1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4 * Copyright (C) 2005-2006 Thomas Gleixner
5 *
6 * This file contains driver APIs to the irq subsystem.
7 */
8
9 #define pr_fmt(fmt) "genirq: " fmt
10
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24
25 #include "internals.h"
26
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 __read_mostly bool force_irqthreads;
29 EXPORT_SYMBOL_GPL(force_irqthreads);
30
setup_forced_irqthreads(char * arg)31 static int __init setup_forced_irqthreads(char *arg)
32 {
33 force_irqthreads = true;
34 return 0;
35 }
36 early_param("threadirqs", setup_forced_irqthreads);
37 #endif
38
__synchronize_hardirq(struct irq_desc * desc,bool sync_chip)39 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
40 {
41 struct irq_data *irqd = irq_desc_get_irq_data(desc);
42 bool inprogress;
43
44 do {
45 unsigned long flags;
46
47 /*
48 * Wait until we're out of the critical section. This might
49 * give the wrong answer due to the lack of memory barriers.
50 */
51 while (irqd_irq_inprogress(&desc->irq_data))
52 cpu_relax();
53
54 /* Ok, that indicated we're done: double-check carefully. */
55 raw_spin_lock_irqsave(&desc->lock, flags);
56 inprogress = irqd_irq_inprogress(&desc->irq_data);
57
58 /*
59 * If requested and supported, check at the chip whether it
60 * is in flight at the hardware level, i.e. already pending
61 * in a CPU and waiting for service and acknowledge.
62 */
63 if (!inprogress && sync_chip) {
64 /*
65 * Ignore the return code. inprogress is only updated
66 * when the chip supports it.
67 */
68 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
69 &inprogress);
70 }
71 raw_spin_unlock_irqrestore(&desc->lock, flags);
72
73 /* Oops, that failed? */
74 } while (inprogress);
75 }
76
77 /**
78 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
79 * @irq: interrupt number to wait for
80 *
81 * This function waits for any pending hard IRQ handlers for this
82 * interrupt to complete before returning. If you use this
83 * function while holding a resource the IRQ handler may need you
84 * will deadlock. It does not take associated threaded handlers
85 * into account.
86 *
87 * Do not use this for shutdown scenarios where you must be sure
88 * that all parts (hardirq and threaded handler) have completed.
89 *
90 * Returns: false if a threaded handler is active.
91 *
92 * This function may be called - with care - from IRQ context.
93 *
94 * It does not check whether there is an interrupt in flight at the
95 * hardware level, but not serviced yet, as this might deadlock when
96 * called with interrupts disabled and the target CPU of the interrupt
97 * is the current CPU.
98 */
synchronize_hardirq(unsigned int irq)99 bool synchronize_hardirq(unsigned int irq)
100 {
101 struct irq_desc *desc = irq_to_desc(irq);
102
103 if (desc) {
104 __synchronize_hardirq(desc, false);
105 return !atomic_read(&desc->threads_active);
106 }
107
108 return true;
109 }
110 EXPORT_SYMBOL(synchronize_hardirq);
111
112 /**
113 * synchronize_irq - wait for pending IRQ handlers (on other CPUs)
114 * @irq: interrupt number to wait for
115 *
116 * This function waits for any pending IRQ handlers for this interrupt
117 * to complete before returning. If you use this function while
118 * holding a resource the IRQ handler may need you will deadlock.
119 *
120 * Can only be called from preemptible code as it might sleep when
121 * an interrupt thread is associated to @irq.
122 *
123 * It optionally makes sure (when the irq chip supports that method)
124 * that the interrupt is not pending in any CPU and waiting for
125 * service.
126 */
synchronize_irq(unsigned int irq)127 void synchronize_irq(unsigned int irq)
128 {
129 struct irq_desc *desc = irq_to_desc(irq);
130
131 if (desc) {
132 __synchronize_hardirq(desc, true);
133 /*
134 * We made sure that no hardirq handler is
135 * running. Now verify that no threaded handlers are
136 * active.
137 */
138 wait_event(desc->wait_for_threads,
139 !atomic_read(&desc->threads_active));
140 }
141 }
142 EXPORT_SYMBOL(synchronize_irq);
143
144 #ifdef CONFIG_SMP
145 cpumask_var_t irq_default_affinity;
146
__irq_can_set_affinity(struct irq_desc * desc)147 static bool __irq_can_set_affinity(struct irq_desc *desc)
148 {
149 if (!desc || !irqd_can_balance(&desc->irq_data) ||
150 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
151 return false;
152 return true;
153 }
154
155 /**
156 * irq_can_set_affinity - Check if the affinity of a given irq can be set
157 * @irq: Interrupt to check
158 *
159 */
irq_can_set_affinity(unsigned int irq)160 int irq_can_set_affinity(unsigned int irq)
161 {
162 return __irq_can_set_affinity(irq_to_desc(irq));
163 }
164
165 /**
166 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
167 * @irq: Interrupt to check
168 *
169 * Like irq_can_set_affinity() above, but additionally checks for the
170 * AFFINITY_MANAGED flag.
171 */
irq_can_set_affinity_usr(unsigned int irq)172 bool irq_can_set_affinity_usr(unsigned int irq)
173 {
174 struct irq_desc *desc = irq_to_desc(irq);
175
176 return __irq_can_set_affinity(desc) &&
177 !irqd_affinity_is_managed(&desc->irq_data);
178 }
179
180 /**
181 * irq_set_thread_affinity - Notify irq threads to adjust affinity
182 * @desc: irq descriptor which has affinity changed
183 *
184 * We just set IRQTF_AFFINITY and delegate the affinity setting
185 * to the interrupt thread itself. We can not call
186 * set_cpus_allowed_ptr() here as we hold desc->lock and this
187 * code can be called from hard interrupt context.
188 */
irq_set_thread_affinity(struct irq_desc * desc)189 void irq_set_thread_affinity(struct irq_desc *desc)
190 {
191 struct irqaction *action;
192
193 for_each_action_of_desc(desc, action)
194 if (action->thread)
195 set_bit(IRQTF_AFFINITY, &action->thread_flags);
196 }
197
198 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
irq_validate_effective_affinity(struct irq_data * data)199 static void irq_validate_effective_affinity(struct irq_data *data)
200 {
201 const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
202 struct irq_chip *chip = irq_data_get_irq_chip(data);
203
204 if (!cpumask_empty(m))
205 return;
206 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
207 chip->name, data->irq);
208 }
209
irq_init_effective_affinity(struct irq_data * data,const struct cpumask * mask)210 static inline void irq_init_effective_affinity(struct irq_data *data,
211 const struct cpumask *mask)
212 {
213 cpumask_copy(irq_data_get_effective_affinity_mask(data), mask);
214 }
215 #else
irq_validate_effective_affinity(struct irq_data * data)216 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
irq_init_effective_affinity(struct irq_data * data,const struct cpumask * mask)217 static inline void irq_init_effective_affinity(struct irq_data *data,
218 const struct cpumask *mask) { }
219 #endif
220
irq_do_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)221 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
222 bool force)
223 {
224 struct irq_desc *desc = irq_data_to_desc(data);
225 struct irq_chip *chip = irq_data_get_irq_chip(data);
226 int ret;
227
228 if (!chip || !chip->irq_set_affinity)
229 return -EINVAL;
230
231 /*
232 * If this is a managed interrupt and housekeeping is enabled on
233 * it check whether the requested affinity mask intersects with
234 * a housekeeping CPU. If so, then remove the isolated CPUs from
235 * the mask and just keep the housekeeping CPU(s). This prevents
236 * the affinity setter from routing the interrupt to an isolated
237 * CPU to avoid that I/O submitted from a housekeeping CPU causes
238 * interrupts on an isolated one.
239 *
240 * If the masks do not intersect or include online CPU(s) then
241 * keep the requested mask. The isolated target CPUs are only
242 * receiving interrupts when the I/O operation was submitted
243 * directly from them.
244 *
245 * If all housekeeping CPUs in the affinity mask are offline, the
246 * interrupt will be migrated by the CPU hotplug code once a
247 * housekeeping CPU which belongs to the affinity mask comes
248 * online.
249 */
250 if (irqd_affinity_is_managed(data) &&
251 housekeeping_enabled(HK_FLAG_MANAGED_IRQ)) {
252 const struct cpumask *hk_mask, *prog_mask;
253
254 static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
255 static struct cpumask tmp_mask;
256
257 hk_mask = housekeeping_cpumask(HK_FLAG_MANAGED_IRQ);
258
259 raw_spin_lock(&tmp_mask_lock);
260 cpumask_and(&tmp_mask, mask, hk_mask);
261 if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
262 prog_mask = mask;
263 else
264 prog_mask = &tmp_mask;
265 ret = chip->irq_set_affinity(data, prog_mask, force);
266 raw_spin_unlock(&tmp_mask_lock);
267 } else {
268 ret = chip->irq_set_affinity(data, mask, force);
269 }
270 switch (ret) {
271 case IRQ_SET_MASK_OK:
272 case IRQ_SET_MASK_OK_DONE:
273 cpumask_copy(desc->irq_common_data.affinity, mask);
274 fallthrough;
275 case IRQ_SET_MASK_OK_NOCOPY:
276 irq_validate_effective_affinity(data);
277 irq_set_thread_affinity(desc);
278 ret = 0;
279 }
280
281 return ret;
282 }
283
284 #ifdef CONFIG_GENERIC_PENDING_IRQ
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)285 static inline int irq_set_affinity_pending(struct irq_data *data,
286 const struct cpumask *dest)
287 {
288 struct irq_desc *desc = irq_data_to_desc(data);
289
290 irqd_set_move_pending(data);
291 irq_copy_pending(desc, dest);
292 return 0;
293 }
294 #else
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)295 static inline int irq_set_affinity_pending(struct irq_data *data,
296 const struct cpumask *dest)
297 {
298 return -EBUSY;
299 }
300 #endif
301
irq_try_set_affinity(struct irq_data * data,const struct cpumask * dest,bool force)302 static int irq_try_set_affinity(struct irq_data *data,
303 const struct cpumask *dest, bool force)
304 {
305 int ret = irq_do_set_affinity(data, dest, force);
306
307 /*
308 * In case that the underlying vector management is busy and the
309 * architecture supports the generic pending mechanism then utilize
310 * this to avoid returning an error to user space.
311 */
312 if (ret == -EBUSY && !force)
313 ret = irq_set_affinity_pending(data, dest);
314 return ret;
315 }
316
irq_set_affinity_deactivated(struct irq_data * data,const struct cpumask * mask,bool force)317 static bool irq_set_affinity_deactivated(struct irq_data *data,
318 const struct cpumask *mask, bool force)
319 {
320 struct irq_desc *desc = irq_data_to_desc(data);
321
322 /*
323 * Handle irq chips which can handle affinity only in activated
324 * state correctly
325 *
326 * If the interrupt is not yet activated, just store the affinity
327 * mask and do not call the chip driver at all. On activation the
328 * driver has to make sure anyway that the interrupt is in a
329 * usable state so startup works.
