1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <linux/mm_types.h>
22 #include <linux/page-flags.h>
23 #include <asm/page.h>
24 
25 /* Free memory management - zoned buddy allocator.  */
26 #ifndef CONFIG_FORCE_MAX_ZONEORDER
27 #define MAX_ORDER 11
28 #else
29 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
30 #endif
31 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
32 
33 /*
34  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
35  * costly to service.  That is between allocation orders which should
36  * coalesce naturally under reasonable reclaim pressure and those which
37  * will not.
38  */
39 #define PAGE_ALLOC_COSTLY_ORDER 3
40 
41 enum migratetype {
42 	MIGRATE_UNMOVABLE,
43 	MIGRATE_MOVABLE,
44 	MIGRATE_RECLAIMABLE,
45 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
46 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47 #ifdef CONFIG_CMA
48 	/*
49 	 * MIGRATE_CMA migration type is designed to mimic the way
50 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
51 	 * from MIGRATE_CMA pageblocks and page allocator never
52 	 * implicitly change migration type of MIGRATE_CMA pageblock.
53 	 *
54 	 * The way to use it is to change migratetype of a range of
55 	 * pageblocks to MIGRATE_CMA which can be done by
56 	 * __free_pageblock_cma() function.  What is important though
57 	 * is that a range of pageblocks must be aligned to
58 	 * MAX_ORDER_NR_PAGES should biggest page be bigger than
59 	 * a single pageblock.
60 	 */
61 	MIGRATE_CMA,
62 #endif
63 #ifdef CONFIG_MEMORY_ISOLATION
64 	MIGRATE_ISOLATE,	/* can't allocate from here */
65 #endif
66 	MIGRATE_TYPES
67 };
68 
69 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
70 extern const char * const migratetype_names[MIGRATE_TYPES];
71 
72 #ifdef CONFIG_CMA
73 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
74 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
75 #else
76 #  define is_migrate_cma(migratetype) false
77 #  define is_migrate_cma_page(_page) false
78 #endif
79 
is_migrate_movable(int mt)80 static inline bool is_migrate_movable(int mt)
81 {
82 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
83 }
84 
85 #define for_each_migratetype_order(order, type) \
86 	for (order = 0; order < MAX_ORDER; order++) \
87 		for (type = 0; type < MIGRATE_TYPES; type++)
88 
89 extern int page_group_by_mobility_disabled;
90 
91 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
92 
93 #define get_pageblock_migratetype(page)					\
94 	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
95 
96 struct free_area {
97 	struct list_head	free_list[MIGRATE_TYPES];
98 	unsigned long		nr_free;
99 };
100 
get_page_from_free_area(struct free_area * area,int migratetype)101 static inline struct page *get_page_from_free_area(struct free_area *area,
102 					    int migratetype)
103 {
104 	return list_first_entry_or_null(&area->free_list[migratetype],
105 					struct page, lru);
106 }
107 
free_area_empty(struct free_area * area,int migratetype)108 static inline bool free_area_empty(struct free_area *area, int migratetype)
109 {
110 	return list_empty(&area->free_list[migratetype]);
111 }
112 
113 struct pglist_data;
114 
115 /*
116  * Add a wild amount of padding here to ensure datas fall into separate
117  * cachelines.  There are very few zone structures in the machine, so space
118  * consumption is not a concern here.
119  */
120 #if defined(CONFIG_SMP)
121 struct zone_padding {
122 	char x[0];
123 } ____cacheline_internodealigned_in_smp;
124 #define ZONE_PADDING(name)	struct zone_padding name;
125 #else
126 #define ZONE_PADDING(name)
127 #endif
128 
129 #ifdef CONFIG_NUMA
130 enum numa_stat_item {
131 	NUMA_HIT,		/* allocated in intended node */
132 	NUMA_MISS,		/* allocated in non intended node */
133 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
134 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
135 	NUMA_LOCAL,		/* allocation from local node */
136 	NUMA_OTHER,		/* allocation from other node */
137 	NR_VM_NUMA_STAT_ITEMS
138 };
139 #else
140 #define NR_VM_NUMA_STAT_ITEMS 0
141 #endif
142 
143 enum zone_stat_item {
144 	/* First 128 byte cacheline (assuming 64 bit words) */
145 	NR_FREE_PAGES,
146 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
147 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
148 	NR_ZONE_ACTIVE_ANON,
149 	NR_ZONE_INACTIVE_FILE,
150 	NR_ZONE_ACTIVE_FILE,
151 	NR_ZONE_UNEVICTABLE,
152 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
153 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
154 	/* Second 128 byte cacheline */
155 	NR_BOUNCE,
156 #if IS_ENABLED(CONFIG_ZSMALLOC)
157 	NR_ZSPAGES,		/* allocated in zsmalloc */
158 #endif
159 	NR_FREE_CMA_PAGES,
160 	NR_VM_ZONE_STAT_ITEMS };
161 
162 enum node_stat_item {
163 	NR_LRU_BASE,
164 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
165 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
166 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
167 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
168 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
169 	NR_SLAB_RECLAIMABLE_B,
170 	NR_SLAB_UNRECLAIMABLE_B,
171 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
172 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
173 	WORKINGSET_NODES,
174 	WORKINGSET_REFAULT_BASE,
175 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
176 	WORKINGSET_REFAULT_FILE,
177 	WORKINGSET_ACTIVATE_BASE,
178 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
179 	WORKINGSET_ACTIVATE_FILE,
180 	WORKINGSET_RESTORE_BASE,
181 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
182 	WORKINGSET_RESTORE_FILE,
183 	WORKINGSET_NODERECLAIM,
184 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
185 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
186 			   only modified from process context */
187 	NR_FILE_PAGES,
188 	NR_FILE_DIRTY,
189 	NR_WRITEBACK,
190 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
191 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
192 	NR_SHMEM_THPS,
193 	NR_SHMEM_PMDMAPPED,
194 	NR_FILE_THPS,
195 	NR_FILE_PMDMAPPED,
196 	NR_ANON_THPS,
197 	NR_VMSCAN_WRITE,
198 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
199 	NR_DIRTIED,		/* page dirtyings since bootup */
200 	NR_WRITTEN,		/* page writings since bootup */
201 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
202 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
203 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
204 	NR_KERNEL_STACK_KB,	/* measured in KiB */
205 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
206 	NR_KERNEL_SCS_KB,	/* measured in KiB */
207 #endif
208 	NR_PAGETABLE,		/* used for pagetables */
209 #ifdef CONFIG_SWAP
210 	NR_SWAPCACHE,
211 #endif
212 	NR_VM_NODE_STAT_ITEMS
213 };
214 
215 /*
216  * Returns true if the item should be printed in THPs (/proc/vmstat
217  * currently prints number of anon, file and shmem THPs. But the item
218  * is charged in pages).
