1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Connection state tracking for netfilter.  This is separated from,
3    but required by, the NAT layer; it can also be used by an iptables
4    extension. */
5 
6 /* (C) 1999-2001 Paul `Rusty' Russell
7  * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
8  * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
9  * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
10  */
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/jhash.h>
25 #include <linux/siphash.h>
26 #include <linux/err.h>
27 #include <linux/percpu.h>
28 #include <linux/moduleparam.h>
29 #include <linux/notifier.h>
30 #include <linux/kernel.h>
31 #include <linux/netdevice.h>
32 #include <linux/socket.h>
33 #include <linux/mm.h>
34 #include <linux/nsproxy.h>
35 #include <linux/rculist_nulls.h>
36 
37 #include <net/netfilter/nf_conntrack.h>
38 #include <net/netfilter/nf_conntrack_l4proto.h>
39 #include <net/netfilter/nf_conntrack_expect.h>
40 #include <net/netfilter/nf_conntrack_helper.h>
41 #include <net/netfilter/nf_conntrack_seqadj.h>
42 #include <net/netfilter/nf_conntrack_core.h>
43 #include <net/netfilter/nf_conntrack_extend.h>
44 #include <net/netfilter/nf_conntrack_acct.h>
45 #include <net/netfilter/nf_conntrack_ecache.h>
46 #include <net/netfilter/nf_conntrack_zones.h>
47 #include <net/netfilter/nf_conntrack_timestamp.h>
48 #include <net/netfilter/nf_conntrack_timeout.h>
49 #include <net/netfilter/nf_conntrack_labels.h>
50 #include <net/netfilter/nf_conntrack_synproxy.h>
51 #include <net/netfilter/nf_nat.h>
52 #include <net/netfilter/nf_nat_helper.h>
53 #include <net/netns/hash.h>
54 #include <net/ip.h>
55 
56 #include "nf_internals.h"
57 
58 extern unsigned int nf_conntrack_net_id;
59 
60 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
61 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
62 
63 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
64 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
65 
66 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
67 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
68 
69 struct conntrack_gc_work {
70 	struct delayed_work	dwork;
71 	u32			last_bucket;
72 	bool			exiting;
73 	bool			early_drop;
74 	long			next_gc_run;
75 };
76 
77 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
78 static DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
79 static __read_mostly bool nf_conntrack_locks_all;
80 
81 /* every gc cycle scans at most 1/GC_MAX_BUCKETS_DIV part of table */
82 #define GC_MAX_BUCKETS_DIV	128u
83 /* upper bound of full table scan */
84 #define GC_MAX_SCAN_JIFFIES	(16u * HZ)
85 /* desired ratio of entries found to be expired */
86 #define GC_EVICT_RATIO	50u
87 
88 static struct conntrack_gc_work conntrack_gc_work;
89 
90 extern unsigned int nf_conntrack_net_id;
91 
nf_conntrack_lock(spinlock_t * lock)92 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
93 {
94 	/* 1) Acquire the lock */
95 	spin_lock(lock);
96 
97 	/* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
98 	 * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
99 	 */
100 	if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
101 		return;
102 
103 	/* fast path failed, unlock */
104 	spin_unlock(lock);
105 
106 	/* Slow path 1) get global lock */
107 	spin_lock(&nf_conntrack_locks_all_lock);
108 
109 	/* Slow path 2) get the lock we want */
110 	spin_lock(lock);
111 
112 	/* Slow path 3) release the global lock */
113 	spin_unlock(&nf_conntrack_locks_all_lock);
114 }
115 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
116 
nf_conntrack_double_unlock(unsigned int h1,unsigned int h2)117 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
118 {
119 	h1 %= CONNTRACK_LOCKS;
120 	h2 %= CONNTRACK_LOCKS;
121 	spin_unlock(&nf_conntrack_locks[h1]);
122 	if (h1 != h2)
123 		spin_unlock(&nf_conntrack_locks[h2]);
124 }
125 
126 /* return true if we need to recompute hashes (in case hash table was resized) */
nf_conntrack_double_lock(struct net * net,unsigned int h1,unsigned int h2,unsigned int sequence)127 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
128 				     unsigned int h2, unsigned int sequence)
129 {
130 	h1 %= CONNTRACK_LOCKS;
131 	h2 %= CONNTRACK_LOCKS;
132 	if (h1 <= h2) {
133 		nf_conntrack_lock(&nf_conntrack_locks[h1]);
134 		if (h1 != h2)
135 			spin_lock_nested(&nf_conntrack_locks[h2],
136 					 SINGLE_DEPTH_NESTING);
137 	} else {
138 		nf_conntrack_lock(&nf_conntrack_locks[h2]);
139 		spin_lock_nested(&nf_conntrack_locks[h1],
140 				 SINGLE_DEPTH_NESTING);
141 	}
142 	if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
143 		nf_conntrack_double_unlock(h1, h2);
144 		return true;
145 	}
146 	return false;
147 }
148 
nf_conntrack_all_lock(void)149 static void nf_conntrack_all_lock(void)
150 	__acquires(&nf_conntrack_locks_all_lock)
151 {
152 	int i;
153 
154 	spin_lock(&nf_conntrack_locks_all_lock);
155 
156 	nf_conntrack_locks_all = true;
157 
158 	for (i = 0; i < CONNTRACK_LOCKS; i++) {
159 		spin_lock(&nf_conntrack_locks[i]);
160 
161 		/* This spin_unlock provides the "release" to ensure that
162 		 * nf_conntrack_locks_all==true is visible to everyone that
163 		 * acquired spin_lock(&nf_conntrack_locks[]).
164 		 */
165 		spin_unlock(&nf_conntrack_locks[i]);
166 	}
167 }
168 
nf_conntrack_all_unlock(void)169 static void nf_conntrack_all_unlock(void)
170 	__releases(&nf_conntrack_locks_all_lock)
171 {
172 	/* All prior stores must be complete before we clear
173 	 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
174 	 * might observe the false value but not the entire
175 	 * critical section.
176 	 * It pairs with the smp_load_acquire() in nf_conntrack_lock()
177 	 */
178 	smp_store_release(&nf_conntrack_locks_all, false);
179 	spin_unlock(&nf_conntrack_locks_all_lock);
180 }
181 
182 unsigned int nf_conntrack_htable_size __read_mostly;
183 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
184 
185 unsigned int nf_conntrack_max __read_mostly;
186 EXPORT_SYMBOL_GPL(nf_conntrack_max);
187 seqcount_spinlock_t nf_conntrack_generation __read_mostly;
188 static unsigned int nf_conntrack_hash_rnd __read_mostly;
189 
hash_conntrack_raw(const struct nf_conntrack_tuple * tuple,const struct net * net)190 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
191 			      const struct net *net)
192 {
193 	unsigned int n;
194 	u32 seed;
195 
196 	get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
197 
198 	/* The direction must be ignored, so we hash everything up to the
199 	 * destination ports (which is a multiple of 4) and treat the last
200 	 * three bytes manually.
201 	 */
202 	seed = nf_conntrack_hash_rnd ^ net_hash_mix(net);
203 	n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
204 	return jhash2((u32 *)tuple, n, seed ^
205 		      (((__force __u16)tuple->dst.u.all << 16) |
206 		      tuple->dst.protonum));
207 }
208 
scale_hash(u32 hash)209 static u32 scale_hash(u32 hash)
210 {
211 	return reciprocal_scale(hash, nf_conntrack_htable_size);
212 }
213 
__hash_conntrack(const struct net * net,const struct nf_conntrack_tuple * tuple,unsigned int size)214 static u32 __hash_conntrack(const struct net *net,
215 			    const struct nf_conntrack_tuple *tuple,
216 			    unsigned int size)
217 {
218 	return reciprocal_scale(hash_conntrack_raw(tuple, net), size);
219 }
220 
hash_conntrack(const struct net * net,const struct nf_conntrack_tuple * tuple)221 static u32 hash_conntrack(const struct net *net,
222 			  const struct nf_conntrack_tuple *tuple)
223 {
224 	return scale_hash(hash_conntrack_raw(tuple, net));
225 }
226 
nf_ct_get_tuple_ports(const struct sk_buff * skb,unsigned int dataoff,struct nf_conntrack_tuple * tuple)227 static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
228 				  unsigned int dataoff,
229 				  struct nf_conntrack_tuple *tuple)
230 {	struct {
231 		__be16 sport;
232 		__be16 dport;
233 	} _inet_hdr, *inet_hdr;
234 
235 	/* Actually only need first 4 bytes to get ports. */
236 	inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
237 	if (!inet_hdr)
238 		return false;
239 
240 	tuple->src.u.udp.port = inet_hdr->sport;
241 	tuple->dst.u.udp.port = inet_hdr->dport;
242 	return true;
243 }
244 
245 static bool
nf_ct_get_tuple(const struct sk_buff * skb,unsigned int nhoff,unsigned int dataoff,u_int16_t l3num,u_int8_t protonum,struct net * net,struct nf_conntrack_tuple * tuple)246 nf_ct_get_tuple(const struct sk_buff *skb,
247 		unsigned int nhoff,
248 		unsigned int dataoff,
249 		u_int16_t l3num,
250 		u_int8_t protonum,
251 		struct net *net,
252 		struct nf_conntrack_tuple *tuple)
253 {
254 	unsigned int size;
255 	const __be32 *ap;
256 	__be32 _addrs[8];
257 
258 	memset(tuple, 0, sizeof(*tuple));
259 
260 	tuple->src.l3num = l3num;
261 	switch (l3num) {
262 	case NFPROTO_IPV4:
263 		nhoff += offsetof(struct iphdr, saddr);
264 		size = 2 * sizeof(__be32);
265 		break;
266 	case NFPROTO_IPV6:
267 		nhoff += offsetof(struct ipv6hdr, saddr);
268 		size = sizeof(_addrs);
269 		break;
270 	default:
271 		return true;
272 	}
273 
274 	ap = skb_header_pointer(skb, nhoff, size, _addrs);
275 	if (!ap)
276 		return false;
277 
278 	switch (l3num) {
279 	case NFPROTO_IPV4:
280 		tuple->src.u3.ip = ap[0];
281 		tuple->dst.u3.ip = ap[1];
282 		break;
283 	case NFPROTO_IPV6:
284 		memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
285 		memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
286 		break;
287 	}
288 
289 	tuple->dst.protonum = protonum;
290 	tuple->dst.dir = IP_CT_DIR_ORIGINAL;
291 
292 	switch (protonum) {
293 #if IS_ENABLED(CONFIG_IPV6)
294 	case IPPROTO_ICMPV6:
295 		return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
296 #endif
297 	case IPPROTO_ICMP:
298 		return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
299 #ifdef CONFIG_NF_CT_PROTO_GRE
300 	case IPPROTO_GRE:
301 		return gre_pkt_to_tuple(skb, dataoff, net, tuple);
302 #endif
303 	case IPPROTO_TCP:
304 	case IPPROTO_UDP: /* fallthrough */
305 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
306 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
307 	case IPPROTO_UDPLITE:
308 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
309 #endif
310 #ifdef CONFIG_NF_CT_PROTO_SCTP
311 	case IPPROTO_SCTP:
312 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
313 #endif
314 #ifdef CONFIG_NF_CT_PROTO_DCCP
315 	case IPPROTO_DCCP:
316 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
317 #endif
318 	default:
319 		break;
320 	}
321 
322 	return true;
323 }
324 
ipv4_get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u_int8_t * protonum)325 static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
326 			    u_int8_t *protonum)
327 {
328 	int dataoff = -1;
329 	const struct iphdr *iph;
330 	struct iphdr _iph;
331 
332 	iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
333 	if (!iph)
334 		return -1;
335 
336 	/* Conntrack defragments packets, we might still see fragments
337 	 * inside ICMP packets though.