330 */
331 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
332 irqd_is_activated(data) || !irqd_affinity_on_activate(data))
333 return false;
334
335 cpumask_copy(desc->irq_common_data.affinity, mask);
336 irq_init_effective_affinity(data, mask);
337 irqd_set(data, IRQD_AFFINITY_SET);
338 return true;
339 }
340
irq_set_affinity_locked(struct irq_data * data,const struct cpumask * mask,bool force)341 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
342 bool force)
343 {
344 struct irq_chip *chip = irq_data_get_irq_chip(data);
345 struct irq_desc *desc = irq_data_to_desc(data);
346 int ret = 0;
347
348 if (!chip || !chip->irq_set_affinity)
349 return -EINVAL;
350
351 if (irq_set_affinity_deactivated(data, mask, force))
352 return 0;
353
354 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
355 ret = irq_try_set_affinity(data, mask, force);
356 } else {
357 irqd_set_move_pending(data);
358 irq_copy_pending(desc, mask);
359 }
360
361 if (desc->affinity_notify) {
362 kref_get(&desc->affinity_notify->kref);
363 if (!schedule_work(&desc->affinity_notify->work)) {
364 /* Work was already scheduled, drop our extra ref */
365 kref_put(&desc->affinity_notify->kref,
366 desc->affinity_notify->release);
367 }
368 }
369 irqd_set(data, IRQD_AFFINITY_SET);
370
371 return ret;
372 }
373
374 /**
375 * irq_update_affinity_desc - Update affinity management for an interrupt
376 * @irq: The interrupt number to update
377 * @affinity: Pointer to the affinity descriptor
378 *
379 * This interface can be used to configure the affinity management of
380 * interrupts which have been allocated already.
381 *
382 * There are certain limitations on when it may be used - attempts to use it
383 * for when the kernel is configured for generic IRQ reservation mode (in
384 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
385 * managed/non-managed interrupt accounting. In addition, attempts to use it on
386 * an interrupt which is already started or which has already been configured
387 * as managed will also fail, as these mean invalid init state or double init.
388 */
irq_update_affinity_desc(unsigned int irq,struct irq_affinity_desc * affinity)389 int irq_update_affinity_desc(unsigned int irq,
390 struct irq_affinity_desc *affinity)
391 {
392 struct irq_desc *desc;
393 unsigned long flags;
394 bool activated;
395 int ret = 0;
396
397 /*
398 * Supporting this with the reservation scheme used by x86 needs
399 * some more thought. Fail it for now.
400 */
401 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
402 return -EOPNOTSUPP;
403
404 desc = irq_get_desc_buslock(irq, &flags, 0);
405 if (!desc)
406 return -EINVAL;
407
408 /* Requires the interrupt to be shut down */
409 if (irqd_is_started(&desc->irq_data)) {
410 ret = -EBUSY;
411 goto out_unlock;
412 }
413
414 /* Interrupts which are already managed cannot be modified */
415 if (irqd_affinity_is_managed(&desc->irq_data)) {
416 ret = -EBUSY;
417 goto out_unlock;
418 }
419
420 /*
421 * Deactivate the interrupt. That's required to undo
422 * anything an earlier activation has established.
423 */
424 activated = irqd_is_activated(&desc->irq_data);
425 if (activated)
426 irq_domain_deactivate_irq(&desc->irq_data);
427
428 if (affinity->is_managed) {
429 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
430 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
431 }
432
433 cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
434
435 /* Restore the activation state */
436 if (activated)
437 irq_domain_activate_irq(&desc->irq_data, false);
438
439 out_unlock:
440 irq_put_desc_busunlock(desc, flags);
441 return ret;
442 }
443
__irq_set_affinity(unsigned int irq,const struct cpumask * mask,bool force)444 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
445 {
446 struct irq_desc *desc = irq_to_desc(irq);
447 unsigned long flags;
448 int ret;
449
450 if (!desc)
451 return -EINVAL;
452
453 raw_spin_lock_irqsave(&desc->lock, flags);
454 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
455 raw_spin_unlock_irqrestore(&desc->lock, flags);
456 return ret;
457 }
458
irq_set_affinity_hint(unsigned int irq,const struct cpumask * m)459 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
460 {
461 unsigned long flags;
462 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
463
464 if (!desc)
465 return -EINVAL;
466 desc->affinity_hint = m;
467 irq_put_desc_unlock(desc, flags);
468 /* set the initial affinity to prevent every interrupt being on CPU0 */
469 if (m)
470 __irq_set_affinity(irq, m, false);
471 return 0;
472 }
473 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
474
irq_affinity_notify(struct work_struct * work)475 static void irq_affinity_notify(struct work_struct *work)
476 {
477 struct irq_affinity_notify *notify =
478 container_of(work, struct irq_affinity_notify, work);
479 struct irq_desc *desc = irq_to_desc(notify->irq);
480 cpumask_var_t cpumask;
481 unsigned long flags;
482
483 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
484 goto out;
485
486 raw_spin_lock_irqsave(&desc->lock, flags);
487 if (irq_move_pending(&desc->irq_data))
488 irq_get_pending(cpumask, desc);
489 else
490 cpumask_copy(cpumask, desc->irq_common_data.affinity);
491 raw_spin_unlock_irqrestore(&desc->lock, flags);
492
493 notify->notify(notify, cpumask);
494
495 free_cpumask_var(cpumask);
496 out:
497 kref_put(¬ify->kref, notify->release);
498 }
499
500 /**
501 * irq_set_affinity_notifier - control notification of IRQ affinity changes
502 * @irq: Interrupt for which to enable/disable notification
503 * @notify: Context for notification, or %NULL to disable
504 * notification. Function pointers must be initialised;
505 * the other fields will be initialised by this function.
506 *
507 * Must be called in process context. Notification may only be enabled
508 * after the IRQ is allocated and must be disabled before the IRQ is
509 * freed using free_irq().
510 */
511 int
irq_set_affinity_notifier(unsigned int irq,struct irq_affinity_notify * notify)512 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
513 {
514 struct irq_desc *desc = irq_to_desc(irq);
515 struct irq_affinity_notify *old_notify;
516 unsigned long flags;
517
518 /* The release function is promised process context */
519 might_sleep();
520
521 if (!desc || desc->istate & IRQS_NMI)
522 return -EINVAL;
523
524 /* Complete initialisation of *notify */
525 if (notify) {
526 notify->irq = irq;
527 kref_init(¬ify->kref);
528 INIT_WORK(¬ify->work, irq_affinity_notify);
529 }
530
531 raw_spin_lock_irqsave(&desc->lock, flags);
532 old_notify = desc->affinity_notify;
533 desc->affinity_notify = notify;
534 raw_spin_unlock_irqrestore(&desc->lock, flags);
535
536 if (old_notify) {
537 if (cancel_work_sync(&old_notify->work)) {
538 /* Pending work had a ref, put that one too */
539 kref_put(&old_notify->kref, old_notify->release);
540 }
541 kref_put(&old_notify->kref, old_notify->release);
542 }
543
544 return 0;
545 }
546 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
547
548 #ifndef CONFIG_AUTO_IRQ_AFFINITY
549 /*
550 * Generic version of the affinity autoselector.
551 */
irq_setup_affinity(struct irq_desc * desc)552 int irq_setup_affinity(struct irq_desc *desc)
553 {
554 struct cpumask *set = irq_default_affinity;
555 int ret, node = irq_desc_get_node(desc);
556 static DEFINE_RAW_SPINLOCK(mask_lock);
557 static struct cpumask mask;
558
559 /* Excludes PER_CPU and NO_BALANCE interrupts */
560 if (!__irq_can_set_affinity(desc))
561 return 0;
562
563 raw_spin_lock(&mask_lock);
564 /*
565 * Preserve the managed affinity setting and a userspace affinity
566 * setup, but make sure that one of the targets is online.
567 */
568 if (irqd_affinity_is_managed(&desc->irq_data) ||
569 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
570 if (cpumask_intersects(desc->irq_common_data.affinity,
571 cpu_online_mask))
572 set = desc->irq_common_data.affinity;
573 else
574 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
575 }
576
577 cpumask_and(&mask, cpu_online_mask, set);
578 if (cpumask_empty(&mask))
579 cpumask_copy(&mask, cpu_online_mask);
580
581 if (node != NUMA_NO_NODE) {
582 const struct cpumask *nodemask = cpumask_of_node(node);
583
584 /* make sure at least one of the cpus in nodemask is online */
585 if (cpumask_intersects(&mask, nodemask))
586 cpumask_and(&mask, &mask, nodemask);
587 }
588 ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
589 raw_spin_unlock(&mask_lock);
590 return ret;
591 }
592 #else
593 /* Wrapper for ALPHA specific affinity selector magic */
irq_setup_affinity(struct irq_desc * desc)594 int irq_setup_affinity(struct irq_desc *desc)
595 {
596 return irq_select_affinity(irq_desc_get_irq(desc));
597 }
598 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
599 #endif /* CONFIG_SMP */
600
601
602 /**
603 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
604 * @irq: interrupt number to set affinity
605 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
606 * specific data for percpu_devid interrupts
607 *
608 * This function uses the vCPU specific data to set the vCPU
609 * affinity for an irq. The vCPU specific data is passed from
610 * outside, such as KVM. One example code path is as below:
611 * KVM -> IOMMU -> irq_set_vcpu_affinity().
612 */
irq_set_vcpu_affinity(unsigned int irq,void * vcpu_info)613 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
614 {
615 unsigned long flags;
616 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
617 struct irq_data *data;
618 struct irq_chip *chip;
619 int ret = -ENOSYS;
620
621 if (!desc)
622 return -EINVAL;
623
624 data = irq_desc_get_irq_data(desc);
625 do {
626 chip = irq_data_get_irq_chip(data);
627 if (chip && chip->irq_set_vcpu_affinity)
628 break;
629 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
630 data = data->parent_data;
631 #else
632 data = NULL;
633 #endif
634 } while (data);
635
636 if (data)
637 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
638 irq_put_desc_unlock(desc, flags);
639
640 return ret;
641 }
642 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
643
__disable_irq(struct irq_desc * desc)644 void __disable_irq(struct irq_desc *desc)
645 {
646 if (!desc->depth++)
647 irq_disable(desc);
648 }
649
__disable_irq_nosync(unsigned int irq)650 static int __disable_irq_nosync(unsigned int irq)
651 {
652 unsigned long flags;
653 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
654
655 if (!desc)
656 return -EINVAL;
657 __disable_irq(desc);
658 irq_put_desc_busunlock(desc, flags);
659 return 0;
660 }
661
662 /**
663 * disable_irq_nosync - disable an irq without waiting
664 * @irq: Interrupt to disable
665 *
666 * Disable the selected interrupt line. Disables and Enables are
667 * nested.
668 * Unlike disable_irq(), this function does not ensure existing
669 * instances of the IRQ handler have completed before returning.
670 *
671 * This function may be called from IRQ context.
672 */
disable_irq_nosync(unsigned int irq)673 void disable_irq_nosync(unsigned int irq)
674 {
675 __disable_irq_nosync(irq);
676 }
677 EXPORT_SYMBOL(disable_irq_nosync);
678
679 /**
680 * disable_irq - disable an irq and wait for completion
681 * @irq: Interrupt to disable
682 *
683 * Disable the selected interrupt line. Enables and Disables are
684 * nested.
685 * This function waits for any pending IRQ handlers for this interrupt
686 * to complete before returning. If you use this function while
687 * holding a resource the IRQ handler may need you will deadlock.
688 *
689 * This function may be called - with care - from IRQ context.
690 */
disable_irq(unsigned int irq)691 void disable_irq(unsigned int irq)
692 {
693 if (!__disable_irq_nosync(irq))
694 synchronize_irq(irq);
695 }
696 EXPORT_SYMBOL(disable_irq);
697
698 /**
699 * disable_hardirq - disables an irq and waits for hardirq completion
700 * @irq: Interrupt to disable
701 *
702 * Disable the selected interrupt line. Enables and Disables are
703 * nested.
704 * This function waits for any pending hard IRQ handlers for this
705 * interrupt to complete before returning. If you use this function while
706 * holding a resource the hard IRQ handler may need you will deadlock.
707 *
708 * When used to optimistically disable an interrupt from atomic context
709 * the return value must be checked.
710 *
711 * Returns: false if a threaded handler is active.
712 *
713 * This function may be called - with care - from IRQ context.