219  */
vmstat_item_print_in_thp(enum node_stat_item item)220 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
221 {
222 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
223 		return false;
224 
225 	return item == NR_ANON_THPS ||
226 	       item == NR_FILE_THPS ||
227 	       item == NR_SHMEM_THPS ||
228 	       item == NR_SHMEM_PMDMAPPED ||
229 	       item == NR_FILE_PMDMAPPED;
230 }
231 
232 /*
233  * Returns true if the value is measured in bytes (most vmstat values are
234  * measured in pages). This defines the API part, the internal representation
235  * might be different.
236  */
vmstat_item_in_bytes(int idx)237 static __always_inline bool vmstat_item_in_bytes(int idx)
238 {
239 	/*
240 	 * Global and per-node slab counters track slab pages.
241 	 * It's expected that changes are multiples of PAGE_SIZE.
242 	 * Internally values are stored in pages.
243 	 *
244 	 * Per-memcg and per-lruvec counters track memory, consumed
245 	 * by individual slab objects. These counters are actually
246 	 * byte-precise.
247 	 */
248 	return (idx == NR_SLAB_RECLAIMABLE_B ||
249 		idx == NR_SLAB_UNRECLAIMABLE_B);
250 }
251 
252 /*
253  * We do arithmetic on the LRU lists in various places in the code,
254  * so it is important to keep the active lists LRU_ACTIVE higher in
255  * the array than the corresponding inactive lists, and to keep
256  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
257  *
258  * This has to be kept in sync with the statistics in zone_stat_item
259  * above and the descriptions in vmstat_text in mm/vmstat.c
260  */
261 #define LRU_BASE 0
262 #define LRU_ACTIVE 1
263 #define LRU_FILE 2
264 
265 enum lru_list {
266 	LRU_INACTIVE_ANON = LRU_BASE,
267 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
268 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
269 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
270 	LRU_UNEVICTABLE,
271 	NR_LRU_LISTS
272 };
273 
274 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
275 
276 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
277 
is_file_lru(enum lru_list lru)278 static inline bool is_file_lru(enum lru_list lru)
279 {
280 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
281 }
282 
is_active_lru(enum lru_list lru)283 static inline bool is_active_lru(enum lru_list lru)
284 {
285 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
286 }
287 
288 #define ANON_AND_FILE 2
289 
290 enum lruvec_flags {
291 	LRUVEC_CONGESTED,		/* lruvec has many dirty pages
292 					 * backed by a congested BDI
293 					 */
294 };
295 
296 struct lruvec {
297 	struct list_head		lists[NR_LRU_LISTS];
298 	/* per lruvec lru_lock for memcg */
299 	spinlock_t			lru_lock;
300 	/*
301 	 * These track the cost of reclaiming one LRU - file or anon -
302 	 * over the other. As the observed cost of reclaiming one LRU
303 	 * increases, the reclaim scan balance tips toward the other.
304 	 */
305 	unsigned long			anon_cost;
306 	unsigned long			file_cost;
307 	/* Non-resident age, driven by LRU movement */
308 	atomic_long_t			nonresident_age;
309 	/* Refaults at the time of last reclaim cycle */
310 	unsigned long			refaults[ANON_AND_FILE];
311 	/* Various lruvec state flags (enum lruvec_flags) */
312 	unsigned long			flags;
313 #ifdef CONFIG_MEMCG
314 	struct pglist_data *pgdat;
315 #endif
316 };
317 
318 /* Isolate unmapped pages */
319 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
320 /* Isolate for asynchronous migration */
321 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
322 /* Isolate unevictable pages */
323 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
324 
325 /* LRU Isolation modes. */
326 typedef unsigned __bitwise isolate_mode_t;
327 
328 enum zone_watermarks {
329 	WMARK_MIN,
330 	WMARK_LOW,
331 	WMARK_HIGH,
332 	NR_WMARK
333 };
334 
335 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
336 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
337 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
338 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
339 
340 struct per_cpu_pages {
341 	int count;		/* number of pages in the list */
342 	int high;		/* high watermark, emptying needed */
343 	int batch;		/* chunk size for buddy add/remove */
344 
345 	/* Lists of pages, one per migrate type stored on the pcp-lists */
346 	struct list_head lists[MIGRATE_PCPTYPES];
347 };
348 
349 struct per_cpu_pageset {
350 	struct per_cpu_pages pcp;
351 #ifdef CONFIG_NUMA
352 	s8 expire;
353 	u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
354 #endif
355 #ifdef CONFIG_SMP
356 	s8 stat_threshold;
357 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
358 #endif
359 };
360 
361 struct per_cpu_nodestat {
362 	s8 stat_threshold;
363 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
364 };
365 
366 #endif /* !__GENERATING_BOUNDS.H */
367 
368 enum zone_type {
369 	/*
370 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
371 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
372 	 * On architectures where this area covers the whole 32 bit address
373 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
374 	 * DMA addressing constraints. This distinction is important as a 32bit
375 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
376 	 * platforms may need both zones as they support peripherals with
377 	 * different DMA addressing limitations.
378 	 */
379 #ifdef CONFIG_ZONE_DMA
380 	ZONE_DMA,
381 #endif
382 #ifdef CONFIG_ZONE_DMA32
383 	ZONE_DMA32,
384 #endif
385 	/*
386 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
387 	 * performed on pages in ZONE_NORMAL if the DMA devices support
388 	 * transfers to all addressable memory.
