1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8 
9 #define pr_fmt(fmt) "genirq: " fmt
10 
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24 
25 #include "internals.h"
26 
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 __read_mostly bool force_irqthreads;
29 EXPORT_SYMBOL_GPL(force_irqthreads);
30 
setup_forced_irqthreads(char * arg)31 static int __init setup_forced_irqthreads(char *arg)
32 {
33 	force_irqthreads = true;
34 	return 0;
35 }
36 early_param("threadirqs", setup_forced_irqthreads);
37 #endif
38 
__synchronize_hardirq(struct irq_desc * desc,bool sync_chip)39 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
40 {
41 	struct irq_data *irqd = irq_desc_get_irq_data(desc);
42 	bool inprogress;
43 
44 	do {
45 		unsigned long flags;
46 
47 		/*
48 		 * Wait until we're out of the critical section.  This might
49 		 * give the wrong answer due to the lack of memory barriers.
50 		 */
51 		while (irqd_irq_inprogress(&desc->irq_data))
52 			cpu_relax();
53 
54 		/* Ok, that indicated we're done: double-check carefully. */
55 		raw_spin_lock_irqsave(&desc->lock, flags);
56 		inprogress = irqd_irq_inprogress(&desc->irq_data);
57 
58 		/*
59 		 * If requested and supported, check at the chip whether it
60 		 * is in flight at the hardware level, i.e. already pending
61 		 * in a CPU and waiting for service and acknowledge.
62 		 */
63 		if (!inprogress && sync_chip) {
64 			/*
65 			 * Ignore the return code. inprogress is only updated
66 			 * when the chip supports it.
67 			 */
68 			__irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
69 						&inprogress);
70 		}
71 		raw_spin_unlock_irqrestore(&desc->lock, flags);
72 
73 		/* Oops, that failed? */
74 	} while (inprogress);
75 }
76 
77 /**
78  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
79  *	@irq: interrupt number to wait for
80  *
81  *	This function waits for any pending hard IRQ handlers for this
82  *	interrupt to complete before returning. If you use this
83  *	function while holding a resource the IRQ handler may need you
84  *	will deadlock. It does not take associated threaded handlers
85  *	into account.
86  *
87  *	Do not use this for shutdown scenarios where you must be sure
88  *	that all parts (hardirq and threaded handler) have completed.
89  *
90  *	Returns: false if a threaded handler is active.
91  *
92  *	This function may be called - with care - from IRQ context.
93  *
94  *	It does not check whether there is an interrupt in flight at the
95  *	hardware level, but not serviced yet, as this might deadlock when
96  *	called with interrupts disabled and the target CPU of the interrupt
97  *	is the current CPU.
98  */
synchronize_hardirq(unsigned int irq)99 bool synchronize_hardirq(unsigned int irq)
100 {
101 	struct irq_desc *desc = irq_to_desc(irq);
102 
103 	if (desc) {
104 		__synchronize_hardirq(desc, false);
105 		return !atomic_read(&desc->threads_active);
106 	}
107 
108 	return true;
109 }
110 EXPORT_SYMBOL(synchronize_hardirq);
111 
112 /**
113  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
114  *	@irq: interrupt number to wait for
115  *
116  *	This function waits for any pending IRQ handlers for this interrupt
117  *	to complete before returning. If you use this function while
118  *	holding a resource the IRQ handler may need you will deadlock.
119  *
120  *	Can only be called from preemptible code as it might sleep when
121  *	an interrupt thread is associated to @irq.
122  *
123  *	It optionally makes sure (when the irq chip supports that method)
124  *	that the interrupt is not pending in any CPU and waiting for
125  *	service.
126  */
synchronize_irq(unsigned int irq)127 void synchronize_irq(unsigned int irq)
128 {
129 	struct irq_desc *desc = irq_to_desc(irq);
130 
131 	if (desc) {
132 		__synchronize_hardirq(desc, true);
133 		/*
134 		 * We made sure that no hardirq handler is
135 		 * running. Now verify that no threaded handlers are
136 		 * active.
137 		 */
138 		wait_event(desc->wait_for_threads,
139 			   !atomic_read(&desc->threads_active));
140 	}
141 }
142 EXPORT_SYMBOL(synchronize_irq);
143 
144 #ifdef CONFIG_SMP
145 cpumask_var_t irq_default_affinity;
146 
__irq_can_set_affinity(struct irq_desc * desc)147 static bool __irq_can_set_affinity(struct irq_desc *desc)
148 {
149 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
150 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
151 		return false;
152 	return true;
153 }
154 
155 /**
156  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
157  *	@irq:		Interrupt to check
158  *
159  */
irq_can_set_affinity(unsigned int irq)160 int irq_can_set_affinity(unsigned int irq)
161 {
162 	return __irq_can_set_affinity(irq_to_desc(irq));
163 }
164 
165 /**
166  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
167  * @irq:	Interrupt to check
168  *
169  * Like irq_can_set_affinity() above, but additionally checks for the
170  * AFFINITY_MANAGED flag.
171  */
irq_can_set_affinity_usr(unsigned int irq)172 bool irq_can_set_affinity_usr(unsigned int irq)
173 {
174 	struct irq_desc *desc = irq_to_desc(irq);
175 
176 	return __irq_can_set_affinity(desc) &&
177 		!irqd_affinity_is_managed(&desc->irq_data);
178 }
179 
180 /**
181  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
182  *	@desc:		irq descriptor which has affinity changed
183  *
184  *	We just set IRQTF_AFFINITY and delegate the affinity setting
185  *	to the interrupt thread itself. We can not call
186  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
187  *	code can be called from hard interrupt context.
188  */
irq_set_thread_affinity(struct irq_desc * desc)189 void irq_set_thread_affinity(struct irq_desc *desc)
190 {
191 	struct irqaction *action;
192 
193 	for_each_action_of_desc(desc, action)
194 		if (action->thread)
195 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
196 }
197 
198 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
irq_validate_effective_affinity(struct irq_data * data)199 static void irq_validate_effective_affinity(struct irq_data *data)
200 {
201 	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
202 	struct irq_chip *chip = irq_data_get_irq_chip(data);
203 
204 	if (!cpumask_empty(m))
205 		return;
206 	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
207 		     chip->name, data->irq);
208 }
209 
irq_init_effective_affinity(struct irq_data * data,const struct cpumask * mask)210 static inline void irq_init_effective_affinity(struct irq_data *data,
211 					       const struct cpumask *mask)
212 {
213 	cpumask_copy(irq_data_get_effective_affinity_mask(data), mask);
214 }
215 #else
irq_validate_effective_affinity(struct irq_data * data)216 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
irq_init_effective_affinity(struct irq_data * data,const struct cpumask * mask)217 static inline void irq_init_effective_affinity(struct irq_data *data,
218 					       const struct cpumask *mask) { }
219 #endif
220 
irq_do_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)221 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
222 			bool force)
223 {
224 	struct irq_desc *desc = irq_data_to_desc(data);
225 	struct irq_chip *chip = irq_data_get_irq_chip(data);
226 	int ret;
227 
228 	if (!chip || !chip->irq_set_affinity)
229 		return -EINVAL;
230 
231 	/*
232 	 * If this is a managed interrupt and housekeeping is enabled on
233 	 * it check whether the requested affinity mask intersects with
234 	 * a housekeeping CPU. If so, then remove the isolated CPUs from
235 	 * the mask and just keep the housekeeping CPU(s). This prevents
236 	 * the affinity setter from routing the interrupt to an isolated
237 	 * CPU to avoid that I/O submitted from a housekeeping CPU causes
238 	 * interrupts on an isolated one.
239 	 *
240 	 * If the masks do not intersect or include online CPU(s) then
241 	 * keep the requested mask. The isolated target CPUs are only
242 	 * receiving interrupts when the I/O operation was submitted
243 	 * directly from them.
244 	 *
245 	 * If all housekeeping CPUs in the affinity mask are offline, the
246 	 * interrupt will be migrated by the CPU hotplug code once a
247 	 * housekeeping CPU which belongs to the affinity mask comes
248 	 * online.
249 	 */
250 	if (irqd_affinity_is_managed(data) &&
251 	    housekeeping_enabled(HK_FLAG_MANAGED_IRQ)) {
252 		const struct cpumask *hk_mask, *prog_mask;
253 
254 		static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
255 		static struct cpumask tmp_mask;
256 
257 		hk_mask = housekeeping_cpumask(HK_FLAG_MANAGED_IRQ);
258 
259 		raw_spin_lock(&tmp_mask_lock);
260 		cpumask_and(&tmp_mask, mask, hk_mask);
261 		if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
262 			prog_mask = mask;
263 		else
264 			prog_mask = &tmp_mask;
265 		ret = chip->irq_set_affinity(data, prog_mask, force);
266 		raw_spin_unlock(&tmp_mask_lock);
267 	} else {
268 		ret = chip->irq_set_affinity(data, mask, force);
269 	}
270 	switch (ret) {
271 	case IRQ_SET_MASK_OK:
272 	case IRQ_SET_MASK_OK_DONE:
273 		cpumask_copy(desc->irq_common_data.affinity, mask);
274 		fallthrough;
275 	case IRQ_SET_MASK_OK_NOCOPY:
276 		irq_validate_effective_affinity(data);
277 		irq_set_thread_affinity(desc);
278 		ret = 0;
279 	}
280 
281 	return ret;
282 }
283 
284 #ifdef CONFIG_GENERIC_PENDING_IRQ
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)285 static inline int irq_set_affinity_pending(struct irq_data *data,
286 					   const struct cpumask *dest)
287 {
288 	struct irq_desc *desc = irq_data_to_desc(data);
289 
290 	irqd_set_move_pending(data);
291 	irq_copy_pending(desc, dest);
292 	return 0;
293 }
294 #else
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)295 static inline int irq_set_affinity_pending(struct irq_data *data,
296 					   const struct cpumask *dest)
297 {
298 	return -EBUSY;
299 }
300 #endif
301 
irq_try_set_affinity(struct irq_data * data,const struct cpumask * dest,bool force)302 static int irq_try_set_affinity(struct irq_data *data,
303 				const struct cpumask *dest, bool force)
304 {
305 	int ret = irq_do_set_affinity(data, dest, force);
306 
307 	/*
308 	 * In case that the underlying vector management is busy and the
309 	 * architecture supports the generic pending mechanism then utilize
310 	 * this to avoid returning an error to user space.
311 	 */
312 	if (ret == -EBUSY && !force)
313 		ret = irq_set_affinity_pending(data, dest);
314 	return ret;
315 }
316 
irq_set_affinity_deactivated(struct irq_data * data,const struct cpumask * mask,bool force)317 static bool irq_set_affinity_deactivated(struct irq_data *data,
318 					 const struct cpumask *mask, bool force)
319 {
320 	struct irq_desc *desc = irq_data_to_desc(data);
321 
322 	/*
323 	 * Handle irq chips which can handle affinity only in activated
324 	 * state correctly
325 	 *
326 	 * If the interrupt is not yet activated, just store the affinity
327 	 * mask and do not call the chip driver at all. On activation the
328 	 * driver has to make sure anyway that the interrupt is in a
329 	 * usable state so startup works.
330 	 */
331 	if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
332 	    irqd_is_activated(data) || !irqd_affinity_on_activate(data))
333 		return false;
334 
335 	cpumask_copy(desc->irq_common_data.affinity, mask);
336 	irq_init_effective_affinity(data, mask);
337 	irqd_set(data, IRQD_AFFINITY_SET);
338 	return true;
339 }
340 
irq_set_affinity_locked(struct irq_data * data,const struct cpumask * mask,bool force)341 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
342 			    bool force)
343 {
344 	struct irq_chip *chip = irq_data_get_irq_chip(data);
345 	struct irq_desc *desc = irq_data_to_desc(data);
346 	int ret = 0;
347 
348 	if (!chip || !chip->irq_set_affinity)
349 		return -EINVAL;
350 
351 	if (irq_set_affinity_deactivated(data, mask, force))
352 		return 0;
353 
354 	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
355 		ret = irq_try_set_affinity(data, mask, force);
356 	} else {
357 		irqd_set_move_pending(data);
358 		irq_copy_pending(desc, mask);
359 	}
360 
361 	if (desc->affinity_notify) {
362 		kref_get(&desc->affinity_notify->kref);
363 		if (!schedule_work(&desc->affinity_notify->work)) {
364 			/* Work was already scheduled, drop our extra ref */
365 			kref_put(&desc->affinity_notify->kref,
366 				 desc->affinity_notify->release);
367 		}
368 	}
369 	irqd_set(data, IRQD_AFFINITY_SET);
370 
371 	return ret;
372 }
373 
374 /**
375  * irq_update_affinity_desc - Update affinity management for an interrupt
376  * @irq:	The interrupt number to update
377  * @affinity:	Pointer to the affinity descriptor
378  *
379  * This interface can be used to configure the affinity management of
380  * interrupts which have been allocated already.