714 */
disable_hardirq(unsigned int irq)715 bool disable_hardirq(unsigned int irq)
716 {
717 if (!__disable_irq_nosync(irq))
718 return synchronize_hardirq(irq);
719
720 return false;
721 }
722 EXPORT_SYMBOL_GPL(disable_hardirq);
723
724 /**
725 * disable_nmi_nosync - disable an nmi without waiting
726 * @irq: Interrupt to disable
727 *
728 * Disable the selected interrupt line. Disables and enables are
729 * nested.
730 * The interrupt to disable must have been requested through request_nmi.
731 * Unlike disable_nmi(), this function does not ensure existing
732 * instances of the IRQ handler have completed before returning.
733 */
disable_nmi_nosync(unsigned int irq)734 void disable_nmi_nosync(unsigned int irq)
735 {
736 disable_irq_nosync(irq);
737 }
738
__enable_irq(struct irq_desc * desc)739 void __enable_irq(struct irq_desc *desc)
740 {
741 switch (desc->depth) {
742 case 0:
743 err_out:
744 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
745 irq_desc_get_irq(desc));
746 break;
747 case 1: {
748 if (desc->istate & IRQS_SUSPENDED)
749 goto err_out;
750 /* Prevent probing on this irq: */
751 irq_settings_set_noprobe(desc);
752 /*
753 * Call irq_startup() not irq_enable() here because the
754 * interrupt might be marked NOAUTOEN. So irq_startup()
755 * needs to be invoked when it gets enabled the first
756 * time. If it was already started up, then irq_startup()
757 * will invoke irq_enable() under the hood.
758 */
759 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
760 break;
761 }
762 default:
763 desc->depth--;
764 }
765 }
766
767 /**
768 * enable_irq - enable handling of an irq
769 * @irq: Interrupt to enable
770 *
771 * Undoes the effect of one call to disable_irq(). If this
772 * matches the last disable, processing of interrupts on this
773 * IRQ line is re-enabled.
774 *
775 * This function may be called from IRQ context only when
776 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
777 */
enable_irq(unsigned int irq)778 void enable_irq(unsigned int irq)
779 {
780 unsigned long flags;
781 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
782
783 if (!desc)
784 return;
785 if (WARN(!desc->irq_data.chip,
786 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
787 goto out;
788
789 __enable_irq(desc);
790 out:
791 irq_put_desc_busunlock(desc, flags);
792 }
793 EXPORT_SYMBOL(enable_irq);
794
795 /**
796 * enable_nmi - enable handling of an nmi
797 * @irq: Interrupt to enable
798 *
799 * The interrupt to enable must have been requested through request_nmi.
800 * Undoes the effect of one call to disable_nmi(). If this
801 * matches the last disable, processing of interrupts on this
802 * IRQ line is re-enabled.
803 */
enable_nmi(unsigned int irq)804 void enable_nmi(unsigned int irq)
805 {
806 enable_irq(irq);
807 }
808
set_irq_wake_real(unsigned int irq,unsigned int on)809 static int set_irq_wake_real(unsigned int irq, unsigned int on)
810 {
811 struct irq_desc *desc = irq_to_desc(irq);
812 int ret = -ENXIO;
813
814 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE)
815 return 0;
816
817 if (desc->irq_data.chip->irq_set_wake)
818 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
819
820 return ret;
821 }
822
823 /**
824 * irq_set_irq_wake - control irq power management wakeup
825 * @irq: interrupt to control
826 * @on: enable/disable power management wakeup
827 *
828 * Enable/disable power management wakeup mode, which is
829 * disabled by default. Enables and disables must match,
830 * just as they match for non-wakeup mode support.
831 *
832 * Wakeup mode lets this IRQ wake the system from sleep
833 * states like "suspend to RAM".
834 *
835 * Note: irq enable/disable state is completely orthogonal
836 * to the enable/disable state of irq wake. An irq can be
837 * disabled with disable_irq() and still wake the system as
838 * long as the irq has wake enabled. If this does not hold,
839 * then the underlying irq chip and the related driver need
840 * to be investigated.
841 */
irq_set_irq_wake(unsigned int irq,unsigned int on)842 int irq_set_irq_wake(unsigned int irq, unsigned int on)
843 {
844 unsigned long flags;
845 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
846 int ret = 0;
847
848 if (!desc)
849 return -EINVAL;
850
851 /* Don't use NMIs as wake up interrupts please */
852 if (desc->istate & IRQS_NMI) {
853 ret = -EINVAL;
854 goto out_unlock;
855 }
856
857 /* wakeup-capable irqs can be shared between drivers that
858 * don't need to have the same sleep mode behaviors.
859 */
860 if (on) {
861 if (desc->wake_depth++ == 0) {
862 ret = set_irq_wake_real(irq, on);
863 if (ret)
864 desc->wake_depth = 0;
865 else
866 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
867 }
868 } else {
869 if (desc->wake_depth == 0) {
870 WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
871 } else if (--desc->wake_depth == 0) {
872 ret = set_irq_wake_real(irq, on);
873 if (ret)
874 desc->wake_depth = 1;
875 else
876 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
877 }
878 }
879
880 out_unlock:
881 irq_put_desc_busunlock(desc, flags);
882 return ret;
883 }
884 EXPORT_SYMBOL(irq_set_irq_wake);
885
886 /*
887 * Internal function that tells the architecture code whether a
888 * particular irq has been exclusively allocated or is available
889 * for driver use.
890 */
can_request_irq(unsigned int irq,unsigned long irqflags)891 int can_request_irq(unsigned int irq, unsigned long irqflags)
892 {
893 unsigned long flags;
894 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
895 int canrequest = 0;
896
897 if (!desc)
898 return 0;
899
900 if (irq_settings_can_request(desc)) {
901 if (!desc->action ||
902 irqflags & desc->action->flags & IRQF_SHARED)
903 canrequest = 1;
904 }
905 irq_put_desc_unlock(desc, flags);
906 return canrequest;
907 }
908
__irq_set_trigger(struct irq_desc * desc,unsigned long flags)909 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
910 {
911 struct irq_chip *chip = desc->irq_data.chip;
912 int ret, unmask = 0;
913
914 if (!chip || !chip->irq_set_type) {
915 /*
916 * IRQF_TRIGGER_* but the PIC does not support multiple
917 * flow-types?
918 */
919 pr_debug("No set_type function for IRQ %d (%s)\n",
920 irq_desc_get_irq(desc),
921 chip ? (chip->name ? : "unknown") : "unknown");
922 return 0;
923 }
924
925 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
926 if (!irqd_irq_masked(&desc->irq_data))
927 mask_irq(desc);
928 if (!irqd_irq_disabled(&desc->irq_data))
929 unmask = 1;
930 }
931
932 /* Mask all flags except trigger mode */
933 flags &= IRQ_TYPE_SENSE_MASK;
934 ret = chip->irq_set_type(&desc->irq_data, flags);
935
936 switch (ret) {
937 case IRQ_SET_MASK_OK:
938 case IRQ_SET_MASK_OK_DONE:
939 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
940 irqd_set(&desc->irq_data, flags);
941 fallthrough;
942
943 case IRQ_SET_MASK_OK_NOCOPY:
944 flags = irqd_get_trigger_type(&desc->irq_data);
945 irq_settings_set_trigger_mask(desc, flags);
946 irqd_clear(&desc->irq_data, IRQD_LEVEL);
947 irq_settings_clr_level(desc);
948 if (flags & IRQ_TYPE_LEVEL_MASK) {
949 irq_settings_set_level(desc);
950 irqd_set(&desc->irq_data, IRQD_LEVEL);
951 }
952
953 ret = 0;
954 break;
955 default:
956 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
957 flags, irq_desc_get_irq(desc), chip->irq_set_type);
958 }
959 if (unmask)
960 unmask_irq(desc);
961 return ret;
962 }
963
964 #ifdef CONFIG_HARDIRQS_SW_RESEND
irq_set_parent(int irq,int parent_irq)965 int irq_set_parent(int irq, int parent_irq)
966 {
967 unsigned long flags;
968 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
969
970 if (!desc)
971 return -EINVAL;
972
973 desc->parent_irq = parent_irq;
974
975 irq_put_desc_unlock(desc, flags);
976 return 0;
977 }
978 EXPORT_SYMBOL_GPL(irq_set_parent);
979 #endif
980
981 /*
982 * Default primary interrupt handler for threaded interrupts. Is
983 * assigned as primary handler when request_threaded_irq is called
984 * with handler == NULL. Useful for oneshot interrupts.
985 */
irq_default_primary_handler(int irq,void * dev_id)986 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
987 {
988 return IRQ_WAKE_THREAD;
989 }
990
991 /*
992 * Primary handler for nested threaded interrupts. Should never be
993 * called.
994 */
irq_nested_primary_handler(int irq,void * dev_id)995 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
996 {
997 WARN(1, "Primary handler called for nested irq %d\n", irq);
998 return IRQ_NONE;
999 }
1000
irq_forced_secondary_handler(int irq,void * dev_id)1001 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1002 {
1003 WARN(1, "Secondary action handler called for irq %d\n", irq);
1004 return IRQ_NONE;
1005 }
1006
irq_wait_for_interrupt(struct irqaction * action)1007 static int irq_wait_for_interrupt(struct irqaction *action)
1008 {
1009 for (;;) {
1010 set_current_state(TASK_INTERRUPTIBLE);
1011
1012 if (kthread_should_stop()) {
1013 /* may need to run one last time */
1014 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1015 &action->thread_flags)) {
1016 __set_current_state(TASK_RUNNING);
1017 return 0;
1018 }
1019 __set_current_state(TASK_RUNNING);
1020 return -1;
1021 }
1022
1023 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1024 &action->thread_flags)) {
1025 __set_current_state(TASK_RUNNING);
1026 return 0;
1027 }
1028 schedule();
1029 }
1030 }
1031
1032 /*
1033 * Oneshot interrupts keep the irq line masked until the threaded
1034 * handler finished. unmask if the interrupt has not been disabled and
1035 * is marked MASKED.
1036 */
irq_finalize_oneshot(struct irq_desc * desc,struct irqaction * action)1037 static void irq_finalize_oneshot(struct irq_desc *desc,
1038 struct irqaction *action)
1039 {
1040 if (!(desc->istate & IRQS_ONESHOT) ||
1041 action->handler == irq_forced_secondary_handler)
1042 return;
1043 again:
1044 chip_bus_lock(desc);
1045 raw_spin_lock_irq(&desc->lock);
1046
1047 /*
1048 * Implausible though it may be we need to protect us against
1049 * the following scenario:
1050 *
1051 * The thread is faster done than the hard interrupt handler
1052 * on the other CPU. If we unmask the irq line then the
1053 * interrupt can come in again and masks the line, leaves due
1054 * to IRQS_INPROGRESS and the irq line is masked forever.
1055 *
1056 * This also serializes the state of shared oneshot handlers
1057 * versus "desc->threads_oneshot |= action->thread_mask;" in
1058 * irq_wake_thread(). See the comment there which explains the
1059 * serialization.
1060 */
1061 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1062 raw_spin_unlock_irq(&desc->lock);
1063 chip_bus_sync_unlock(desc);
1064 cpu_relax();
1065 goto again;
1066 }
1067
1068 /*
1069 * Now check again, whether the thread should run. Otherwise
1070 * we would clear the threads_oneshot bit of this thread which
1071 * was just set.
1072 */
1073 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1074 goto out_unlock;
1075
1076 desc->threads_oneshot &= ~action->thread_mask;
1077
1078 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1079 irqd_irq_masked(&desc->irq_data))
1080 unmask_threaded_irq(desc);
1081
1082 out_unlock:
1083 raw_spin_unlock_irq(&desc->lock);
1084 chip_bus_sync_unlock(desc);
1085 }
1086
1087 #ifdef CONFIG_SMP
1088 /*
1089 * Check whether we need to change the affinity of the interrupt thread.