338 	 */
339 	if (iph->frag_off & htons(IP_OFFSET))
340 		return -1;
341 
342 	dataoff = nhoff + (iph->ihl << 2);
343 	*protonum = iph->protocol;
344 
345 	/* Check bogus IP headers */
346 	if (dataoff > skb->len) {
347 		pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
348 			 nhoff, iph->ihl << 2, skb->len);
349 		return -1;
350 	}
351 	return dataoff;
352 }
353 
354 #if IS_ENABLED(CONFIG_IPV6)
ipv6_get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u8 * protonum)355 static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
356 			    u8 *protonum)
357 {
358 	int protoff = -1;
359 	unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
360 	__be16 frag_off;
361 	u8 nexthdr;
362 
363 	if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
364 			  &nexthdr, sizeof(nexthdr)) != 0) {
365 		pr_debug("can't get nexthdr\n");
366 		return -1;
367 	}
368 	protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
369 	/*
370 	 * (protoff == skb->len) means the packet has not data, just
371 	 * IPv6 and possibly extensions headers, but it is tracked anyway
372 	 */
373 	if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
374 		pr_debug("can't find proto in pkt\n");
375 		return -1;
376 	}
377 
378 	*protonum = nexthdr;
379 	return protoff;
380 }
381 #endif
382 
get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u8 pf,u8 * l4num)383 static int get_l4proto(const struct sk_buff *skb,
384 		       unsigned int nhoff, u8 pf, u8 *l4num)
385 {
386 	switch (pf) {
387 	case NFPROTO_IPV4:
388 		return ipv4_get_l4proto(skb, nhoff, l4num);
389 #if IS_ENABLED(CONFIG_IPV6)
390 	case NFPROTO_IPV6:
391 		return ipv6_get_l4proto(skb, nhoff, l4num);
392 #endif
393 	default:
394 		*l4num = 0;
395 		break;
396 	}
397 	return -1;
398 }
399 
nf_ct_get_tuplepr(const struct sk_buff * skb,unsigned int nhoff,u_int16_t l3num,struct net * net,struct nf_conntrack_tuple * tuple)400 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
401 		       u_int16_t l3num,
402 		       struct net *net, struct nf_conntrack_tuple *tuple)
403 {
404 	u8 protonum;
405 	int protoff;
406 
407 	protoff = get_l4proto(skb, nhoff, l3num, &protonum);
408 	if (protoff <= 0)
409 		return false;
410 
411 	return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple);
412 }
413 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
414 
415 bool
nf_ct_invert_tuple(struct nf_conntrack_tuple * inverse,const struct nf_conntrack_tuple * orig)416 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
417 		   const struct nf_conntrack_tuple *orig)
418 {
419 	memset(inverse, 0, sizeof(*inverse));
420 
421 	inverse->src.l3num = orig->src.l3num;
422 
423 	switch (orig->src.l3num) {
424 	case NFPROTO_IPV4:
425 		inverse->src.u3.ip = orig->dst.u3.ip;
426 		inverse->dst.u3.ip = orig->src.u3.ip;
427 		break;
428 	case NFPROTO_IPV6:
429 		inverse->src.u3.in6 = orig->dst.u3.in6;
430 		inverse->dst.u3.in6 = orig->src.u3.in6;
431 		break;
432 	default:
433 		break;
434 	}
435 
436 	inverse->dst.dir = !orig->dst.dir;
437 
438 	inverse->dst.protonum = orig->dst.protonum;
439 
440 	switch (orig->dst.protonum) {
441 	case IPPROTO_ICMP:
442 		return nf_conntrack_invert_icmp_tuple(inverse, orig);
443 #if IS_ENABLED(CONFIG_IPV6)
444 	case IPPROTO_ICMPV6:
445 		return nf_conntrack_invert_icmpv6_tuple(inverse, orig);
446 #endif
447 	}
448 
449 	inverse->src.u.all = orig->dst.u.all;
450 	inverse->dst.u.all = orig->src.u.all;
451 	return true;
452 }
453 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
454 
455 /* Generate a almost-unique pseudo-id for a given conntrack.
456  *
457  * intentionally doesn't re-use any of the seeds used for hash
458  * table location, we assume id gets exposed to userspace.
459  *
460  * Following nf_conn items do not change throughout lifetime
461  * of the nf_conn:
462  *
463  * 1. nf_conn address
464  * 2. nf_conn->master address (normally NULL)
465  * 3. the associated net namespace
466  * 4. the original direction tuple
467  */
nf_ct_get_id(const struct nf_conn * ct)468 u32 nf_ct_get_id(const struct nf_conn *ct)
469 {
470 	static __read_mostly siphash_key_t ct_id_seed;
471 	unsigned long a, b, c, d;
472 
473 	net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
474 
475 	a = (unsigned long)ct;
476 	b = (unsigned long)ct->master;
477 	c = (unsigned long)nf_ct_net(ct);
478 	d = (unsigned long)siphash(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
479 				   sizeof(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple),
480 				   &ct_id_seed);
481 #ifdef CONFIG_64BIT
482 	return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed);
483 #else
484 	return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
485 #endif
486 }
487 EXPORT_SYMBOL_GPL(nf_ct_get_id);
488 
489 static void
clean_from_lists(struct nf_conn * ct)490 clean_from_lists(struct nf_conn *ct)
491 {
492 	pr_debug("clean_from_lists(%p)\n", ct);
493 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
494 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
495 
496 	/* Destroy all pending expectations */
497 	nf_ct_remove_expectations(ct);
498 }
499 
500 /* must be called with local_bh_disable */
nf_ct_add_to_dying_list(struct nf_conn * ct)501 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
502 {
503 	struct ct_pcpu *pcpu;
504 
505 	/* add this conntrack to the (per cpu) dying list */
506 	ct->cpu = smp_processor_id();
507 	pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
508 
509 	spin_lock(&pcpu->lock);
510 	hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
511 			     &pcpu->dying);
512 	spin_unlock(&pcpu->lock);
513 }
514 
515 /* must be called with local_bh_disable */
nf_ct_add_to_unconfirmed_list(struct nf_conn * ct)516 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
517 {
518 	struct ct_pcpu *pcpu;
519 
520 	/* add this conntrack to the (per cpu) unconfirmed list */
521 	ct->cpu = smp_processor_id();
522 	pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
523 
524 	spin_lock(&pcpu->lock);
525 	hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
526 			     &pcpu->unconfirmed);
527 	spin_unlock(&pcpu->lock);
528 }
529 
530 /* must be called with local_bh_disable */
nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn * ct)531 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
532 {
533 	struct ct_pcpu *pcpu;
534 
535 	/* We overload first tuple to link into unconfirmed or dying list.*/
536 	pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
537 
538 	spin_lock(&pcpu->lock);
539 	BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
540 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
541 	spin_unlock(&pcpu->lock);
542 }
543 
544 #define NFCT_ALIGN(len)	(((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
545 
546 /* Released via destroy_conntrack() */
nf_ct_tmpl_alloc(struct net * net,const struct nf_conntrack_zone * zone,gfp_t flags)547 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
548 				 const struct nf_conntrack_zone *zone,
549 				 gfp_t flags)
550 {
551 	struct nf_conn *tmpl, *p;
552 
553 	if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
554 		tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
555 		if (!tmpl)
556 			return NULL;
557 
558 		p = tmpl;
559 		tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
560 		if (tmpl != p) {
561 			tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
562 			tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
563 		}
564 	} else {
565 		tmpl = kzalloc(sizeof(*tmpl), flags);
566 		if (!tmpl)
567 			return NULL;
568 	}
569 
570 	tmpl->status = IPS_TEMPLATE;
571 	write_pnet(&tmpl->ct_net, net);
572 	nf_ct_zone_add(tmpl, zone);
573 	atomic_set(&tmpl->ct_general.use, 0);
574 
575 	return tmpl;
576 }
577 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
578 
nf_ct_tmpl_free(struct nf_conn * tmpl)579 void nf_ct_tmpl_free(struct nf_conn *tmpl)
580 {
581 	nf_ct_ext_destroy(tmpl);
582 
583 	if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
584 		kfree((char *)tmpl - tmpl->proto.tmpl_padto);
585 	else
586 		kfree(tmpl);
587 }
588 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
589 
destroy_gre_conntrack(struct nf_conn * ct)590 static void destroy_gre_conntrack(struct nf_conn *ct)
591 {
592 #ifdef CONFIG_NF_CT_PROTO_GRE
593 	struct nf_conn *master = ct->master;
594 
595 	if (master)
596 		nf_ct_gre_keymap_destroy(master);
597 #endif
598 }
599 
600 static void
destroy_conntrack(struct nf_conntrack * nfct)601 destroy_conntrack(struct nf_conntrack *nfct)
602 {
603 	struct nf_conn *ct = (struct nf_conn *)nfct;
604 
605 	pr_debug("destroy_conntrack(%p)\n", ct);
606 	WARN_ON(atomic_read(&nfct->use) != 0);
607 
608 	if (unlikely(nf_ct_is_template(ct))) {
609 		nf_ct_tmpl_free(ct);
610 		return;
611 	}
612 
613 	if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
614 		destroy_gre_conntrack(ct);
615 
616 	local_bh_disable();
617 	/* Expectations will have been removed in clean_from_lists,
618 	 * except TFTP can create an expectation on the first packet,
619 	 * before connection is in the list, so we need to clean here,
620 	 * too.