381  *
382  * There are certain limitations on when it may be used - attempts to use it
383  * for when the kernel is configured for generic IRQ reservation mode (in
384  * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
385  * managed/non-managed interrupt accounting. In addition, attempts to use it on
386  * an interrupt which is already started or which has already been configured
387  * as managed will also fail, as these mean invalid init state or double init.
388  */
irq_update_affinity_desc(unsigned int irq,struct irq_affinity_desc * affinity)389 int irq_update_affinity_desc(unsigned int irq,
390 			     struct irq_affinity_desc *affinity)
391 {
392 	struct irq_desc *desc;
393 	unsigned long flags;
394 	bool activated;
395 	int ret = 0;
396 
397 	/*
398 	 * Supporting this with the reservation scheme used by x86 needs
399 	 * some more thought. Fail it for now.
400 	 */
401 	if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
402 		return -EOPNOTSUPP;
403 
404 	desc = irq_get_desc_buslock(irq, &flags, 0);
405 	if (!desc)
406 		return -EINVAL;
407 
408 	/* Requires the interrupt to be shut down */
409 	if (irqd_is_started(&desc->irq_data)) {
410 		ret = -EBUSY;
411 		goto out_unlock;
412 	}
413 
414 	/* Interrupts which are already managed cannot be modified */
415 	if (irqd_affinity_is_managed(&desc->irq_data)) {
416 		ret = -EBUSY;
417 		goto out_unlock;
418 	}
419 
420 	/*
421 	 * Deactivate the interrupt. That's required to undo
422 	 * anything an earlier activation has established.
423 	 */
424 	activated = irqd_is_activated(&desc->irq_data);
425 	if (activated)
426 		irq_domain_deactivate_irq(&desc->irq_data);
427 
428 	if (affinity->is_managed) {
429 		irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
430 		irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
431 	}
432 
433 	cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
434 
435 	/* Restore the activation state */
436 	if (activated)
437 		irq_domain_activate_irq(&desc->irq_data, false);
438 
439 out_unlock:
440 	irq_put_desc_busunlock(desc, flags);
441 	return ret;
442 }
443 
__irq_set_affinity(unsigned int irq,const struct cpumask * mask,bool force)444 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
445 {
446 	struct irq_desc *desc = irq_to_desc(irq);
447 	unsigned long flags;
448 	int ret;
449 
450 	if (!desc)
451 		return -EINVAL;
452 
453 	raw_spin_lock_irqsave(&desc->lock, flags);
454 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
455 	raw_spin_unlock_irqrestore(&desc->lock, flags);
456 	return ret;
457 }
458 
irq_set_affinity_hint(unsigned int irq,const struct cpumask * m)459 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
460 {
461 	unsigned long flags;
462 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
463 
464 	if (!desc)
465 		return -EINVAL;
466 	desc->affinity_hint = m;
467 	irq_put_desc_unlock(desc, flags);
468 	/* set the initial affinity to prevent every interrupt being on CPU0 */
469 	if (m)
470 		__irq_set_affinity(irq, m, false);
471 	return 0;
472 }
473 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
474 
irq_affinity_notify(struct work_struct * work)475 static void irq_affinity_notify(struct work_struct *work)
476 {
477 	struct irq_affinity_notify *notify =
478 		container_of(work, struct irq_affinity_notify, work);
479 	struct irq_desc *desc = irq_to_desc(notify->irq);
480 	cpumask_var_t cpumask;
481 	unsigned long flags;
482 
483 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
484 		goto out;
485 
486 	raw_spin_lock_irqsave(&desc->lock, flags);
487 	if (irq_move_pending(&desc->irq_data))
488 		irq_get_pending(cpumask, desc);
489 	else
490 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
491 	raw_spin_unlock_irqrestore(&desc->lock, flags);
492 
493 	notify->notify(notify, cpumask);
494 
495 	free_cpumask_var(cpumask);
496 out:
497 	kref_put(&notify->kref, notify->release);
498 }
499 
500 /**
501  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
502  *	@irq:		Interrupt for which to enable/disable notification
503  *	@notify:	Context for notification, or %NULL to disable
504  *			notification.  Function pointers must be initialised;
505  *			the other fields will be initialised by this function.
506  *
507  *	Must be called in process context.  Notification may only be enabled
508  *	after the IRQ is allocated and must be disabled before the IRQ is
509  *	freed using free_irq().
510  */
511 int
irq_set_affinity_notifier(unsigned int irq,struct irq_affinity_notify * notify)512 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
513 {
514 	struct irq_desc *desc = irq_to_desc(irq);
515 	struct irq_affinity_notify *old_notify;
516 	unsigned long flags;
517 
518 	/* The release function is promised process context */
519 	might_sleep();
520 
521 	if (!desc || desc->istate & IRQS_NMI)
522 		return -EINVAL;
523 
524 	/* Complete initialisation of *notify */
525 	if (notify) {
526 		notify->irq = irq;
527 		kref_init(&notify->kref);
528 		INIT_WORK(&notify->work, irq_affinity_notify);
529 	}
530 
531 	raw_spin_lock_irqsave(&desc->lock, flags);
532 	old_notify = desc->affinity_notify;
533 	desc->affinity_notify = notify;
534 	raw_spin_unlock_irqrestore(&desc->lock, flags);
535 
536 	if (old_notify) {
537 		if (cancel_work_sync(&old_notify->work)) {
538 			/* Pending work had a ref, put that one too */
539 			kref_put(&old_notify->kref, old_notify->release);
540 		}
541 		kref_put(&old_notify->kref, old_notify->release);
542 	}
543 
544 	return 0;
545 }
546 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
547 
548 #ifndef CONFIG_AUTO_IRQ_AFFINITY
549 /*
550  * Generic version of the affinity autoselector.
551  */
irq_setup_affinity(struct irq_desc * desc)552 int irq_setup_affinity(struct irq_desc *desc)
553 {
554 	struct cpumask *set = irq_default_affinity;
555 	int ret, node = irq_desc_get_node(desc);
556 	static DEFINE_RAW_SPINLOCK(mask_lock);
557 	static struct cpumask mask;
558 
559 	/* Excludes PER_CPU and NO_BALANCE interrupts */
560 	if (!__irq_can_set_affinity(desc))
561 		return 0;
562 
563 	raw_spin_lock(&mask_lock);
564 	/*
565 	 * Preserve the managed affinity setting and a userspace affinity
566 	 * setup, but make sure that one of the targets is online.
567 	 */
568 	if (irqd_affinity_is_managed(&desc->irq_data) ||
569 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
570 		if (cpumask_intersects(desc->irq_common_data.affinity,
571 				       cpu_online_mask))
572 			set = desc->irq_common_data.affinity;
573 		else
574 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
575 	}
576 
577 	cpumask_and(&mask, cpu_online_mask, set);
578 	if (cpumask_empty(&mask))
579 		cpumask_copy(&mask, cpu_online_mask);
580 
581 	if (node != NUMA_NO_NODE) {
582 		const struct cpumask *nodemask = cpumask_of_node(node);
583 
584 		/* make sure at least one of the cpus in nodemask is online */
585 		if (cpumask_intersects(&mask, nodemask))
586 			cpumask_and(&mask, &mask, nodemask);
587 	}
588 	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
589 	raw_spin_unlock(&mask_lock);
590 	return ret;
591 }
592 #else
593 /* Wrapper for ALPHA specific affinity selector magic */
irq_setup_affinity(struct irq_desc * desc)594 int irq_setup_affinity(struct irq_desc *desc)
595 {
596 	return irq_select_affinity(irq_desc_get_irq(desc));
597 }
598 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
599 #endif /* CONFIG_SMP */
600 
601 
602 /**
603  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
604  *	@irq: interrupt number to set affinity
605  *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
606  *	            specific data for percpu_devid interrupts
607  *
608  *	This function uses the vCPU specific data to set the vCPU
609  *	affinity for an irq. The vCPU specific data is passed from
610  *	outside, such as KVM. One example code path is as below:
611  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
612  */
irq_set_vcpu_affinity(unsigned int irq,void * vcpu_info)613 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
614 {
615 	unsigned long flags;
616 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
617 	struct irq_data *data;
618 	struct irq_chip *chip;
619 	int ret = -ENOSYS;
620 
621 	if (!desc)
622 		return -EINVAL;
623 
624 	data = irq_desc_get_irq_data(desc);
625 	do {
626 		chip = irq_data_get_irq_chip(data);
627 		if (chip && chip->irq_set_vcpu_affinity)
628 			break;
629 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
630 		data = data->parent_data;
631 #else
632 		data = NULL;
633 #endif
634 	} while (data);
635 
636 	if (data)
637 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
638 	irq_put_desc_unlock(desc, flags);
639 
640 	return ret;
641 }
642 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
643 
__disable_irq(struct irq_desc * desc)644 void __disable_irq(struct irq_desc *desc)
645 {
646 	if (!desc->depth++)
647 		irq_disable(desc);
648 }
649 
__disable_irq_nosync(unsigned int irq)650 static int __disable_irq_nosync(unsigned int irq)
651 {
652 	unsigned long flags;
653 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
654 
655 	if (!desc)
656 		return -EINVAL;
657 	__disable_irq(desc);
658 	irq_put_desc_busunlock(desc, flags);
659 	return 0;
660 }
661 
662 /**
663  *	disable_irq_nosync - disable an irq without waiting
664  *	@irq: Interrupt to disable
665  *
666  *	Disable the selected interrupt line.  Disables and Enables are
667  *	nested.
668  *	Unlike disable_irq(), this function does not ensure existing
669  *	instances of the IRQ handler have completed before returning.
670  *
671  *	This function may be called from IRQ context.
672  */
disable_irq_nosync(unsigned int irq)673 void disable_irq_nosync(unsigned int irq)
674 {
675 	__disable_irq_nosync(irq);
676 }
677 EXPORT_SYMBOL(disable_irq_nosync);
678 
679 /**
680  *	disable_irq - disable an irq and wait for completion
681  *	@irq: Interrupt to disable
682  *
683  *	Disable the selected interrupt line.  Enables and Disables are
684  *	nested.
685  *	This function waits for any pending IRQ handlers for this interrupt
686  *	to complete before returning. If you use this function while
687  *	holding a resource the IRQ handler may need you will deadlock.
688  *
689  *	This function may be called - with care - from IRQ context.
690  */
disable_irq(unsigned int irq)691 void disable_irq(unsigned int irq)
692 {
693 	if (!__disable_irq_nosync(irq))
694 		synchronize_irq(irq);
695 }
696 EXPORT_SYMBOL(disable_irq);
697 
698 /**
699  *	disable_hardirq - disables an irq and waits for hardirq completion
700  *	@irq: Interrupt to disable
701  *
702  *	Disable the selected interrupt line.  Enables and Disables are
703  *	nested.
704  *	This function waits for any pending hard IRQ handlers for this
705  *	interrupt to complete before returning. If you use this function while
706  *	holding a resource the hard IRQ handler may need you will deadlock.
707  *
708  *	When used to optimistically disable an interrupt from atomic context
709  *	the return value must be checked.
710  *
711  *	Returns: false if a threaded handler is active.
712  *
713  *	This function may be called - with care - from IRQ context.