1090 */
1091 static void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1092 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1093 {
1094 cpumask_var_t mask;
1095 bool valid = true;
1096
1097 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1098 return;
1099
1100 /*
1101 * In case we are out of memory we set IRQTF_AFFINITY again and
1102 * try again next time
1103 */
1104 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1105 set_bit(IRQTF_AFFINITY, &action->thread_flags);
1106 return;
1107 }
1108
1109 raw_spin_lock_irq(&desc->lock);
1110 /*
1111 * This code is triggered unconditionally. Check the affinity
1112 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1113 */
1114 if (cpumask_available(desc->irq_common_data.affinity)) {
1115 const struct cpumask *m;
1116
1117 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1118 cpumask_copy(mask, m);
1119 } else {
1120 valid = false;
1121 }
1122 raw_spin_unlock_irq(&desc->lock);
1123
1124 if (valid)
1125 set_cpus_allowed_ptr(current, mask);
1126 free_cpumask_var(mask);
1127 }
1128 #else
1129 static inline void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1130 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1131 #endif
1132
1133 /*
1134 * Interrupts which are not explicitly requested as threaded
1135 * interrupts rely on the implicit bh/preempt disable of the hard irq
1136 * context. So we need to disable bh here to avoid deadlocks and other
1137 * side effects.
1138 */
1139 static irqreturn_t
irq_forced_thread_fn(struct irq_desc * desc,struct irqaction * action)1140 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1141 {
1142 irqreturn_t ret;
1143
1144 local_bh_disable();
1145 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1146 local_irq_disable();
1147 ret = action->thread_fn(action->irq, action->dev_id);
1148 if (ret == IRQ_HANDLED)
1149 atomic_inc(&desc->threads_handled);
1150
1151 irq_finalize_oneshot(desc, action);
1152 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1153 local_irq_enable();
1154 local_bh_enable();
1155 return ret;
1156 }
1157
1158 /*
1159 * Interrupts explicitly requested as threaded interrupts want to be
1160 * preemptible - many of them need to sleep and wait for slow busses to
1161 * complete.
1162 */
irq_thread_fn(struct irq_desc * desc,struct irqaction * action)1163 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1164 struct irqaction *action)
1165 {
1166 irqreturn_t ret;
1167
1168 ret = action->thread_fn(action->irq, action->dev_id);
1169 if (ret == IRQ_HANDLED)
1170 atomic_inc(&desc->threads_handled);
1171
1172 irq_finalize_oneshot(desc, action);
1173 return ret;
1174 }
1175
wake_threads_waitq(struct irq_desc * desc)1176 static void wake_threads_waitq(struct irq_desc *desc)
1177 {
1178 if (atomic_dec_and_test(&desc->threads_active))
1179 wake_up(&desc->wait_for_threads);
1180 }
1181
irq_thread_dtor(struct callback_head * unused)1182 static void irq_thread_dtor(struct callback_head *unused)
1183 {
1184 struct task_struct *tsk = current;
1185 struct irq_desc *desc;
1186 struct irqaction *action;
1187
1188 if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1189 return;
1190
1191 action = kthread_data(tsk);
1192
1193 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1194 tsk->comm, tsk->pid, action->irq);
1195
1196
1197 desc = irq_to_desc(action->irq);
1198 /*
1199 * If IRQTF_RUNTHREAD is set, we need to decrement
1200 * desc->threads_active and wake possible waiters.
1201 */
1202 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1203 wake_threads_waitq(desc);
1204
1205 /* Prevent a stale desc->threads_oneshot */
1206 irq_finalize_oneshot(desc, action);
1207 }
1208
irq_wake_secondary(struct irq_desc * desc,struct irqaction * action)1209 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1210 {
1211 struct irqaction *secondary = action->secondary;
1212
1213 if (WARN_ON_ONCE(!secondary))
1214 return;
1215
1216 raw_spin_lock_irq(&desc->lock);
1217 __irq_wake_thread(desc, secondary);
1218 raw_spin_unlock_irq(&desc->lock);
1219 }
1220
1221 /*
1222 * Interrupt handler thread
1223 */
irq_thread(void * data)1224 static int irq_thread(void *data)
1225 {
1226 struct callback_head on_exit_work;
1227 struct irqaction *action = data;
1228 struct irq_desc *desc = irq_to_desc(action->irq);
1229 irqreturn_t (*handler_fn)(struct irq_desc *desc,
1230 struct irqaction *action);
1231
1232 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1233 &action->thread_flags))
1234 handler_fn = irq_forced_thread_fn;
1235 else
1236 handler_fn = irq_thread_fn;
1237
1238 init_task_work(&on_exit_work, irq_thread_dtor);
1239 task_work_add(current, &on_exit_work, TWA_NONE);
1240
1241 irq_thread_check_affinity(desc, action);
1242
1243 while (!irq_wait_for_interrupt(action)) {
1244 irqreturn_t action_ret;
1245
1246 irq_thread_check_affinity(desc, action);
1247
1248 action_ret = handler_fn(desc, action);
1249 if (action_ret == IRQ_WAKE_THREAD)
1250 irq_wake_secondary(desc, action);
1251
1252 wake_threads_waitq(desc);
1253 }
1254
1255 /*
1256 * This is the regular exit path. __free_irq() is stopping the
1257 * thread via kthread_stop() after calling
1258 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1259 * oneshot mask bit can be set.
1260 */
1261 task_work_cancel(current, irq_thread_dtor);
1262 return 0;
1263 }
1264
1265 /**
1266 * irq_wake_thread - wake the irq thread for the action identified by dev_id
1267 * @irq: Interrupt line
1268 * @dev_id: Device identity for which the thread should be woken
1269 *
1270 */
irq_wake_thread(unsigned int irq,void * dev_id)1271 void irq_wake_thread(unsigned int irq, void *dev_id)
1272 {
1273 struct irq_desc *desc = irq_to_desc(irq);
1274 struct irqaction *action;
1275 unsigned long flags;
1276
1277 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1278 return;
1279
1280 raw_spin_lock_irqsave(&desc->lock, flags);
1281 for_each_action_of_desc(desc, action) {
1282 if (action->dev_id == dev_id) {
1283 if (action->thread)
1284 __irq_wake_thread(desc, action);
1285 break;
1286 }
1287 }
1288 raw_spin_unlock_irqrestore(&desc->lock, flags);
1289 }
1290 EXPORT_SYMBOL_GPL(irq_wake_thread);
1291
irq_setup_forced_threading(struct irqaction * new)1292 static int irq_setup_forced_threading(struct irqaction *new)
1293 {
1294 if (!force_irqthreads)
1295 return 0;
1296 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1297 return 0;
1298
1299 /*
1300 * No further action required for interrupts which are requested as
1301 * threaded interrupts already
1302 */
1303 if (new->handler == irq_default_primary_handler)
1304 return 0;
1305
1306 new->flags |= IRQF_ONESHOT;
1307
1308 /*
1309 * Handle the case where we have a real primary handler and a
1310 * thread handler. We force thread them as well by creating a
1311 * secondary action.
1312 */
1313 if (new->handler && new->thread_fn) {
1314 /* Allocate the secondary action */
1315 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1316 if (!new->secondary)
1317 return -ENOMEM;
1318 new->secondary->handler = irq_forced_secondary_handler;
1319 new->secondary->thread_fn = new->thread_fn;
1320 new->secondary->dev_id = new->dev_id;
1321 new->secondary->irq = new->irq;
1322 new->secondary->name = new->name;
1323 }
1324 /* Deal with the primary handler */
1325 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1326 new->thread_fn = new->handler;
1327 new->handler = irq_default_primary_handler;
1328 return 0;
1329 }
1330
irq_request_resources(struct irq_desc * desc)1331 static int irq_request_resources(struct irq_desc *desc)
1332 {
1333 struct irq_data *d = &desc->irq_data;
1334 struct irq_chip *c = d->chip;
1335
1336 return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1337 }
1338
irq_release_resources(struct irq_desc * desc)1339 static void irq_release_resources(struct irq_desc *desc)
1340 {
1341 struct irq_data *d = &desc->irq_data;
1342 struct irq_chip *c = d->chip;
1343
1344 if (c->irq_release_resources)
1345 c->irq_release_resources(d);
1346 }
1347
irq_supports_nmi(struct irq_desc * desc)1348 static bool irq_supports_nmi(struct irq_desc *desc)
1349 {
1350 struct irq_data *d = irq_desc_get_irq_data(desc);
1351
1352 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1353 /* Only IRQs directly managed by the root irqchip can be set as NMI */
1354 if (d->parent_data)
1355 return false;
1356 #endif
1357 /* Don't support NMIs for chips behind a slow bus */
1358 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1359 return false;
1360
1361 return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1362 }
1363
irq_nmi_setup(struct irq_desc * desc)1364 static int irq_nmi_setup(struct irq_desc *desc)
1365 {
1366 struct irq_data *d = irq_desc_get_irq_data(desc);
1367 struct irq_chip *c = d->chip;
1368
1369 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1370 }
1371
irq_nmi_teardown(struct irq_desc * desc)1372 static void irq_nmi_teardown(struct irq_desc *desc)
1373 {
1374 struct irq_data *d = irq_desc_get_irq_data(desc);
1375 struct irq_chip *c = d->chip;
1376
1377 if (c->irq_nmi_teardown)
1378 c->irq_nmi_teardown(d);
1379 }
1380
1381 static int
setup_irq_thread(struct irqaction * new,unsigned int irq,bool secondary)1382 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1383 {
1384 struct task_struct *t;
1385
1386 if (!secondary) {
1387 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1388 new->name);
1389 } else {
1390 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1391 new->name);
1392 }
1393
1394 if (IS_ERR(t))
1395 return PTR_ERR(t);
1396
1397 sched_set_fifo(t);
1398
1399 /*
1400 * We keep the reference to the task struct even if
1401 * the thread dies to avoid that the interrupt code
1402 * references an already freed task_struct.
1403 */
1404 new->thread = get_task_struct(t);
1405 /*
1406 * Tell the thread to set its affinity. This is
1407 * important for shared interrupt handlers as we do
1408 * not invoke setup_affinity() for the secondary
1409 * handlers as everything is already set up. Even for
1410 * interrupts marked with IRQF_NO_BALANCE this is
1411 * correct as we want the thread to move to the cpu(s)
1412 * on which the requesting code placed the interrupt.
1413 */
1414 set_bit(IRQTF_AFFINITY, &new->thread_flags);
1415 return 0;
1416 }
1417
1418 /*
1419 * Internal function to register an irqaction - typically used to
1420 * allocate special interrupts that are part of the architecture.
1421 *
1422 * Locking rules:
1423 *
1424 * desc->request_mutex Provides serialization against a concurrent free_irq()
1425 * chip_bus_lock Provides serialization for slow bus operations
1426 * desc->lock Provides serialization against hard interrupts
1427 *
1428 * chip_bus_lock and desc->lock are sufficient for all other management and
1429 * interrupt related functions. desc->request_mutex solely serializes
1430 * request/free_irq().
1431 */
1432 static int
__setup_irq(unsigned int irq,struct irq_desc * desc,struct irqaction * new)1433 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1434 {
1435 struct irqaction *old, **old_ptr;
1436 unsigned long flags, thread_mask = 0;
1437 int ret, nested, shared = 0;
1438
1439 if (!desc)
1440 return -EINVAL;
1441
1442 if (desc->irq_data.chip == &no_irq_chip)
1443 return -ENOSYS;
1444 if (!try_module_get(desc->owner))
1445 return -ENODEV;
1446
1447 new->irq = irq;
1448
1449 /*
1450 * If the trigger type is not specified by the caller,
1451 * then use the default for this interrupt.