621 	 */
622 	nf_ct_remove_expectations(ct);
623 
624 	nf_ct_del_from_dying_or_unconfirmed_list(ct);
625 
626 	local_bh_enable();
627 
628 	if (ct->master)
629 		nf_ct_put(ct->master);
630 
631 	pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
632 	nf_conntrack_free(ct);
633 }
634 
nf_ct_delete_from_lists(struct nf_conn * ct)635 static void nf_ct_delete_from_lists(struct nf_conn *ct)
636 {
637 	struct net *net = nf_ct_net(ct);
638 	unsigned int hash, reply_hash;
639 	unsigned int sequence;
640 
641 	nf_ct_helper_destroy(ct);
642 
643 	local_bh_disable();
644 	do {
645 		sequence = read_seqcount_begin(&nf_conntrack_generation);
646 		hash = hash_conntrack(net,
647 				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
648 		reply_hash = hash_conntrack(net,
649 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
650 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
651 
652 	clean_from_lists(ct);
653 	nf_conntrack_double_unlock(hash, reply_hash);
654 
655 	nf_ct_add_to_dying_list(ct);
656 
657 	local_bh_enable();
658 }
659 
nf_ct_delete(struct nf_conn * ct,u32 portid,int report)660 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
661 {
662 	struct nf_conn_tstamp *tstamp;
663 	struct net *net;
664 
665 	if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
666 		return false;
667 
668 	tstamp = nf_conn_tstamp_find(ct);
669 	if (tstamp && tstamp->stop == 0)
670 		tstamp->stop = ktime_get_real_ns();
671 
672 	if (nf_conntrack_event_report(IPCT_DESTROY, ct,
673 				    portid, report) < 0) {
674 		/* destroy event was not delivered. nf_ct_put will
675 		 * be done by event cache worker on redelivery.
676 		 */
677 		nf_ct_delete_from_lists(ct);
678 		nf_conntrack_ecache_work(nf_ct_net(ct), NFCT_ECACHE_DESTROY_FAIL);
679 		return false;
680 	}
681 
682 	net = nf_ct_net(ct);
683 	if (nf_conntrack_ecache_dwork_pending(net))
684 		nf_conntrack_ecache_work(net, NFCT_ECACHE_DESTROY_SENT);
685 	nf_ct_delete_from_lists(ct);
686 	nf_ct_put(ct);
687 	return true;
688 }
689 EXPORT_SYMBOL_GPL(nf_ct_delete);
690 
691 static inline bool
nf_ct_key_equal(struct nf_conntrack_tuple_hash * h,const struct nf_conntrack_tuple * tuple,const struct nf_conntrack_zone * zone,const struct net * net)692 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
693 		const struct nf_conntrack_tuple *tuple,
694 		const struct nf_conntrack_zone *zone,
695 		const struct net *net)
696 {
697 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
698 
699 	/* A conntrack can be recreated with the equal tuple,
700 	 * so we need to check that the conntrack is confirmed
701 	 */
702 	return nf_ct_tuple_equal(tuple, &h->tuple) &&
703 	       nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
704 	       nf_ct_is_confirmed(ct) &&
705 	       net_eq(net, nf_ct_net(ct));
706 }
707 
708 static inline bool
nf_ct_match(const struct nf_conn * ct1,const struct nf_conn * ct2)709 nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
710 {
711 	return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
712 				 &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
713 	       nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
714 				 &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
715 	       nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
716 	       nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
717 	       net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
718 }
719 
720 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
nf_ct_gc_expired(struct nf_conn * ct)721 static void nf_ct_gc_expired(struct nf_conn *ct)
722 {
723 	if (!atomic_inc_not_zero(&ct->ct_general.use))
724 		return;
725 
726 	if (nf_ct_should_gc(ct))
727 		nf_ct_kill(ct);
728 
729 	nf_ct_put(ct);
730 }
731 
732 /*
733  * Warning :
734  * - Caller must take a reference on returned object
735  *   and recheck nf_ct_tuple_equal(tuple, &h->tuple)
736  */
737 static struct nf_conntrack_tuple_hash *
____nf_conntrack_find(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple,u32 hash)738 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
739 		      const struct nf_conntrack_tuple *tuple, u32 hash)
740 {
741 	struct nf_conntrack_tuple_hash *h;
742 	struct hlist_nulls_head *ct_hash;
743 	struct hlist_nulls_node *n;
744 	unsigned int bucket, hsize;
745 
746 begin:
747 	nf_conntrack_get_ht(&ct_hash, &hsize);
748 	bucket = reciprocal_scale(hash, hsize);
749 
750 	hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
751 		struct nf_conn *ct;
752 
753 		ct = nf_ct_tuplehash_to_ctrack(h);
754 		if (nf_ct_is_expired(ct)) {
755 			nf_ct_gc_expired(ct);
756 			continue;
757 		}
758 
759 		if (nf_ct_key_equal(h, tuple, zone, net))
760 			return h;
761 	}
762 	/*
763 	 * if the nulls value we got at the end of this lookup is
764 	 * not the expected one, we must restart lookup.
765 	 * We probably met an item that was moved to another chain.
766 	 */
767 	if (get_nulls_value(n) != bucket) {
768 		NF_CT_STAT_INC_ATOMIC(net, search_restart);
769 		goto begin;
770 	}
771 
772 	return NULL;
773 }
774 
775 /* Find a connection corresponding to a tuple. */
776 static struct nf_conntrack_tuple_hash *
__nf_conntrack_find_get(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple,u32 hash)777 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
778 			const struct nf_conntrack_tuple *tuple, u32 hash)
779 {
780 	struct nf_conntrack_tuple_hash *h;
781 	struct nf_conn *ct;
782 
783 	rcu_read_lock();
784 
785 	h = ____nf_conntrack_find(net, zone, tuple, hash);
786 	if (h) {
787 		/* We have a candidate that matches the tuple we're interested
788 		 * in, try to obtain a reference and re-check tuple
789 		 */
790 		ct = nf_ct_tuplehash_to_ctrack(h);
791 		if (likely(atomic_inc_not_zero(&ct->ct_general.use))) {
792 			if (likely(nf_ct_key_equal(h, tuple, zone, net)))
793 				goto found;
794 
795 			/* TYPESAFE_BY_RCU recycled the candidate */
796 			nf_ct_put(ct);
797 		}
798 
799 		h = NULL;
800 	}
801 found:
802 	rcu_read_unlock();
803 
804 	return h;
805 }
806 
807 struct nf_conntrack_tuple_hash *
nf_conntrack_find_get(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple)808 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
809 		      const struct nf_conntrack_tuple *tuple)
810 {
811 	return __nf_conntrack_find_get(net, zone, tuple,
812 				       hash_conntrack_raw(tuple, net));
813 }
814 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
815 
__nf_conntrack_hash_insert(struct nf_conn * ct,unsigned int hash,unsigned int reply_hash)816 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
817 				       unsigned int hash,
818 				       unsigned int reply_hash)
819 {
820 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
821 			   &nf_conntrack_hash[hash]);
822 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
823 			   &nf_conntrack_hash[reply_hash]);
824 }
825 
826 int
nf_conntrack_hash_check_insert(struct nf_conn * ct)827 nf_conntrack_hash_check_insert(struct nf_conn *ct)
828 {
829 	const struct nf_conntrack_zone *zone;
830 	struct net *net = nf_ct_net(ct);
831 	unsigned int hash, reply_hash;
832 	struct nf_conntrack_tuple_hash *h;
833 	struct hlist_nulls_node *n;
834 	unsigned int sequence;
835 
836 	zone = nf_ct_zone(ct);
837 
838 	local_bh_disable();
839 	do {
840 		sequence = read_seqcount_begin(&nf_conntrack_generation);
841 		hash = hash_conntrack(net,
842 				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
843 		reply_hash = hash_conntrack(net,
844 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
845 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
846 
847 	/* See if there's one in the list already, including reverse */
848 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
849 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
850 				    zone, net))
851 			goto out;
852 
853 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
854 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
855 				    zone, net))
856 			goto out;
857 
858 	smp_wmb();
859 	/* The caller holds a reference to this object */
860 	atomic_set(&ct->ct_general.use, 2);
861 	__nf_conntrack_hash_insert(ct, hash, reply_hash);
862 	nf_conntrack_double_unlock(hash, reply_hash);
863 	NF_CT_STAT_INC(net, insert);
864 	local_bh_enable();
865 	return 0;
866 
867 out:
868 	nf_conntrack_double_unlock(hash, reply_hash);
869 	local_bh_enable();
870 	return -EEXIST;
871 }
872 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
873 
nf_ct_acct_add(struct nf_conn * ct,u32 dir,unsigned int packets,unsigned int bytes)874 void nf_ct_acct_add(struct nf_conn *ct, u32 dir, unsigned int packets,
875 		    unsigned int bytes)
876 {
877 	struct nf_conn_acct *acct;
878 
879 	acct = nf_conn_acct_find(ct);
880 	if (acct) {
881 		struct nf_conn_counter *counter = acct->counter;
882 
883 		atomic64_add(packets, &counter[dir].packets);
