BIT(8),
168 	NVM_CHANNEL_40MHZ		= BIT(9),
169 	NVM_CHANNEL_80MHZ		= BIT(10),
170 	NVM_CHANNEL_160MHZ		= BIT(11),
171 	NVM_CHANNEL_DC_HIGH		= BIT(12),
172 };
173 
174 /**
175  * enum iwl_reg_capa_flags - global flags applied for the whole regulatory
176  * domain.
177  * @REG_CAPA_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
178  *	2.4Ghz band is allowed.
179  * @REG_CAPA_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
180  *	5Ghz band is allowed.
181  * @REG_CAPA_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
182  *	for this regulatory domain (valid only in 5Ghz).
183  * @REG_CAPA_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
184  *	for this regulatory domain (valid only in 5Ghz).
185  * @REG_CAPA_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
186  * @REG_CAPA_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
187  * @REG_CAPA_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
188  *	for this regulatory domain (valid only in 5Ghz).
189  * @REG_CAPA_DC_HIGH_ENABLED: DC HIGH allowed.
190  * @REG_CAPA_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
191  */
192 enum iwl_reg_capa_flags {
193 	REG_CAPA_BF_CCD_LOW_BAND	= BIT(0),
194 	REG_CAPA_BF_CCD_HIGH_BAND	= BIT(1),
195 	REG_CAPA_160MHZ_ALLOWED		= BIT(2),
196 	REG_CAPA_80MHZ_ALLOWED		= BIT(3),
197 	REG_CAPA_MCS_8_ALLOWED		= BIT(4),
198 	REG_CAPA_MCS_9_ALLOWED		= BIT(5),
199 	REG_CAPA_40MHZ_FORBIDDEN	= BIT(7),
200 	REG_CAPA_DC_HIGH_ENABLED	= BIT(9),
201 	REG_CAPA_11AX_DISABLED		= BIT(10),
202 };
203 
204 /**
205  * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
206  * domain (version 2).
207  * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
208  *	disabled.
209  * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
210  *	2.4Ghz band is allowed.
211  * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
212  *	5Ghz band is allowed.
213  * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
214  *	for this regulatory domain (valid only in 5Ghz).
215  * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
216  *	for this regulatory domain (valid only in 5Ghz).
217  * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
218  * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
219  * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
220  *	126, 122) are disabled.
221  * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
222  *	for this regulatory domain (uvalid only in 5Ghz).
223  * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
224  */
225 enum iwl_reg_capa_flags_v2 {
226 	REG_CAPA_V2_STRADDLE_DISABLED	= BIT(0),
227 	REG_CAPA_V2_BF_CCD_LOW_BAND	= BIT(1),
228 	REG_CAPA_V2_BF_CCD_HIGH_BAND	= BIT(2),
229 	REG_CAPA_V2_160MHZ_ALLOWED	= BIT(3),
230 	REG_CAPA_V2_80MHZ_ALLOWED	= BIT(4),
231 	REG_CAPA_V2_MCS_8_ALLOWED	= BIT(5),
232 	REG_CAPA_V2_MCS_9_ALLOWED	= BIT(6),
233 	REG_CAPA_V2_WEATHER_DISABLED	= BIT(7),
234 	REG_CAPA_V2_40MHZ_ALLOWED	= BIT(8),
235 	REG_CAPA_V2_11AX_DISABLED	= BIT(10),
236 };
237 
238 /*
239 * API v2 for reg_capa_flags is relevant from version 6 and onwards of the
240 * MCC update command response.
241 */
242 #define REG_CAPA_V2_RESP_VER	6
243 
244 /**
245  * struct iwl_reg_capa - struct for global regulatory capabilities, Used for
246  * handling the different APIs of reg_capa_flags.
247  *
248  * @allow_40mhz: 11n channel with a width of 40Mhz is allowed
249  *	for this regulatory domain (valid only in 5Ghz).
250  * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
251  *	for this regulatory domain (valid only in 5Ghz).
252  * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
253  *	for this regulatory domain (valid only in 5Ghz).
254  * @disable_11ax: 11ax is forbidden for this regulatory domain.
255  */
256 struct iwl_reg_capa {
257 	u16 allow_40mhz;
258 	u16 allow_80mhz;
259 	u16 allow_160mhz;
260 	u16 disable_11ax;
261 };
262 
iwl_nvm_print_channel_flags(struct device * dev,u32 level,int chan,u32 flags)263 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
264 					       int chan, u32 flags)
265 {
266 #define CHECK_AND_PRINT_I(x)	\
267 	((flags & NVM_CHANNEL_##x) ? " " #x : "")
268 
269 	if (!(flags & NVM_CHANNEL_VALID)) {
270 		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
271 			      chan, flags);
272 		return;
273 	}
274 
275 	/* Note: already can print up to 101 characters, 110 is the limit! */
276 	IWL_DEBUG_DEV(dev, level,
277 		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
278 		      chan, flags,
279 		      CHECK_AND_PRINT_I(VALID),
280 		      CHECK_AND_PRINT_I(IBSS),
281 		      CHECK_AND_PRINT_I(ACTIVE),
282 		      CHECK_AND_PRINT_I(RADAR),
283 		      CHECK_AND_PRINT_I(INDOOR_ONLY),
284 		      CHECK_AND_PRINT_I(GO_CONCURRENT),
285 		      CHECK_AND_PRINT_I(UNIFORM),
286 		      CHECK_AND_PRINT_I(20MHZ),
287 		      CHECK_AND_PRINT_I(40MHZ),
288 		      CHECK_AND_PRINT_I(80MHZ),
289 		      CHECK_AND_PRINT_I(160MHZ),
290 		      CHECK_AND_PRINT_I(DC_HIGH));
291 #undef CHECK_AND_PRINT_I
292 }
293 
iwl_get_channel_flags(u8 ch_num,int ch_idx,enum nl80211_band band,u32 nvm_flags,const struct iwl_cfg * cfg)294 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
295 				 u32 nvm_flags, const struct iwl_cfg *cfg)
296 {
297 	u32 flags = IEEE80211_CHAN_NO_HT40;
298 
299 	if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
300 		if (ch_num <= LAST_2GHZ_HT_PLUS)
301 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
302 		if (ch_num >= FIRST_2GHZ_HT_MINUS)
303 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
304 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
305 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
306 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
307 		else
308 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
309 	}
310 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
311 		flags |= IEEE80211_CHAN_NO_80MHZ;
312 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
313 		flags |= IEEE80211_CHAN_NO_160MHZ;
314 
315 	if (!(nvm_flags & NVM_CHANNEL_IBSS))
316 		flags |= IEEE80211_CHAN_NO_IR;
317 
318 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
319 		flags |= IEEE80211_CHAN_NO_IR;
320 
321 	if (nvm_flags & NVM_CHANNEL_RADAR)
322 		flags |= IEEE80211_CHAN_RADAR;
323 
324 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
325 		flags |= IEEE80211_CHAN_INDOOR_ONLY;
326 
327 	/* Set the GO concurrent flag only in case that NO_IR is set.