389 	 */
390 	ZONE_NORMAL,
391 #ifdef CONFIG_HIGHMEM
392 	/*
393 	 * A memory area that is only addressable by the kernel through
394 	 * mapping portions into its own address space. This is for example
395 	 * used by i386 to allow the kernel to address the memory beyond
396 	 * 900MB. The kernel will set up special mappings (page
397 	 * table entries on i386) for each page that the kernel needs to
398 	 * access.
399 	 */
400 	ZONE_HIGHMEM,
401 #endif
402 	/*
403 	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
404 	 * movable pages with few exceptional cases described below. Main use
405 	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
406 	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
407 	 * to increase the number of THP/huge pages. Notable special cases are:
408 	 *
409 	 * 1. Pinned pages: (long-term) pinning of movable pages might
410 	 *    essentially turn such pages unmovable. Therefore, we do not allow
411 	 *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
412 	 *    faulted, they come from the right zone right away. However, it is
413 	 *    still possible that address space already has pages in
414 	 *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
415 	 *    touches that memory before pinning). In such case we migrate them
416 	 *    to a different zone. When migration fails - pinning fails.
417 	 * 2. memblock allocations: kernelcore/movablecore setups might create
418 	 *    situations where ZONE_MOVABLE contains unmovable allocations
419 	 *    after boot. Memory offlining and allocations fail early.
420 	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
421 	 *    situations where ZONE_MOVABLE contains memory holes after boot,
422 	 *    for example, if we have sections that are only partially
423 	 *    populated. Memory offlining and allocations fail early.
424 	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
425 	 *    memory offlining, such pages cannot be allocated.
426 	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
427 	 *    hotplugged memory blocks might only partially be managed by the
428 	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
429 	 *    parts not manged by the buddy are unmovable PG_offline pages. In
430 	 *    some cases (virtio-mem), such pages can be skipped during
431 	 *    memory offlining, however, cannot be moved/allocated. These
432 	 *    techniques might use alloc_contig_range() to hide previously
433 	 *    exposed pages from the buddy again (e.g., to implement some sort
434 	 *    of memory unplug in virtio-mem).
435 	 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
436 	 *    situations where ZERO_PAGE(0) which is allocated differently
437 	 *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
438 	 *    cannot be migrated.
439 	 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
440 	 *    memory to the MOVABLE zone, the vmemmap pages are also placed in
441 	 *    such zone. Such pages cannot be really moved around as they are
442 	 *    self-stored in the range, but they are treated as movable when
443 	 *    the range they describe is about to be offlined.
444 	 *
445 	 * In general, no unmovable allocations that degrade memory offlining
446 	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
447 	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
448 	 * if has_unmovable_pages() states that there are no unmovable pages,
449 	 * there can be false negatives).
450 	 */
451 	ZONE_MOVABLE,
452 #ifdef CONFIG_ZONE_DEVICE
453 	ZONE_DEVICE,
454 #endif
455 	__MAX_NR_ZONES
456 
457 };
458 
459 #ifndef __GENERATING_BOUNDS_H
460 
461 #define ASYNC_AND_SYNC 2
462 
463 struct zone {
464 	/* Read-mostly fields */
465 
466 	/* zone watermarks, access with *_wmark_pages(zone) macros */
467 	unsigned long _watermark[NR_WMARK];
468 	unsigned long watermark_boost;
469 
470 	unsigned long nr_reserved_highatomic;
471 
472 	/*
473 	 * We don't know if the memory that we're going to allocate will be
474 	 * freeable or/and it will be released eventually, so to avoid totally
475 	 * wasting several GB of ram we must reserve some of the lower zone
476 	 * memory (otherwise we risk to run OOM on the lower zones despite
477 	 * there being tons of freeable ram on the higher zones).  This array is
478 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
479 	 * changes.
480 	 */
481 	long lowmem_reserve[MAX_NR_ZONES];
482 
483 #ifdef CONFIG_NUMA
484 	int node;
485 #endif
486 	struct pglist_data	*zone_pgdat;
487 	struct per_cpu_pageset __percpu *pageset;
488 	/*
489 	 * the high and batch values are copied to individual pagesets for
490 	 * faster access
491 	 */
492 	int pageset_high;
493 	int pageset_batch;
494 
495 #ifndef CONFIG_SPARSEMEM
496 	/*
497 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
498 	 * In SPARSEMEM, this map is stored in struct mem_section
499 	 */
500 	unsigned long		*pageblock_flags;
501 #endif /* CONFIG_SPARSEMEM */
502 
503 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
504 	unsigned long		zone_start_pfn;
505 
506 	/*
507 	 * spanned_pages is the total pages spanned by the zone, including
508 	 * holes, which is calculated as:
509 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
510 	 *
511 	 * present_pages is physical pages existing within the zone, which
512 	 * is calculated as:
513 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
514 	 *
515 	 * managed_pages is present pages managed by the buddy system, which
516 	 * is calculated as (reserved_pages includes pages allocated by the
517 	 * bootmem allocator):
518 	 *	managed_pages = present_pages - reserved_pages;
519 	 *
520 	 * cma pages is present pages that are assigned for CMA use
521 	 * (MIGRATE_CMA).
522 	 *
523 	 * So present_pages may be used by memory hotplug or memory power
524 	 * management logic to figure out unmanaged pages by checking
525 	 * (present_pages - managed_pages). And managed_pages should be used
526 	 * by page allocator and vm scanner to calculate all kinds of watermarks
527 	 * and thresholds.
528 	 *
529 	 * Locking rules:
530 	 *
531 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
532 	 * It is a seqlock because it has to be read outside of zone->lock,
533 	 * and it is done in the main allocator path.  But, it is written
534 	 * quite infrequently.
535 	 *
536 	 * The span_seq lock is declared along with zone->lock because it is
537 	 * frequently read in proximity to zone->lock.  It's good to
538 	 * give them a chance of being in the same cacheline.
539 	 *
540 	 * Write access to present_pages at runtime should be protected by
541 	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
542 	 * present_pages should get_online_mems() to get a stable value.