1452 */
1453 if (!(new->flags & IRQF_TRIGGER_MASK))
1454 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1455
1456 /*
1457 * Check whether the interrupt nests into another interrupt
1458 * thread.
1459 */
1460 nested = irq_settings_is_nested_thread(desc);
1461 if (nested) {
1462 if (!new->thread_fn) {
1463 ret = -EINVAL;
1464 goto out_mput;
1465 }
1466 /*
1467 * Replace the primary handler which was provided from
1468 * the driver for non nested interrupt handling by the
1469 * dummy function which warns when called.
1470 */
1471 new->handler = irq_nested_primary_handler;
1472 } else {
1473 if (irq_settings_can_thread(desc)) {
1474 ret = irq_setup_forced_threading(new);
1475 if (ret)
1476 goto out_mput;
1477 }
1478 }
1479
1480 /*
1481 * Create a handler thread when a thread function is supplied
1482 * and the interrupt does not nest into another interrupt
1483 * thread.
1484 */
1485 if (new->thread_fn && !nested) {
1486 ret = setup_irq_thread(new, irq, false);
1487 if (ret)
1488 goto out_mput;
1489 if (new->secondary) {
1490 ret = setup_irq_thread(new->secondary, irq, true);
1491 if (ret)
1492 goto out_thread;
1493 }
1494 }
1495
1496 /*
1497 * Drivers are often written to work w/o knowledge about the
1498 * underlying irq chip implementation, so a request for a
1499 * threaded irq without a primary hard irq context handler
1500 * requires the ONESHOT flag to be set. Some irq chips like
1501 * MSI based interrupts are per se one shot safe. Check the
1502 * chip flags, so we can avoid the unmask dance at the end of
1503 * the threaded handler for those.
1504 */
1505 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1506 new->flags &= ~IRQF_ONESHOT;
1507
1508 /*
1509 * Protects against a concurrent __free_irq() call which might wait
1510 * for synchronize_hardirq() to complete without holding the optional
1511 * chip bus lock and desc->lock. Also protects against handing out
1512 * a recycled oneshot thread_mask bit while it's still in use by
1513 * its previous owner.
1514 */
1515 mutex_lock(&desc->request_mutex);
1516
1517 /*
1518 * Acquire bus lock as the irq_request_resources() callback below
1519 * might rely on the serialization or the magic power management
1520 * functions which are abusing the irq_bus_lock() callback,
1521 */
1522 chip_bus_lock(desc);
1523
1524 /* First installed action requests resources. */
1525 if (!desc->action) {
1526 ret = irq_request_resources(desc);
1527 if (ret) {
1528 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1529 new->name, irq, desc->irq_data.chip->name);
1530 goto out_bus_unlock;
1531 }
1532 }
1533
1534 /*
1535 * The following block of code has to be executed atomically
1536 * protected against a concurrent interrupt and any of the other
1537 * management calls which are not serialized via
1538 * desc->request_mutex or the optional bus lock.
1539 */
1540 raw_spin_lock_irqsave(&desc->lock, flags);
1541 old_ptr = &desc->action;
1542 old = *old_ptr;
1543 if (old) {
1544 /*
1545 * Can't share interrupts unless both agree to and are
1546 * the same type (level, edge, polarity). So both flag
1547 * fields must have IRQF_SHARED set and the bits which
1548 * set the trigger type must match. Also all must
1549 * agree on ONESHOT.
1550 * Interrupt lines used for NMIs cannot be shared.
1551 */
1552 unsigned int oldtype;
1553
1554 if (desc->istate & IRQS_NMI) {
1555 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1556 new->name, irq, desc->irq_data.chip->name);
1557 ret = -EINVAL;
1558 goto out_unlock;
1559 }
1560
1561 /*
1562 * If nobody did set the configuration before, inherit
1563 * the one provided by the requester.
1564 */
1565 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1566 oldtype = irqd_get_trigger_type(&desc->irq_data);
1567 } else {
1568 oldtype = new->flags & IRQF_TRIGGER_MASK;
1569 irqd_set_trigger_type(&desc->irq_data, oldtype);
1570 }
1571
1572 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1573 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1574 ((old->flags ^ new->flags) & IRQF_ONESHOT))
1575 goto mismatch;
1576
1577 /* All handlers must agree on per-cpuness */
1578 if ((old->flags & IRQF_PERCPU) !=
1579 (new->flags & IRQF_PERCPU))
1580 goto mismatch;
1581
1582 /* add new interrupt at end of irq queue */
1583 do {
1584 /*
1585 * Or all existing action->thread_mask bits,
1586 * so we can find the next zero bit for this
1587 * new action.
1588 */
1589 thread_mask |= old->thread_mask;
1590 old_ptr = &old->next;
1591 old = *old_ptr;
1592 } while (old);
1593 shared = 1;
1594 }
1595
1596 /*
1597 * Setup the thread mask for this irqaction for ONESHOT. For
1598 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1599 * conditional in irq_wake_thread().
1600 */
1601 if (new->flags & IRQF_ONESHOT) {
1602 /*
1603 * Unlikely to have 32 resp 64 irqs sharing one line,
1604 * but who knows.
1605 */
1606 if (thread_mask == ~0UL) {
1607 ret = -EBUSY;
1608 goto out_unlock;
1609 }
1610 /*
1611 * The thread_mask for the action is or'ed to
1612 * desc->thread_active to indicate that the
1613 * IRQF_ONESHOT thread handler has been woken, but not
1614 * yet finished. The bit is cleared when a thread
1615 * completes. When all threads of a shared interrupt
1616 * line have completed desc->threads_active becomes
1617 * zero and the interrupt line is unmasked. See
1618 * handle.c:irq_wake_thread() for further information.
1619 *
1620 * If no thread is woken by primary (hard irq context)
1621 * interrupt handlers, then desc->threads_active is
1622 * also checked for zero to unmask the irq line in the
1623 * affected hard irq flow handlers
1624 * (handle_[fasteoi|level]_irq).
1625 *
1626 * The new action gets the first zero bit of
1627 * thread_mask assigned. See the loop above which or's
1628 * all existing action->thread_mask bits.
1629 */
1630 new->thread_mask = 1UL << ffz(thread_mask);
1631
1632 } else if (new->handler == irq_default_primary_handler &&
1633 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1634 /*
1635 * The interrupt was requested with handler = NULL, so
1636 * we use the default primary handler for it. But it
1637 * does not have the oneshot flag set. In combination
1638 * with level interrupts this is deadly, because the
1639 * default primary handler just wakes the thread, then
1640 * the irq lines is reenabled, but the device still
1641 * has the level irq asserted. Rinse and repeat....
1642 *
1643 * While this works for edge type interrupts, we play
1644 * it safe and reject unconditionally because we can't
1645 * say for sure which type this interrupt really
1646 * has. The type flags are unreliable as the
1647 * underlying chip implementation can override them.
1648 */
1649 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1650 new->name, irq);
1651 ret = -EINVAL;
1652 goto out_unlock;
1653 }
1654
1655 if (!shared) {
1656 init_waitqueue_head(&desc->wait_for_threads);
1657
1658 /* Setup the type (level, edge polarity) if configured: */
1659 if (new->flags & IRQF_TRIGGER_MASK) {
1660 ret = __irq_set_trigger(desc,
1661 new->flags & IRQF_TRIGGER_MASK);
1662
1663 if (ret)
1664 goto out_unlock;
1665 }
1666
1667 /*
1668 * Activate the interrupt. That activation must happen
1669 * independently of IRQ_NOAUTOEN. request_irq() can fail
1670 * and the callers are supposed to handle
1671 * that. enable_irq() of an interrupt requested with
1672 * IRQ_NOAUTOEN is not supposed to fail. The activation
1673 * keeps it in shutdown mode, it merily associates
1674 * resources if necessary and if that's not possible it
1675 * fails. Interrupts which are in managed shutdown mode
1676 * will simply ignore that activation request.
1677 */
1678 ret = irq_activate(desc);
1679 if (ret)
1680 goto out_unlock;
1681
1682 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1683 IRQS_ONESHOT | IRQS_WAITING);
1684 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1685
1686 if (new->flags & IRQF_PERCPU) {
1687 irqd_set(&desc->irq_data, IRQD_PER_CPU);
1688 irq_settings_set_per_cpu(desc);
1689 }
1690
1691 if (new->flags & IRQF_ONESHOT)
1692 desc->istate |= IRQS_ONESHOT;
1693
1694 /* Exclude IRQ from balancing if requested */
1695 if (new->flags & IRQF_NOBALANCING) {
1696 irq_settings_set_no_balancing(desc);
1697 irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1698 }
1699
1700 if (!(new->flags & IRQF_NO_AUTOEN) &&
1701 irq_settings_can_autoenable(desc)) {
1702 irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1703 } else {
1704 /*
1705 * Shared interrupts do not go well with disabling
1706 * auto enable. The sharing interrupt might request
1707 * it while it's still disabled and then wait for
1708 * interrupts forever.
1709 */
1710 WARN_ON_ONCE(new->flags & IRQF_SHARED);
1711 /* Undo nested disables: */
1712 desc->depth = 1;
1713 }
1714
1715 } else if (new->flags & IRQF_TRIGGER_MASK) {
1716 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1717 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1718
1719 if (nmsk != omsk)
1720 /* hope the handler works with current trigger mode */
1721 pr_warn("irq %d uses trigger mode %u; requested %u\n",
1722 irq, omsk, nmsk);
1723 }
1724
1725 *old_ptr = new;
1726
1727 irq_pm_install_action(desc, new);
1728
1729 /* Reset broken irq detection when installing new handler */
1730 desc->irq_count = 0;
1731 desc->irqs_unhandled = 0;
1732
1733 /*
1734 * Check whether we disabled the irq via the spurious handler
1735 * before. Reenable it and give it another chance.
1736 */
1737 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1738 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1739 __enable_irq(desc);
1740 }
1741
1742 raw_spin_unlock_irqrestore(&desc->lock, flags);
1743 chip_bus_sync_unlock(desc);
1744 mutex_unlock(&desc->request_mutex);
1745
1746 irq_setup_timings(desc, new);
1747
1748 /*
1749 * Strictly no need to wake it up, but hung_task complains
1750 * when no hard interrupt wakes the thread up.
1751 */
1752 if (new->thread)
1753 wake_up_process(new->thread);
1754 if (new->secondary)
1755 wake_up_process(new->secondary->thread);
1756
1757 register_irq_proc(irq, desc);
1758 new->dir = NULL;
1759 register_handler_proc(irq, new);
1760 return 0;
1761
1762 mismatch:
1763 if (!(new->flags & IRQF_PROBE_SHARED)) {
1764 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1765 irq, new->flags, new->name, old->flags, old->name);
1766 #ifdef CONFIG_DEBUG_SHIRQ
1767 dump_stack();
1768 #endif
1769 }
1770 ret = -EBUSY;
1771
1772 out_unlock:
1773 raw_spin_unlock_irqrestore(&desc->lock, flags);
1774
1775 if (!desc->action)
1776 irq_release_resources(desc);
1777 out_bus_unlock:
1778 chip_bus_sync_unlock(desc);
1779 mutex_unlock(&desc->request_mutex);
1780
1781 out_thread:
1782 if (new->thread) {
1783 struct task_struct *t = new->thread;
1784
1785 new->thread = NULL;
1786 kthread_stop(t);
1787 put_task_struct(t);
1788 }
1789 if (new->secondary && new->secondary->thread) {
1790 struct task_struct *t = new->secondary->thread;
1791
1792 new->secondary->thread = NULL;
1793 kthread_stop(t);
1794 put_task_struct(t);
1795 }
1796 out_mput:
1797 module_put(desc->owner);
1798 return ret;
1799 }
1800
1801 /*
1802 * Internal function to unregister an irqaction - used to free
1803 * regular and special interrupts that are part of the architecture.