328 	 * Otherwise it is meaningless
329 	 */
330 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
331 	    (flags & IEEE80211_CHAN_NO_IR))
332 		flags |= IEEE80211_CHAN_IR_CONCURRENT;
333 
334 	return flags;
335 }
336 
iwl_nl80211_band_from_channel_idx(int ch_idx)337 static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
338 {
339 	if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) {
340 		return NL80211_BAND_6GHZ;
341 	}
342 
343 	if (ch_idx >= NUM_2GHZ_CHANNELS)
344 		return NL80211_BAND_5GHZ;
345 	return NL80211_BAND_2GHZ;
346 }
347 
iwl_init_channel_map(struct device * dev,const struct iwl_cfg * cfg,struct iwl_nvm_data * data,const void * const nvm_ch_flags,u32 sbands_flags,bool v4)348 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
349 				struct iwl_nvm_data *data,
350 				const void * const nvm_ch_flags,
351 				u32 sbands_flags, bool v4)
352 {
353 	int ch_idx;
354 	int n_channels = 0;
355 	struct ieee80211_channel *channel;
356 	u32 ch_flags;
357 	int num_of_ch;
358 	const u16 *nvm_chan;
359 
360 	if (cfg->uhb_supported) {
361 		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
362 		nvm_chan = iwl_uhb_nvm_channels;
363 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
364 		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
365 		nvm_chan = iwl_ext_nvm_channels;
366 	} else {
367 		num_of_ch = IWL_NVM_NUM_CHANNELS;
368 		nvm_chan = iwl_nvm_channels;
369 	}
370 
371 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
372 		enum nl80211_band band =
373 			iwl_nl80211_band_from_channel_idx(ch_idx);
374 
375 		if (v4)
376 			ch_flags =
377 				__le32_to_cpup((__le32 *)nvm_ch_flags + ch_idx);
378 		else
379 			ch_flags =
380 				__le16_to_cpup((__le16 *)nvm_ch_flags + ch_idx);
381 
382 		if (band == NL80211_BAND_5GHZ &&
383 		    !data->sku_cap_band_52ghz_enable)
384 			continue;
385 
386 		/* workaround to disable wide channels in 5GHz */
387 		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
388 		    band == NL80211_BAND_5GHZ) {
389 			ch_flags &= ~(NVM_CHANNEL_40MHZ |
390 				     NVM_CHANNEL_80MHZ |
391 				     NVM_CHANNEL_160MHZ);
392 		}
393 
394 		if (ch_flags & NVM_CHANNEL_160MHZ)
395 			data->vht160_supported = true;
396 
397 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
398 		    !(ch_flags & NVM_CHANNEL_VALID)) {
399 			/*
400 			 * Channels might become valid later if lar is
401 			 * supported, hence we still want to add them to
402 			 * the list of supported channels to cfg80211.
403 			 */
404 			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
405 						    nvm_chan[ch_idx], ch_flags);
406 			continue;
407 		}
408 
409 		channel = &data->channels[n_channels];
410 		n_channels++;
411 
412 		channel->hw_value = nvm_chan[ch_idx];
413 		channel->band = band;
414 		channel->center_freq =
415 			ieee80211_channel_to_frequency(
416 				channel->hw_value, channel->band);
417 
418 		/* Initialize regulatory-based run-time data */
419 
420 		/*
421 		 * Default value - highest tx power value.  max_power
422 		 * is not used in mvm, and is used for backwards compatibility
423 		 */
424 		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
425 
426 		/* don't put limitations in case we're using LAR */
427 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
428 			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
429 							       ch_idx, band,
430 							       ch_flags, cfg);
431 		else
432 			channel->flags = 0;
433 
434 		/* TODO: Don't put limitations on UHB devices as we still don't
435 		 * have NVM for them
436 		 */
437 		if (cfg->uhb_supported)
438 			channel->flags = 0;
439 		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
440 					    channel->hw_value, ch_flags);
441 		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
442 				 channel->hw_value, channel->max_power);
443 	}
444 
445 	return n_channels;
446 }
447 
iwl_init_vht_hw_capab(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_sta_vht_cap * vht_cap,u8 tx_chains,u8 rx_chains)448 static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
449 				  struct iwl_nvm_data *data,
450 				  struct ieee80211_sta_vht_cap *vht_cap,
451 				  u8 tx_chains, u8 rx_chains)
452 {
453 	const struct iwl_cfg *cfg = trans->cfg;
454 	int num_rx_ants = num_of_ant(rx_chains);
455 	int num_tx_ants = num_of_ant(tx_chains);
456 
457 	vht_cap->vht_supported = true;
458 
459 	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
460 		       IEEE80211_VHT_CAP_RXSTBC_1 |
461 		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
462 		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
463 		       IEEE80211_VHT_MAX_AMPDU_1024K <<
464 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
465 
466 	if (data->vht160_supported)
467 		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
468 				IEEE80211_VHT_CAP_SHORT_GI_160;
469 
470 	if (cfg->vht_mu_mimo_supported)
471 		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
472 
473 	if (cfg->ht_params->ldpc)
474 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
475 
476 	if (data->sku_cap_mimo_disabled) {
477 		num_rx_ants = 1;
478 		num_tx_ants = 1;
479 	}
480 
481 	if (num_tx_ants > 1)
482 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
483 	else
484 		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
485 
486 	switch (iwlwifi_mod_params.amsdu_size) {
487 	case IWL_AMSDU_DEF:
488 		if (trans->trans_cfg->mq_rx_supported)
489 			vht_cap->cap |=
490 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
491 		else
492 			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
493 		break;
494 	case IWL_AMSDU_2K:
495 		if (trans->trans_cfg->mq_rx_supported)
496 			vht_cap->cap |=
497 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
498 		else
499 			WARN(1, "RB size of 2K is not supported by this device\n");
500 		break;
501 	case IWL_AMSDU_4K:
502 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
503 		break;
504 	case IWL_AMSDU_8K:
505 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
506 		break;
507 	case IWL_AMSDU_12K:
508 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
509 		break;
510 	default:
511 		break;
512 	}
513 
514 	vht_cap->vht_mcs.rx_mcs_map =
515 		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
516 			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
517 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
518 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
519 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
520 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
521 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
522 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
523 
524 	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
525 		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
526 		/* this works because NOT_SUPPORTED == 3 */
527 		vht_cap->vht_mcs.rx_mcs_map |=
528 			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
529 	}
530 
531 	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
532 
533 	vht_cap->vht_mcs.tx_highest |=
534 		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
535 }
536 
537 static const struct ieee80211_sband_iftype_data iwl_he_capa[] = {
538 	{
539 		.types_mask = BIT(NL80211_IFTYPE_STATION),
540 		.he_cap = {
541 			.has_he = true,
542 			.he_cap_elem = {
543 				.mac_cap_info[0] =
544 					IEEE80211_HE_MAC_CAP0_HTC_HE |
545 					IEEE80211_HE_MAC_CAP0_TWT_REQ,
546 				.mac_cap_info[1] =
547 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
548 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
549 				.mac_cap_info[2] =
550 					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
551 				.mac_cap_info[3] =
552 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
553 					IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2,
554 				.mac_cap_info[4] =
555 					IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU |
556 					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
557 				.mac_cap_info[5] =
558 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
559 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
560 					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