884 		atomic64_add(bytes, &counter[dir].bytes);
885 	}
886 }
887 EXPORT_SYMBOL_GPL(nf_ct_acct_add);
888 
nf_ct_acct_merge(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct nf_conn * loser_ct)889 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
890 			     const struct nf_conn *loser_ct)
891 {
892 	struct nf_conn_acct *acct;
893 
894 	acct = nf_conn_acct_find(loser_ct);
895 	if (acct) {
896 		struct nf_conn_counter *counter = acct->counter;
897 		unsigned int bytes;
898 
899 		/* u32 should be fine since we must have seen one packet. */
900 		bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
901 		nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), bytes);
902 	}
903 }
904 
__nf_conntrack_insert_prepare(struct nf_conn * ct)905 static void __nf_conntrack_insert_prepare(struct nf_conn *ct)
906 {
907 	struct nf_conn_tstamp *tstamp;
908 
909 	atomic_inc(&ct->ct_general.use);
910 	ct->status |= IPS_CONFIRMED;
911 
912 	/* set conntrack timestamp, if enabled. */
913 	tstamp = nf_conn_tstamp_find(ct);
914 	if (tstamp)
915 		tstamp->start = ktime_get_real_ns();
916 }
917 
918 /* caller must hold locks to prevent concurrent changes */
__nf_ct_resolve_clash(struct sk_buff * skb,struct nf_conntrack_tuple_hash * h)919 static int __nf_ct_resolve_clash(struct sk_buff *skb,
920 				 struct nf_conntrack_tuple_hash *h)
921 {
922 	/* This is the conntrack entry already in hashes that won race. */
923 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
924 	enum ip_conntrack_info ctinfo;
925 	struct nf_conn *loser_ct;
926 
927 	loser_ct = nf_ct_get(skb, &ctinfo);
928 
929 	if (nf_ct_is_dying(ct))
930 		return NF_DROP;
931 
932 	if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
933 	    nf_ct_match(ct, loser_ct)) {
934 		struct net *net = nf_ct_net(ct);
935 
936 		nf_conntrack_get(&ct->ct_general);
937 
938 		nf_ct_acct_merge(ct, ctinfo, loser_ct);
939 		nf_ct_add_to_dying_list(loser_ct);
940 		nf_conntrack_put(&loser_ct->ct_general);
941 		nf_ct_set(skb, ct, ctinfo);
942 
943 		NF_CT_STAT_INC(net, clash_resolve);
944 		return NF_ACCEPT;
945 	}
946 
947 	return NF_DROP;
948 }
949 
950 /**
951  * nf_ct_resolve_clash_harder - attempt to insert clashing conntrack entry
952  *
953  * @skb: skb that causes the collision
954  * @repl_idx: hash slot for reply direction
955  *
956  * Called when origin or reply direction had a clash.
957  * The skb can be handled without packet drop provided the reply direction
958  * is unique or there the existing entry has the identical tuple in both
959  * directions.
960  *
961  * Caller must hold conntrack table locks to prevent concurrent updates.
962  *
963  * Returns NF_DROP if the clash could not be handled.
964  */
nf_ct_resolve_clash_harder(struct sk_buff * skb,u32 repl_idx)965 static int nf_ct_resolve_clash_harder(struct sk_buff *skb, u32 repl_idx)
966 {
967 	struct nf_conn *loser_ct = (struct nf_conn *)skb_nfct(skb);
968 	const struct nf_conntrack_zone *zone;
969 	struct nf_conntrack_tuple_hash *h;
970 	struct hlist_nulls_node *n;
971 	struct net *net;
972 
973 	zone = nf_ct_zone(loser_ct);
974 	net = nf_ct_net(loser_ct);
975 
976 	/* Reply direction must never result in a clash, unless both origin
977 	 * and reply tuples are identical.
978 	 */
979 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[repl_idx], hnnode) {
980 		if (nf_ct_key_equal(h,
981 				    &loser_ct->tuplehash[IP_CT_DIR_REPLY].tuple,
982 				    zone, net))
983 			return __nf_ct_resolve_clash(skb, h);
984 	}
985 
986 	/* We want the clashing entry to go away real soon: 1 second timeout. */
987 	loser_ct->timeout = nfct_time_stamp + HZ;
988 
989 	/* IPS_NAT_CLASH removes the entry automatically on the first
990 	 * reply.  Also prevents UDP tracker from moving the entry to
991 	 * ASSURED state, i.e. the entry can always be evicted under
992 	 * pressure.
993 	 */
994 	loser_ct->status |= IPS_FIXED_TIMEOUT | IPS_NAT_CLASH;
995 
996 	__nf_conntrack_insert_prepare(loser_ct);
997 
998 	/* fake add for ORIGINAL dir: we want lookups to only find the entry
999 	 * already in the table.  This also hides the clashing entry from
1000 	 * ctnetlink iteration, i.e. conntrack -L won't show them.
1001 	 */
1002 	hlist_nulls_add_fake(&loser_ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
1003 
1004 	hlist_nulls_add_head_rcu(&loser_ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
1005 				 &nf_conntrack_hash[repl_idx]);
1006 
1007 	NF_CT_STAT_INC(net, clash_resolve);
1008 	return NF_ACCEPT;
1009 }
1010 
1011 /**
1012  * nf_ct_resolve_clash - attempt to handle clash without packet drop
1013  *
1014  * @skb: skb that causes the clash
1015  * @h: tuplehash of the clashing entry already in table
1016  * @reply_hash: hash slot for reply direction
1017  *
1018  * A conntrack entry can be inserted to the connection tracking table
1019  * if there is no existing entry with an identical tuple.
1020  *
1021  * If there is one, @skb (and the assocated, unconfirmed conntrack) has
1022  * to be dropped.  In case @skb is retransmitted, next conntrack lookup
1023  * will find the already-existing entry.
1024  *
1025  * The major problem with such packet drop is the extra delay added by
1026  * the packet loss -- it will take some time for a retransmit to occur
1027  * (or the sender to time out when waiting for a reply).
1028  *
1029  * This function attempts to handle the situation without packet drop.
1030  *
1031  * If @skb has no NAT transformation or if the colliding entries are
1032  * exactly the same, only the to-be-confirmed conntrack entry is discarded
1033  * and @skb is associated with the conntrack entry already in the table.
1034  *
1035  * Failing that, the new, unconfirmed conntrack is still added to the table
1036  * provided that the collision only occurs in the ORIGINAL direction.
1037  * The new entry will be added only in the non-clashing REPLY direction,
1038  * so packets in the ORIGINAL direction will continue to match the existing
1039  * entry.  The new entry will also have a fixed timeout so it expires --
1040  * due to the collision, it will only see reply traffic.
1041  *
1042  * Returns NF_DROP if the clash could not be resolved.
1043  */
1044 static __cold noinline int
nf_ct_resolve_clash(struct sk_buff * skb,struct nf_conntrack_tuple_hash * h,u32 reply_hash)1045 nf_ct_resolve_clash(struct sk_buff *skb, struct nf_conntrack_tuple_hash *h,
1046 		    u32 reply_hash)
1047 {
1048 	/* This is the conntrack entry already in hashes that won race. */
1049 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
1050 	const struct nf_conntrack_l4proto *l4proto;
1051 	enum ip_conntrack_info ctinfo;
1052 	struct nf_conn *loser_ct;
1053 	struct net *net;
1054 	int ret;
1055 
1056 	loser_ct = nf_ct_get(skb, &ctinfo);
1057 	net = nf_ct_net(loser_ct);
1058 
1059 	l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1060 	if (!l4proto->allow_clash)
1061 		goto drop;
1062 
1063 	ret = __nf_ct_resolve_clash(skb, h);
1064 	if (ret == NF_ACCEPT)
1065 		return ret;
1066 
1067 	ret = nf_ct_resolve_clash_harder(skb, reply_hash);
1068 	if (ret == NF_ACCEPT)
1069 		return ret;
1070 
1071 drop:
1072 	nf_ct_add_to_dying_list(loser_ct);
1073 	NF_CT_STAT_INC(net, drop);
1074 	NF_CT_STAT_INC(net, insert_failed);
1075 	return NF_DROP;
1076 }
1077 
1078 /* Confirm a connection given skb; places it in hash table */
1079 int
__nf_conntrack_confirm(struct sk_buff * skb)1080 __nf_conntrack_confirm(struct sk_buff *skb)
1081 {
1082 	const struct nf_conntrack_zone *zone;
1083 	unsigned int hash, reply_hash;
1084 	struct nf_conntrack_tuple_hash *h;
1085 	struct nf_conn *ct;
1086 	struct nf_conn_help *help;
1087 	struct hlist_nulls_node *n;
1088 	enum ip_conntrack_info ctinfo;
1089 	struct net *net;
1090 	unsigned int sequence;
1091 	int ret = NF_DROP;
1092 
1093 	ct = nf_ct_get(skb, &ctinfo);
1094 	net = nf_ct_net(ct);
1095 
1096 	/* ipt_REJECT uses nf_conntrack_attach to attach related
1097 	   ICMP/TCP RST packets in other direction.  Actual packet
1098 	   which created connection will be IP_CT_NEW or for an
1099 	   expected connection, IP_CT_RELATED. */
1100 	if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
1101 		return NF_ACCEPT;
1102 
1103 	zone = nf_ct_zone(ct);
1104 	local_bh_disable();
1105 
1106 	do {
1107 		sequence = read_seqcount_begin(&nf_conntrack_generation);
1108 		/* reuse the hash saved before */
1109 		hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
1110 		hash = scale_hash(hash);
1111 		reply_hash = hash_conntrack(net,
1112 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
1113 
1114 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
1115 
1116 	/* We're not in hash table, and we refuse to set up related
1117 	 * connections for unconfirmed conns.  But packet copies and
1118 	 * REJECT will give spurious warnings here.