543 	 */
544 	atomic_long_t		managed_pages;
545 	unsigned long		spanned_pages;
546 	unsigned long		present_pages;
547 #ifdef CONFIG_CMA
548 	unsigned long		cma_pages;
549 #endif
550 
551 	const char		*name;
552 
553 #ifdef CONFIG_MEMORY_ISOLATION
554 	/*
555 	 * Number of isolated pageblock. It is used to solve incorrect
556 	 * freepage counting problem due to racy retrieving migratetype
557 	 * of pageblock. Protected by zone->lock.
558 	 */
559 	unsigned long		nr_isolate_pageblock;
560 #endif
561 
562 #ifdef CONFIG_MEMORY_HOTPLUG
563 	/* see spanned/present_pages for more description */
564 	seqlock_t		span_seqlock;
565 #endif
566 
567 	int initialized;
568 
569 	/* Write-intensive fields used from the page allocator */
570 	ZONE_PADDING(_pad1_)
571 
572 	/* free areas of different sizes */
573 	struct free_area	free_area[MAX_ORDER];
574 
575 	/* zone flags, see below */
576 	unsigned long		flags;
577 
578 	/* Primarily protects free_area */
579 	spinlock_t		lock;
580 
581 	/* Write-intensive fields used by compaction and vmstats. */
582 	ZONE_PADDING(_pad2_)
583 
584 	/*
585 	 * When free pages are below this point, additional steps are taken
586 	 * when reading the number of free pages to avoid per-cpu counter
587 	 * drift allowing watermarks to be breached
588 	 */
589 	unsigned long percpu_drift_mark;
590 
591 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
592 	/* pfn where compaction free scanner should start */
593 	unsigned long		compact_cached_free_pfn;
594 	/* pfn where compaction migration scanner should start */
595 	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
596 	unsigned long		compact_init_migrate_pfn;
597 	unsigned long		compact_init_free_pfn;
598 #endif
599 
600 #ifdef CONFIG_COMPACTION
601 	/*
602 	 * On compaction failure, 1<<compact_defer_shift compactions
603 	 * are skipped before trying again. The number attempted since
604 	 * last failure is tracked with compact_considered.
605 	 * compact_order_failed is the minimum compaction failed order.
606 	 */
607 	unsigned int		compact_considered;
608 	unsigned int		compact_defer_shift;
609 	int			compact_order_failed;
610 #endif
611 
612 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
613 	/* Set to true when the PG_migrate_skip bits should be cleared */
614 	bool			compact_blockskip_flush;
615 #endif
616 
617 	bool			contiguous;
618 
619 	ZONE_PADDING(_pad3_)
620 	/* Zone statistics */
621 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
622 	atomic_long_t		vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
623 } ____cacheline_internodealigned_in_smp;
624 
625 enum pgdat_flags {
626 	PGDAT_DIRTY,			/* reclaim scanning has recently found
627 					 * many dirty file pages at the tail
628 					 * of the LRU.
629 					 */
630 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
631 					 * many pages under writeback
632 					 */
633 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
634 };
635 
636 enum zone_flags {
637 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
638 					 * Cleared when kswapd is woken.
639 					 */
640 };
641 
zone_managed_pages(struct zone * zone)642 static inline unsigned long zone_managed_pages(struct zone *zone)
643 {
644 	return (unsigned long)atomic_long_read(&zone->managed_pages);
645 }
646 
zone_cma_pages(struct zone * zone)647 static inline unsigned long zone_cma_pages(struct zone *zone)
648 {
649 #ifdef CONFIG_CMA
650 	return zone->cma_pages;
651 #else
652 	return 0;
653 #endif
654 }
655 
zone_end_pfn(const struct zone * zone)656 static inline unsigned long zone_end_pfn(const struct zone *zone)
657 {
658 	return zone->zone_start_pfn + zone->spanned_pages;
659 }
660 
zone_spans_pfn(const struct zone * zone,unsigned long pfn)661 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
662 {
663 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
664 }
665 
zone_is_initialized(struct zone * zone)666 static inline bool zone_is_initialized(struct zone *zone)
667 {
668 	return zone->initialized;
669 }
670 
zone_is_empty(struct zone * zone)671 static inline bool zone_is_empty(struct zone *zone)
672 {
673 	return zone->spanned_pages == 0;
674 }
675 
676 /*
677  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
678  * intersection with the given zone
679  */
zone_intersects(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)680 static inline bool zone_intersects(struct zone *zone,
681 		unsigned long start_pfn, unsigned long nr_pages)
682 {
683 	if (zone_is_empty(zone))
684 		return false;
685 	if (start_pfn >= zone_end_pfn(zone) ||
686 	    start_pfn + nr_pages <= zone->zone_start_pfn)
687 		return false;
688 
689 	return true;
690 }
691 
692 /*
693  * The "priority" of VM scanning is how much of the queues we will scan in one
694  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
695  * queues ("queue_length >> 12") during an aging round.
696  */
697 #define DEF_PRIORITY 12
698 
699 /* Maximum number of zones on a zonelist */
700 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
701 
702 enum {
703 	ZONELIST_FALLBACK,	/* zonelist with fallback */
704 #ifdef CONFIG_NUMA
705 	/*
706 	 * The NUMA zonelists are doubled because we need zonelists that
707 	 * restrict the allocations to a single node for __GFP_THISNODE.
708 	 */
709 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
710 #endif
711 	MAX_ZONELISTS
712 };
713 
714 /*
715  * This struct contains information about a zone in a zonelist. It is stored
716  * here to avoid dereferences into large structures and lookups of tables
717  */
718 struct zoneref {
719 	struct zone *zone;	/* Pointer to actual zone */
720 	int zone_idx;		/* zone_idx(zoneref->zone) */
721 };
722 
723 /*
724  * One allocation request operates on a zonelist. A zonelist
725  * is a list of zones, the first one is the 'goal' of the
726  * allocation, the other zones are fallback zones, in decreasing
727  * priority.