714  */
disable_hardirq(unsigned int irq)715 bool disable_hardirq(unsigned int irq)
716 {
717 	if (!__disable_irq_nosync(irq))
718 		return synchronize_hardirq(irq);
719 
720 	return false;
721 }
722 EXPORT_SYMBOL_GPL(disable_hardirq);
723 
724 /**
725  *	disable_nmi_nosync - disable an nmi without waiting
726  *	@irq: Interrupt to disable
727  *
728  *	Disable the selected interrupt line. Disables and enables are
729  *	nested.
730  *	The interrupt to disable must have been requested through request_nmi.
731  *	Unlike disable_nmi(), this function does not ensure existing
732  *	instances of the IRQ handler have completed before returning.
733  */
disable_nmi_nosync(unsigned int irq)734 void disable_nmi_nosync(unsigned int irq)
735 {
736 	disable_irq_nosync(irq);
737 }
738 
__enable_irq(struct irq_desc * desc)739 void __enable_irq(struct irq_desc *desc)
740 {
741 	switch (desc->depth) {
742 	case 0:
743  err_out:
744 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
745 		     irq_desc_get_irq(desc));
746 		break;
747 	case 1: {
748 		if (desc->istate & IRQS_SUSPENDED)
749 			goto err_out;
750 		/* Prevent probing on this irq: */
751 		irq_settings_set_noprobe(desc);
752 		/*
753 		 * Call irq_startup() not irq_enable() here because the
754 		 * interrupt might be marked NOAUTOEN. So irq_startup()
755 		 * needs to be invoked when it gets enabled the first
756 		 * time. If it was already started up, then irq_startup()
757 		 * will invoke irq_enable() under the hood.
758 		 */
759 		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
760 		break;
761 	}
762 	default:
763 		desc->depth--;
764 	}
765 }
766 
767 /**
768  *	enable_irq - enable handling of an irq
769  *	@irq: Interrupt to enable
770  *
771  *	Undoes the effect of one call to disable_irq().  If this
772  *	matches the last disable, processing of interrupts on this
773  *	IRQ line is re-enabled.
774  *
775  *	This function may be called from IRQ context only when
776  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
777  */
enable_irq(unsigned int irq)778 void enable_irq(unsigned int irq)
779 {
780 	unsigned long flags;
781 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
782 
783 	if (!desc)
784 		return;
785 	if (WARN(!desc->irq_data.chip,
786 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
787 		goto out;
788 
789 	__enable_irq(desc);
790 out:
791 	irq_put_desc_busunlock(desc, flags);
792 }
793 EXPORT_SYMBOL(enable_irq);
794 
795 /**
796  *	enable_nmi - enable handling of an nmi
797  *	@irq: Interrupt to enable
798  *
799  *	The interrupt to enable must have been requested through request_nmi.
800  *	Undoes the effect of one call to disable_nmi(). If this
801  *	matches the last disable, processing of interrupts on this
802  *	IRQ line is re-enabled.
803  */
enable_nmi(unsigned int irq)804 void enable_nmi(unsigned int irq)
805 {
806 	enable_irq(irq);
807 }
808 
set_irq_wake_real(unsigned int irq,unsigned int on)809 static int set_irq_wake_real(unsigned int irq, unsigned int on)
810 {
811 	struct irq_desc *desc = irq_to_desc(irq);
812 	int ret = -ENXIO;
813 
814 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
815 		return 0;
816 
817 	if (desc->irq_data.chip->irq_set_wake)
818 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
819 
820 	return ret;
821 }
822 
823 /**
824  *	irq_set_irq_wake - control irq power management wakeup
825  *	@irq:	interrupt to control
826  *	@on:	enable/disable power management wakeup
827  *
828  *	Enable/disable power management wakeup mode, which is
829  *	disabled by default.  Enables and disables must match,
830  *	just as they match for non-wakeup mode support.
831  *
832  *	Wakeup mode lets this IRQ wake the system from sleep
833  *	states like "suspend to RAM".
834  *
835  *	Note: irq enable/disable state is completely orthogonal
836  *	to the enable/disable state of irq wake. An irq can be
837  *	disabled with disable_irq() and still wake the system as
838  *	long as the irq has wake enabled. If this does not hold,
839  *	then the underlying irq chip and the related driver need
840  *	to be investigated.
841  */
irq_set_irq_wake(unsigned int irq,unsigned int on)842 int irq_set_irq_wake(unsigned int irq, unsigned int on)
843 {
844 	unsigned long flags;
845 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
846 	int ret = 0;
847 
848 	if (!desc)
849 		return -EINVAL;
850 
851 	/* Don't use NMIs as wake up interrupts please */
852 	if (desc->istate & IRQS_NMI) {
853 		ret = -EINVAL;
854 		goto out_unlock;
855 	}
856 
857 	/* wakeup-capable irqs can be shared between drivers that
858 	 * don't need to have the same sleep mode behaviors.
859 	 */
860 	if (on) {
861 		if (desc->wake_depth++ == 0) {
862 			ret = set_irq_wake_real(irq, on);
863 			if (ret)
864 				desc->wake_depth = 0;
865 			else
866 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
867 		}
868 	} else {
869 		if (desc->wake_depth == 0) {
870 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
871 		} else if (--desc->wake_depth == 0) {
872 			ret = set_irq_wake_real(irq, on);
873 			if (ret)
874 				desc->wake_depth = 1;
875 			else
876 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
877 		}
878 	}
879 
880 out_unlock:
881 	irq_put_desc_busunlock(desc, flags);
882 	return ret;
883 }
884 EXPORT_SYMBOL(irq_set_irq_wake);
885 
886 /*
887  * Internal function that tells the architecture code whether a
888  * particular irq has been exclusively allocated or is available
889  * for driver use.
890  */
can_request_irq(unsigned int irq,unsigned long irqflags)891 int can_request_irq(unsigned int irq, unsigned long irqflags)
892 {
893 	unsigned long flags;
894 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
895 	int canrequest = 0;
896 
897 	if (!desc)
898 		return 0;
899 
900 	if (irq_settings_can_request(desc)) {
901 		if (!desc->action ||
902 		    irqflags & desc->action->flags & IRQF_SHARED)
903 			canrequest = 1;
904 	}
905 	irq_put_desc_unlock(desc, flags);
906 	return canrequest;
907 }
908 
__irq_set_trigger(struct irq_desc * desc,unsigned long flags)909 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
910 {
911 	struct irq_chip *chip = desc->irq_data.chip;
912 	int ret, unmask = 0;
913 
914 	if (!chip || !chip->irq_set_type) {
915 		/*
916 		 * IRQF_TRIGGER_* but the PIC does not support multiple
917 		 * flow-types?
918 		 */
919 		pr_debug("No set_type function for IRQ %d (%s)\n",
920 			 irq_desc_get_irq(desc),
921 			 chip ? (chip->name ? : "unknown") : "unknown");
922 		return 0;
923 	}
924 
925 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
926 		if (!irqd_irq_masked(&desc->irq_data))
927 			mask_irq(desc);
928 		if (!irqd_irq_disabled(&desc->irq_data))
929 			unmask = 1;
930 	}
931 
932 	/* Mask all flags except trigger mode */
933 	flags &= IRQ_TYPE_SENSE_MASK;
934 	ret = chip->irq_set_type(&desc->irq_data, flags);
935 
936 	switch (ret) {
937 	case IRQ_SET_MASK_OK:
938 	case IRQ_SET_MASK_OK_DONE:
939 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
940 		irqd_set(&desc->irq_data, flags);
941 		fallthrough;
942 
943 	case IRQ_SET_MASK_OK_NOCOPY:
944 		flags = irqd_get_trigger_type(&desc->irq_data);
945 		irq_settings_set_trigger_mask(desc, flags);
946 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
947 		irq_settings_clr_level(desc);
948 		if (flags & IRQ_TYPE_LEVEL_MASK) {
949 			irq_settings_set_level(desc);
950 			irqd_set(&desc->irq_data, IRQD_LEVEL);
951 		}
952 
953 		ret = 0;
954 		break;
955 	default:
956 		pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
957 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
958 	}
959 	if (unmask)
960 		unmask_irq(desc);
961 	return ret;
962 }
963 
964 #ifdef CONFIG_HARDIRQS_SW_RESEND
irq_set_parent(int irq,int parent_irq)965 int irq_set_parent(int irq, int parent_irq)
966 {
967 	unsigned long flags;
968 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
969 
970 	if (!desc)
971 		return -EINVAL;
972 
973 	desc->parent_irq = parent_irq;
974 
975 	irq_put_desc_unlock(desc, flags);
976 	return 0;
977 }
978 EXPORT_SYMBOL_GPL(irq_set_parent);
979 #endif
980 
981 /*
982  * Default primary interrupt handler for threaded interrupts. Is
983  * assigned as primary handler when request_threaded_irq is called
984  * with handler == NULL. Useful for oneshot interrupts.
985  */
irq_default_primary_handler(int irq,void * dev_id)986 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
987 {
988 	return IRQ_WAKE_THREAD;
989 }
990 
991 /*
992  * Primary handler for nested threaded interrupts. Should never be
993  * called.
994  */
irq_nested_primary_handler(int irq,void * dev_id)995 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
996 {
997 	WARN(1, "Primary handler called for nested irq %d\n", irq);
998 	return IRQ_NONE;
999 }
1000 
irq_forced_secondary_handler(int irq,void * dev_id)1001 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1002 {
1003 	WARN(1, "Secondary action handler called for irq %d\n", irq);
1004 	return IRQ_NONE;
1005 }
1006 
irq_wait_for_interrupt(struct irqaction * action)1007 static int irq_wait_for_interrupt(struct irqaction *action)
1008 {
1009 	for (;;) {
1010 		set_current_state(TASK_INTERRUPTIBLE);
1011 
1012 		if (kthread_should_stop()) {
1013 			/* may need to run one last time */
1014 			if (test_and_clear_bit(IRQTF_RUNTHREAD,
1015 					       &action->thread_flags)) {
1016 				__set_current_state(TASK_RUNNING);
1017 				return 0;
1018 			}
1019 			__set_current_state(TASK_RUNNING);
1020 			return -1;
1021 		}
1022 
1023 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
1024 				       &action->thread_flags)) {
1025 			__set_current_state(TASK_RUNNING);
1026 			return 0;
1027 		}
1028 		schedule();
1029 	}
1030 }
1031 
1032 /*
1033  * Oneshot interrupts keep the irq line masked until the threaded
1034  * handler finished. unmask if the interrupt has not been disabled and
1035  * is marked MASKED.
1036  */
irq_finalize_oneshot(struct irq_desc * desc,struct irqaction * action)1037 static void irq_finalize_oneshot(struct irq_desc *desc,
1038 				 struct irqaction *action)
1039 {
1040 	if (!(desc->istate & IRQS_ONESHOT) ||
1041 	    action->handler == irq_forced_secondary_handler)
1042 		return;
1043 again:
1044 	chip_bus_lock(desc);
1045 	raw_spin_lock_irq(&desc->lock);
1046 
1047 	/*
1048 	 * Implausible though it may be we need to protect us against
1049 	 * the following scenario:
1050 	 *
1051 	 * The thread is faster done than the hard interrupt handler
1052 	 * on the other CPU. If we unmask the irq line then the
1053 	 * interrupt can come in again and masks the line, leaves due
1054 	 * to IRQS_INPROGRESS and the irq line is masked forever.
1055 	 *
1056 	 * This also serializes the state of shared oneshot handlers
1057 	 * versus "desc->threads_oneshot |= action->thread_mask;" in
1058 	 * irq_wake_thread(). See the comment there which explains the
1059 	 * serialization.
1060 	 */
1061 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1062 		raw_spin_unlock_irq(&desc->lock);
1063 		chip_bus_sync_unlock(desc);
1064 		cpu_relax();
1065 		goto again;
1066 	}
1067 
1068 	/*
1069 	 * Now check again, whether the thread should run. Otherwise
1070 	 * we would clear the threads_oneshot bit of this thread which
1071 	 * was just set.
1072 	 */
1073 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1074 		goto out_unlock;
1075 
1076 	desc->threads_oneshot &= ~action->thread_mask;
1077 
1078 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1079 	    irqd_irq_masked(&desc->irq_data))
1080 		unmask_threaded_irq(desc);
1081 
1082 out_unlock:
1083 	raw_spin_unlock_irq(&desc->lock);
1084 	chip_bus_sync_unlock(desc);
1085 }
1086 
1087 #ifdef CONFIG_SMP
1088 /*
1089  * Check whether we need to change the affinity of the interrupt thread.