561 					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
562 					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
563 				.phy_cap_info[0] =
564 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
565 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
566 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
567 				.phy_cap_info[1] =
568 					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
569 					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
570 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
571 				.phy_cap_info[2] =
572 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
573 				.phy_cap_info[3] =
574 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
575 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
576 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
577 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
578 				.phy_cap_info[4] =
579 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
580 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
581 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
582 				.phy_cap_info[5] =
583 					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
584 					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2,
585 				.phy_cap_info[6] =
586 					IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
587 					IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
588 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
589 				.phy_cap_info[7] =
590 					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
591 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
592 					IEEE80211_HE_PHY_CAP7_MAX_NC_1,
593 				.phy_cap_info[8] =
594 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
595 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
596 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
597 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
598 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996,
599 				.phy_cap_info[9] =
600 					IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK |
601 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
602 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
603 					IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
604 			},
605 			/*
606 			 * Set default Tx/Rx HE MCS NSS Support field.
607 			 * Indicate support for up to 2 spatial streams and all
608 			 * MCS, without any special cases
609 			 */
610 			.he_mcs_nss_supp = {
611 				.rx_mcs_80 = cpu_to_le16(0xfffa),
612 				.tx_mcs_80 = cpu_to_le16(0xfffa),
613 				.rx_mcs_160 = cpu_to_le16(0xfffa),
614 				.tx_mcs_160 = cpu_to_le16(0xfffa),
615 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
616 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
617 			},
618 			/*
619 			 * Set default PPE thresholds, with PPET16 set to 0,
620 			 * PPET8 set to 7
621 			 */
622 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
623 		},
624 	},
625 	{
626 		.types_mask = BIT(NL80211_IFTYPE_AP),
627 		.he_cap = {
628 			.has_he = true,
629 			.he_cap_elem = {
630 				.mac_cap_info[0] =
631 					IEEE80211_HE_MAC_CAP0_HTC_HE,
632 				.mac_cap_info[1] =
633 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
634 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
635 				.mac_cap_info[2] =
636 					IEEE80211_HE_MAC_CAP2_BSR,
637 				.mac_cap_info[3] =
638 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
639 					IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2,
640 				.mac_cap_info[4] =
641 					IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU,
642 				.mac_cap_info[5] =
643 					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU,
644 				.phy_cap_info[0] =
645 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
646 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
647 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
648 				.phy_cap_info[1] =
649 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
650 				.phy_cap_info[2] =
651 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
652 				.phy_cap_info[3] =
653 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
654 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
655 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
656 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
657 				.phy_cap_info[4] =
658 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
659 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
660 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
661 				.phy_cap_info[5] =
662 					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
663 					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2,
664 				.phy_cap_info[6] =
665 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
666 				.phy_cap_info[7] =
667 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
668 					IEEE80211_HE_PHY_CAP7_MAX_NC_1,
669 				.phy_cap_info[8] =
670 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
671 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
672 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
673 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
674 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996,
675 				.phy_cap_info[9] =
676 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
677 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
678 					IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
679 			},
680 			/*
681 			 * Set default Tx/Rx HE MCS NSS Support field.
682 			 * Indicate support for up to 2 spatial streams and all
683 			 * MCS, without any special cases
684 			 */
685 			.he_mcs_nss_supp = {
686 				.rx_mcs_80 = cpu_to_le16(0xfffa),
687 				.tx_mcs_80 = cpu_to_le16(0xfffa),
688 				.rx_mcs_160 = cpu_to_le16(0xfffa),
689 				.tx_mcs_160 = cpu_to_le16(0xfffa),
690 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
691 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
692 			},
693 			/*
694 			 * Set default PPE thresholds, with PPET16 set to 0,
695 			 * PPET8 set to 7
696 			 */
697 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
698 		},
699 	},
700 };
701 
iwl_init_he_6ghz_capa(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_supported_band * sband,u8 tx_chains,u8 rx_chains)702 static void iwl_init_he_6ghz_capa(struct iwl_trans *trans,
703 				  struct iwl_nvm_data *data,
704 				  struct ieee80211_supported_band *sband,
705 				  u8 tx_chains, u8 rx_chains)
706 {
707 	struct ieee80211_sta_ht_cap ht_cap;
708 	struct ieee80211_sta_vht_cap vht_cap = {};
709 	struct ieee80211_sband_iftype_data *iftype_data;
710 	u16 he_6ghz_capa = 0;
711 	u32 exp;
712 	int i;
713 
714 	if (sband->band != NL80211_BAND_6GHZ)
715 		return;
716 
717 	/* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */
718 	iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ,
719 			     tx_chains, rx_chains);
720 	WARN_ON(!ht_cap.ht_supported);
721 	iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains);
722 	WARN_ON(!vht_cap.vht_supported);
723 
724 	he_6ghz_capa |=
725 		u16_encode_bits(ht_cap.ampdu_density,
726 				IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
727 	exp = u32_get_bits(vht_cap.cap,
728 			   IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
729 	he_6ghz_capa |=
730 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
731 	exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK);
732 	he_6ghz_capa |=
733 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
734 	/* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */
735 	if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
736 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
737 	if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
738 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
739 
740 	IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa);
741 
742 	/* we know it's writable - we set it before ourselves */
743 	iftype_data = (void *)sband->iftype_data;
744 	for (i = 0; i < sband->n_iftype_data; i++)
745 		iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa);
746 }
747 
iwl_init_he_hw_capab(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_supported_band * sband,u8 tx_chains,u8 rx_chains)748 static void iwl_init_he_hw_capab(struct iwl_trans *trans,