1804 */
__free_irq(struct irq_desc * desc,void * dev_id)1805 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1806 {
1807 unsigned irq = desc->irq_data.irq;
1808 struct irqaction *action, **action_ptr;
1809 unsigned long flags;
1810
1811 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1812
1813 mutex_lock(&desc->request_mutex);
1814 chip_bus_lock(desc);
1815 raw_spin_lock_irqsave(&desc->lock, flags);
1816
1817 /*
1818 * There can be multiple actions per IRQ descriptor, find the right
1819 * one based on the dev_id:
1820 */
1821 action_ptr = &desc->action;
1822 for (;;) {
1823 action = *action_ptr;
1824
1825 if (!action) {
1826 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1827 raw_spin_unlock_irqrestore(&desc->lock, flags);
1828 chip_bus_sync_unlock(desc);
1829 mutex_unlock(&desc->request_mutex);
1830 return NULL;
1831 }
1832
1833 if (action->dev_id == dev_id)
1834 break;
1835 action_ptr = &action->next;
1836 }
1837
1838 /* Found it - now remove it from the list of entries: */
1839 *action_ptr = action->next;
1840
1841 irq_pm_remove_action(desc, action);
1842
1843 /* If this was the last handler, shut down the IRQ line: */
1844 if (!desc->action) {
1845 irq_settings_clr_disable_unlazy(desc);
1846 /* Only shutdown. Deactivate after synchronize_hardirq() */
1847 irq_shutdown(desc);
1848 }
1849
1850 #ifdef CONFIG_SMP
1851 /* make sure affinity_hint is cleaned up */
1852 if (WARN_ON_ONCE(desc->affinity_hint))
1853 desc->affinity_hint = NULL;
1854 #endif
1855
1856 raw_spin_unlock_irqrestore(&desc->lock, flags);
1857 /*
1858 * Drop bus_lock here so the changes which were done in the chip
1859 * callbacks above are synced out to the irq chips which hang
1860 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1861 *
1862 * Aside of that the bus_lock can also be taken from the threaded
1863 * handler in irq_finalize_oneshot() which results in a deadlock
1864 * because kthread_stop() would wait forever for the thread to
1865 * complete, which is blocked on the bus lock.
1866 *
1867 * The still held desc->request_mutex() protects against a
1868 * concurrent request_irq() of this irq so the release of resources
1869 * and timing data is properly serialized.
1870 */
1871 chip_bus_sync_unlock(desc);
1872
1873 unregister_handler_proc(irq, action);
1874
1875 /*
1876 * Make sure it's not being used on another CPU and if the chip
1877 * supports it also make sure that there is no (not yet serviced)
1878 * interrupt in flight at the hardware level.
1879 */
1880 __synchronize_hardirq(desc, true);
1881
1882 #ifdef CONFIG_DEBUG_SHIRQ
1883 /*
1884 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1885 * event to happen even now it's being freed, so let's make sure that
1886 * is so by doing an extra call to the handler ....
1887 *
1888 * ( We do this after actually deregistering it, to make sure that a
1889 * 'real' IRQ doesn't run in parallel with our fake. )
1890 */
1891 if (action->flags & IRQF_SHARED) {
1892 local_irq_save(flags);
1893 action->handler(irq, dev_id);
1894 local_irq_restore(flags);
1895 }
1896 #endif
1897
1898 /*
1899 * The action has already been removed above, but the thread writes
1900 * its oneshot mask bit when it completes. Though request_mutex is
1901 * held across this which prevents __setup_irq() from handing out
1902 * the same bit to a newly requested action.
1903 */
1904 if (action->thread) {
1905 kthread_stop(action->thread);
1906 put_task_struct(action->thread);
1907 if (action->secondary && action->secondary->thread) {
1908 kthread_stop(action->secondary->thread);
1909 put_task_struct(action->secondary->thread);
1910 }
1911 }
1912
1913 /* Last action releases resources */
1914 if (!desc->action) {
1915 /*
1916 * Reacquire bus lock as irq_release_resources() might
1917 * require it to deallocate resources over the slow bus.
1918 */
1919 chip_bus_lock(desc);
1920 /*
1921 * There is no interrupt on the fly anymore. Deactivate it
1922 * completely.
1923 */
1924 raw_spin_lock_irqsave(&desc->lock, flags);
1925 irq_domain_deactivate_irq(&desc->irq_data);
1926 raw_spin_unlock_irqrestore(&desc->lock, flags);
1927
1928 irq_release_resources(desc);
1929 chip_bus_sync_unlock(desc);
1930 irq_remove_timings(desc);
1931 }
1932
1933 mutex_unlock(&desc->request_mutex);
1934
1935 irq_chip_pm_put(&desc->irq_data);
1936 module_put(desc->owner);
1937 kfree(action->secondary);
1938 return action;
1939 }
1940
1941 /**
1942 * free_irq - free an interrupt allocated with request_irq
1943 * @irq: Interrupt line to free
1944 * @dev_id: Device identity to free
1945 *
1946 * Remove an interrupt handler. The handler is removed and if the
1947 * interrupt line is no longer in use by any driver it is disabled.
1948 * On a shared IRQ the caller must ensure the interrupt is disabled
1949 * on the card it drives before calling this function. The function
1950 * does not return until any executing interrupts for this IRQ
1951 * have completed.
1952 *
1953 * This function must not be called from interrupt context.
1954 *
1955 * Returns the devname argument passed to request_irq.
1956 */
free_irq(unsigned int irq,void * dev_id)1957 const void *free_irq(unsigned int irq, void *dev_id)
1958 {
1959 struct irq_desc *desc = irq_to_desc(irq);
1960 struct irqaction *action;
1961 const char *devname;
1962
1963 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1964 return NULL;
1965
1966 #ifdef CONFIG_SMP
1967 if (WARN_ON(desc->affinity_notify))
1968 desc->affinity_notify = NULL;
1969 #endif
1970
1971 action = __free_irq(desc, dev_id);
1972
1973 if (!action)
1974 return NULL;
1975
1976 devname = action->name;
1977 kfree(action);
1978 return devname;
1979 }
1980 EXPORT_SYMBOL(free_irq);
1981
1982 /* This function must be called with desc->lock held */
__cleanup_nmi(unsigned int irq,struct irq_desc * desc)1983 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
1984 {
1985 const char *devname = NULL;
1986
1987 desc->istate &= ~IRQS_NMI;
1988
1989 if (!WARN_ON(desc->action == NULL)) {
1990 irq_pm_remove_action(desc, desc->action);
1991 devname = desc->action->name;
1992 unregister_handler_proc(irq, desc->action);
1993
1994 kfree(desc->action);
1995 desc->action = NULL;
1996 }
1997
1998 irq_settings_clr_disable_unlazy(desc);
1999 irq_shutdown_and_deactivate(desc);
2000
2001 irq_release_resources(desc);
2002
2003 irq_chip_pm_put(&desc->irq_data);
2004 module_put(desc->owner);
2005
2006 return devname;
2007 }
2008
free_nmi(unsigned int irq,void * dev_id)2009 const void *free_nmi(unsigned int irq, void *dev_id)
2010 {
2011 struct irq_desc *desc = irq_to_desc(irq);
2012 unsigned long flags;
2013 const void *devname;
2014
2015 if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
2016 return NULL;
2017
2018 if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2019 return NULL;
2020
2021 /* NMI still enabled */
2022 if (WARN_ON(desc->depth == 0))
2023 disable_nmi_nosync(irq);
2024
2025 raw_spin_lock_irqsave(&desc->lock, flags);
2026
2027 irq_nmi_teardown(desc);
2028 devname = __cleanup_nmi(irq, desc);
2029
2030 raw_spin_unlock_irqrestore(&desc->lock, flags);
2031
2032 return devname;
2033 }
2034
2035 /**
2036 * request_threaded_irq - allocate an interrupt line
2037 * @irq: Interrupt line to allocate
2038 * @handler: Function to be called when the IRQ occurs.
2039 * Primary handler for threaded interrupts
2040 * If NULL and thread_fn != NULL the default
2041 * primary handler is installed
2042 * @thread_fn: Function called from the irq handler thread
2043 * If NULL, no irq thread is created
2044 * @irqflags: Interrupt type flags
2045 * @devname: An ascii name for the claiming device
2046 * @dev_id: A cookie passed back to the handler function
2047 *
2048 * This call allocates interrupt resources and enables the
2049 * interrupt line and IRQ handling. From the point this
2050 * call is made your handler function may be invoked. Since
2051 * your handler function must clear any interrupt the board
2052 * raises, you must take care both to initialise your hardware
2053 * and to set up the interrupt handler in the right order.
2054 *
2055 * If you want to set up a threaded irq handler for your device
2056 * then you need to supply @handler and @thread_fn. @handler is
2057 * still called in hard interrupt context and has to check
2058 * whether the interrupt originates from the device. If yes it
2059 * needs to disable the interrupt on the device and return
2060 * IRQ_WAKE_THREAD which will wake up the handler thread and run
2061 * @thread_fn. This split handler design is necessary to support
2062 * shared interrupts.
2063 *
2064 * Dev_id must be globally unique. Normally the address of the
2065 * device data structure is used as the cookie. Since the handler
2066 * receives this value it makes sense to use it.
2067 *
2068 * If your interrupt is shared you must pass a non NULL dev_id
2069 * as this is required when freeing the interrupt.
2070 *
2071 * Flags:
2072 *
2073 * IRQF_SHARED Interrupt is shared
2074 * IRQF_TRIGGER_* Specify active edge(s) or level
2075 *
2076 */
request_threaded_irq(unsigned int irq,irq_handler_t handler,irq_handler_t thread_fn,unsigned long irqflags,const char * devname,void * dev_id)2077 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2078 irq_handler_t thread_fn, unsigned long irqflags,
2079 const char *devname, void *dev_id)
2080 {
2081 struct irqaction *action;
2082 struct irq_desc *desc;
2083 int retval;
2084
2085 if (irq == IRQ_NOTCONNECTED)
2086 return -ENOTCONN;
2087
2088 /*
2089 * Sanity-check: shared interrupts must pass in a real dev-ID,
2090 * otherwise we'll have trouble later trying to figure out
2091 * which interrupt is which (messes up the interrupt freeing
2092 * logic etc).
2093 *
2094 * Also shared interrupts do not go well with disabling auto enable.
2095 * The sharing interrupt might request it while it's still disabled
2096 * and then wait for interrupts forever.
2097 *
2098 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2099 * it cannot be set along with IRQF_NO_SUSPEND.
2100 */
2101 if (((irqflags & IRQF_SHARED) && !dev_id) ||
2102 ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2103 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2104 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2105 return -EINVAL;
2106
2107 desc = irq_to_desc(irq);
2108 if (!desc)
2109 return -EINVAL;
2110
2111 if (!irq_settings_can_request(desc) ||
2112 WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2113 return -EINVAL;
2114
2115 if (!handler) {
2116 if (!thread_fn)
2117 return -EINVAL;
2118 handler = irq_default_primary_handler;
2119 }
2120
2121 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2122 if (!action)
2123 return -ENOMEM;
2124
2125 action->handler = handler;
2126 action->thread_fn = thread_fn;
2127 action->flags = irqflags;
2128 action->name = devname;
2129 action->dev_id = dev_id;
2130
2131 retval = irq_chip_pm_get(&desc->irq_data);
2132 if (retval < 0) {
2133 kfree(action);
2134 return retval;
2135 }
2136
2137 retval = __setup_irq(irq, desc, action);
2138
2139 if (retval) {
2140 irq_chip_pm_put(&desc->irq_data);
2141 kfree(action->secondary);
2142 kfree(action);
2143 }
2144
2145 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2146 if (!retval && (irqflags & IRQF_SHARED)) {
2147 /*
2148 * It's a shared IRQ -- the driver ought to be prepared for it
2149 * to happen immediately, so let's make sure....