1090  */
1091 static void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1092 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1093 {
1094 	cpumask_var_t mask;
1095 	bool valid = true;
1096 
1097 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1098 		return;
1099 
1100 	/*
1101 	 * In case we are out of memory we set IRQTF_AFFINITY again and
1102 	 * try again next time
1103 	 */
1104 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1105 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
1106 		return;
1107 	}
1108 
1109 	raw_spin_lock_irq(&desc->lock);
1110 	/*
1111 	 * This code is triggered unconditionally. Check the affinity
1112 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1113 	 */
1114 	if (cpumask_available(desc->irq_common_data.affinity)) {
1115 		const struct cpumask *m;
1116 
1117 		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1118 		cpumask_copy(mask, m);
1119 	} else {
1120 		valid = false;
1121 	}
1122 	raw_spin_unlock_irq(&desc->lock);
1123 
1124 	if (valid)
1125 		set_cpus_allowed_ptr(current, mask);
1126 	free_cpumask_var(mask);
1127 }
1128 #else
1129 static inline void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1130 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1131 #endif
1132 
1133 /*
1134  * Interrupts which are not explicitly requested as threaded
1135  * interrupts rely on the implicit bh/preempt disable of the hard irq
1136  * context. So we need to disable bh here to avoid deadlocks and other
1137  * side effects.
1138  */
1139 static irqreturn_t
irq_forced_thread_fn(struct irq_desc * desc,struct irqaction * action)1140 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1141 {
1142 	irqreturn_t ret;
1143 
1144 	local_bh_disable();
1145 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1146 		local_irq_disable();
1147 	ret = action->thread_fn(action->irq, action->dev_id);
1148 	if (ret == IRQ_HANDLED)
1149 		atomic_inc(&desc->threads_handled);
1150 
1151 	irq_finalize_oneshot(desc, action);
1152 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1153 		local_irq_enable();
1154 	local_bh_enable();
1155 	return ret;
1156 }
1157 
1158 /*
1159  * Interrupts explicitly requested as threaded interrupts want to be
1160  * preemptible - many of them need to sleep and wait for slow busses to
1161  * complete.
1162  */
irq_thread_fn(struct irq_desc * desc,struct irqaction * action)1163 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1164 		struct irqaction *action)
1165 {
1166 	irqreturn_t ret;
1167 
1168 	ret = action->thread_fn(action->irq, action->dev_id);
1169 	if (ret == IRQ_HANDLED)
1170 		atomic_inc(&desc->threads_handled);
1171 
1172 	irq_finalize_oneshot(desc, action);
1173 	return ret;
1174 }
1175 
wake_threads_waitq(struct irq_desc * desc)1176 static void wake_threads_waitq(struct irq_desc *desc)
1177 {
1178 	if (atomic_dec_and_test(&desc->threads_active))
1179 		wake_up(&desc->wait_for_threads);
1180 }
1181 
irq_thread_dtor(struct callback_head * unused)1182 static void irq_thread_dtor(struct callback_head *unused)
1183 {
1184 	struct task_struct *tsk = current;
1185 	struct irq_desc *desc;
1186 	struct irqaction *action;
1187 
1188 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1189 		return;
1190 
1191 	action = kthread_data(tsk);
1192 
1193 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1194 	       tsk->comm, tsk->pid, action->irq);
1195 
1196 
1197 	desc = irq_to_desc(action->irq);
1198 	/*
1199 	 * If IRQTF_RUNTHREAD is set, we need to decrement
1200 	 * desc->threads_active and wake possible waiters.
1201 	 */
1202 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1203 		wake_threads_waitq(desc);
1204 
1205 	/* Prevent a stale desc->threads_oneshot */
1206 	irq_finalize_oneshot(desc, action);
1207 }
1208 
irq_wake_secondary(struct irq_desc * desc,struct irqaction * action)1209 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1210 {
1211 	struct irqaction *secondary = action->secondary;
1212 
1213 	if (WARN_ON_ONCE(!secondary))
1214 		return;
1215 
1216 	raw_spin_lock_irq(&desc->lock);
1217 	__irq_wake_thread(desc, secondary);
1218 	raw_spin_unlock_irq(&desc->lock);
1219 }
1220 
1221 /*
1222  * Interrupt handler thread
1223  */
irq_thread(void * data)1224 static int irq_thread(void *data)
1225 {
1226 	struct callback_head on_exit_work;
1227 	struct irqaction *action = data;
1228 	struct irq_desc *desc = irq_to_desc(action->irq);
1229 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1230 			struct irqaction *action);
1231 
1232 	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1233 					&action->thread_flags))
1234 		handler_fn = irq_forced_thread_fn;
1235 	else
1236 		handler_fn = irq_thread_fn;
1237 
1238 	init_task_work(&on_exit_work, irq_thread_dtor);
1239 	task_work_add(current, &on_exit_work, TWA_NONE);
1240 
1241 	irq_thread_check_affinity(desc, action);
1242 
1243 	while (!irq_wait_for_interrupt(action)) {
1244 		irqreturn_t action_ret;
1245 
1246 		irq_thread_check_affinity(desc, action);
1247 
1248 		action_ret = handler_fn(desc, action);
1249 		if (action_ret == IRQ_WAKE_THREAD)
1250 			irq_wake_secondary(desc, action);
1251 
1252 		wake_threads_waitq(desc);
1253 	}
1254 
1255 	/*
1256 	 * This is the regular exit path. __free_irq() is stopping the
1257 	 * thread via kthread_stop() after calling
1258 	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1259 	 * oneshot mask bit can be set.
1260 	 */
1261 	task_work_cancel(current, irq_thread_dtor);
1262 	return 0;
1263 }
1264 
1265 /**
1266  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1267  *	@irq:		Interrupt line
1268  *	@dev_id:	Device identity for which the thread should be woken
1269  *
1270  */
irq_wake_thread(unsigned int irq,void * dev_id)1271 void irq_wake_thread(unsigned int irq, void *dev_id)
1272 {
1273 	struct irq_desc *desc = irq_to_desc(irq);
1274 	struct irqaction *action;
1275 	unsigned long flags;
1276 
1277 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1278 		return;
1279 
1280 	raw_spin_lock_irqsave(&desc->lock, flags);
1281 	for_each_action_of_desc(desc, action) {
1282 		if (action->dev_id == dev_id) {
1283 			if (action->thread)
1284 				__irq_wake_thread(desc, action);
1285 			break;
1286 		}
1287 	}
1288 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1289 }
1290 EXPORT_SYMBOL_GPL(irq_wake_thread);
1291 
irq_setup_forced_threading(struct irqaction * new)1292 static int irq_setup_forced_threading(struct irqaction *new)
1293 {
1294 	if (!force_irqthreads)
1295 		return 0;
1296 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1297 		return 0;
1298 
1299 	/*
1300 	 * No further action required for interrupts which are requested as
1301 	 * threaded interrupts already
1302 	 */
1303 	if (new->handler == irq_default_primary_handler)
1304 		return 0;
1305 
1306 	new->flags |= IRQF_ONESHOT;
1307 
1308 	/*
1309 	 * Handle the case where we have a real primary handler and a
1310 	 * thread handler. We force thread them as well by creating a
1311 	 * secondary action.
1312 	 */
1313 	if (new->handler && new->thread_fn) {
1314 		/* Allocate the secondary action */
1315 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1316 		if (!new->secondary)
1317 			return -ENOMEM;
1318 		new->secondary->handler = irq_forced_secondary_handler;
1319 		new->secondary->thread_fn = new->thread_fn;
1320 		new->secondary->dev_id = new->dev_id;
1321 		new->secondary->irq = new->irq;
1322 		new->secondary->name = new->name;
1323 	}
1324 	/* Deal with the primary handler */
1325 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1326 	new->thread_fn = new->handler;
1327 	new->handler = irq_default_primary_handler;
1328 	return 0;
1329 }
1330 
irq_request_resources(struct irq_desc * desc)1331 static int irq_request_resources(struct irq_desc *desc)
1332 {
1333 	struct irq_data *d = &desc->irq_data;
1334 	struct irq_chip *c = d->chip;
1335 
1336 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1337 }
1338 
irq_release_resources(struct irq_desc * desc)1339 static void irq_release_resources(struct irq_desc *desc)
1340 {
1341 	struct irq_data *d = &desc->irq_data;
1342 	struct irq_chip *c = d->chip;
1343 
1344 	if (c->irq_release_resources)
1345 		c->irq_release_resources(d);
1346 }
1347 
irq_supports_nmi(struct irq_desc * desc)1348 static bool irq_supports_nmi(struct irq_desc *desc)
1349 {
1350 	struct irq_data *d = irq_desc_get_irq_data(desc);
1351 
1352 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1353 	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1354 	if (d->parent_data)
1355 		return false;
1356 #endif
1357 	/* Don't support NMIs for chips behind a slow bus */
1358 	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1359 		return false;
1360 
1361 	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1362 }
1363 
irq_nmi_setup(struct irq_desc * desc)1364 static int irq_nmi_setup(struct irq_desc *desc)
1365 {
1366 	struct irq_data *d = irq_desc_get_irq_data(desc);
1367 	struct irq_chip *c = d->chip;
1368 
1369 	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1370 }
1371 
irq_nmi_teardown(struct irq_desc * desc)1372 static void irq_nmi_teardown(struct irq_desc *desc)
1373 {
1374 	struct irq_data *d = irq_desc_get_irq_data(desc);
1375 	struct irq_chip *c = d->chip;
1376 
1377 	if (c->irq_nmi_teardown)
1378 		c->irq_nmi_teardown(d);
1379 }
1380 
1381 static int
setup_irq_thread(struct irqaction * new,unsigned int irq,bool secondary)1382 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1383 {
1384 	struct task_struct *t;
1385 
1386 	if (!secondary) {
1387 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1388 				   new->name);
1389 	} else {
1390 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1391 				   new->name);
1392 	}
1393 
1394 	if (IS_ERR(t))
1395 		return PTR_ERR(t);
1396 
1397 	sched_set_fifo(t);
1398 
1399 	/*
1400 	 * We keep the reference to the task struct even if
1401 	 * the thread dies to avoid that the interrupt code
1402 	 * references an already freed task_struct.
1403 	 */
1404 	new->thread = get_task_struct(t);
1405 	/*
1406 	 * Tell the thread to set its affinity. This is
1407 	 * important for shared interrupt handlers as we do
1408 	 * not invoke setup_affinity() for the secondary
1409 	 * handlers as everything is already set up. Even for
1410 	 * interrupts marked with IRQF_NO_BALANCE this is
1411 	 * correct as we want the thread to move to the cpu(s)
1412 	 * on which the requesting code placed the interrupt.
1413 	 */
1414 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1415 	return 0;
1416 }
1417 
1418 /*
1419  * Internal function to register an irqaction - typically used to
1420  * allocate special interrupts that are part of the architecture.
1421  *
1422  * Locking rules:
1423  *
1424  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1425  *   chip_bus_lock	Provides serialization for slow bus operations
1426  *     desc->lock	Provides serialization against hard interrupts
1427  *
1428  * chip_bus_lock and desc->lock are sufficient for all other management and
1429  * interrupt related functions. desc->request_mutex solely serializes
1430  * request/free_irq().
1431  */
1432 static int
__setup_irq(unsigned int irq,struct irq_desc * desc,struct irqaction * new)1433 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1434 {
1435 	struct irqaction *old, **old_ptr;
1436 	unsigned long flags, thread_mask = 0;
1437 	int ret, nested, shared = 0;
1438 
1439 	if (!desc)
1440 		return -EINVAL;
1441 
1442 	if (desc->irq_data.chip == &no_irq_chip)
1443 		return -ENOSYS;
1444 	if (!try_module_get(desc->owner))
1445 		return -ENODEV;
1446 
1447 	new->irq = irq;
1448 
1449 	/*
1450 	 * If the trigger type is not specified by the caller,
1451 	 * then use the default for this interrupt.