749 				 struct iwl_nvm_data *data,
750 				 struct ieee80211_supported_band *sband,
751 				 u8 tx_chains, u8 rx_chains)
752 {
753 	struct ieee80211_sband_iftype_data *iftype_data;
754 
755 	/* should only initialize once */
756 	if (WARN_ON(sband->iftype_data))
757 		return;
758 
759 	BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_capa));
760 	BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_capa));
761 
762 	switch (sband->band) {
763 	case NL80211_BAND_2GHZ:
764 		iftype_data = data->iftd.low;
765 		break;
766 	case NL80211_BAND_5GHZ:
767 	case NL80211_BAND_6GHZ:
768 		iftype_data = data->iftd.high;
769 		break;
770 	default:
771 		WARN_ON(1);
772 		return;
773 	}
774 
775 	memcpy(iftype_data, iwl_he_capa, sizeof(iwl_he_capa));
776 
777 	sband->iftype_data = iftype_data;
778 	sband->n_iftype_data = ARRAY_SIZE(iwl_he_capa);
779 
780 	/* If not 2x2, we need to indicate 1x1 in the Midamble RX Max NSTS */
781 	if ((tx_chains & rx_chains) != ANT_AB) {
782 		int i;
783 
784 		for (i = 0; i < sband->n_iftype_data; i++) {
785 			iftype_data[i].he_cap.he_cap_elem.phy_cap_info[1] &=
786 				~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
787 			iftype_data[i].he_cap.he_cap_elem.phy_cap_info[2] &=
788 				~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
789 			iftype_data[i].he_cap.he_cap_elem.phy_cap_info[7] &=
790 				~IEEE80211_HE_PHY_CAP7_MAX_NC_MASK;
791 		}
792 	}
793 	iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains);
794 }
795 
iwl_init_sbands(struct iwl_trans * trans,struct iwl_nvm_data * data,const void * nvm_ch_flags,u8 tx_chains,u8 rx_chains,u32 sbands_flags,bool v4)796 static void iwl_init_sbands(struct iwl_trans *trans,
797 			    struct iwl_nvm_data *data,
798 			    const void *nvm_ch_flags, u8 tx_chains,
799 			    u8 rx_chains, u32 sbands_flags, bool v4)
800 {
801 	struct device *dev = trans->dev;
802 	const struct iwl_cfg *cfg = trans->cfg;
803 	int n_channels;
804 	int n_used = 0;
805 	struct ieee80211_supported_band *sband;
806 
807 	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
808 					  sbands_flags, v4);
809 	sband = &data->bands[NL80211_BAND_2GHZ];
810 	sband->band = NL80211_BAND_2GHZ;
811 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
812 	sband->n_bitrates = N_RATES_24;
813 	n_used += iwl_init_sband_channels(data, sband, n_channels,
814 					  NL80211_BAND_2GHZ);
815 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
816 			     tx_chains, rx_chains);
817 
818 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
819 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains);
820 
821 	sband = &data->bands[NL80211_BAND_5GHZ];
822 	sband->band = NL80211_BAND_5GHZ;
823 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
824 	sband->n_bitrates = N_RATES_52;
825 	n_used += iwl_init_sband_channels(data, sband, n_channels,
826 					  NL80211_BAND_5GHZ);
827 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
828 			     tx_chains, rx_chains);
829 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
830 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
831 				      tx_chains, rx_chains);
832 
833 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
834 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains);
835 
836 	/* 6GHz band. */
837 	sband = &data->bands[NL80211_BAND_6GHZ];
838 	sband->band = NL80211_BAND_6GHZ;
839 	/* use the same rates as 5GHz band */
840 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
841 	sband->n_bitrates = N_RATES_52;
842 	n_used += iwl_init_sband_channels(data, sband, n_channels,
843 					  NL80211_BAND_6GHZ);
844 
845 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
846 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains);
847 	else
848 		sband->n_channels = 0;
849 	if (n_channels != n_used)
850 		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
851 			    n_used, n_channels);
852 }
853 
iwl_get_sku(const struct iwl_cfg * cfg,const __le16 * nvm_sw,const __le16 * phy_sku)854 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
855 		       const __le16 *phy_sku)
856 {
857 	if (cfg->nvm_type != IWL_NVM_EXT)
858 		return le16_to_cpup(nvm_sw + SKU);
859 
860 	return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
861 }
862 
iwl_get_nvm_version(const struct iwl_cfg * cfg,const __le16 * nvm_sw)863 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
864 {
865 	if (cfg->nvm_type != IWL_NVM_EXT)
866 		return le16_to_cpup(nvm_sw + NVM_VERSION);
867 	else
868 		return le32_to_cpup((__le32 *)(nvm_sw +
869 					       NVM_VERSION_EXT_NVM));
870 }
871 
iwl_get_radio_cfg(const struct iwl_cfg * cfg,const __le16 * nvm_sw,const __le16 * phy_sku)872 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
873 			     const __le16 *phy_sku)
874 {
875 	if (cfg->nvm_type != IWL_NVM_EXT)
876 		return le16_to_cpup(nvm_sw + RADIO_CFG);
877 
878 	return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
879 
880 }
881 
iwl_get_n_hw_addrs(const struct iwl_cfg * cfg,const __le16 * nvm_sw)882 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
883 {
884 	int n_hw_addr;
885 
886 	if (cfg->nvm_type != IWL_NVM_EXT)
887 		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
888 
889 	n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
890 
891 	return n_hw_addr & N_HW_ADDR_MASK;
892 }
893 
iwl_set_radio_cfg(const struct iwl_cfg * cfg,struct iwl_nvm_data * data,u32 radio_cfg)894 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
895 			      struct iwl_nvm_data *data,
896 			      u32 radio_cfg)
897 {
898 	if (cfg->nvm_type != IWL_NVM_EXT) {
899 		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
900 		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
901 		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
902 		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
903 		return;
904 	}
905 
906 	/* set the radio configuration for family 8000 */
907 	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
908 	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
909 	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
910 	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
911 	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
912 	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
913 }
914 
iwl_flip_hw_address(__le32 mac_addr0,__le32 mac_addr1,u8 * dest)915 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
916 {
917 	const u8 *hw_addr;
918 
919 	hw_addr = (const u8 *)&mac_addr0;
920 	dest[0] = hw_addr[3];
921 	dest[1] = hw_addr[2];
922 	dest[2] = hw_addr[1];
923 	dest[3] = hw_addr[0];
924 
925 	hw_addr = (const u8 *)&mac_addr1;
926 	dest[4] = hw_addr[1];
927 	dest[5] = hw_addr[0];
928 }
929 
iwl_set_hw_address_from_csr(struct iwl_trans * trans,struct iwl_nvm_data * data)930 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
931 					struct iwl_nvm_data *data)
932 {
933 	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP));
934 	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP));
935 
936 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
937 	/*
938 	 * If the OEM fused a valid address, use it instead of the one in the
939 	 * OTP
940 	 */
941 	if (is_valid_ether_addr(data->hw_addr))
942 		return;
943 
944 	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP));
945 	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP));
946 
947 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
948 }
949 
iwl_set_hw_address_family_8000(struct iwl_trans * trans,const struct iwl_cfg * cfg,struct iwl_nvm_data * data,const __le16 * mac_override,const __be16 * nvm_hw)950 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
951 					   const struct iwl_cfg *cfg,
952 					   struct iwl_nvm_data *data,
953 					   const __le16 *mac_override,
954 					   const __be16 *nvm_hw)
955 {
956 	const u8 *hw_addr;
957 
958 	if (mac_override) {
959 		static const u8 reserved_mac[] = {
960 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
961 		};
962 
963 		hw_addr = (const u8 *)(mac_override +
964 				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
965 
966 		/*
967 		 * Store the MAC address from MAO section.