1119 	 */
1120 
1121 	/* Another skb with the same unconfirmed conntrack may
1122 	 * win the race. This may happen for bridge(br_flood)
1123 	 * or broadcast/multicast packets do skb_clone with
1124 	 * unconfirmed conntrack.
1125 	 */
1126 	if (unlikely(nf_ct_is_confirmed(ct))) {
1127 		WARN_ON_ONCE(1);
1128 		nf_conntrack_double_unlock(hash, reply_hash);
1129 		local_bh_enable();
1130 		return NF_DROP;
1131 	}
1132 
1133 	pr_debug("Confirming conntrack %p\n", ct);
1134 	/* We have to check the DYING flag after unlink to prevent
1135 	 * a race against nf_ct_get_next_corpse() possibly called from
1136 	 * user context, else we insert an already 'dead' hash, blocking
1137 	 * further use of that particular connection -JM.
1138 	 */
1139 	nf_ct_del_from_dying_or_unconfirmed_list(ct);
1140 
1141 	if (unlikely(nf_ct_is_dying(ct))) {
1142 		nf_ct_add_to_dying_list(ct);
1143 		NF_CT_STAT_INC(net, insert_failed);
1144 		goto dying;
1145 	}
1146 
1147 	/* See if there's one in the list already, including reverse:
1148 	   NAT could have grabbed it without realizing, since we're
1149 	   not in the hash.  If there is, we lost race. */
1150 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
1151 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1152 				    zone, net))
1153 			goto out;
1154 
1155 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
1156 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1157 				    zone, net))
1158 			goto out;
1159 
1160 	/* Timer relative to confirmation time, not original
1161 	   setting time, otherwise we'd get timer wrap in
1162 	   weird delay cases. */
1163 	ct->timeout += nfct_time_stamp;
1164 
1165 	__nf_conntrack_insert_prepare(ct);
1166 
1167 	/* Since the lookup is lockless, hash insertion must be done after
1168 	 * starting the timer and setting the CONFIRMED bit. The RCU barriers
1169 	 * guarantee that no other CPU can find the conntrack before the above
1170 	 * stores are visible.
1171 	 */
1172 	__nf_conntrack_hash_insert(ct, hash, reply_hash);
1173 	nf_conntrack_double_unlock(hash, reply_hash);
1174 	local_bh_enable();
1175 
1176 	help = nfct_help(ct);
1177 	if (help && help->helper)
1178 		nf_conntrack_event_cache(IPCT_HELPER, ct);
1179 
1180 	nf_conntrack_event_cache(master_ct(ct) ?
1181 				 IPCT_RELATED : IPCT_NEW, ct);
1182 	return NF_ACCEPT;
1183 
1184 out:
1185 	ret = nf_ct_resolve_clash(skb, h, reply_hash);
1186 dying:
1187 	nf_conntrack_double_unlock(hash, reply_hash);
1188 	local_bh_enable();
1189 	return ret;
1190 }
1191 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1192 
1193 /* Returns true if a connection correspondings to the tuple (required
1194    for NAT). */
1195 int
nf_conntrack_tuple_taken(const struct nf_conntrack_tuple * tuple,const struct nf_conn * ignored_conntrack)1196 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1197 			 const struct nf_conn *ignored_conntrack)
1198 {
1199 	struct net *net = nf_ct_net(ignored_conntrack);
1200 	const struct nf_conntrack_zone *zone;
1201 	struct nf_conntrack_tuple_hash *h;
1202 	struct hlist_nulls_head *ct_hash;
1203 	unsigned int hash, hsize;
1204 	struct hlist_nulls_node *n;
1205 	struct nf_conn *ct;
1206 
1207 	zone = nf_ct_zone(ignored_conntrack);
1208 
1209 	rcu_read_lock();
1210  begin:
1211 	nf_conntrack_get_ht(&ct_hash, &hsize);
1212 	hash = __hash_conntrack(net, tuple, hsize);
1213 
1214 	hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1215 		ct = nf_ct_tuplehash_to_ctrack(h);
1216 
1217 		if (ct == ignored_conntrack)
1218 			continue;
1219 
1220 		if (nf_ct_is_expired(ct)) {
1221 			nf_ct_gc_expired(ct);
1222 			continue;
1223 		}
1224 
1225 		if (nf_ct_key_equal(h, tuple, zone, net)) {
1226 			/* Tuple is taken already, so caller will need to find
1227 			 * a new source port to use.
1228 			 *
1229 			 * Only exception:
1230 			 * If the *original tuples* are identical, then both
1231 			 * conntracks refer to the same flow.
1232 			 * This is a rare situation, it can occur e.g. when
1233 			 * more than one UDP packet is sent from same socket
1234 			 * in different threads.
1235 			 *
1236 			 * Let nf_ct_resolve_clash() deal with this later.
1237 			 */
1238 			if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1239 					      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
1240 					      nf_ct_zone_equal(ct, zone, IP_CT_DIR_ORIGINAL))
1241 				continue;
1242 
1243 			NF_CT_STAT_INC_ATOMIC(net, found);
1244 			rcu_read_unlock();
1245 			return 1;
1246 		}
1247 	}
1248 
1249 	if (get_nulls_value(n) != hash) {
1250 		NF_CT_STAT_INC_ATOMIC(net, search_restart);
1251 		goto begin;
1252 	}
1253 
1254 	rcu_read_unlock();
1255 
1256 	return 0;
1257 }
1258 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1259 
1260 #define NF_CT_EVICTION_RANGE	8
1261 
1262 /* There's a small race here where we may free a just-assured
1263    connection.  Too bad: we're in trouble anyway. */
early_drop_list(struct net * net,struct hlist_nulls_head * head)1264 static unsigned int early_drop_list(struct net *net,
1265 				    struct hlist_nulls_head *head)
1266 {
1267 	struct nf_conntrack_tuple_hash *h;
1268 	struct hlist_nulls_node *n;
1269 	unsigned int drops = 0;
1270 	struct nf_conn *tmp;
1271 
1272 	hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1273 		tmp = nf_ct_tuplehash_to_ctrack(h);
1274 
1275 		if (test_bit(IPS_OFFLOAD_BIT, &tmp->status))
1276 			continue;
1277 
1278 		if (nf_ct_is_expired(tmp)) {
1279 			nf_ct_gc_expired(tmp);
1280 			continue;
1281 		}
1282 
1283 		if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1284 		    !net_eq(nf_ct_net(tmp), net) ||
1285 		    nf_ct_is_dying(tmp))
1286 			continue;
1287 
1288 		if (!atomic_inc_not_zero(&tmp->ct_general.use))
1289 			continue;
1290 
1291 		/* kill only if still in same netns -- might have moved due to
1292 		 * SLAB_TYPESAFE_BY_RCU rules.
1293 		 *
1294 		 * We steal the timer reference.  If that fails timer has
1295 		 * already fired or someone else deleted it. Just drop ref
1296 		 * and move to next entry.
1297 		 */
1298 		if (net_eq(nf_ct_net(tmp), net) &&
1299 		    nf_ct_is_confirmed(tmp) &&
1300 		    nf_ct_delete(tmp, 0, 0))
1301 			drops++;
1302 
1303 		nf_ct_put(tmp);
1304 	}
1305 
1306 	return drops;
1307 }
1308 
early_drop(struct net * net,unsigned int hash)1309 static noinline int early_drop(struct net *net, unsigned int hash)
1310 {
1311 	unsigned int i, bucket;
1312 
1313 	for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1314 		struct hlist_nulls_head *ct_hash;
1315 		unsigned int hsize, drops;
1316 
1317 		rcu_read_lock();
1318 		nf_conntrack_get_ht(&ct_hash, &hsize);
1319 		if (!i)
1320 			bucket = reciprocal_scale(hash, hsize);
1321 		else
1322 			bucket = (bucket + 1) % hsize;
1323 
1324 		drops = early_drop_list(net, &ct_hash[bucket]);
1325 		rcu_read_unlock();
1326 
1327 		if (drops) {
1328 			NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1329 			return true;
1330 		}
1331 	}
1332 
1333 	return false;
1334 }
1335 
gc_worker_skip_ct(const struct nf_conn * ct)1336 static bool gc_worker_skip_ct(const struct nf_conn *ct)
1337 {
1338 	return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1339 }
1340 
gc_worker_can_early_drop(const struct nf_conn * ct)1341 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1342 {
1343 	const struct nf_conntrack_l4proto *l4proto;
1344 
1345 	if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1346 		return true;
1347 
1348 	l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1349 	if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1350 		return true;
1351 
1352 	return false;
1353 }
1354 
gc_worker(struct work_struct * work)1355 static void gc_worker(struct work_struct *work)
1356 {
1357 	unsigned int min_interval = max(HZ / GC_MAX_BUCKETS_DIV, 1u);
1358 	unsigned int i, goal, buckets = 0, expired_count = 0;
1359 	unsigned int nf_conntrack_max95 = 0;
1360 	struct conntrack_gc_work *gc_work;
1361 	unsigned int ratio, scanned = 0;
1362 	unsigned long next_run;
1363 
1364 	gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1365 
1366 	goal = nf_conntrack_htable_size / GC_MAX_BUCKETS_DIV;
1367 	i = gc_work->last_bucket;
1368 	if (gc_work->early_drop)
1369 		nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1370 
1371 	do {
1372 		struct nf_conntrack_tuple_hash *h;
1373 		struct hlist_nulls_head *ct_hash;
1374 		struct hlist_nulls_node *n;
1375 		unsigned int hashsz;
1376 		struct nf_conn *tmp;
1377 
1378 		i++;
1379 		rcu_read_lock();
1380 
1381 		nf_conntrack_get_ht(&ct_hash, &hashsz);
1382 		if (i >= hashsz)
1383 			i = 0;
1384 
1385 		hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1386 			struct nf_conntrack_net *cnet;
1387 			struct net *net;
1388 
1389 			tmp = nf_ct_tuplehash_to_ctrack(h);
1390 
1391 			scanned++;
1392 			if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1393 				nf_ct_offload_timeout(tmp);
1394 				continue;
1395 			}
1396 
1397 			if (nf_ct_is_expired(tmp)) {
1398 				nf_ct_gc_expired(tmp);
1399 				expired_count++;
1400 				continue;
1401 			}
1402 
1403 			if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1404 				continue;
1405 
1406 			net = nf_ct_net(tmp);
1407 			cnet = net_generic(net, nf_conntrack_net_id);
1408 			if (atomic_read(&cnet->count) < nf_conntrack_max95)
1409 				continue;
1410 
1411 			/* need to take reference to avoid possible races */
1412 			if (!atomic_inc_not_zero(&tmp->ct_general.use))
1413 				continue;
1414 
1415 			if (gc_worker_skip_ct(tmp)) {
1416 				nf_ct_put(tmp);
1417 				continue;
1418 			}
1419 
1420 			if (gc_worker_can_early_drop(tmp))
1421 				nf_ct_kill(tmp);
1422 
1423 			nf_ct_put(tmp);
1424 		}
1425 
1426 		/* could check get_nulls_value() here and restart if ct
1427 		 * was moved to another chain.  But given gc is best-effort
1428 		 * we will just continue with next hash slot.