1452 	 */
1453 	if (!(new->flags & IRQF_TRIGGER_MASK))
1454 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1455 
1456 	/*
1457 	 * Check whether the interrupt nests into another interrupt
1458 	 * thread.
1459 	 */
1460 	nested = irq_settings_is_nested_thread(desc);
1461 	if (nested) {
1462 		if (!new->thread_fn) {
1463 			ret = -EINVAL;
1464 			goto out_mput;
1465 		}
1466 		/*
1467 		 * Replace the primary handler which was provided from
1468 		 * the driver for non nested interrupt handling by the
1469 		 * dummy function which warns when called.
1470 		 */
1471 		new->handler = irq_nested_primary_handler;
1472 	} else {
1473 		if (irq_settings_can_thread(desc)) {
1474 			ret = irq_setup_forced_threading(new);
1475 			if (ret)
1476 				goto out_mput;
1477 		}
1478 	}
1479 
1480 	/*
1481 	 * Create a handler thread when a thread function is supplied
1482 	 * and the interrupt does not nest into another interrupt
1483 	 * thread.
1484 	 */
1485 	if (new->thread_fn && !nested) {
1486 		ret = setup_irq_thread(new, irq, false);
1487 		if (ret)
1488 			goto out_mput;
1489 		if (new->secondary) {
1490 			ret = setup_irq_thread(new->secondary, irq, true);
1491 			if (ret)
1492 				goto out_thread;
1493 		}
1494 	}
1495 
1496 	/*
1497 	 * Drivers are often written to work w/o knowledge about the
1498 	 * underlying irq chip implementation, so a request for a
1499 	 * threaded irq without a primary hard irq context handler
1500 	 * requires the ONESHOT flag to be set. Some irq chips like
1501 	 * MSI based interrupts are per se one shot safe. Check the
1502 	 * chip flags, so we can avoid the unmask dance at the end of
1503 	 * the threaded handler for those.
1504 	 */
1505 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1506 		new->flags &= ~IRQF_ONESHOT;
1507 
1508 	/*
1509 	 * Protects against a concurrent __free_irq() call which might wait
1510 	 * for synchronize_hardirq() to complete without holding the optional
1511 	 * chip bus lock and desc->lock. Also protects against handing out
1512 	 * a recycled oneshot thread_mask bit while it's still in use by
1513 	 * its previous owner.
1514 	 */
1515 	mutex_lock(&desc->request_mutex);
1516 
1517 	/*
1518 	 * Acquire bus lock as the irq_request_resources() callback below
1519 	 * might rely on the serialization or the magic power management
1520 	 * functions which are abusing the irq_bus_lock() callback,
1521 	 */
1522 	chip_bus_lock(desc);
1523 
1524 	/* First installed action requests resources. */
1525 	if (!desc->action) {
1526 		ret = irq_request_resources(desc);
1527 		if (ret) {
1528 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1529 			       new->name, irq, desc->irq_data.chip->name);
1530 			goto out_bus_unlock;
1531 		}
1532 	}
1533 
1534 	/*
1535 	 * The following block of code has to be executed atomically
1536 	 * protected against a concurrent interrupt and any of the other
1537 	 * management calls which are not serialized via
1538 	 * desc->request_mutex or the optional bus lock.
1539 	 */
1540 	raw_spin_lock_irqsave(&desc->lock, flags);
1541 	old_ptr = &desc->action;
1542 	old = *old_ptr;
1543 	if (old) {
1544 		/*
1545 		 * Can't share interrupts unless both agree to and are
1546 		 * the same type (level, edge, polarity). So both flag
1547 		 * fields must have IRQF_SHARED set and the bits which
1548 		 * set the trigger type must match. Also all must
1549 		 * agree on ONESHOT.
1550 		 * Interrupt lines used for NMIs cannot be shared.
1551 		 */
1552 		unsigned int oldtype;
1553 
1554 		if (desc->istate & IRQS_NMI) {
1555 			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1556 				new->name, irq, desc->irq_data.chip->name);
1557 			ret = -EINVAL;
1558 			goto out_unlock;
1559 		}
1560 
1561 		/*
1562 		 * If nobody did set the configuration before, inherit
1563 		 * the one provided by the requester.
1564 		 */
1565 		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1566 			oldtype = irqd_get_trigger_type(&desc->irq_data);
1567 		} else {
1568 			oldtype = new->flags & IRQF_TRIGGER_MASK;
1569 			irqd_set_trigger_type(&desc->irq_data, oldtype);
1570 		}
1571 
1572 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1573 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1574 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1575 			goto mismatch;
1576 
1577 		/* All handlers must agree on per-cpuness */
1578 		if ((old->flags & IRQF_PERCPU) !=
1579 		    (new->flags & IRQF_PERCPU))
1580 			goto mismatch;
1581 
1582 		/* add new interrupt at end of irq queue */
1583 		do {
1584 			/*
1585 			 * Or all existing action->thread_mask bits,
1586 			 * so we can find the next zero bit for this
1587 			 * new action.
1588 			 */
1589 			thread_mask |= old->thread_mask;
1590 			old_ptr = &old->next;
1591 			old = *old_ptr;
1592 		} while (old);
1593 		shared = 1;
1594 	}
1595 
1596 	/*
1597 	 * Setup the thread mask for this irqaction for ONESHOT. For
1598 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1599 	 * conditional in irq_wake_thread().
1600 	 */
1601 	if (new->flags & IRQF_ONESHOT) {
1602 		/*
1603 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1604 		 * but who knows.
1605 		 */
1606 		if (thread_mask == ~0UL) {
1607 			ret = -EBUSY;
1608 			goto out_unlock;
1609 		}
1610 		/*
1611 		 * The thread_mask for the action is or'ed to
1612 		 * desc->thread_active to indicate that the
1613 		 * IRQF_ONESHOT thread handler has been woken, but not
1614 		 * yet finished. The bit is cleared when a thread
1615 		 * completes. When all threads of a shared interrupt
1616 		 * line have completed desc->threads_active becomes
1617 		 * zero and the interrupt line is unmasked. See
1618 		 * handle.c:irq_wake_thread() for further information.
1619 		 *
1620 		 * If no thread is woken by primary (hard irq context)
1621 		 * interrupt handlers, then desc->threads_active is
1622 		 * also checked for zero to unmask the irq line in the
1623 		 * affected hard irq flow handlers
1624 		 * (handle_[fasteoi|level]_irq).
1625 		 *
1626 		 * The new action gets the first zero bit of
1627 		 * thread_mask assigned. See the loop above which or's
1628 		 * all existing action->thread_mask bits.
1629 		 */
1630 		new->thread_mask = 1UL << ffz(thread_mask);
1631 
1632 	} else if (new->handler == irq_default_primary_handler &&
1633 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1634 		/*
1635 		 * The interrupt was requested with handler = NULL, so
1636 		 * we use the default primary handler for it. But it
1637 		 * does not have the oneshot flag set. In combination
1638 		 * with level interrupts this is deadly, because the
1639 		 * default primary handler just wakes the thread, then
1640 		 * the irq lines is reenabled, but the device still
1641 		 * has the level irq asserted. Rinse and repeat....
1642 		 *
1643 		 * While this works for edge type interrupts, we play
1644 		 * it safe and reject unconditionally because we can't
1645 		 * say for sure which type this interrupt really
1646 		 * has. The type flags are unreliable as the
1647 		 * underlying chip implementation can override them.
1648 		 */
1649 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1650 		       new->name, irq);
1651 		ret = -EINVAL;
1652 		goto out_unlock;
1653 	}
1654 
1655 	if (!shared) {
1656 		init_waitqueue_head(&desc->wait_for_threads);
1657 
1658 		/* Setup the type (level, edge polarity) if configured: */
1659 		if (new->flags & IRQF_TRIGGER_MASK) {
1660 			ret = __irq_set_trigger(desc,
1661 						new->flags & IRQF_TRIGGER_MASK);
1662 
1663 			if (ret)
1664 				goto out_unlock;
1665 		}
1666 
1667 		/*
1668 		 * Activate the interrupt. That activation must happen
1669 		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1670 		 * and the callers are supposed to handle
1671 		 * that. enable_irq() of an interrupt requested with
1672 		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1673 		 * keeps it in shutdown mode, it merily associates
1674 		 * resources if necessary and if that's not possible it
1675 		 * fails. Interrupts which are in managed shutdown mode
1676 		 * will simply ignore that activation request.
1677 		 */
1678 		ret = irq_activate(desc);
1679 		if (ret)
1680 			goto out_unlock;
1681 
1682 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1683 				  IRQS_ONESHOT | IRQS_WAITING);
1684 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1685 
1686 		if (new->flags & IRQF_PERCPU) {
1687 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1688 			irq_settings_set_per_cpu(desc);
1689 		}
1690 
1691 		if (new->flags & IRQF_ONESHOT)
1692 			desc->istate |= IRQS_ONESHOT;
1693 
1694 		/* Exclude IRQ from balancing if requested */
1695 		if (new->flags & IRQF_NOBALANCING) {
1696 			irq_settings_set_no_balancing(desc);
1697 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1698 		}
1699 
1700 		if (!(new->flags & IRQF_NO_AUTOEN) &&
1701 		    irq_settings_can_autoenable(desc)) {
1702 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1703 		} else {
1704 			/*
1705 			 * Shared interrupts do not go well with disabling
1706 			 * auto enable. The sharing interrupt might request
1707 			 * it while it's still disabled and then wait for
1708 			 * interrupts forever.
1709 			 */
1710 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1711 			/* Undo nested disables: */
1712 			desc->depth = 1;
1713 		}
1714 
1715 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1716 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1717 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1718 
1719 		if (nmsk != omsk)
1720 			/* hope the handler works with current  trigger mode */
1721 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1722 				irq, omsk, nmsk);
1723 	}
1724 
1725 	*old_ptr = new;
1726 
1727 	irq_pm_install_action(desc, new);
1728 
1729 	/* Reset broken irq detection when installing new handler */
1730 	desc->irq_count = 0;
1731 	desc->irqs_unhandled = 0;
1732 
1733 	/*
1734 	 * Check whether we disabled the irq via the spurious handler
1735 	 * before. Reenable it and give it another chance.
1736 	 */
1737 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1738 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1739 		__enable_irq(desc);
1740 	}
1741 
1742 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1743 	chip_bus_sync_unlock(desc);
1744 	mutex_unlock(&desc->request_mutex);
1745 
1746 	irq_setup_timings(desc, new);
1747 
1748 	/*
1749 	 * Strictly no need to wake it up, but hung_task complains
1750 	 * when no hard interrupt wakes the thread up.
1751 	 */
1752 	if (new->thread)
1753 		wake_up_process(new->thread);
1754 	if (new->secondary)
1755 		wake_up_process(new->secondary->thread);
1756 
1757 	register_irq_proc(irq, desc);
1758 	new->dir = NULL;
1759 	register_handler_proc(irq, new);
1760 	return 0;
1761 
1762 mismatch:
1763 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1764 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1765 		       irq, new->flags, new->name, old->flags, old->name);
1766 #ifdef CONFIG_DEBUG_SHIRQ
1767 		dump_stack();
1768 #endif
1769 	}
1770 	ret = -EBUSY;
1771 
1772 out_unlock:
1773 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1774 
1775 	if (!desc->action)
1776 		irq_release_resources(desc);
1777 out_bus_unlock:
1778 	chip_bus_sync_unlock(desc);
1779 	mutex_unlock(&desc->request_mutex);
1780 
1781 out_thread:
1782 	if (new->thread) {
1783 		struct task_struct *t = new->thread;
1784 
1785 		new->thread = NULL;
1786 		kthread_stop(t);
1787 		put_task_struct(t);
1788 	}
1789 	if (new->secondary && new->secondary->thread) {
1790 		struct task_struct *t = new->secondary->thread;
1791 
1792 		new->secondary->thread = NULL;
1793 		kthread_stop(t);
1794 		put_task_struct(t);
1795 	}
1796 out_mput:
1797 	module_put(desc->owner);
1798 	return ret;
1799 }
1800 
1801 /*
1802  * Internal function to unregister an irqaction - used to free
1803  * regular and special interrupts that are part of the architecture.