968 		 * No byte swapping is required in MAO section
969 		 */
970 		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
971 
972 		/*
973 		 * Force the use of the OTP MAC address in case of reserved MAC
974 		 * address in the NVM, or if address is given but invalid.
975 		 */
976 		if (is_valid_ether_addr(data->hw_addr) &&
977 		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
978 			return;
979 
980 		IWL_ERR(trans,
981 			"mac address from nvm override section is not valid\n");
982 	}
983 
984 	if (nvm_hw) {
985 		/* read the mac address from WFMP registers */
986 		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
987 						WFMP_MAC_ADDR_0));
988 		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
989 						WFMP_MAC_ADDR_1));
990 
991 		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
992 
993 		return;
994 	}
995 
996 	IWL_ERR(trans, "mac address is not found\n");
997 }
998 
iwl_set_hw_address(struct iwl_trans * trans,const struct iwl_cfg * cfg,struct iwl_nvm_data * data,const __be16 * nvm_hw,const __le16 * mac_override)999 static int iwl_set_hw_address(struct iwl_trans *trans,
1000 			      const struct iwl_cfg *cfg,
1001 			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
1002 			      const __le16 *mac_override)
1003 {
1004 	if (cfg->mac_addr_from_csr) {
1005 		iwl_set_hw_address_from_csr(trans, data);
1006 	} else if (cfg->nvm_type != IWL_NVM_EXT) {
1007 		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
1008 
1009 		/* The byte order is little endian 16 bit, meaning 214365 */
1010 		data->hw_addr[0] = hw_addr[1];
1011 		data->hw_addr[1] = hw_addr[0];
1012 		data->hw_addr[2] = hw_addr[3];
1013 		data->hw_addr[3] = hw_addr[2];
1014 		data->hw_addr[4] = hw_addr[5];
1015 		data->hw_addr[5] = hw_addr[4];
1016 	} else {
1017 		iwl_set_hw_address_family_8000(trans, cfg, data,
1018 					       mac_override, nvm_hw);
1019 	}
1020 
1021 	if (!is_valid_ether_addr(data->hw_addr)) {
1022 		IWL_ERR(trans, "no valid mac address was found\n");
1023 		return -EINVAL;
1024 	}
1025 
1026 	IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr);
1027 
1028 	return 0;
1029 }
1030 
1031 static bool
iwl_nvm_no_wide_in_5ghz(struct iwl_trans * trans,const struct iwl_cfg * cfg,const __be16 * nvm_hw)1032 iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1033 			const __be16 *nvm_hw)
1034 {
1035 	/*
1036 	 * Workaround a bug in Indonesia SKUs where the regulatory in
1037 	 * some 7000-family OTPs erroneously allow wide channels in
1038 	 * 5GHz.  To check for Indonesia, we take the SKU value from
1039 	 * bits 1-4 in the subsystem ID and check if it is either 5 or
1040 	 * 9.  In those cases, we need to force-disable wide channels
1041 	 * in 5GHz otherwise the FW will throw a sysassert when we try
1042 	 * to use them.
1043 	 */
1044 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1045 		/*
1046 		 * Unlike the other sections in the NVM, the hw
1047 		 * section uses big-endian.
1048 		 */
1049 		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
1050 		u8 sku = (subsystem_id & 0x1e) >> 1;
1051 
1052 		if (sku == 5 || sku == 9) {
1053 			IWL_DEBUG_EEPROM(trans->dev,
1054 					 "disabling wide channels in 5GHz (0x%0x %d)\n",
1055 					 subsystem_id, sku);
1056 			return true;
1057 		}
1058 	}
1059 
1060 	return false;
1061 }
1062 
1063 struct iwl_nvm_data *
iwl_parse_nvm_data(struct iwl_trans * trans,const struct iwl_cfg * cfg,const struct iwl_fw * fw,const __be16 * nvm_hw,const __le16 * nvm_sw,const __le16 * nvm_calib,const __le16 * regulatory,const __le16 * mac_override,const __le16 * phy_sku,u8 tx_chains,u8 rx_chains)1064 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1065 		   const struct iwl_fw *fw,
1066 		   const __be16 *nvm_hw, const __le16 *nvm_sw,
1067 		   const __le16 *nvm_calib, const __le16 *regulatory,
1068 		   const __le16 *mac_override, const __le16 *phy_sku,
1069 		   u8 tx_chains, u8 rx_chains)
1070 {
1071 	struct iwl_nvm_data *data;
1072 	bool lar_enabled;
1073 	u32 sku, radio_cfg;
1074 	u32 sbands_flags = 0;
1075 	u16 lar_config;
1076 	const __le16 *ch_section;
1077 
1078 	if (cfg->uhb_supported)
1079 		data = kzalloc(struct_size(data, channels,
1080 					   IWL_NVM_NUM_CHANNELS_UHB),
1081 					   GFP_KERNEL);
1082 	else if (cfg->nvm_type != IWL_NVM_EXT)
1083 		data = kzalloc(struct_size(data, channels,
1084 					   IWL_NVM_NUM_CHANNELS),
1085 					   GFP_KERNEL);
1086 	else
1087 		data = kzalloc(struct_size(data, channels,
1088 					   IWL_NVM_NUM_CHANNELS_EXT),
1089 					   GFP_KERNEL);
1090 	if (!data)
1091 		return NULL;
1092 
1093 	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
1094 
1095 	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
1096 	iwl_set_radio_cfg(cfg, data, radio_cfg);
1097 	if (data->valid_tx_ant)
1098 		tx_chains &= data->valid_tx_ant;
1099 	if (data->valid_rx_ant)
1100 		rx_chains &= data->valid_rx_ant;
1101 
1102 	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1103 	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1104 	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1105 	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1106 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1107 		data->sku_cap_11n_enable = false;
1108 	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1109 				    (sku & NVM_SKU_CAP_11AC_ENABLE);
1110 	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1111 
1112 	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1113 
1114 	if (cfg->nvm_type != IWL_NVM_EXT) {
1115 		/* Checking for required sections */
1116 		if (!nvm_calib) {
1117 			IWL_ERR(trans,
1118 				"Can't parse empty Calib NVM sections\n");
1119 			kfree(data);
1120 			return NULL;
1121 		}
1122 
1123 		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1124 			     &regulatory[NVM_CHANNELS_SDP] :
1125 			     &nvm_sw[NVM_CHANNELS];
1126 
1127 		/* in family 8000 Xtal calibration values moved to OTP */
1128 		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
1129 		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
1130 		lar_enabled = true;
1131 	} else {
1132 		u16 lar_offset = data->nvm_version < 0xE39 ?