1429 		 */
1430 		rcu_read_unlock();
1431 		cond_resched();
1432 	} while (++buckets < goal);
1433 
1434 	if (gc_work->exiting)
1435 		return;
1436 
1437 	/*
1438 	 * Eviction will normally happen from the packet path, and not
1439 	 * from this gc worker.
1440 	 *
1441 	 * This worker is only here to reap expired entries when system went
1442 	 * idle after a busy period.
1443 	 *
1444 	 * The heuristics below are supposed to balance conflicting goals:
1445 	 *
1446 	 * 1. Minimize time until we notice a stale entry
1447 	 * 2. Maximize scan intervals to not waste cycles
1448 	 *
1449 	 * Normally, expire ratio will be close to 0.
1450 	 *
1451 	 * As soon as a sizeable fraction of the entries have expired
1452 	 * increase scan frequency.
1453 	 */
1454 	ratio = scanned ? expired_count * 100 / scanned : 0;
1455 	if (ratio > GC_EVICT_RATIO) {
1456 		gc_work->next_gc_run = min_interval;
1457 	} else {
1458 		unsigned int max = GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV;
1459 
1460 		BUILD_BUG_ON((GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV) == 0);
1461 
1462 		gc_work->next_gc_run += min_interval;
1463 		if (gc_work->next_gc_run > max)
1464 			gc_work->next_gc_run = max;
1465 	}
1466 
1467 	next_run = gc_work->next_gc_run;
1468 	gc_work->last_bucket = i;
1469 	gc_work->early_drop = false;
1470 	queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1471 }
1472 
conntrack_gc_work_init(struct conntrack_gc_work * gc_work)1473 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1474 {
1475 	INIT_DEFERRABLE_WORK(&gc_work->dwork, gc_worker);
1476 	gc_work->next_gc_run = HZ;
1477 	gc_work->exiting = false;
1478 }
1479 
1480 static struct nf_conn *
__nf_conntrack_alloc(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_tuple * repl,gfp_t gfp,u32 hash)1481 __nf_conntrack_alloc(struct net *net,
1482 		     const struct nf_conntrack_zone *zone,
1483 		     const struct nf_conntrack_tuple *orig,
1484 		     const struct nf_conntrack_tuple *repl,
1485 		     gfp_t gfp, u32 hash)
1486 {
1487 	struct nf_conntrack_net *cnet = net_generic(net, nf_conntrack_net_id);
1488 	unsigned int ct_count;
1489 	struct nf_conn *ct;
1490 
1491 	/* We don't want any race condition at early drop stage */
1492 	ct_count = atomic_inc_return(&cnet->count);
1493 
1494 	if (nf_conntrack_max && unlikely(ct_count > nf_conntrack_max)) {
1495 		if (!early_drop(net, hash)) {
1496 			if (!conntrack_gc_work.early_drop)
1497 				conntrack_gc_work.early_drop = true;
1498 			atomic_dec(&cnet->count);
1499 			net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1500 			return ERR_PTR(-ENOMEM);
1501 		}
1502 	}
1503 
1504 	/*
1505 	 * Do not use kmem_cache_zalloc(), as this cache uses
1506 	 * SLAB_TYPESAFE_BY_RCU.
1507 	 */
1508 	ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1509 	if (ct == NULL)
1510 		goto out;
1511 
1512 	spin_lock_init(&ct->lock);
1513 	ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1514 	ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1515 	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1516 	/* save hash for reusing when confirming */
1517 	*(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1518 	ct->status = 0;
1519 	ct->timeout = 0;
1520 	write_pnet(&ct->ct_net, net);
1521 	memset(&ct->__nfct_init_offset, 0,
1522 	       offsetof(struct nf_conn, proto) -
1523 	       offsetof(struct nf_conn, __nfct_init_offset));
1524 
1525 	nf_ct_zone_add(ct, zone);
1526 
1527 	/* Because we use RCU lookups, we set ct_general.use to zero before
1528 	 * this is inserted in any list.
1529 	 */
1530 	atomic_set(&ct->ct_general.use, 0);
1531 	return ct;
1532 out:
1533 	atomic_dec(&cnet->count);
1534 	return ERR_PTR(-ENOMEM);
1535 }
1536 
nf_conntrack_alloc(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_tuple * repl,gfp_t gfp)1537 struct nf_conn *nf_conntrack_alloc(struct net *net,
1538 				   const struct nf_conntrack_zone *zone,
1539 				   const struct nf_conntrack_tuple *orig,
1540 				   const struct nf_conntrack_tuple *repl,
1541 				   gfp_t gfp)
1542 {
1543 	return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1544 }
1545 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1546 
nf_conntrack_free(struct nf_conn * ct)1547 void nf_conntrack_free(struct nf_conn *ct)
1548 {
1549 	struct net *net = nf_ct_net(ct);
1550 	struct nf_conntrack_net *cnet;
1551 
1552 	/* A freed object has refcnt == 0, that's
1553 	 * the golden rule for SLAB_TYPESAFE_BY_RCU
1554 	 */
1555 	WARN_ON(atomic_read(&ct->ct_general.use) != 0);
1556 
1557 	nf_ct_ext_destroy(ct);
1558 	kmem_cache_free(nf_conntrack_cachep, ct);
1559 	cnet = net_generic(net, nf_conntrack_net_id);
1560 
1561 	smp_mb__before_atomic();
1562 	atomic_dec(&cnet->count);
1563 }
1564 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1565 
1566 
1567 /* Allocate a new conntrack: we return -ENOMEM if classification
1568    failed due to stress.  Otherwise it really is unclassifiable. */
1569 static noinline struct nf_conntrack_tuple_hash *
init_conntrack(struct net * net,struct nf_conn * tmpl,const struct nf_conntrack_tuple * tuple,struct sk_buff * skb,unsigned int dataoff,u32 hash)1570 init_conntrack(struct net *net, struct nf_conn *tmpl,
1571 	       const struct nf_conntrack_tuple *tuple,
1572 	       struct sk_buff *skb,
1573 	       unsigned int dataoff, u32 hash)
1574 {
1575 	struct nf_conn *ct;
1576 	struct nf_conn_help *help;
1577 	struct nf_conntrack_tuple repl_tuple;
1578 	struct nf_conntrack_ecache *ecache;
1579 	struct nf_conntrack_expect *exp = NULL;
1580 	const struct nf_conntrack_zone *zone;
1581 	struct nf_conn_timeout *timeout_ext;
1582 	struct nf_conntrack_zone tmp;
1583 	struct nf_conntrack_net *cnet;
1584 
1585 	if (!nf_ct_invert_tuple(&repl_tuple, tuple)) {
1586 		pr_debug("Can't invert tuple.\n");
1587 		return NULL;
1588 	}
1589 
1590 	zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1591 	ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1592 				  hash);
1593 	if (IS_ERR(ct))
1594 		return (struct nf_conntrack_tuple_hash *)ct;
1595 
1596 	if (!nf_ct_add_synproxy(ct, tmpl)) {
1597 		nf_conntrack_free(ct);
1598 		return ERR_PTR(-ENOMEM);
1599 	}
1600 
1601 	timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1602 
1603 	if (timeout_ext)
1604 		nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1605 				      GFP_ATOMIC);
1606 
1607 	nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1608 	nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1609 	nf_ct_labels_ext_add(ct);
1610 
1611 	ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1612 	nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1613 				 ecache ? ecache->expmask : 0,
1614 			     GFP_ATOMIC);
1615 
1616 	local_bh_disable();
1617 	cnet = net_generic(net, nf_conntrack_net_id);
1618 	if (cnet->expect_count) {
1619 		spin_lock(&nf_conntrack_expect_lock);
1620 		exp = nf_ct_find_expectation(net, zone, tuple);
1621 		if (exp) {
1622 			pr_debug("expectation arrives ct=%p exp=%p\n",
1623 				 ct, exp);
1624 			/* Welcome, Mr. Bond.  We've been expecting you... */
1625 			__set_bit(IPS_EXPECTED_BIT, &ct->status);
1626 			/* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1627 			ct->master = exp->master;
1628 			if (exp->helper) {
1629 				help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1630 				if (help)
1631 					rcu_assign_pointer(help->helper, exp->helper);
1632 			}
1633 
1634 #ifdef CONFIG_NF_CONNTRACK_MARK
1635 			ct->mark = exp->master->mark;
1636 #endif
1637 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1638 			ct->secmark = exp->master->secmark;
1639 #endif
1640 			NF_CT_STAT_INC(net, expect_new);
1641 		}
1642 		spin_unlock(&nf_conntrack_expect_lock);
1643 	}
1644 	if (!exp)
1645 		__nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1646 
1647 	/* Now it is inserted into the unconfirmed list, bump refcount */