728  *
729  * To speed the reading of the zonelist, the zonerefs contain the zone index
730  * of the entry being read. Helper functions to access information given
731  * a struct zoneref are
732  *
733  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
734  * zonelist_zone_idx()	- Return the index of the zone for an entry
735  * zonelist_node_idx()	- Return the index of the node for an entry
736  */
737 struct zonelist {
738 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
739 };
740 
741 #ifndef CONFIG_DISCONTIGMEM
742 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
743 extern struct page *mem_map;
744 #endif
745 
746 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
747 struct deferred_split {
748 	spinlock_t split_queue_lock;
749 	struct list_head split_queue;
750 	unsigned long split_queue_len;
751 };
752 #endif
753 
754 /*
755  * On NUMA machines, each NUMA node would have a pg_data_t to describe
756  * it's memory layout. On UMA machines there is a single pglist_data which
757  * describes the whole memory.
758  *
759  * Memory statistics and page replacement data structures are maintained on a
760  * per-zone basis.
761  */
762 typedef struct pglist_data {
763 	/*
764 	 * node_zones contains just the zones for THIS node. Not all of the
765 	 * zones may be populated, but it is the full list. It is referenced by
766 	 * this node's node_zonelists as well as other node's node_zonelists.
767 	 */
768 	struct zone node_zones[MAX_NR_ZONES];
769 
770 	/*
771 	 * node_zonelists contains references to all zones in all nodes.
772 	 * Generally the first zones will be references to this node's
773 	 * node_zones.
774 	 */
775 	struct zonelist node_zonelists[MAX_ZONELISTS];
776 
777 	int nr_zones; /* number of populated zones in this node */
778 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
779 	struct page *node_mem_map;
780 #ifdef CONFIG_PAGE_EXTENSION
781 	struct page_ext *node_page_ext;
782 #endif
783 #endif
784 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
785 	/*
786 	 * Must be held any time you expect node_start_pfn,
787 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
788 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
789 	 * init.
790 	 *
791 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
792 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
793 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
794 	 *
795 	 * Nests above zone->lock and zone->span_seqlock
796 	 */
797 	spinlock_t node_size_lock;
798 #endif
799 	unsigned long node_start_pfn;
800 	unsigned long node_present_pages; /* total number of physical pages */
801 	unsigned long node_spanned_pages; /* total size of physical page
802 					     range, including holes */
803 	int node_id;
804 	wait_queue_head_t kswapd_wait;
805 	wait_queue_head_t pfmemalloc_wait;
806 	struct task_struct *kswapd;	/* Protected by
807 					   mem_hotplug_begin/end() */
808 	int kswapd_order;
809 	enum zone_type kswapd_highest_zoneidx;
810 
811 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
812 
813 #ifdef CONFIG_COMPACTION
814 	int kcompactd_max_order;
815 	enum zone_type kcompactd_highest_zoneidx;
816 	wait_queue_head_t kcompactd_wait;
817 	struct task_struct *kcompactd;
818 #endif
819 	/*
820 	 * This is a per-node reserve of pages that are not available
821 	 * to userspace allocations.
822 	 */
823 	unsigned long		totalreserve_pages;
824 
825 #ifdef CONFIG_NUMA
826 	/*
827 	 * node reclaim becomes active if more unmapped pages exist.
828 	 */
829 	unsigned long		min_unmapped_pages;
830 	unsigned long		min_slab_pages;
831 #endif /* CONFIG_NUMA */
832 
833 	/* Write-intensive fields used by page reclaim */
834 	ZONE_PADDING(_pad1_)
835 
836 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
837 	/*
838 	 * If memory initialisation on large machines is deferred then this
839 	 * is the first PFN that needs to be initialised.
840 	 */
841 	unsigned long first_deferred_pfn;
842 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
843 
844 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
845 	struct deferred_split deferred_split_queue;
846 #endif
847 
848 	/* Fields commonly accessed by the page reclaim scanner */
849 
850 	/*
851 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
852 	 *
853 	 * Use mem_cgroup_lruvec() to look up lruvecs.
854 	 */
855 	struct lruvec		__lruvec;
856 
857 	unsigned long		flags;
858 
859 	ZONE_PADDING(_pad2_)
860 
861 	/* Per-node vmstats */
862 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
863 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
864 } pg_data_t;
865 
866 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
867 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
868 #ifdef CONFIG_FLAT_NODE_MEM_MAP
869 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
870 #else
871 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
872 #endif
873 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
874 
875 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
876 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
877 
pgdat_end_pfn(pg_data_t * pgdat)878 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
879 {
880 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
881 }
882 
pgdat_is_empty(pg_data_t * pgdat)883 static inline bool pgdat_is_empty(pg_data_t *pgdat)
884 {
885 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
886 }
887 
888 #include <linux/memory_hotplug.h>
889 
890 void build_all_zonelists(pg_data_t *pgdat);
891 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
892 		   enum zone_type highest_zoneidx);
893 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
894 			 int highest_zoneidx, unsigned int alloc_flags,
895 			 long free_pages);
896 bool zone_watermark_ok(struct zone *z, unsigned int order,
897 		unsigned long mark, int highest_zoneidx,
898 		unsigned int alloc_flags);
899 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
900 		unsigned long mark, int highest_zoneidx);
901 /*
902  * Memory initialization context, use to differentiate memory added by
903  * the platform statically or via memory hotplug interface.
904  */
905 enum meminit_context {
906 	MEMINIT_EARLY,
907 	MEMINIT_HOTPLUG,
908 };
909 
910 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
911 				     unsigned long size);
912 
913 extern void lruvec_init(struct lruvec *lruvec);
914 
lruvec_pgdat(struct lruvec * lruvec)915 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
916 {
917 #ifdef CONFIG_MEMCG
918 	return lruvec->pgdat;
919 #else
920 	return container_of(lruvec, struct pglist_data, __lruvec);
921 #endif
922 }
923 
924 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
925 int local_memory_node(int node_id);
926 #else
local_memory_node(int node_id)927 static inline int local_memory_node(int node_id) { return node_id; };
928 #endif
929 
930 /*
931  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
932  */
933 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
934 
935 #ifdef CONFIG_ZONE_DEVICE
zone_is_zone_device(struct zone * zone)936 static inline bool zone_is_zone_device(struct zone *zone)
937 {
938 	return zone_idx(zone) == ZONE_DEVICE;
939 }
940 #else
zone_is_zone_device(struct zone * zone)941 static inline bool zone_is_zone_device(struct zone *zone)
942 {
943 	return false;
944 }
945 #endif
946 
947 /*
948  * Returns true if a zone has pages managed by the buddy allocator.