1804  */
__free_irq(struct irq_desc * desc,void * dev_id)1805 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1806 {
1807 	unsigned irq = desc->irq_data.irq;
1808 	struct irqaction *action, **action_ptr;
1809 	unsigned long flags;
1810 
1811 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1812 
1813 	mutex_lock(&desc->request_mutex);
1814 	chip_bus_lock(desc);
1815 	raw_spin_lock_irqsave(&desc->lock, flags);
1816 
1817 	/*
1818 	 * There can be multiple actions per IRQ descriptor, find the right
1819 	 * one based on the dev_id:
1820 	 */
1821 	action_ptr = &desc->action;
1822 	for (;;) {
1823 		action = *action_ptr;
1824 
1825 		if (!action) {
1826 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1827 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1828 			chip_bus_sync_unlock(desc);
1829 			mutex_unlock(&desc->request_mutex);
1830 			return NULL;
1831 		}
1832 
1833 		if (action->dev_id == dev_id)
1834 			break;
1835 		action_ptr = &action->next;
1836 	}
1837 
1838 	/* Found it - now remove it from the list of entries: */
1839 	*action_ptr = action->next;
1840 
1841 	irq_pm_remove_action(desc, action);
1842 
1843 	/* If this was the last handler, shut down the IRQ line: */
1844 	if (!desc->action) {
1845 		irq_settings_clr_disable_unlazy(desc);
1846 		/* Only shutdown. Deactivate after synchronize_hardirq() */
1847 		irq_shutdown(desc);
1848 	}
1849 
1850 #ifdef CONFIG_SMP
1851 	/* make sure affinity_hint is cleaned up */
1852 	if (WARN_ON_ONCE(desc->affinity_hint))
1853 		desc->affinity_hint = NULL;
1854 #endif
1855 
1856 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1857 	/*
1858 	 * Drop bus_lock here so the changes which were done in the chip
1859 	 * callbacks above are synced out to the irq chips which hang
1860 	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1861 	 *
1862 	 * Aside of that the bus_lock can also be taken from the threaded
1863 	 * handler in irq_finalize_oneshot() which results in a deadlock
1864 	 * because kthread_stop() would wait forever for the thread to
1865 	 * complete, which is blocked on the bus lock.
1866 	 *
1867 	 * The still held desc->request_mutex() protects against a
1868 	 * concurrent request_irq() of this irq so the release of resources
1869 	 * and timing data is properly serialized.
1870 	 */
1871 	chip_bus_sync_unlock(desc);
1872 
1873 	unregister_handler_proc(irq, action);
1874 
1875 	/*
1876 	 * Make sure it's not being used on another CPU and if the chip
1877 	 * supports it also make sure that there is no (not yet serviced)
1878 	 * interrupt in flight at the hardware level.
1879 	 */
1880 	__synchronize_hardirq(desc, true);
1881 
1882 #ifdef CONFIG_DEBUG_SHIRQ
1883 	/*
1884 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1885 	 * event to happen even now it's being freed, so let's make sure that
1886 	 * is so by doing an extra call to the handler ....
1887 	 *
1888 	 * ( We do this after actually deregistering it, to make sure that a
1889 	 *   'real' IRQ doesn't run in parallel with our fake. )
1890 	 */
1891 	if (action->flags & IRQF_SHARED) {
1892 		local_irq_save(flags);
1893 		action->handler(irq, dev_id);
1894 		local_irq_restore(flags);
1895 	}
1896 #endif
1897 
1898 	/*
1899 	 * The action has already been removed above, but the thread writes
1900 	 * its oneshot mask bit when it completes. Though request_mutex is
1901 	 * held across this which prevents __setup_irq() from handing out
1902 	 * the same bit to a newly requested action.
1903 	 */
1904 	if (action->thread) {
1905 		kthread_stop(action->thread);
1906 		put_task_struct(action->thread);
1907 		if (action->secondary && action->secondary->thread) {
1908 			kthread_stop(action->secondary->thread);
1909 			put_task_struct(action->secondary->thread);
1910 		}
1911 	}
1912 
1913 	/* Last action releases resources */
1914 	if (!desc->action) {
1915 		/*
1916 		 * Reacquire bus lock as irq_release_resources() might
1917 		 * require it to deallocate resources over the slow bus.
1918 		 */
1919 		chip_bus_lock(desc);
1920 		/*
1921 		 * There is no interrupt on the fly anymore. Deactivate it
1922 		 * completely.
1923 		 */
1924 		raw_spin_lock_irqsave(&desc->lock, flags);
1925 		irq_domain_deactivate_irq(&desc->irq_data);
1926 		raw_spin_unlock_irqrestore(&desc->lock, flags);
1927 
1928 		irq_release_resources(desc);
1929 		chip_bus_sync_unlock(desc);
1930 		irq_remove_timings(desc);
1931 	}
1932 
1933 	mutex_unlock(&desc->request_mutex);
1934 
1935 	irq_chip_pm_put(&desc->irq_data);
1936 	module_put(desc->owner);
1937 	kfree(action->secondary);
1938 	return action;
1939 }
1940 
1941 /**
1942  *	free_irq - free an interrupt allocated with request_irq
1943  *	@irq: Interrupt line to free
1944  *	@dev_id: Device identity to free
1945  *
1946  *	Remove an interrupt handler. The handler is removed and if the
1947  *	interrupt line is no longer in use by any driver it is disabled.
1948  *	On a shared IRQ the caller must ensure the interrupt is disabled
1949  *	on the card it drives before calling this function. The function
1950  *	does not return until any executing interrupts for this IRQ
1951  *	have completed.
1952  *
1953  *	This function must not be called from interrupt context.
1954  *
1955  *	Returns the devname argument passed to request_irq.
1956  */
free_irq(unsigned int irq,void * dev_id)1957 const void *free_irq(unsigned int irq, void *dev_id)
1958 {
1959 	struct irq_desc *desc = irq_to_desc(irq);
1960 	struct irqaction *action;
1961 	const char *devname;
1962 
1963 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1964 		return NULL;
1965 
1966 #ifdef CONFIG_SMP
1967 	if (WARN_ON(desc->affinity_notify))
1968 		desc->affinity_notify = NULL;
1969 #endif
1970 
1971 	action = __free_irq(desc, dev_id);
1972 
1973 	if (!action)
1974 		return NULL;
1975 
1976 	devname = action->name;
1977 	kfree(action);
1978 	return devname;
1979 }
1980 EXPORT_SYMBOL(free_irq);
1981 
1982 /* This function must be called with desc->lock held */
__cleanup_nmi(unsigned int irq,struct irq_desc * desc)1983 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
1984 {
1985 	const char *devname = NULL;
1986 
1987 	desc->istate &= ~IRQS_NMI;
1988 
1989 	if (!WARN_ON(desc->action == NULL)) {
1990 		irq_pm_remove_action(desc, desc->action);
1991 		devname = desc->action->name;
1992 		unregister_handler_proc(irq, desc->action);
1993 
1994 		kfree(desc->action);
1995 		desc->action = NULL;
1996 	}
1997 
1998 	irq_settings_clr_disable_unlazy(desc);
1999 	irq_shutdown_and_deactivate(desc);
2000 
2001 	irq_release_resources(desc);
2002 
2003 	irq_chip_pm_put(&desc->irq_data);
2004 	module_put(desc->owner);
2005 
2006 	return devname;
2007 }
2008 
free_nmi(unsigned int irq,void * dev_id)2009 const void *free_nmi(unsigned int irq, void *dev_id)
2010 {
2011 	struct irq_desc *desc = irq_to_desc(irq);
2012 	unsigned long flags;
2013 	const void *devname;
2014 
2015 	if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
2016 		return NULL;
2017 
2018 	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2019 		return NULL;
2020 
2021 	/* NMI still enabled */
2022 	if (WARN_ON(desc->depth == 0))
2023 		disable_nmi_nosync(irq);
2024 
2025 	raw_spin_lock_irqsave(&desc->lock, flags);
2026 
2027 	irq_nmi_teardown(desc);
2028 	devname = __cleanup_nmi(irq, desc);
2029 
2030 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2031 
2032 	return devname;
2033 }
2034 
2035 /**
2036  *	request_threaded_irq - allocate an interrupt line
2037  *	@irq: Interrupt line to allocate
2038  *	@handler: Function to be called when the IRQ occurs.
2039  *		  Primary handler for threaded interrupts
2040  *		  If NULL and thread_fn != NULL the default
2041  *		  primary handler is installed
2042  *	@thread_fn: Function called from the irq handler thread
2043  *		    If NULL, no irq thread is created
2044  *	@irqflags: Interrupt type flags
2045  *	@devname: An ascii name for the claiming device
2046  *	@dev_id: A cookie passed back to the handler function
2047  *
2048  *	This call allocates interrupt resources and enables the
2049  *	interrupt line and IRQ handling. From the point this
2050  *	call is made your handler function may be invoked. Since
2051  *	your handler function must clear any interrupt the board
2052  *	raises, you must take care both to initialise your hardware
2053  *	and to set up the interrupt handler in the right order.
2054  *
2055  *	If you want to set up a threaded irq handler for your device
2056  *	then you need to supply @handler and @thread_fn. @handler is
2057  *	still called in hard interrupt context and has to check
2058  *	whether the interrupt originates from the device. If yes it
2059  *	needs to disable the interrupt on the device and return
2060  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
2061  *	@thread_fn. This split handler design is necessary to support
2062  *	shared interrupts.
2063  *
2064  *	Dev_id must be globally unique. Normally the address of the
2065  *	device data structure is used as the cookie. Since the handler
2066  *	receives this value it makes sense to use it.
2067  *
2068  *	If your interrupt is shared you must pass a non NULL dev_id
2069  *	as this is required when freeing the interrupt.
2070  *
2071  *	Flags:
2072  *
2073  *	IRQF_SHARED		Interrupt is shared
2074  *	IRQF_TRIGGER_*		Specify active edge(s) or level
2075  *
2076  */
request_threaded_irq(unsigned int irq,irq_handler_t handler,irq_handler_t thread_fn,unsigned long irqflags,const char * devname,void * dev_id)2077 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2078 			 irq_handler_t thread_fn, unsigned long irqflags,
2079 			 const char *devname, void *dev_id)
2080 {
2081 	struct irqaction *action;
2082 	struct irq_desc *desc;
2083 	int retval;
2084 
2085 	if (irq == IRQ_NOTCONNECTED)
2086 		return -ENOTCONN;
2087 
2088 	/*
2089 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
2090 	 * otherwise we'll have trouble later trying to figure out
2091 	 * which interrupt is which (messes up the interrupt freeing
2092 	 * logic etc).
2093 	 *
2094 	 * Also shared interrupts do not go well with disabling auto enable.
2095 	 * The sharing interrupt might request it while it's still disabled
2096 	 * and then wait for interrupts forever.
2097 	 *
2098 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2099 	 * it cannot be set along with IRQF_NO_SUSPEND.
2100 	 */
2101 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
2102 	    ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2103 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2104 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2105 		return -EINVAL;
2106 
2107 	desc = irq_to_desc(irq);
2108 	if (!desc)
2109 		return -EINVAL;
2110 
2111 	if (!irq_settings_can_request(desc) ||
2112 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2113 		return -EINVAL;
2114 
2115 	if (!handler) {
2116 		if (!thread_fn)
2117 			return -EINVAL;
2118 		handler = irq_default_primary_handler;
2119 	}
2120 
2121 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2122 	if (!action)
2123 		return -ENOMEM;
2124 
2125 	action->handler = handler;
2126 	action->thread_fn = thread_fn;
2127 	action->flags = irqflags;
2128 	action->name = devname;
2129 	action->dev_id = dev_id;
2130 
2131 	retval = irq_chip_pm_get(&desc->irq_data);
2132 	if (retval < 0) {
2133 		kfree(action);
2134 		return retval;
2135 	}
2136 
2137 	retval = __setup_irq(irq, desc, action);
2138 
2139 	if (retval) {
2140 		irq_chip_pm_put(&desc->irq_data);
2141 		kfree(action->secondary);
2142 		kfree(action);
2143 	}
2144 
2145 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2146 	if (!retval && (irqflags & IRQF_SHARED)) {
2147 		/*
2148 		 * It's a shared IRQ -- the driver ought to be prepared for it
2149 		 * to happen immediately, so let's make sure....