1648 	nf_conntrack_get(&ct->ct_general);
1649 	nf_ct_add_to_unconfirmed_list(ct);
1650 
1651 	local_bh_enable();
1652 
1653 	if (exp) {
1654 		if (exp->expectfn)
1655 			exp->expectfn(ct, exp);
1656 		nf_ct_expect_put(exp);
1657 	}
1658 
1659 	return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1660 }
1661 
1662 /* On success, returns 0, sets skb->_nfct | ctinfo */
1663 static int
resolve_normal_ct(struct nf_conn * tmpl,struct sk_buff * skb,unsigned int dataoff,u_int8_t protonum,const struct nf_hook_state * state)1664 resolve_normal_ct(struct nf_conn *tmpl,
1665 		  struct sk_buff *skb,
1666 		  unsigned int dataoff,
1667 		  u_int8_t protonum,
1668 		  const struct nf_hook_state *state)
1669 {
1670 	const struct nf_conntrack_zone *zone;
1671 	struct nf_conntrack_tuple tuple;
1672 	struct nf_conntrack_tuple_hash *h;
1673 	enum ip_conntrack_info ctinfo;
1674 	struct nf_conntrack_zone tmp;
1675 	struct nf_conn *ct;
1676 	u32 hash;
1677 
1678 	if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1679 			     dataoff, state->pf, protonum, state->net,
1680 			     &tuple)) {
1681 		pr_debug("Can't get tuple\n");
1682 		return 0;
1683 	}
1684 
1685 	/* look for tuple match */
1686 	zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1687 	hash = hash_conntrack_raw(&tuple, state->net);
1688 	h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1689 	if (!h) {
1690 		h = init_conntrack(state->net, tmpl, &tuple,
1691 				   skb, dataoff, hash);
1692 		if (!h)
1693 			return 0;
1694 		if (IS_ERR(h))
1695 			return PTR_ERR(h);
1696 	}
1697 	ct = nf_ct_tuplehash_to_ctrack(h);
1698 
1699 	/* It exists; we have (non-exclusive) reference. */
1700 	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1701 		ctinfo = IP_CT_ESTABLISHED_REPLY;
1702 	} else {
1703 		/* Once we've had two way comms, always ESTABLISHED. */
1704 		if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1705 			pr_debug("normal packet for %p\n", ct);
1706 			ctinfo = IP_CT_ESTABLISHED;
1707 		} else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1708 			pr_debug("related packet for %p\n", ct);
1709 			ctinfo = IP_CT_RELATED;
1710 		} else {
1711 			pr_debug("new packet for %p\n", ct);
1712 			ctinfo = IP_CT_NEW;
1713 		}
1714 	}
1715 	nf_ct_set(skb, ct, ctinfo);
1716 	return 0;
1717 }
1718 
1719 /*
1720  * icmp packets need special treatment to handle error messages that are
1721  * related to a connection.
1722  *
1723  * Callers need to check if skb has a conntrack assigned when this
1724  * helper returns; in such case skb belongs to an already known connection.
1725  */
1726 static unsigned int __cold
nf_conntrack_handle_icmp(struct nf_conn * tmpl,struct sk_buff * skb,unsigned int dataoff,u8 protonum,const struct nf_hook_state * state)1727 nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1728 			 struct sk_buff *skb,
1729 			 unsigned int dataoff,
1730 			 u8 protonum,
1731 			 const struct nf_hook_state *state)
1732 {
1733 	int ret;
1734 
1735 	if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1736 		ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1737 #if IS_ENABLED(CONFIG_IPV6)
1738 	else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1739 		ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1740 #endif
1741 	else
1742 		return NF_ACCEPT;
1743 
1744 	if (ret <= 0)
1745 		NF_CT_STAT_INC_ATOMIC(state->net, error);
1746 
1747 	return ret;
1748 }
1749 
generic_packet(struct nf_conn * ct,struct sk_buff * skb,enum ip_conntrack_info ctinfo)1750 static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1751 			  enum ip_conntrack_info ctinfo)
1752 {
1753 	const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1754 
1755 	if (!timeout)
1756 		timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout;
1757 
1758 	nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
1759 	return NF_ACCEPT;
1760 }
1761 
1762 /* Returns verdict for packet, or -1 for invalid. */
nf_conntrack_handle_packet(struct nf_conn * ct,struct sk_buff * skb,unsigned int dataoff,enum ip_conntrack_info ctinfo,const struct nf_hook_state * state)1763 static int nf_conntrack_handle_packet(struct nf_conn *ct,
1764 				      struct sk_buff *skb,
1765 				      unsigned int dataoff,
1766 				      enum ip_conntrack_info ctinfo,
1767 				      const struct nf_hook_state *state)
1768 {
1769 	switch (nf_ct_protonum(ct)) {
1770 	case IPPROTO_TCP:
1771 		return nf_conntrack_tcp_packet(ct, skb, dataoff,
1772 					       ctinfo, state);
1773 	case IPPROTO_UDP:
1774 		return nf_conntrack_udp_packet(ct, skb, dataoff,
1775 					       ctinfo, state);
1776 	case IPPROTO_ICMP:
1777 		return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1778 #if IS_ENABLED(CONFIG_IPV6)
1779 	case IPPROTO_ICMPV6:
1780 		return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1781 #endif
1782 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
1783 	case IPPROTO_UDPLITE:
1784 		return nf_conntrack_udplite_packet(ct, skb, dataoff,
1785 						   ctinfo, state);
1786 #endif
1787 #ifdef CONFIG_NF_CT_PROTO_SCTP
1788 	case IPPROTO_SCTP:
1789 		return nf_conntrack_sctp_packet(ct, skb, dataoff,
1790 						ctinfo, state);
1791 #endif
1792 #ifdef CONFIG_NF_CT_PROTO_DCCP
1793 	case IPPROTO_DCCP:
1794 		return nf_conntrack_dccp_packet(ct, skb, dataoff,
1795 						ctinfo, state);
1796 #endif
1797 #ifdef CONFIG_NF_CT_PROTO_GRE
1798 	case IPPROTO_GRE:
1799 		return nf_conntrack_gre_packet(ct, skb, dataoff,
1800 					       ctinfo, state);
1801 #endif
1802 	}
1803 
1804 	return generic_packet(ct, skb, ctinfo);
1805 }
1806 
1807 unsigned int
nf_conntrack_in(struct sk_buff * skb,const struct nf_hook_state * state)1808 nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1809 {
1810 	enum ip_conntrack_info ctinfo;
1811 	struct nf_conn *ct, *tmpl;
1812 	u_int8_t protonum;
1813 	int dataoff, ret;
1814 
1815 	tmpl = nf_ct_get(skb, &ctinfo);
1816 	if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1817 		/* Previously seen (loopback or untracked)?  Ignore. */
1818 		if ((tmpl && !nf_ct_is_template(tmpl)) ||
1819 		     ctinfo == IP_CT_UNTRACKED)
1820 			return NF_ACCEPT;
1821 		skb->_nfct = 0;
1822 	}
1823 
1824 	/* rcu_read_lock()ed by nf_hook_thresh */
1825 	dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
1826 	if (dataoff <= 0) {
1827 		pr_debug("not prepared to track yet or error occurred\n");
1828 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1829 		ret = NF_ACCEPT;
1830 		goto out;
1831 	}
1832 
1833 	if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
1834 		ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
1835 					       protonum, state);
1836 		if (ret <= 0) {
1837 			ret = -ret;
1838 			goto out;
1839 		}
1840 		/* ICMP[v6] protocol trackers may assign one conntrack. */
1841 		if (skb->_nfct)
1842 			goto out;
1843 	}
1844 repeat:
1845 	ret = resolve_normal_ct(tmpl, skb, dataoff,
1846 				protonum, state);
1847 	if (ret < 0) {
1848 		/* Too stressed to deal. */
1849 		NF_CT_STAT_INC_ATOMIC(state->net, drop);
1850 		ret = NF_DROP;
1851 		goto out;
1852 	}
1853 
1854 	ct = nf_ct_get(skb, &ctinfo);
1855 	if (!ct) {
1856 		/* Not valid part of a connection */
1857 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1858 		ret = NF_ACCEPT;
1859 		goto out;
1860 	}
1861 
1862 	ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
1863 	if (ret <= 0) {
1864 		/* Invalid: inverse of the return code tells
1865 		 * the netfilter core what to do */
1866 		pr_debug("nf_conntrack_in: Can't track with proto module\n");
1867 		nf_conntrack_put(&ct->ct_general);
1868 		skb->_nfct = 0;
1869 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1870 		if (ret == -NF_DROP)
1871 			NF_CT_STAT_INC_ATOMIC(state->net, drop);
1872 		/* Special case: TCP tracker reports an attempt to reopen a
1873 		 * closed/aborted connection. We have to go back and create a
1874 		 * fresh conntrack.