949  * All the reclaim decisions have to use this function rather than
950  * populated_zone(). If the whole zone is reserved then we can easily
951  * end up with populated_zone() && !managed_zone().
952  */
managed_zone(struct zone * zone)953 static inline bool managed_zone(struct zone *zone)
954 {
955 	return zone_managed_pages(zone);
956 }
957 
958 /* Returns true if a zone has memory */
populated_zone(struct zone * zone)959 static inline bool populated_zone(struct zone *zone)
960 {
961 	return zone->present_pages;
962 }
963 
964 #ifdef CONFIG_NUMA
zone_to_nid(struct zone * zone)965 static inline int zone_to_nid(struct zone *zone)
966 {
967 	return zone->node;
968 }
969 
zone_set_nid(struct zone * zone,int nid)970 static inline void zone_set_nid(struct zone *zone, int nid)
971 {
972 	zone->node = nid;
973 }
974 #else
zone_to_nid(struct zone * zone)975 static inline int zone_to_nid(struct zone *zone)
976 {
977 	return 0;
978 }
979 
zone_set_nid(struct zone * zone,int nid)980 static inline void zone_set_nid(struct zone *zone, int nid) {}
981 #endif
982 
983 extern int movable_zone;
984 
985 #ifdef CONFIG_HIGHMEM
zone_movable_is_highmem(void)986 static inline int zone_movable_is_highmem(void)
987 {
988 #ifdef CONFIG_NEED_MULTIPLE_NODES
989 	return movable_zone == ZONE_HIGHMEM;
990 #else
991 	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
992 #endif
993 }
994 #endif
995 
is_highmem_idx(enum zone_type idx)996 static inline int is_highmem_idx(enum zone_type idx)
997 {
998 #ifdef CONFIG_HIGHMEM
999 	return (idx == ZONE_HIGHMEM ||
1000 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
1001 #else
1002 	return 0;
1003 #endif
1004 }
1005 
1006 /**
1007  * is_highmem - helper function to quickly check if a struct zone is a
1008  *              highmem zone or not.  This is an attempt to keep references
1009  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1010  * @zone: pointer to struct zone variable
1011  * Return: 1 for a highmem zone, 0 otherwise
1012  */
is_highmem(struct zone * zone)1013 static inline int is_highmem(struct zone *zone)
1014 {
1015 #ifdef CONFIG_HIGHMEM
1016 	return is_highmem_idx(zone_idx(zone));
1017 #else
1018 	return 0;
1019 #endif
1020 }
1021 
1022 /* These two functions are used to setup the per zone pages min values */
1023 struct ctl_table;
1024 
1025 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
1026 		loff_t *);
1027 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
1028 		size_t *, loff_t *);
1029 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
1030 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
1031 		size_t *, loff_t *);
1032 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
1033 		void *, size_t *, loff_t *);
1034 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
1035 		void *, size_t *, loff_t *);
1036 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
1037 		void *, size_t *, loff_t *);
1038 int numa_zonelist_order_handler(struct ctl_table *, int,
1039 		void *, size_t *, loff_t *);
1040 extern int percpu_pagelist_fraction;
1041 extern char numa_zonelist_order[];
1042 #define NUMA_ZONELIST_ORDER_LEN	16
1043 
1044 #ifndef CONFIG_NEED_MULTIPLE_NODES
1045 
1046 extern struct pglist_data contig_page_data;
1047 #define NODE_DATA(nid)		(&contig_page_data)
1048 #define NODE_MEM_MAP(nid)	mem_map
1049 
1050 #else /* CONFIG_NEED_MULTIPLE_NODES */
1051 
1052 #include <asm/mmzone.h>
1053 
1054 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
1055 
1056 extern struct pglist_data *first_online_pgdat(void);
1057 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1058 extern struct zone *next_zone(struct zone *zone);
1059 
1060 /**
1061  * for_each_online_pgdat - helper macro to iterate over all online nodes
1062  * @pgdat: pointer to a pg_data_t variable
1063  */
1064 #define for_each_online_pgdat(pgdat)			\
1065 	for (pgdat = first_online_pgdat();		\
1066 	     pgdat;					\
1067 	     pgdat = next_online_pgdat(pgdat))
1068 /**
1069  * for_each_zone - helper macro to iterate over all memory zones
1070  * @zone: pointer to struct zone variable
1071  *
1072  * The user only needs to declare the zone variable, for_each_zone
1073  * fills it in.
1074  */
1075 #define for_each_zone(zone)			        \
1076 	for (zone = (first_online_pgdat())->node_zones; \
1077 	     zone;					\
1078 	     zone = next_zone(zone))
1079 
1080 #define for_each_populated_zone(zone)		        \
1081 	for (zone = (first_online_pgdat())->node_zones; \
1082 	     zone;					\
1083 	     zone = next_zone(zone))			\
1084 		if (!populated_zone(zone))		\
1085 			; /* do nothing */		\
1086 		else
1087 
zonelist_zone(struct zoneref * zoneref)1088 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1089 {
1090 	return zoneref->zone;
1091 }
1092 
zonelist_zone_idx(struct zoneref * zoneref)1093 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1094 {
1095 	return zoneref->zone_idx;
1096 }
1097 
zonelist_node_idx(struct zoneref * zoneref)1098 static inline int zonelist_node_idx(struct zoneref *zoneref)
1099 {
1100 	return zone_to_nid(zoneref->zone);
1101 }
1102 
1103 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1104 					enum zone_type highest_zoneidx,
1105 					nodemask_t *nodes);
1106 
1107 /**
1108  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1109  * @z: The cursor used as a starting point for the search
1110  * @highest_zoneidx: The zone index of the highest zone to return
1111  * @nodes: An optional nodemask to filter the zonelist with
1112  *
1113  * This function returns the next zone at or below a given zone index that is
1114  * within the allowed nodemask using a cursor as the starting point for the
1115  * search. The zoneref returned is a cursor that represents the current zone
1116  * being examined. It should be advanced by one before calling
1117  * next_zones_zonelist again.