2150 * We disable the irq to make sure that a 'real' IRQ doesn't
2151 * run in parallel with our fake.
2152 */
2153 unsigned long flags;
2154
2155 disable_irq(irq);
2156 local_irq_save(flags);
2157
2158 handler(irq, dev_id);
2159
2160 local_irq_restore(flags);
2161 enable_irq(irq);
2162 }
2163 #endif
2164 return retval;
2165 }
2166 EXPORT_SYMBOL(request_threaded_irq);
2167
2168 /**
2169 * request_any_context_irq - allocate an interrupt line
2170 * @irq: Interrupt line to allocate
2171 * @handler: Function to be called when the IRQ occurs.
2172 * Threaded handler for threaded interrupts.
2173 * @flags: Interrupt type flags
2174 * @name: An ascii name for the claiming device
2175 * @dev_id: A cookie passed back to the handler function
2176 *
2177 * This call allocates interrupt resources and enables the
2178 * interrupt line and IRQ handling. It selects either a
2179 * hardirq or threaded handling method depending on the
2180 * context.
2181 *
2182 * On failure, it returns a negative value. On success,
2183 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2184 */
request_any_context_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * name,void * dev_id)2185 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2186 unsigned long flags, const char *name, void *dev_id)
2187 {
2188 struct irq_desc *desc;
2189 int ret;
2190
2191 if (irq == IRQ_NOTCONNECTED)
2192 return -ENOTCONN;
2193
2194 desc = irq_to_desc(irq);
2195 if (!desc)
2196 return -EINVAL;
2197
2198 if (irq_settings_is_nested_thread(desc)) {
2199 ret = request_threaded_irq(irq, NULL, handler,
2200 flags, name, dev_id);
2201 return !ret ? IRQC_IS_NESTED : ret;
2202 }
2203
2204 ret = request_irq(irq, handler, flags, name, dev_id);
2205 return !ret ? IRQC_IS_HARDIRQ : ret;
2206 }
2207 EXPORT_SYMBOL_GPL(request_any_context_irq);
2208
2209 /**
2210 * request_nmi - allocate an interrupt line for NMI delivery
2211 * @irq: Interrupt line to allocate
2212 * @handler: Function to be called when the IRQ occurs.
2213 * Threaded handler for threaded interrupts.
2214 * @irqflags: Interrupt type flags
2215 * @name: An ascii name for the claiming device
2216 * @dev_id: A cookie passed back to the handler function
2217 *
2218 * This call allocates interrupt resources and enables the
2219 * interrupt line and IRQ handling. It sets up the IRQ line
2220 * to be handled as an NMI.
2221 *
2222 * An interrupt line delivering NMIs cannot be shared and IRQ handling
2223 * cannot be threaded.
2224 *
2225 * Interrupt lines requested for NMI delivering must produce per cpu
2226 * interrupts and have auto enabling setting disabled.
2227 *
2228 * Dev_id must be globally unique. Normally the address of the
2229 * device data structure is used as the cookie. Since the handler
2230 * receives this value it makes sense to use it.
2231 *
2232 * If the interrupt line cannot be used to deliver NMIs, function
2233 * will fail and return a negative value.
2234 */
request_nmi(unsigned int irq,irq_handler_t handler,unsigned long irqflags,const char * name,void * dev_id)2235 int request_nmi(unsigned int irq, irq_handler_t handler,
2236 unsigned long irqflags, const char *name, void *dev_id)
2237 {
2238 struct irqaction *action;
2239 struct irq_desc *desc;
2240 unsigned long flags;
2241 int retval;
2242
2243 if (irq == IRQ_NOTCONNECTED)
2244 return -ENOTCONN;
2245
2246 /* NMI cannot be shared, used for Polling */
2247 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2248 return -EINVAL;
2249
2250 if (!(irqflags & IRQF_PERCPU))
2251 return -EINVAL;
2252
2253 if (!handler)
2254 return -EINVAL;
2255
2256 desc = irq_to_desc(irq);
2257
2258 if (!desc || (irq_settings_can_autoenable(desc) &&
2259 !(irqflags & IRQF_NO_AUTOEN)) ||
2260 !irq_settings_can_request(desc) ||
2261 WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2262 !irq_supports_nmi(desc))
2263 return -EINVAL;
2264
2265 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2266 if (!action)
2267 return -ENOMEM;
2268
2269 action->handler = handler;
2270 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2271 action->name = name;
2272 action->dev_id = dev_id;
2273
2274 retval = irq_chip_pm_get(&desc->irq_data);
2275 if (retval < 0)
2276 goto err_out;
2277
2278 retval = __setup_irq(irq, desc, action);
2279 if (retval)
2280 goto err_irq_setup;
2281
2282 raw_spin_lock_irqsave(&desc->lock, flags);
2283
2284 /* Setup NMI state */
2285 desc->istate |= IRQS_NMI;
2286 retval = irq_nmi_setup(desc);
2287 if (retval) {
2288 __cleanup_nmi(irq, desc);
2289 raw_spin_unlock_irqrestore(&desc->lock, flags);
2290 return -EINVAL;
2291 }
2292
2293 raw_spin_unlock_irqrestore(&desc->lock, flags);
2294
2295 return 0;
2296
2297 err_irq_setup:
2298 irq_chip_pm_put(&desc->irq_data);
2299 err_out:
2300 kfree(action);
2301
2302 return retval;
2303 }
2304
enable_percpu_irq(unsigned int irq,unsigned int type)2305 void enable_percpu_irq(unsigned int irq, unsigned int type)
2306 {
2307 unsigned int cpu = smp_processor_id();
2308 unsigned long flags;
2309 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2310
2311 if (!desc)
2312 return;
2313
2314 /*
2315 * If the trigger type is not specified by the caller, then
2316 * use the default for this interrupt.
2317 */
2318 type &= IRQ_TYPE_SENSE_MASK;
2319 if (type == IRQ_TYPE_NONE)
2320 type = irqd_get_trigger_type(&desc->irq_data);
2321
2322 if (type != IRQ_TYPE_NONE) {
2323 int ret;
2324
2325 ret = __irq_set_trigger(desc, type);
2326
2327 if (ret) {
2328 WARN(1, "failed to set type for IRQ%d\n", irq);
2329 goto out;
2330 }
2331 }
2332
2333 irq_percpu_enable(desc, cpu);
2334 out:
2335 irq_put_desc_unlock(desc, flags);
2336 }
2337 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2338
enable_percpu_nmi(unsigned int irq,unsigned int type)2339 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2340 {
2341 enable_percpu_irq(irq, type);
2342 }
2343
2344 /**
2345 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2346 * @irq: Linux irq number to check for
2347 *
2348 * Must be called from a non migratable context. Returns the enable
2349 * state of a per cpu interrupt on the current cpu.
2350 */
irq_percpu_is_enabled(unsigned int irq)2351 bool irq_percpu_is_enabled(unsigned int irq)
2352 {
2353 unsigned int cpu = smp_processor_id();
2354 struct irq_desc *desc;
2355 unsigned long flags;
2356 bool is_enabled;
2357
2358 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2359 if (!desc)
2360 return false;
2361
2362 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2363 irq_put_desc_unlock(desc, flags);
2364
2365 return is_enabled;
2366 }
2367 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2368
disable_percpu_irq(unsigned int irq)2369 void disable_percpu_irq(unsigned int irq)
2370 {
2371 unsigned int cpu = smp_processor_id();
2372 unsigned long flags;
2373 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2374
2375 if (!desc)
2376 return;
2377
2378 irq_percpu_disable(desc, cpu);
2379 irq_put_desc_unlock(desc, flags);
2380 }
2381 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2382
disable_percpu_nmi(unsigned int irq)2383 void disable_percpu_nmi(unsigned int irq)
2384 {
2385 disable_percpu_irq(irq);
2386 }
2387
2388 /*
2389 * Internal function to unregister a percpu irqaction.
2390 */
__free_percpu_irq(unsigned int irq,void __percpu * dev_id)2391 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2392 {
2393 struct irq_desc *desc = irq_to_desc(irq);
2394 struct irqaction *action;
2395 unsigned long flags;
2396
2397 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2398
2399 if (!desc)
2400 return NULL;
2401
2402 raw_spin_lock_irqsave(&desc->lock, flags);
2403
2404 action = desc->action;
2405 if (!action || action->percpu_dev_id != dev_id) {
2406 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2407 goto bad;
2408 }
2409
2410 if (!cpumask_empty(desc->percpu_enabled)) {
2411 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2412 irq, cpumask_first(desc->percpu_enabled));
2413 goto bad;
2414 }
2415
2416 /* Found it - now remove it from the list of entries: */
2417 desc->action = NULL;
2418
2419 desc->istate &= ~IRQS_NMI;
2420
2421 raw_spin_unlock_irqrestore(&desc->lock, flags);
2422
2423 unregister_handler_proc(irq, action);
2424
2425 irq_chip_pm_put(&desc->irq_data);
2426 module_put(desc->owner);
2427 return action;
2428
2429 bad:
2430 raw_spin_unlock_irqrestore(&desc->lock, flags);
2431 return NULL;
2432 }
2433
2434 /**
2435 * remove_percpu_irq - free a per-cpu interrupt
2436 * @irq: Interrupt line to free
2437 * @act: irqaction for the interrupt
2438 *
2439 * Used to remove interrupts statically setup by the early boot process.
2440 */
remove_percpu_irq(unsigned int irq,struct irqaction * act)2441 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2442 {
2443 struct irq_desc *desc = irq_to_desc(irq);
2444
2445 if (desc && irq_settings_is_per_cpu_devid(desc))
2446 __free_percpu_irq(irq, act->percpu_dev_id);
2447 }
2448
2449 /**
2450 * free_percpu_irq - free an interrupt allocated with request_percpu_irq
2451 * @irq: Interrupt line to free
2452 * @dev_id: Device identity to free
2453 *
2454 * Remove a percpu interrupt handler. The handler is removed, but
2455 * the interrupt line is not disabled. This must be done on each
2456 * CPU before calling this function. The function does not return
2457 * until any executing interrupts for this IRQ have completed.
2458 *
2459 * This function must not be called from interrupt context.
2460 */
free_percpu_irq(unsigned int irq,void __percpu * dev_id)2461 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2462 {
2463 struct irq_desc *desc = irq_to_desc(irq);
2464
2465 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2466 return;
2467
2468 chip_bus_lock(desc);
2469 kfree(__free_percpu_irq(irq, dev_id));
2470 chip_bus_sync_unlock(desc);
2471 }
2472 EXPORT_SYMBOL_GPL(free_percpu_irq);
2473
free_percpu_nmi(unsigned int irq,void __percpu * dev_id)2474 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2475 {
2476 struct irq_desc *desc = irq_to_desc(irq);
2477
2478 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2479 return;
2480
2481 if (WARN_ON(!(desc->istate & IRQS_NMI)))
2482 return;
2483
2484 kfree(__free_percpu_irq(irq, dev_id));
2485 }
2486
2487 /**
2488 * setup_percpu_irq - setup a per-cpu interrupt
2489 * @irq: Interrupt line to setup
2490 * @act: irqaction for the interrupt
2491 *
2492 * Used to statically setup per-cpu interrupts in the early boot process.