1133 				 NVM_LAR_OFFSET_OLD :
1134 				 NVM_LAR_OFFSET;
1135 
1136 		lar_config = le16_to_cpup(regulatory + lar_offset);
1137 		data->lar_enabled = !!(lar_config &
1138 				       NVM_LAR_ENABLED);
1139 		lar_enabled = data->lar_enabled;
1140 		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1141 	}
1142 
1143 	/* If no valid mac address was found - bail out */
1144 	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1145 		kfree(data);
1146 		return NULL;
1147 	}
1148 
1149 	if (lar_enabled &&
1150 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1151 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1152 
1153 	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1154 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1155 
1156 	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1157 			sbands_flags, false);
1158 	data->calib_version = 255;
1159 
1160 	return data;
1161 }
1162 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1163 
iwl_nvm_get_regdom_bw_flags(const u16 * nvm_chan,int ch_idx,u16 nvm_flags,struct iwl_reg_capa reg_capa,const struct iwl_cfg * cfg)1164 static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1165 				       int ch_idx, u16 nvm_flags,
1166 				       struct iwl_reg_capa reg_capa,
1167 				       const struct iwl_cfg *cfg)
1168 {
1169 	u32 flags = NL80211_RRF_NO_HT40;
1170 
1171 	if (ch_idx < NUM_2GHZ_CHANNELS &&
1172 	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
1173 		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1174 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1175 		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1176 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1177 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1178 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1179 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1180 		else
1181 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1182 	}
1183 
1184 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1185 		flags |= NL80211_RRF_NO_80MHZ;
1186 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1187 		flags |= NL80211_RRF_NO_160MHZ;
1188 
1189 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1190 		flags |= NL80211_RRF_NO_IR;
1191 
1192 	if (nvm_flags & NVM_CHANNEL_RADAR)
1193 		flags |= NL80211_RRF_DFS;
1194 
1195 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1196 		flags |= NL80211_RRF_NO_OUTDOOR;
1197 
1198 	/* Set the GO concurrent flag only in case that NO_IR is set.
1199 	 * Otherwise it is meaningless
1200 	 */
1201 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
1202 	    (flags & NL80211_RRF_NO_IR))
1203 		flags |= NL80211_RRF_GO_CONCURRENT;
1204 
1205 	/*
1206 	 * reg_capa is per regulatory domain so apply it for every channel
1207 	 */
1208 	if (ch_idx >= NUM_2GHZ_CHANNELS) {
1209 		if (!reg_capa.allow_40mhz)
1210 			flags |= NL80211_RRF_NO_HT40;
1211 
1212 		if (!reg_capa.allow_80mhz)
1213 			flags |= NL80211_RRF_NO_80MHZ;
1214 
1215 		if (!reg_capa.allow_160mhz)
1216 			flags |= NL80211_RRF_NO_160MHZ;
1217 	}
1218 	if (reg_capa.disable_11ax)
1219 		flags |= NL80211_RRF_NO_HE;
1220 
1221 	return flags;
1222 }
1223 
iwl_get_reg_capa(u16 flags,u8 resp_ver)1224 static struct iwl_reg_capa iwl_get_reg_capa(u16 flags, u8 resp_ver)
1225 {
1226 	struct iwl_reg_capa reg_capa;
1227 
1228 	if (resp_ver >= REG_CAPA_V2_RESP_VER) {
1229 		reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
1230 		reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
1231 		reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
1232 		reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
1233 	} else {
1234 		reg_capa.allow_40mhz = !(flags & REG_CAPA_40MHZ_FORBIDDEN);
1235 		reg_capa.allow_80mhz = flags & REG_CAPA_80MHZ_ALLOWED;
1236 		reg_capa.allow_160mhz = flags & REG_CAPA_160MHZ_ALLOWED;
1237 		reg_capa.disable_11ax = flags & REG_CAPA_11AX_DISABLED;
1238 	}
1239 	return reg_capa;
1240 }
1241 
1242 struct ieee80211_regdomain *
iwl_parse_nvm_mcc_info(struct device * dev,const struct iwl_cfg * cfg,int num_of_ch,__le32 * channels,u16 fw_mcc,u16 geo_info,u16 cap,u8 resp_ver)1243 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1244 		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1245 		       u16 geo_info, u16 cap, u8 resp_ver)
1246 {
1247 	int ch_idx;
1248 	u16 ch_flags;
1249 	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1250 	const u16 *nvm_chan;
1251 	struct ieee80211_regdomain *regd, *copy_rd;
1252 	struct ieee80211_reg_rule *rule;
1253 	enum nl80211_band band;
1254 	int center_freq, prev_center_freq = 0;
1255 	int valid_rules = 0;
1256 	bool new_rule;
1257 	int max_num_ch;
1258 	struct iwl_reg_capa reg_capa;
1259 
1260 	if (cfg->uhb_supported) {
1261 		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1262 		nvm_chan = iwl_uhb_nvm_channels;
1263 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
1264 		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1265 		nvm_chan = iwl_ext_nvm_channels;
1266 	} else {
1267 		max_num_ch = IWL_NVM_NUM_CHANNELS;
1268 		nvm_chan = iwl_nvm_channels;
1269 	}
1270 
1271 	if (WARN_ON(num_of_ch > max_num_ch))
1272 		num_of_ch = max_num_ch;
1273 
1274 	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1275 		return ERR_PTR(-EINVAL);
1276 
1277 	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1278 		      num_of_ch);
1279 
1280 	/* build a regdomain rule for every valid channel */
1281 	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1282 	if (!regd)
1283 		return ERR_PTR(-ENOMEM);
1284 
1285 	/* set alpha2 from FW. */
1286 	regd->alpha2[0] = fw_mcc >> 8;
1287 	regd->alpha2[1] = fw_mcc & 0xff;
1288 
1289 	/* parse regulatory capability flags */
1290 	reg_capa = iwl_get_reg_capa(cap, resp_ver);
1291 
1292 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1293 		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1294 		band = iwl_nl80211_band_from_channel_idx(ch_idx);