1118  *
1119  * Return: the next zone at or below highest_zoneidx within the allowed
1120  * nodemask using a cursor within a zonelist as a starting point
1121  */
next_zones_zonelist(struct zoneref * z,enum zone_type highest_zoneidx,nodemask_t * nodes)1122 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1123 					enum zone_type highest_zoneidx,
1124 					nodemask_t *nodes)
1125 {
1126 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1127 		return z;
1128 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1129 }
1130 
1131 /**
1132  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1133  * @zonelist: The zonelist to search for a suitable zone
1134  * @highest_zoneidx: The zone index of the highest zone to return
1135  * @nodes: An optional nodemask to filter the zonelist with
1136  *
1137  * This function returns the first zone at or below a given zone index that is
1138  * within the allowed nodemask. The zoneref returned is a cursor that can be
1139  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1140  * one before calling.
1141  *
1142  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1143  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1144  * update due to cpuset modification.
1145  *
1146  * Return: Zoneref pointer for the first suitable zone found
1147  */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes)1148 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1149 					enum zone_type highest_zoneidx,
1150 					nodemask_t *nodes)
1151 {
1152 	return next_zones_zonelist(zonelist->_zonerefs,
1153 							highest_zoneidx, nodes);
1154 }
1155 
1156 /**
1157  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1158  * @zone: The current zone in the iterator
1159  * @z: The current pointer within zonelist->_zonerefs being iterated
1160  * @zlist: The zonelist being iterated
1161  * @highidx: The zone index of the highest zone to return
1162  * @nodemask: Nodemask allowed by the allocator
1163  *
1164  * This iterator iterates though all zones at or below a given zone index and
1165  * within a given nodemask
1166  */
1167 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1168 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1169 		zone;							\
1170 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1171 			zone = zonelist_zone(z))
1172 
1173 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1174 	for (zone = z->zone;	\
1175 		zone;							\
1176 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1177 			zone = zonelist_zone(z))
1178 
1179 
1180 /**
1181  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1182  * @zone: The current zone in the iterator
1183  * @z: The current pointer within zonelist->zones being iterated
1184  * @zlist: The zonelist being iterated
1185  * @highidx: The zone index of the highest zone to return
1186  *
1187  * This iterator iterates though all zones at or below a given zone index.
1188  */
1189 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1190 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1191 
1192 #ifdef CONFIG_SPARSEMEM
1193 #include <asm/sparsemem.h>
1194 #endif
1195 
1196 #ifdef CONFIG_FLATMEM
1197 #define pfn_to_nid(pfn)		(0)
1198 #endif
1199 
1200 #ifdef CONFIG_SPARSEMEM
1201 
1202 /*
1203  * SECTION_SHIFT    		#bits space required to store a section #
1204  *
1205  * PA_SECTION_SHIFT		physical address to/from section number
1206  * PFN_SECTION_SHIFT		pfn to/from section number
1207  */
1208 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1209 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1210 
1211 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1212 
1213 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1214 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1215 
1216 #define SECTION_BLOCKFLAGS_BITS \
1217 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1218 
1219 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1220 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1221 #endif
1222 
pfn_to_section_nr(unsigned long pfn)1223 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1224 {
1225 	return pfn >> PFN_SECTION_SHIFT;
1226 }
section_nr_to_pfn(unsigned long sec)1227 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1228 {
1229 	return sec << PFN_SECTION_SHIFT;
1230 }
1231 
1232 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1233 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1234 
1235 #define SUBSECTION_SHIFT 21
1236 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1237 
1238 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1239 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1240 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1241 
1242 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1243 #error Subsection size exceeds section size
1244 #else
1245 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1246 #endif
1247 
1248 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1249 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1250 
1251 struct mem_section_usage {
1252 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1253 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1254 #endif
1255 	/* See declaration of similar field in struct zone */
1256 	unsigned long pageblock_flags[0];
1257 };
1258 
1259 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1260 
1261 struct page;
1262 struct page_ext;
1263 struct mem_section {
1264 	/*
1265 	 * This is, logically, a pointer to an array of struct
1266 	 * pages.  However, it is stored with some other magic.
1267 	 * (see sparse.c::sparse_init_one_section())
1268 	 *
1269 	 * Additionally during early boot we encode node id of
1270 	 * the location of the section here to guide allocation.
1271 	 * (see sparse.c::memory_present())
1272 	 *
1273 	 * Making it a UL at least makes someone do a cast
1274 	 * before using it wrong.
1275 	 */
1276 	unsigned long section_mem_map;
1277 
1278 	struct mem_section_usage *usage;
1279 #ifdef CONFIG_PAGE_EXTENSION
1280 	/*
1281 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1282 	 * section. (see page_ext.h about this.)
1283 	 */
1284 	struct page_ext *page_ext;
1285 	unsigned long pad;
1286 #endif
1287 	/*
1288 	 * WARNING: mem_section must be a power-of-2 in size for the
1289 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1290 	 */
1291 };
1292 
1293 #ifdef CONFIG_SPARSEMEM_EXTREME
1294 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1295 #else
1296 #define SECTIONS_PER_ROOT	1
1297 #endif
1298 
1299 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1300 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1301 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1302 
1303 #ifdef CONFIG_SPARSEMEM_EXTREME
1304 extern struct mem_section **mem_section;
1305 #else
1306 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1307 #endif
1308 
section_to_usemap(struct mem_section * ms)1309 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1310 {
1311 	return ms->usage->pageblock_flags;
1312 }
1313 
__nr_to_section(unsigned long nr)1314 static inline struct mem_section *__nr_to_section(unsigned long nr)
1315 {
1316 #ifdef CONFIG_SPARSEMEM_EXTREME
1317 	if (!mem_section)
1318 		return NULL;
1319 #endif
1320 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1321 		return NULL;
1322 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1323 }
1324 extern unsigned long __section_nr(struct mem_section *ms);
1325 extern size_t mem_section_usage_size(void);
1326 
1327 /*
1328  * We use the lower bits of the mem_map pointer to store
1329  * a little bit of information.  The pointer is calculated
1330  * as mem_map - section_nr_to_pfn(pnum).  The result is
1331  * aligned to the minimum alignment of the two values:
1332  *   1. All mem_map arrays are page-aligned.