2150 		 * We disable the irq to make sure that a 'real' IRQ doesn't
2151 		 * run in parallel with our fake.
2152 		 */
2153 		unsigned long flags;
2154 
2155 		disable_irq(irq);
2156 		local_irq_save(flags);
2157 
2158 		handler(irq, dev_id);
2159 
2160 		local_irq_restore(flags);
2161 		enable_irq(irq);
2162 	}
2163 #endif
2164 	return retval;
2165 }
2166 EXPORT_SYMBOL(request_threaded_irq);
2167 
2168 /**
2169  *	request_any_context_irq - allocate an interrupt line
2170  *	@irq: Interrupt line to allocate
2171  *	@handler: Function to be called when the IRQ occurs.
2172  *		  Threaded handler for threaded interrupts.
2173  *	@flags: Interrupt type flags
2174  *	@name: An ascii name for the claiming device
2175  *	@dev_id: A cookie passed back to the handler function
2176  *
2177  *	This call allocates interrupt resources and enables the
2178  *	interrupt line and IRQ handling. It selects either a
2179  *	hardirq or threaded handling method depending on the
2180  *	context.
2181  *
2182  *	On failure, it returns a negative value. On success,
2183  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2184  */
request_any_context_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * name,void * dev_id)2185 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2186 			    unsigned long flags, const char *name, void *dev_id)
2187 {
2188 	struct irq_desc *desc;
2189 	int ret;
2190 
2191 	if (irq == IRQ_NOTCONNECTED)
2192 		return -ENOTCONN;
2193 
2194 	desc = irq_to_desc(irq);
2195 	if (!desc)
2196 		return -EINVAL;
2197 
2198 	if (irq_settings_is_nested_thread(desc)) {
2199 		ret = request_threaded_irq(irq, NULL, handler,
2200 					   flags, name, dev_id);
2201 		return !ret ? IRQC_IS_NESTED : ret;
2202 	}
2203 
2204 	ret = request_irq(irq, handler, flags, name, dev_id);
2205 	return !ret ? IRQC_IS_HARDIRQ : ret;
2206 }
2207 EXPORT_SYMBOL_GPL(request_any_context_irq);
2208 
2209 /**
2210  *	request_nmi - allocate an interrupt line for NMI delivery
2211  *	@irq: Interrupt line to allocate
2212  *	@handler: Function to be called when the IRQ occurs.
2213  *		  Threaded handler for threaded interrupts.
2214  *	@irqflags: Interrupt type flags
2215  *	@name: An ascii name for the claiming device
2216  *	@dev_id: A cookie passed back to the handler function
2217  *
2218  *	This call allocates interrupt resources and enables the
2219  *	interrupt line and IRQ handling. It sets up the IRQ line
2220  *	to be handled as an NMI.
2221  *
2222  *	An interrupt line delivering NMIs cannot be shared and IRQ handling
2223  *	cannot be threaded.
2224  *
2225  *	Interrupt lines requested for NMI delivering must produce per cpu
2226  *	interrupts and have auto enabling setting disabled.
2227  *
2228  *	Dev_id must be globally unique. Normally the address of the
2229  *	device data structure is used as the cookie. Since the handler
2230  *	receives this value it makes sense to use it.
2231  *
2232  *	If the interrupt line cannot be used to deliver NMIs, function
2233  *	will fail and return a negative value.
2234  */
request_nmi(unsigned int irq,irq_handler_t handler,unsigned long irqflags,const char * name,void * dev_id)2235 int request_nmi(unsigned int irq, irq_handler_t handler,
2236 		unsigned long irqflags, const char *name, void *dev_id)
2237 {
2238 	struct irqaction *action;
2239 	struct irq_desc *desc;
2240 	unsigned long flags;
2241 	int retval;
2242 
2243 	if (irq == IRQ_NOTCONNECTED)
2244 		return -ENOTCONN;
2245 
2246 	/* NMI cannot be shared, used for Polling */
2247 	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2248 		return -EINVAL;
2249 
2250 	if (!(irqflags & IRQF_PERCPU))
2251 		return -EINVAL;
2252 
2253 	if (!handler)
2254 		return -EINVAL;
2255 
2256 	desc = irq_to_desc(irq);
2257 
2258 	if (!desc || (irq_settings_can_autoenable(desc) &&
2259 	    !(irqflags & IRQF_NO_AUTOEN)) ||
2260 	    !irq_settings_can_request(desc) ||
2261 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2262 	    !irq_supports_nmi(desc))
2263 		return -EINVAL;
2264 
2265 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2266 	if (!action)
2267 		return -ENOMEM;
2268 
2269 	action->handler = handler;
2270 	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2271 	action->name = name;
2272 	action->dev_id = dev_id;
2273 
2274 	retval = irq_chip_pm_get(&desc->irq_data);
2275 	if (retval < 0)
2276 		goto err_out;
2277 
2278 	retval = __setup_irq(irq, desc, action);
2279 	if (retval)
2280 		goto err_irq_setup;
2281 
2282 	raw_spin_lock_irqsave(&desc->lock, flags);
2283 
2284 	/* Setup NMI state */
2285 	desc->istate |= IRQS_NMI;
2286 	retval = irq_nmi_setup(desc);
2287 	if (retval) {
2288 		__cleanup_nmi(irq, desc);
2289 		raw_spin_unlock_irqrestore(&desc->lock, flags);
2290 		return -EINVAL;
2291 	}
2292 
2293 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2294 
2295 	return 0;
2296 
2297 err_irq_setup:
2298 	irq_chip_pm_put(&desc->irq_data);
2299 err_out:
2300 	kfree(action);
2301 
2302 	return retval;
2303 }
2304 
enable_percpu_irq(unsigned int irq,unsigned int type)2305 void enable_percpu_irq(unsigned int irq, unsigned int type)
2306 {
2307 	unsigned int cpu = smp_processor_id();
2308 	unsigned long flags;
2309 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2310 
2311 	if (!desc)
2312 		return;
2313 
2314 	/*
2315 	 * If the trigger type is not specified by the caller, then
2316 	 * use the default for this interrupt.
2317 	 */
2318 	type &= IRQ_TYPE_SENSE_MASK;
2319 	if (type == IRQ_TYPE_NONE)
2320 		type = irqd_get_trigger_type(&desc->irq_data);
2321 
2322 	if (type != IRQ_TYPE_NONE) {
2323 		int ret;
2324 
2325 		ret = __irq_set_trigger(desc, type);
2326 
2327 		if (ret) {
2328 			WARN(1, "failed to set type for IRQ%d\n", irq);
2329 			goto out;
2330 		}
2331 	}
2332 
2333 	irq_percpu_enable(desc, cpu);
2334 out:
2335 	irq_put_desc_unlock(desc, flags);
2336 }
2337 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2338 
enable_percpu_nmi(unsigned int irq,unsigned int type)2339 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2340 {
2341 	enable_percpu_irq(irq, type);
2342 }
2343 
2344 /**
2345  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2346  * @irq:	Linux irq number to check for
2347  *
2348  * Must be called from a non migratable context. Returns the enable
2349  * state of a per cpu interrupt on the current cpu.
2350  */
irq_percpu_is_enabled(unsigned int irq)2351 bool irq_percpu_is_enabled(unsigned int irq)
2352 {
2353 	unsigned int cpu = smp_processor_id();
2354 	struct irq_desc *desc;
2355 	unsigned long flags;
2356 	bool is_enabled;
2357 
2358 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2359 	if (!desc)
2360 		return false;
2361 
2362 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2363 	irq_put_desc_unlock(desc, flags);
2364 
2365 	return is_enabled;
2366 }
2367 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2368 
disable_percpu_irq(unsigned int irq)2369 void disable_percpu_irq(unsigned int irq)
2370 {
2371 	unsigned int cpu = smp_processor_id();
2372 	unsigned long flags;
2373 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2374 
2375 	if (!desc)
2376 		return;
2377 
2378 	irq_percpu_disable(desc, cpu);
2379 	irq_put_desc_unlock(desc, flags);
2380 }
2381 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2382 
disable_percpu_nmi(unsigned int irq)2383 void disable_percpu_nmi(unsigned int irq)
2384 {
2385 	disable_percpu_irq(irq);
2386 }
2387 
2388 /*
2389  * Internal function to unregister a percpu irqaction.
2390  */
__free_percpu_irq(unsigned int irq,void __percpu * dev_id)2391 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2392 {
2393 	struct irq_desc *desc = irq_to_desc(irq);
2394 	struct irqaction *action;
2395 	unsigned long flags;
2396 
2397 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2398 
2399 	if (!desc)
2400 		return NULL;
2401 
2402 	raw_spin_lock_irqsave(&desc->lock, flags);
2403 
2404 	action = desc->action;
2405 	if (!action || action->percpu_dev_id != dev_id) {
2406 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2407 		goto bad;
2408 	}
2409 
2410 	if (!cpumask_empty(desc->percpu_enabled)) {
2411 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2412 		     irq, cpumask_first(desc->percpu_enabled));
2413 		goto bad;
2414 	}
2415 
2416 	/* Found it - now remove it from the list of entries: */
2417 	desc->action = NULL;
2418 
2419 	desc->istate &= ~IRQS_NMI;
2420 
2421 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2422 
2423 	unregister_handler_proc(irq, action);
2424 
2425 	irq_chip_pm_put(&desc->irq_data);
2426 	module_put(desc->owner);
2427 	return action;
2428 
2429 bad:
2430 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2431 	return NULL;
2432 }
2433 
2434 /**
2435  *	remove_percpu_irq - free a per-cpu interrupt
2436  *	@irq: Interrupt line to free
2437  *	@act: irqaction for the interrupt
2438  *
2439  * Used to remove interrupts statically setup by the early boot process.
2440  */
remove_percpu_irq(unsigned int irq,struct irqaction * act)2441 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2442 {
2443 	struct irq_desc *desc = irq_to_desc(irq);
2444 
2445 	if (desc && irq_settings_is_per_cpu_devid(desc))
2446 	    __free_percpu_irq(irq, act->percpu_dev_id);
2447 }
2448 
2449 /**
2450  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2451  *	@irq: Interrupt line to free
2452  *	@dev_id: Device identity to free
2453  *
2454  *	Remove a percpu interrupt handler. The handler is removed, but
2455  *	the interrupt line is not disabled. This must be done on each
2456  *	CPU before calling this function. The function does not return
2457  *	until any executing interrupts for this IRQ have completed.
2458  *
2459  *	This function must not be called from interrupt context.
2460  */
free_percpu_irq(unsigned int irq,void __percpu * dev_id)2461 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2462 {
2463 	struct irq_desc *desc = irq_to_desc(irq);
2464 
2465 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2466 		return;
2467 
2468 	chip_bus_lock(desc);
2469 	kfree(__free_percpu_irq(irq, dev_id));
2470 	chip_bus_sync_unlock(desc);
2471 }
2472 EXPORT_SYMBOL_GPL(free_percpu_irq);
2473 
free_percpu_nmi(unsigned int irq,void __percpu * dev_id)2474 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2475 {
2476 	struct irq_desc *desc = irq_to_desc(irq);
2477 
2478 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2479 		return;
2480 
2481 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2482 		return;
2483 
2484 	kfree(__free_percpu_irq(irq, dev_id));
2485 }
2486 
2487 /**
2488  *	setup_percpu_irq - setup a per-cpu interrupt
2489  *	@irq: Interrupt line to setup
2490  *	@act: irqaction for the interrupt
2491  *
2492  * Used to statically setup per-cpu interrupts in the early boot process.