1295 		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1296 							     band);
1297 		new_rule = false;
1298 
1299 		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1300 			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1301 						    nvm_chan[ch_idx], ch_flags);
1302 			continue;
1303 		}
1304 
1305 		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1306 							     ch_flags, reg_capa,
1307 							     cfg);
1308 
1309 		/* we can't continue the same rule */
1310 		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1311 		    center_freq - prev_center_freq > 20) {
1312 			valid_rules++;
1313 			new_rule = true;
1314 		}
1315 
1316 		rule = &regd->reg_rules[valid_rules - 1];
1317 
1318 		if (new_rule)
1319 			rule->freq_range.start_freq_khz =
1320 						MHZ_TO_KHZ(center_freq - 10);
1321 
1322 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1323 
1324 		/* this doesn't matter - not used by FW */
1325 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1326 		rule->power_rule.max_eirp =
1327 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1328 
1329 		rule->flags = reg_rule_flags;
1330 
1331 		/* rely on auto-calculation to merge BW of contiguous chans */
1332 		rule->flags |= NL80211_RRF_AUTO_BW;
1333 		rule->freq_range.max_bandwidth_khz = 0;
1334 
1335 		prev_center_freq = center_freq;
1336 		prev_reg_rule_flags = reg_rule_flags;
1337 
1338 		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1339 					    nvm_chan[ch_idx], ch_flags);
1340 
1341 		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1342 		    band == NL80211_BAND_2GHZ)
1343 			continue;
1344 
1345 		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1346 	}
1347 
1348 	regd->n_reg_rules = valid_rules;
1349 
1350 	/*
1351 	 * Narrow down regdom for unused regulatory rules to prevent hole
1352 	 * between reg rules to wmm rules.
1353 	 */
1354 	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1355 			  GFP_KERNEL);
1356 	if (!copy_rd)
1357 		copy_rd = ERR_PTR(-ENOMEM);
1358 
1359 	kfree(regd);
1360 	return copy_rd;
1361 }
1362 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1363 
1364 #define IWL_MAX_NVM_SECTION_SIZE	0x1b58
1365 #define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
1366 #define MAX_NVM_FILE_LEN	16384
1367 
iwl_nvm_fixups(u32 hw_id,unsigned int section,u8 * data,unsigned int len)1368 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1369 		    unsigned int len)
1370 {
1371 #define IWL_4165_DEVICE_ID	0x5501
1372 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1373 
1374 	if (section == NVM_SECTION_TYPE_PHY_SKU &&
1375 	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1376 	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1377 		/* OTP 0x52 bug work around: it's a 1x1 device */
1378 		data[3] = ANT_B | (ANT_B << 4);
1379 }
1380 IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1381 
1382 /*
1383  * Reads external NVM from a file into mvm->nvm_sections
1384  *
1385  * HOW TO CREATE THE NVM FILE FORMAT:
1386  * ------------------------------
1387  * 1. create hex file, format:
1388  *      3800 -> header
1389  *      0000 -> header
1390  *      5a40 -> data
1391  *
1392  *   rev - 6 bit (word1)
1393  *   len - 10 bit (word1)
1394  *   id - 4 bit (word2)
1395  *   rsv - 12 bit (word2)
1396  *
1397  * 2. flip 8bits with 8 bits per line to get the right NVM file format
1398  *
1399  * 3. create binary file from the hex file
1400  *
1401  * 4. save as "iNVM_xxx.bin" under /lib/firmware
1402  */
iwl_read_external_nvm(struct iwl_trans * trans,const char * nvm_file_name,struct iwl_nvm_section * nvm_sections)1403 int iwl_read_external_nvm(struct iwl_trans *trans,
1404 			  const char *nvm_file_name,
1405 			  struct iwl_nvm_section *nvm_sections)
1406 {
1407 	int ret, section_size;
1408 	u16 section_id;
1409 	const struct firmware *fw_entry;
1410 	const struct {
1411 		__le16 word1;
1412 		__le16 word2;
1413 		u8 data[];
1414 	} *file_sec;
1415 	const u8 *eof;
1416 	u8 *temp;
1417 	int max_section_size;
1418 	const __le32 *dword_buff;
1419 
1420 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1421 #define NVM_WORD2_ID(x) (x >> 12)
1422 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1423 #define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1424 #define NVM_HEADER_0	(0x2A504C54)
1425 #define NVM_HEADER_1	(0x4E564D2A)
1426 #define NVM_HEADER_SIZE	(4 * sizeof(u32))
1427 
1428 	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1429 
1430 	/* Maximal size depends on NVM version */
1431 	if (trans->cfg->nvm_type != IWL_NVM_EXT)
1432 		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1433 	else
1434 		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1435 
1436 	/*
1437 	 * Obtain NVM image via request_firmware. Since we already used
1438 	 * request_firmware_nowait() for the firmware binary load and only
1439 	 * get here after that we assume the NVM request can be satisfied
1440 	 * synchronously.
1441 	 */
1442 	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1443 	if (ret) {
1444 		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1445 			nvm_file_name, ret);
1446 		return ret;
1447 	}
1448 
1449 	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1450 		 nvm_file_name, fw_entry->size);
1451 
1452 	if (fw_entry->size > MAX_NVM_FILE_LEN) {
1453 		IWL_ERR(trans, "NVM file too large\n");
1454 		ret = -EINVAL;
1455 		goto out;
1456 	}
1457 
1458 	eof = fw_entry->data + fw_entry->size;
1459 	dword_buff = (__le32 *)fw_entry->data;
1460 
1461 	/* some NVM file will contain a header.
1462 	 * The header is identified by 2 dwords header as follow:
1463 	 * dword[0] = 0x2A504C54
1464 	 * dword[1] = 0x4E564D2A
1465 	 *
1466 	 * This header must be skipped when providing the NVM data to the FW.