1333  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1334  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1335  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1336  *      worst combination is powerpc with 256k pages,
1337  *      which results in PFN_SECTION_SHIFT equal 6.
1338  * To sum it up, at least 6 bits are available.
1339  */
1340 #define SECTION_MARKED_PRESENT		(1UL<<0)
1341 #define SECTION_HAS_MEM_MAP		(1UL<<1)
1342 #define SECTION_IS_ONLINE		(1UL<<2)
1343 #define SECTION_IS_EARLY		(1UL<<3)
1344 #define SECTION_TAINT_ZONE_DEVICE	(1UL<<4)
1345 #define SECTION_MAP_LAST_BIT		(1UL<<5)
1346 #define SECTION_MAP_MASK		(~(SECTION_MAP_LAST_BIT-1))
1347 #define SECTION_NID_SHIFT		3
1348 
__section_mem_map_addr(struct mem_section * section)1349 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1350 {
1351 	unsigned long map = section->section_mem_map;
1352 	map &= SECTION_MAP_MASK;
1353 	return (struct page *)map;
1354 }
1355 
present_section(struct mem_section * section)1356 static inline int present_section(struct mem_section *section)
1357 {
1358 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1359 }
1360 
present_section_nr(unsigned long nr)1361 static inline int present_section_nr(unsigned long nr)
1362 {
1363 	return present_section(__nr_to_section(nr));
1364 }
1365 
valid_section(struct mem_section * section)1366 static inline int valid_section(struct mem_section *section)
1367 {
1368 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1369 }
1370 
early_section(struct mem_section * section)1371 static inline int early_section(struct mem_section *section)
1372 {
1373 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1374 }
1375 
valid_section_nr(unsigned long nr)1376 static inline int valid_section_nr(unsigned long nr)
1377 {
1378 	return valid_section(__nr_to_section(nr));
1379 }
1380 
online_section(struct mem_section * section)1381 static inline int online_section(struct mem_section *section)
1382 {
1383 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1384 }
1385 
online_device_section(struct mem_section * section)1386 static inline int online_device_section(struct mem_section *section)
1387 {
1388 	unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1389 
1390 	return section && ((section->section_mem_map & flags) == flags);
1391 }
1392 
online_section_nr(unsigned long nr)1393 static inline int online_section_nr(unsigned long nr)
1394 {
1395 	return online_section(__nr_to_section(nr));
1396 }
1397 
1398 #ifdef CONFIG_MEMORY_HOTPLUG
1399 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1400 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1401 #endif
1402 
__pfn_to_section(unsigned long pfn)1403 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1404 {
1405 	return __nr_to_section(pfn_to_section_nr(pfn));
1406 }
1407 
1408 extern unsigned long __highest_present_section_nr;
1409 
subsection_map_index(unsigned long pfn)1410 static inline int subsection_map_index(unsigned long pfn)
1411 {
1412 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1413 }
1414 
1415 #ifdef CONFIG_SPARSEMEM_VMEMMAP
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1416 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1417 {
1418 	int idx = subsection_map_index(pfn);
1419 
1420 	return test_bit(idx, ms->usage->subsection_map);
1421 }
1422 #else
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1423 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1424 {
1425 	return 1;
1426 }
1427 #endif
1428 
1429 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
pfn_valid(unsigned long pfn)1430 static inline int pfn_valid(unsigned long pfn)
1431 {
1432 	struct mem_section *ms;
1433 
1434 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1435 		return 0;
1436 	ms = __nr_to_section(pfn_to_section_nr(pfn));
1437 	if (!valid_section(ms))
1438 		return 0;
1439 	/*
1440 	 * Traditionally early sections always returned pfn_valid() for
1441 	 * the entire section-sized span.
1442 	 */
1443 	return early_section(ms) || pfn_section_valid(ms, pfn);
1444 }
1445 #endif
1446 
pfn_in_present_section(unsigned long pfn)1447 static inline int pfn_in_present_section(unsigned long pfn)
1448 {
1449 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1450 		return 0;
1451 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1452 }
1453 
next_present_section_nr(unsigned long section_nr)1454 static inline unsigned long next_present_section_nr(unsigned long section_nr)
1455 {
1456 	while (++section_nr <= __highest_present_section_nr) {
1457 		if (present_section_nr(section_nr))
1458 			return section_nr;
1459 	}
1460 
1461 	return -1;
1462 }
1463 
1464 /*
1465  * These are _only_ used during initialisation, therefore they
1466  * can use __initdata ...  They could have names to indicate
1467  * this restriction.
1468  */
1469 #ifdef CONFIG_NUMA
1470 #define pfn_to_nid(pfn)							\
1471 ({									\
1472 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1473 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1474 })
1475 #else
1476 #define pfn_to_nid(pfn)		(0)
1477 #endif
1478 
1479 void sparse_init(void);
1480 #else
1481 #define sparse_init()	do {} while (0)
1482 #define sparse_index_init(_sec, _nid)  do {} while (0)
1483 #define pfn_in_present_section pfn_valid
1484 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1485 #endif /* CONFIG_SPARSEMEM */
1486 
1487 /*
1488  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1489  * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1490  * pfn_valid_within() should be used in this case; we optimise this away
1491  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1492  */
1493 #ifdef CONFIG_HOLES_IN_ZONE
1494 #define pfn_valid_within(pfn) pfn_valid(pfn)
1495 #else
1496 #define pfn_valid_within(pfn) (1)
1497 #endif
1498 
1499 #endif /* !__GENERATING_BOUNDS.H */
1500 #endif /* !__ASSEMBLY__ */
1501 #endif /* _LINUX_MMZONE_H */
1502