2493 */
setup_percpu_irq(unsigned int irq,struct irqaction * act)2494 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2495 {
2496 struct irq_desc *desc = irq_to_desc(irq);
2497 int retval;
2498
2499 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2500 return -EINVAL;
2501
2502 retval = irq_chip_pm_get(&desc->irq_data);
2503 if (retval < 0)
2504 return retval;
2505
2506 retval = __setup_irq(irq, desc, act);
2507
2508 if (retval)
2509 irq_chip_pm_put(&desc->irq_data);
2510
2511 return retval;
2512 }
2513
2514 /**
2515 * __request_percpu_irq - allocate a percpu interrupt line
2516 * @irq: Interrupt line to allocate
2517 * @handler: Function to be called when the IRQ occurs.
2518 * @flags: Interrupt type flags (IRQF_TIMER only)
2519 * @devname: An ascii name for the claiming device
2520 * @dev_id: A percpu cookie passed back to the handler function
2521 *
2522 * This call allocates interrupt resources and enables the
2523 * interrupt on the local CPU. If the interrupt is supposed to be
2524 * enabled on other CPUs, it has to be done on each CPU using
2525 * enable_percpu_irq().
2526 *
2527 * Dev_id must be globally unique. It is a per-cpu variable, and
2528 * the handler gets called with the interrupted CPU's instance of
2529 * that variable.
2530 */
__request_percpu_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * devname,void __percpu * dev_id)2531 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2532 unsigned long flags, const char *devname,
2533 void __percpu *dev_id)
2534 {
2535 struct irqaction *action;
2536 struct irq_desc *desc;
2537 int retval;
2538
2539 if (!dev_id)
2540 return -EINVAL;
2541
2542 desc = irq_to_desc(irq);
2543 if (!desc || !irq_settings_can_request(desc) ||
2544 !irq_settings_is_per_cpu_devid(desc))
2545 return -EINVAL;
2546
2547 if (flags && flags != IRQF_TIMER)
2548 return -EINVAL;
2549
2550 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2551 if (!action)
2552 return -ENOMEM;
2553
2554 action->handler = handler;
2555 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2556 action->name = devname;
2557 action->percpu_dev_id = dev_id;
2558
2559 retval = irq_chip_pm_get(&desc->irq_data);
2560 if (retval < 0) {
2561 kfree(action);
2562 return retval;
2563 }
2564
2565 retval = __setup_irq(irq, desc, action);
2566
2567 if (retval) {
2568 irq_chip_pm_put(&desc->irq_data);
2569 kfree(action);
2570 }
2571
2572 return retval;
2573 }
2574 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2575
2576 /**
2577 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2578 * @irq: Interrupt line to allocate
2579 * @handler: Function to be called when the IRQ occurs.
2580 * @name: An ascii name for the claiming device
2581 * @dev_id: A percpu cookie passed back to the handler function
2582 *
2583 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2584 * have to be setup on each CPU by calling prepare_percpu_nmi() before
2585 * being enabled on the same CPU by using enable_percpu_nmi().
2586 *
2587 * Dev_id must be globally unique. It is a per-cpu variable, and
2588 * the handler gets called with the interrupted CPU's instance of
2589 * that variable.
2590 *
2591 * Interrupt lines requested for NMI delivering should have auto enabling
2592 * setting disabled.
2593 *
2594 * If the interrupt line cannot be used to deliver NMIs, function
2595 * will fail returning a negative value.
2596 */
request_percpu_nmi(unsigned int irq,irq_handler_t handler,const char * name,void __percpu * dev_id)2597 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2598 const char *name, void __percpu *dev_id)
2599 {
2600 struct irqaction *action;
2601 struct irq_desc *desc;
2602 unsigned long flags;
2603 int retval;
2604
2605 if (!handler)
2606 return -EINVAL;
2607
2608 desc = irq_to_desc(irq);
2609
2610 if (!desc || !irq_settings_can_request(desc) ||
2611 !irq_settings_is_per_cpu_devid(desc) ||
2612 irq_settings_can_autoenable(desc) ||
2613 !irq_supports_nmi(desc))
2614 return -EINVAL;
2615
2616 /* The line cannot already be NMI */
2617 if (desc->istate & IRQS_NMI)
2618 return -EINVAL;
2619
2620 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2621 if (!action)
2622 return -ENOMEM;
2623
2624 action->handler = handler;
2625 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2626 | IRQF_NOBALANCING;
2627 action->name = name;
2628 action->percpu_dev_id = dev_id;
2629
2630 retval = irq_chip_pm_get(&desc->irq_data);
2631 if (retval < 0)
2632 goto err_out;
2633
2634 retval = __setup_irq(irq, desc, action);
2635 if (retval)
2636 goto err_irq_setup;
2637
2638 raw_spin_lock_irqsave(&desc->lock, flags);
2639 desc->istate |= IRQS_NMI;
2640 raw_spin_unlock_irqrestore(&desc->lock, flags);
2641
2642 return 0;
2643
2644 err_irq_setup:
2645 irq_chip_pm_put(&desc->irq_data);
2646 err_out:
2647 kfree(action);
2648
2649 return retval;
2650 }
2651
2652 /**
2653 * prepare_percpu_nmi - performs CPU local setup for NMI delivery
2654 * @irq: Interrupt line to prepare for NMI delivery
2655 *
2656 * This call prepares an interrupt line to deliver NMI on the current CPU,
2657 * before that interrupt line gets enabled with enable_percpu_nmi().
2658 *
2659 * As a CPU local operation, this should be called from non-preemptible
2660 * context.
2661 *
2662 * If the interrupt line cannot be used to deliver NMIs, function
2663 * will fail returning a negative value.
2664 */
prepare_percpu_nmi(unsigned int irq)2665 int prepare_percpu_nmi(unsigned int irq)
2666 {
2667 unsigned long flags;
2668 struct irq_desc *desc;
2669 int ret = 0;
2670
2671 WARN_ON(preemptible());
2672
2673 desc = irq_get_desc_lock(irq, &flags,
2674 IRQ_GET_DESC_CHECK_PERCPU);
2675 if (!desc)
2676 return -EINVAL;
2677
2678 if (WARN(!(desc->istate & IRQS_NMI),
2679 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2680 irq)) {
2681 ret = -EINVAL;
2682 goto out;
2683 }
2684
2685 ret = irq_nmi_setup(desc);
2686 if (ret) {
2687 pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2688 goto out;
2689 }
2690
2691 out:
2692 irq_put_desc_unlock(desc, flags);
2693 return ret;
2694 }
2695
2696 /**
2697 * teardown_percpu_nmi - undoes NMI setup of IRQ line
2698 * @irq: Interrupt line from which CPU local NMI configuration should be
2699 * removed
2700 *
2701 * This call undoes the setup done by prepare_percpu_nmi().
2702 *
2703 * IRQ line should not be enabled for the current CPU.
2704 *
2705 * As a CPU local operation, this should be called from non-preemptible
2706 * context.
2707 */
teardown_percpu_nmi(unsigned int irq)2708 void teardown_percpu_nmi(unsigned int irq)
2709 {
2710 unsigned long flags;
2711 struct irq_desc *desc;
2712
2713 WARN_ON(preemptible());
2714
2715 desc = irq_get_desc_lock(irq, &flags,
2716 IRQ_GET_DESC_CHECK_PERCPU);
2717 if (!desc)
2718 return;
2719
2720 if (WARN_ON(!(desc->istate & IRQS_NMI)))
2721 goto out;
2722
2723 irq_nmi_teardown(desc);
2724 out:
2725 irq_put_desc_unlock(desc, flags);
2726 }
2727
__irq_get_irqchip_state(struct irq_data * data,enum irqchip_irq_state which,bool * state)2728 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2729 bool *state)
2730 {
2731 struct irq_chip *chip;
2732 int err = -EINVAL;
2733
2734 do {
2735 chip = irq_data_get_irq_chip(data);
2736 if (WARN_ON_ONCE(!chip))
2737 return -ENODEV;
2738 if (chip->irq_get_irqchip_state)
2739 break;
2740 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2741 data = data->parent_data;
2742 #else
2743 data = NULL;
2744 #endif
2745 } while (data);
2746
2747 if (data)
2748 err = chip->irq_get_irqchip_state(data, which, state);
2749 return err;
2750 }
2751
2752 /**
2753 * irq_get_irqchip_state - returns the irqchip state of a interrupt.
2754 * @irq: Interrupt line that is forwarded to a VM
2755 * @which: One of IRQCHIP_STATE_* the caller wants to know about
2756 * @state: a pointer to a boolean where the state is to be stored
2757 *
2758 * This call snapshots the internal irqchip state of an
2759 * interrupt, returning into @state the bit corresponding to
2760 * stage @which
2761 *
2762 * This function should be called with preemption disabled if the
2763 * interrupt controller has per-cpu registers.
2764 */
irq_get_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool * state)2765 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2766 bool *state)
2767 {
2768 struct irq_desc *desc;
2769 struct irq_data *data;
2770 unsigned long flags;
2771 int err = -EINVAL;
2772
2773 desc = irq_get_desc_buslock(irq, &flags, 0);
2774 if (!desc)
2775 return err;
2776
2777 data = irq_desc_get_irq_data(desc);
2778
2779 err = __irq_get_irqchip_state(data, which, state);
2780
2781 irq_put_desc_busunlock(desc, flags);
2782 return err;
2783 }
2784 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2785
2786 /**
2787 * irq_set_irqchip_state - set the state of a forwarded interrupt.
2788 * @irq: Interrupt line that is forwarded to a VM
2789 * @which: State to be restored (one of IRQCHIP_STATE_*)
2790 * @val: Value corresponding to @which
2791 *
2792 * This call sets the internal irqchip state of an interrupt,
2793 * depending on the value of @which.
2794 *
2795 * This function should be called with preemption disabled if the
2796 * interrupt controller has per-cpu registers.
2797 */
irq_set_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool val)2798 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2799 bool val)
2800 {
2801 struct irq_desc *desc;
2802 struct irq_data *data;
2803 struct irq_chip *chip;
2804 unsigned long flags;
2805 int err = -EINVAL;
2806
2807 desc = irq_get_desc_buslock(irq, &flags, 0);
2808 if (!desc)
2809 return err;
2810
2811 data = irq_desc_get_irq_data(desc);
2812
2813 do {
2814 chip = irq_data_get_irq_chip(data);
2815 if (WARN_ON_ONCE(!chip)) {
2816 err = -ENODEV;
2817 goto out_unlock;
2818 }
2819 if (chip->irq_set_irqchip_state)
2820 break;
2821 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2822 data = data->parent_data;
2823 #else
2824 data = NULL;
2825 #endif
2826 } while (data);
2827
2828 if (data)
2829 err = chip->irq_set_irqchip_state(data, which, val);
2830
2831 out_unlock:
2832 irq_put_desc_busunlock(desc, flags);
2833 return err;
2834 }
2835 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2836
2837 /**
2838 * irq_has_action - Check whether an interrupt is requested
2839 * @irq: The linux irq number
2840 *
2841 * Returns: A snapshot of the current state
2842 */
irq_has_action(unsigned int irq)2843 bool irq_has_action(unsigned int irq)
2844 {
2845 bool res;
2846
2847 rcu_read_lock();
2848 res = irq_desc_has_action(irq_to_desc(irq));
2849 rcu_read_unlock();
2850 return res;
2851 }
2852 EXPORT_SYMBOL_GPL(irq_has_action);
2853
2854 /**
2855 * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2856 * @irq: The linux irq number
2857 * @bitmask: The bitmask to evaluate
2858 *
2859 * Returns: True if one of the bits in @bitmask is set
2860 */
irq_check_status_bit(unsigned int irq,unsigned int bitmask)2861 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2862 {
2863 struct irq_desc *desc;
2864 bool res = false;
2865
2866 rcu_read_lock();
2867 desc = irq_to_desc(irq);
2868 if (desc)
2869 res = !!(desc->status_use_accessors & bitmask);
2870 rcu_read_unlock();
2871 return res;
2872 }
2873 EXPORT_SYMBOL_GPL(irq_check_status_bit);
2874