1467 	 */
1468 	if (fw_entry->size > NVM_HEADER_SIZE &&
1469 	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1470 	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1471 		file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE);
1472 		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1473 		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1474 			 le32_to_cpu(dword_buff[3]));
1475 
1476 		/* nvm file validation, dword_buff[2] holds the file version */
1477 		if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1478 		    CSR_HW_REV_STEP(trans->hw_rev) == SILICON_C_STEP &&
1479 		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
1480 			ret = -EFAULT;
1481 			goto out;
1482 		}
1483 	} else {
1484 		file_sec = (void *)fw_entry->data;
1485 	}
1486 
1487 	while (true) {
1488 		if (file_sec->data > eof) {
1489 			IWL_ERR(trans,
1490 				"ERROR - NVM file too short for section header\n");
1491 			ret = -EINVAL;
1492 			break;
1493 		}
1494 
1495 		/* check for EOF marker */
1496 		if (!file_sec->word1 && !file_sec->word2) {
1497 			ret = 0;
1498 			break;
1499 		}
1500 
1501 		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
1502 			section_size =
1503 				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
1504 			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
1505 		} else {
1506 			section_size = 2 * EXT_NVM_WORD2_LEN(
1507 						le16_to_cpu(file_sec->word2));
1508 			section_id = EXT_NVM_WORD1_ID(
1509 						le16_to_cpu(file_sec->word1));
1510 		}
1511 
1512 		if (section_size > max_section_size) {
1513 			IWL_ERR(trans, "ERROR - section too large (%d)\n",
1514 				section_size);
1515 			ret = -EINVAL;
1516 			break;
1517 		}
1518 
1519 		if (!section_size) {
1520 			IWL_ERR(trans, "ERROR - section empty\n");
1521 			ret = -EINVAL;
1522 			break;
1523 		}
1524 
1525 		if (file_sec->data + section_size > eof) {
1526 			IWL_ERR(trans,
1527 				"ERROR - NVM file too short for section (%d bytes)\n",
1528 				section_size);
1529 			ret = -EINVAL;
1530 			break;
1531 		}
1532 
1533 		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
1534 			 "Invalid NVM section ID %d\n", section_id)) {
1535 			ret = -EINVAL;
1536 			break;
1537 		}
1538 
1539 		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
1540 		if (!temp) {
1541 			ret = -ENOMEM;
1542 			break;
1543 		}
1544 
1545 		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
1546 
1547 		kfree(nvm_sections[section_id].data);
1548 		nvm_sections[section_id].data = temp;
1549 		nvm_sections[section_id].length = section_size;
1550 
1551 		/* advance to the next section */
1552 		file_sec = (void *)(file_sec->data + section_size);
1553 	}
1554 out:
1555 	release_firmware(fw_entry);
1556 	return ret;
1557 }
1558 IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
1559 
iwl_get_nvm(struct iwl_trans * trans,const struct iwl_fw * fw)1560 struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
1561 				 const struct iwl_fw *fw)
1562 {
1563 	struct iwl_nvm_get_info cmd = {};
1564 	struct iwl_nvm_data *nvm;
1565 	struct iwl_host_cmd hcmd = {
1566 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
1567 		.data = { &cmd, },
1568 		.len = { sizeof(cmd) },
1569 		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
1570 	};
1571 	int  ret;
1572 	bool empty_otp;
1573 	u32 mac_flags;
1574 	u32 sbands_flags = 0;
1575 	/*
1576 	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
1577 	 * in v3, except for the channel profile part of the
1578 	 * regulatory.  So we can just access the new struct, with the
1579 	 * exception of the latter.
1580 	 */
1581 	struct iwl_nvm_get_info_rsp *rsp;
1582 	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
1583 	bool v4 = fw_has_api(&fw->ucode_capa,
1584 			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
1585 	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
1586 	void *channel_profile;
1587 
1588 	ret = iwl_trans_send_cmd(trans, &hcmd);
1589 	if (ret)
1590 		return ERR_PTR(ret);
1591 
1592 	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
1593 		 "Invalid payload len in NVM response from FW %d",
1594 		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
1595 		ret = -EINVAL;
1596 		goto out;
1597 	}
1598 
1599 	rsp = (void *)hcmd.resp_pkt->data;
1600 	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
1601 		       NVM_GENERAL_FLAGS_EMPTY_OTP);
1602 	if (empty_otp)
1603 		IWL_INFO(trans, "OTP is empty\n");
1604 
1605 	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
1606 	if (!nvm) {
1607 		ret = -ENOMEM;
1608 		goto out;
1609 	}
1610 
1611 	iwl_set_hw_address_from_csr(trans, nvm);
1612 	/* TODO: if platform NVM has MAC address - override it here */
1613 
1614 	if (!is_valid_ether_addr(nvm->hw_addr)) {
1615 		IWL_ERR(trans, "no valid mac address was found\n");
1616 		ret = -EINVAL;
1617 		goto err_free;
1618 	}
1619 
1620 	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
1621 
1622 	/* Initialize general data */
1623 	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
1624 	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
1625 	if (nvm->n_hw_addrs == 0)
1626 		IWL_WARN(trans,
1627 			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
1628 			 empty_otp);
1629 
1630 	/* Initialize MAC sku data */
1631 	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
1632 	nvm->sku_cap_11ac_enable =
1633 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
1634 	nvm->sku_cap_11n_enable =
1635 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
1636 	nvm->sku_cap_11ax_enable =
1637 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
1638 	nvm->sku_cap_band_24ghz_enable =
1639 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
1640 	nvm->sku_cap_band_52ghz_enable =
1641 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
1642 	nvm->sku_cap_mimo_disabled =
1643 		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
1644 
1645 	/* Initialize PHY sku data */
1646 	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
1647 	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
1648 
1649 	if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
1650 	    fw_has_capa(&fw->ucode_capa,
1651 			IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
1652 		nvm->lar_enabled = true;
1653 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1654 	}
1655 
1656 	rsp_v3 = (void *)rsp;
1657 	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
1658 			  (void *)rsp_v3->regulatory.channel_profile;
1659 
1660 	iwl_init_sbands(trans, nvm,
1661 			channel_profile,
1662 			nvm->valid_tx_ant & fw->valid_tx_ant,
1663 			nvm->valid_rx_ant & fw->valid_rx_ant,
1664 			sbands_flags, v4);
1665 
1666 	iwl_free_resp(&hcmd);
1667 	return nvm;
1668 
1669 err_free:
1670 	kfree(nvm);
1671 out:
1672 	iwl_free_resp(&hcmd);
1673 	return ERR_PTR(ret);
1674 }
1675 IWL_EXPORT_SYMBOL(iwl_get_nvm);
1676