2493  */
setup_percpu_irq(unsigned int irq,struct irqaction * act)2494 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2495 {
2496 	struct irq_desc *desc = irq_to_desc(irq);
2497 	int retval;
2498 
2499 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2500 		return -EINVAL;
2501 
2502 	retval = irq_chip_pm_get(&desc->irq_data);
2503 	if (retval < 0)
2504 		return retval;
2505 
2506 	retval = __setup_irq(irq, desc, act);
2507 
2508 	if (retval)
2509 		irq_chip_pm_put(&desc->irq_data);
2510 
2511 	return retval;
2512 }
2513 
2514 /**
2515  *	__request_percpu_irq - allocate a percpu interrupt line
2516  *	@irq: Interrupt line to allocate
2517  *	@handler: Function to be called when the IRQ occurs.
2518  *	@flags: Interrupt type flags (IRQF_TIMER only)
2519  *	@devname: An ascii name for the claiming device
2520  *	@dev_id: A percpu cookie passed back to the handler function
2521  *
2522  *	This call allocates interrupt resources and enables the
2523  *	interrupt on the local CPU. If the interrupt is supposed to be
2524  *	enabled on other CPUs, it has to be done on each CPU using
2525  *	enable_percpu_irq().
2526  *
2527  *	Dev_id must be globally unique. It is a per-cpu variable, and
2528  *	the handler gets called with the interrupted CPU's instance of
2529  *	that variable.
2530  */
__request_percpu_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * devname,void __percpu * dev_id)2531 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2532 			 unsigned long flags, const char *devname,
2533 			 void __percpu *dev_id)
2534 {
2535 	struct irqaction *action;
2536 	struct irq_desc *desc;
2537 	int retval;
2538 
2539 	if (!dev_id)
2540 		return -EINVAL;
2541 
2542 	desc = irq_to_desc(irq);
2543 	if (!desc || !irq_settings_can_request(desc) ||
2544 	    !irq_settings_is_per_cpu_devid(desc))
2545 		return -EINVAL;
2546 
2547 	if (flags && flags != IRQF_TIMER)
2548 		return -EINVAL;
2549 
2550 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2551 	if (!action)
2552 		return -ENOMEM;
2553 
2554 	action->handler = handler;
2555 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2556 	action->name = devname;
2557 	action->percpu_dev_id = dev_id;
2558 
2559 	retval = irq_chip_pm_get(&desc->irq_data);
2560 	if (retval < 0) {
2561 		kfree(action);
2562 		return retval;
2563 	}
2564 
2565 	retval = __setup_irq(irq, desc, action);
2566 
2567 	if (retval) {
2568 		irq_chip_pm_put(&desc->irq_data);
2569 		kfree(action);
2570 	}
2571 
2572 	return retval;
2573 }
2574 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2575 
2576 /**
2577  *	request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2578  *	@irq: Interrupt line to allocate
2579  *	@handler: Function to be called when the IRQ occurs.
2580  *	@name: An ascii name for the claiming device
2581  *	@dev_id: A percpu cookie passed back to the handler function
2582  *
2583  *	This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2584  *	have to be setup on each CPU by calling prepare_percpu_nmi() before
2585  *	being enabled on the same CPU by using enable_percpu_nmi().
2586  *
2587  *	Dev_id must be globally unique. It is a per-cpu variable, and
2588  *	the handler gets called with the interrupted CPU's instance of
2589  *	that variable.
2590  *
2591  *	Interrupt lines requested for NMI delivering should have auto enabling
2592  *	setting disabled.
2593  *
2594  *	If the interrupt line cannot be used to deliver NMIs, function
2595  *	will fail returning a negative value.
2596  */
request_percpu_nmi(unsigned int irq,irq_handler_t handler,const char * name,void __percpu * dev_id)2597 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2598 		       const char *name, void __percpu *dev_id)
2599 {
2600 	struct irqaction *action;
2601 	struct irq_desc *desc;
2602 	unsigned long flags;
2603 	int retval;
2604 
2605 	if (!handler)
2606 		return -EINVAL;
2607 
2608 	desc = irq_to_desc(irq);
2609 
2610 	if (!desc || !irq_settings_can_request(desc) ||
2611 	    !irq_settings_is_per_cpu_devid(desc) ||
2612 	    irq_settings_can_autoenable(desc) ||
2613 	    !irq_supports_nmi(desc))
2614 		return -EINVAL;
2615 
2616 	/* The line cannot already be NMI */
2617 	if (desc->istate & IRQS_NMI)
2618 		return -EINVAL;
2619 
2620 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2621 	if (!action)
2622 		return -ENOMEM;
2623 
2624 	action->handler = handler;
2625 	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2626 		| IRQF_NOBALANCING;
2627 	action->name = name;
2628 	action->percpu_dev_id = dev_id;
2629 
2630 	retval = irq_chip_pm_get(&desc->irq_data);
2631 	if (retval < 0)
2632 		goto err_out;
2633 
2634 	retval = __setup_irq(irq, desc, action);
2635 	if (retval)
2636 		goto err_irq_setup;
2637 
2638 	raw_spin_lock_irqsave(&desc->lock, flags);
2639 	desc->istate |= IRQS_NMI;
2640 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2641 
2642 	return 0;
2643 
2644 err_irq_setup:
2645 	irq_chip_pm_put(&desc->irq_data);
2646 err_out:
2647 	kfree(action);
2648 
2649 	return retval;
2650 }
2651 
2652 /**
2653  *	prepare_percpu_nmi - performs CPU local setup for NMI delivery
2654  *	@irq: Interrupt line to prepare for NMI delivery
2655  *
2656  *	This call prepares an interrupt line to deliver NMI on the current CPU,
2657  *	before that interrupt line gets enabled with enable_percpu_nmi().
2658  *
2659  *	As a CPU local operation, this should be called from non-preemptible
2660  *	context.
2661  *
2662  *	If the interrupt line cannot be used to deliver NMIs, function
2663  *	will fail returning a negative value.
2664  */
prepare_percpu_nmi(unsigned int irq)2665 int prepare_percpu_nmi(unsigned int irq)
2666 {
2667 	unsigned long flags;
2668 	struct irq_desc *desc;
2669 	int ret = 0;
2670 
2671 	WARN_ON(preemptible());
2672 
2673 	desc = irq_get_desc_lock(irq, &flags,
2674 				 IRQ_GET_DESC_CHECK_PERCPU);
2675 	if (!desc)
2676 		return -EINVAL;
2677 
2678 	if (WARN(!(desc->istate & IRQS_NMI),
2679 		 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2680 		 irq)) {
2681 		ret = -EINVAL;
2682 		goto out;
2683 	}
2684 
2685 	ret = irq_nmi_setup(desc);
2686 	if (ret) {
2687 		pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2688 		goto out;
2689 	}
2690 
2691 out:
2692 	irq_put_desc_unlock(desc, flags);
2693 	return ret;
2694 }
2695 
2696 /**
2697  *	teardown_percpu_nmi - undoes NMI setup of IRQ line
2698  *	@irq: Interrupt line from which CPU local NMI configuration should be
2699  *	      removed
2700  *
2701  *	This call undoes the setup done by prepare_percpu_nmi().
2702  *
2703  *	IRQ line should not be enabled for the current CPU.
2704  *
2705  *	As a CPU local operation, this should be called from non-preemptible
2706  *	context.
2707  */
teardown_percpu_nmi(unsigned int irq)2708 void teardown_percpu_nmi(unsigned int irq)
2709 {
2710 	unsigned long flags;
2711 	struct irq_desc *desc;
2712 
2713 	WARN_ON(preemptible());
2714 
2715 	desc = irq_get_desc_lock(irq, &flags,
2716 				 IRQ_GET_DESC_CHECK_PERCPU);
2717 	if (!desc)
2718 		return;
2719 
2720 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2721 		goto out;
2722 
2723 	irq_nmi_teardown(desc);
2724 out:
2725 	irq_put_desc_unlock(desc, flags);
2726 }
2727 
__irq_get_irqchip_state(struct irq_data * data,enum irqchip_irq_state which,bool * state)2728 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2729 			    bool *state)
2730 {
2731 	struct irq_chip *chip;
2732 	int err = -EINVAL;
2733 
2734 	do {
2735 		chip = irq_data_get_irq_chip(data);
2736 		if (WARN_ON_ONCE(!chip))
2737 			return -ENODEV;
2738 		if (chip->irq_get_irqchip_state)
2739 			break;
2740 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2741 		data = data->parent_data;
2742 #else
2743 		data = NULL;
2744 #endif
2745 	} while (data);
2746 
2747 	if (data)
2748 		err = chip->irq_get_irqchip_state(data, which, state);
2749 	return err;
2750 }
2751 
2752 /**
2753  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2754  *	@irq: Interrupt line that is forwarded to a VM
2755  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2756  *	@state: a pointer to a boolean where the state is to be stored
2757  *
2758  *	This call snapshots the internal irqchip state of an
2759  *	interrupt, returning into @state the bit corresponding to
2760  *	stage @which
2761  *
2762  *	This function should be called with preemption disabled if the
2763  *	interrupt controller has per-cpu registers.
2764  */
irq_get_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool * state)2765 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2766 			  bool *state)
2767 {
2768 	struct irq_desc *desc;
2769 	struct irq_data *data;
2770 	unsigned long flags;
2771 	int err = -EINVAL;
2772 
2773 	desc = irq_get_desc_buslock(irq, &flags, 0);
2774 	if (!desc)
2775 		return err;
2776 
2777 	data = irq_desc_get_irq_data(desc);
2778 
2779 	err = __irq_get_irqchip_state(data, which, state);
2780 
2781 	irq_put_desc_busunlock(desc, flags);
2782 	return err;
2783 }
2784 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2785 
2786 /**
2787  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2788  *	@irq: Interrupt line that is forwarded to a VM
2789  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2790  *	@val: Value corresponding to @which
2791  *
2792  *	This call sets the internal irqchip state of an interrupt,
2793  *	depending on the value of @which.
2794  *
2795  *	This function should be called with preemption disabled if the
2796  *	interrupt controller has per-cpu registers.
2797  */
irq_set_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool val)2798 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2799 			  bool val)
2800 {
2801 	struct irq_desc *desc;
2802 	struct irq_data *data;
2803 	struct irq_chip *chip;
2804 	unsigned long flags;
2805 	int err = -EINVAL;
2806 
2807 	desc = irq_get_desc_buslock(irq, &flags, 0);
2808 	if (!desc)
2809 		return err;
2810 
2811 	data = irq_desc_get_irq_data(desc);
2812 
2813 	do {
2814 		chip = irq_data_get_irq_chip(data);
2815 		if (WARN_ON_ONCE(!chip)) {
2816 			err = -ENODEV;
2817 			goto out_unlock;
2818 		}
2819 		if (chip->irq_set_irqchip_state)
2820 			break;
2821 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2822 		data = data->parent_data;
2823 #else
2824 		data = NULL;
2825 #endif
2826 	} while (data);
2827 
2828 	if (data)
2829 		err = chip->irq_set_irqchip_state(data, which, val);
2830 
2831 out_unlock:
2832 	irq_put_desc_busunlock(desc, flags);
2833 	return err;
2834 }
2835 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2836 
2837 /**
2838  * irq_has_action - Check whether an interrupt is requested
2839  * @irq:	The linux irq number
2840  *
2841  * Returns: A snapshot of the current state
2842  */
irq_has_action(unsigned int irq)2843 bool irq_has_action(unsigned int irq)
2844 {
2845 	bool res;
2846 
2847 	rcu_read_lock();
2848 	res = irq_desc_has_action(irq_to_desc(irq));
2849 	rcu_read_unlock();
2850 	return res;
2851 }
2852 EXPORT_SYMBOL_GPL(irq_has_action);
2853 
2854 /**
2855  * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2856  * @irq:	The linux irq number
2857  * @bitmask:	The bitmask to evaluate
2858  *
2859  * Returns: True if one of the bits in @bitmask is set
2860  */
irq_check_status_bit(unsigned int irq,unsigned int bitmask)2861 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2862 {
2863 	struct irq_desc *desc;
2864 	bool res = false;
2865 
2866 	rcu_read_lock();
2867 	desc = irq_to_desc(irq);
2868 	if (desc)
2869 		res = !!(desc->status_use_accessors & bitmask);
2870 	rcu_read_unlock();
2871 	return res;
2872 }
2873 EXPORT_SYMBOL_GPL(irq_check_status_bit);
2874