1875 		 */
1876 		if (ret == -NF_REPEAT)
1877 			goto repeat;
1878 		ret = -ret;
1879 		goto out;
1880 	}
1881 
1882 	if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
1883 	    !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1884 		nf_conntrack_event_cache(IPCT_REPLY, ct);
1885 out:
1886 	if (tmpl)
1887 		nf_ct_put(tmpl);
1888 
1889 	return ret;
1890 }
1891 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1892 
1893 /* Alter reply tuple (maybe alter helper).  This is for NAT, and is
1894    implicitly racy: see __nf_conntrack_confirm */
nf_conntrack_alter_reply(struct nf_conn * ct,const struct nf_conntrack_tuple * newreply)1895 void nf_conntrack_alter_reply(struct nf_conn *ct,
1896 			      const struct nf_conntrack_tuple *newreply)
1897 {
1898 	struct nf_conn_help *help = nfct_help(ct);
1899 
1900 	/* Should be unconfirmed, so not in hash table yet */
1901 	WARN_ON(nf_ct_is_confirmed(ct));
1902 
1903 	pr_debug("Altering reply tuple of %p to ", ct);
1904 	nf_ct_dump_tuple(newreply);
1905 
1906 	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1907 	if (ct->master || (help && !hlist_empty(&help->expectations)))
1908 		return;
1909 
1910 	rcu_read_lock();
1911 	__nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1912 	rcu_read_unlock();
1913 }
1914 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1915 
1916 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
__nf_ct_refresh_acct(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct sk_buff * skb,u32 extra_jiffies,bool do_acct)1917 void __nf_ct_refresh_acct(struct nf_conn *ct,
1918 			  enum ip_conntrack_info ctinfo,
1919 			  const struct sk_buff *skb,
1920 			  u32 extra_jiffies,
1921 			  bool do_acct)
1922 {
1923 	/* Only update if this is not a fixed timeout */
1924 	if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1925 		goto acct;
1926 
1927 	/* If not in hash table, timer will not be active yet */
1928 	if (nf_ct_is_confirmed(ct))
1929 		extra_jiffies += nfct_time_stamp;
1930 
1931 	if (READ_ONCE(ct->timeout) != extra_jiffies)
1932 		WRITE_ONCE(ct->timeout, extra_jiffies);
1933 acct:
1934 	if (do_acct)
1935 		nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
1936 }
1937 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1938 
nf_ct_kill_acct(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct sk_buff * skb)1939 bool nf_ct_kill_acct(struct nf_conn *ct,
1940 		     enum ip_conntrack_info ctinfo,
1941 		     const struct sk_buff *skb)
1942 {
1943 	nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
1944 
1945 	return nf_ct_delete(ct, 0, 0);
1946 }
1947 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
1948 
1949 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1950 
1951 #include <linux/netfilter/nfnetlink.h>
1952 #include <linux/netfilter/nfnetlink_conntrack.h>
1953 #include <linux/mutex.h>
1954 
1955 /* Generic function for tcp/udp/sctp/dccp and alike. */
nf_ct_port_tuple_to_nlattr(struct sk_buff * skb,const struct nf_conntrack_tuple * tuple)1956 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1957 			       const struct nf_conntrack_tuple *tuple)
1958 {
1959 	if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1960 	    nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1961 		goto nla_put_failure;
1962 	return 0;
1963 
1964 nla_put_failure:
1965 	return -1;
1966 }
1967 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1968 
1969 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1970 	[CTA_PROTO_SRC_PORT]  = { .type = NLA_U16 },
1971 	[CTA_PROTO_DST_PORT]  = { .type = NLA_U16 },
1972 };
1973 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1974 
nf_ct_port_nlattr_to_tuple(struct nlattr * tb[],struct nf_conntrack_tuple * t,u_int32_t flags)1975 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1976 			       struct nf_conntrack_tuple *t,
1977 			       u_int32_t flags)
1978 {
1979 	if (flags & CTA_FILTER_FLAG(CTA_PROTO_SRC_PORT)) {
1980 		if (!tb[CTA_PROTO_SRC_PORT])
1981 			return -EINVAL;
1982 
1983 		t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1984 	}
1985 
1986 	if (flags & CTA_FILTER_FLAG(CTA_PROTO_DST_PORT)) {
1987 		if (!tb[CTA_PROTO_DST_PORT])
1988 			return -EINVAL;
1989 
1990 		t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1991 	}
1992 
1993 	return 0;
1994 }
1995 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1996 
nf_ct_port_nlattr_tuple_size(void)1997 unsigned int nf_ct_port_nlattr_tuple_size(void)
1998 {
1999 	static unsigned int size __read_mostly;
2000 
2001 	if (!size)
2002 		size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
2003 
2004 	return size;
2005 }
2006 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
2007 #endif
2008 
2009 /* Used by ipt_REJECT and ip6t_REJECT. */
nf_conntrack_attach(struct sk_buff * nskb,const struct sk_buff * skb)2010 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
2011 {
2012 	struct nf_conn *ct;
2013 	enum ip_conntrack_info ctinfo;
2014 
2015 	/* This ICMP is in reverse direction to the packet which caused it */
2016 	ct = nf_ct_get(skb, &ctinfo);
2017 	if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
2018 		ctinfo = IP_CT_RELATED_REPLY;
2019 	else
2020 		ctinfo = IP_CT_RELATED;
2021 
2022 	/* Attach to new skbuff, and increment count */
2023 	nf_ct_set(nskb, ct, ctinfo);
2024 	nf_conntrack_get(skb_nfct(nskb));
2025 }
2026 
__nf_conntrack_update(struct net * net,struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo)2027 static int __nf_conntrack_update(struct net *net, struct sk_buff *skb,
2028 				 struct nf_conn *ct,
2029 				 enum ip_conntrack_info ctinfo)
2030 {
2031 	struct nf_conntrack_tuple_hash *h;
2032 	struct nf_conntrack_tuple tuple;
2033 	struct nf_nat_hook *nat_hook;
2034 	unsigned int status;
2035 	int dataoff;
2036 	u16 l3num;
2037 	u8 l4num;
2038 
2039 	l3num = nf_ct_l3num(ct);
2040 
2041 	dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
2042 	if (dataoff <= 0)
2043 		return -1;
2044 
2045 	if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
2046 			     l4num, net, &tuple))
2047 		return -1;
2048 
2049 	if (ct->status & IPS_SRC_NAT) {
2050 		memcpy(tuple.src.u3.all,
2051 		       ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
2052 		       sizeof(tuple.src.u3.all));
2053 		tuple.src.u.all =
2054 			ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
2055 	}
2056 
2057 	if (ct->status & IPS_DST_NAT) {
2058 		memcpy(tuple.dst.u3.all,
2059 		       ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
2060 		       sizeof(tuple.dst.u3.all));
2061 		tuple.dst.u.all =
2062 			ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
2063 	}
2064 
2065 	h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
2066 	if (!h)
2067 		return 0;
2068 
2069 	/* Store status bits of the conntrack that is clashing to re-do NAT
2070 	 * mangling according to what it has been done already to this packet.
2071 	 */
2072 	status = ct->status;
2073 
2074 	nf_ct_put(ct);
2075 	ct = nf_ct_tuplehash_to_ctrack(h);
2076 	nf_ct_set(skb, ct, ctinfo);
2077 
2078 	nat_hook = rcu_dereference(nf_nat_hook);
2079 	if (!nat_hook)
2080 		return 0;
2081 
2082 	if (status & IPS_SRC_NAT &&
2083 	    nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC,
2084 				IP_CT_DIR_ORIGINAL) == NF_DROP)
2085 		return -1;
2086 
2087 	if (status & IPS_DST_NAT &&
2088 	    nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST,
2089 				IP_CT_DIR_ORIGINAL) == NF_DROP)
2090 		return -1;
2091 
2092 	return 0;
2093 }
2094 
2095 /* This packet is coming from userspace via nf_queue, complete the packet
2096  * processing after the helper invocation in nf_confirm().
2097  */
nf_confirm_cthelper(struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo)2098 static int nf_confirm_cthelper(struct sk_buff *skb, struct nf_conn *ct,
2099 			       enum ip_conntrack_info ctinfo)
2100 {
2101 	const struct nf_conntrack_helper *helper;
2102 	const struct nf_conn_help *help;
2103 	int protoff;
2104 
2105 	help = nfct_help(ct);
2106 	if (!help)
2107 		return 0;
2108 
2109 	helper = rcu_dereference(help->helper);
2110 	if (!(helper->flags & NF_CT_HELPER_F_USERSPACE))
2111 		return 0;
2112 
2113 	switch (nf_ct_l3num(ct)) {
2114 	case NFPROTO_IPV4:
2115 		protoff = skb_network_offset(skb) + ip_hdrlen(skb);
2116 		break;
2117 #if IS_ENABLED(CONFIG_IPV6)
2118 	case NFPROTO_IPV6: {
2119 		__be16 frag_off;
2120 		u8 pnum;
2121 
2122 		pnum = ipv6_hdr(skb)->nexthdr;
2123 		protoff = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &pnum,
2124 					   &frag_off);
2125 		if (protoff < 0 || (frag_off & htons(~0x7)) != 0)
2126 			return 0;
2127 		break;
2128 	}
2129 #endif
2130 	default:
2131 		return 0;
2132 	}
2133 
2134 	if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
2135 	    !nf_is_loopback_packet(skb)) {
2136 		if (!nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) {
2137 			NF_CT_STAT_INC_ATOMIC(nf_ct_net(ct), drop);
2138 			return -1;
2139 		}
2140 	}
2141 
2142 	/* We've seen it coming out the other side: confirm it */
2143 	return nf_conntrack_confirm(skb) == NF_DROP ? - 1 : 0;
2144 }
2145 
nf_conntrack_update(struct net * net,struct sk_buff * skb)2146 static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
2147 {
2148 	enum ip_conntrack_info ctinfo;
2149 	struct nf_conn *ct;
2150 	int err;
2151 
2152 	ct = nf_ct_get(skb, &ctinfo);
2153 	if (!ct)
2154 		return 0;
2155 
2156 	if (!nf_ct_is_confirmed(ct)) {
2157 		err = __nf_conntrack_update(net, skb, ct, ctinfo);
2158 		if (err < 0)
2159 			return err;
2160 
2161 		ct = nf_ct_get(skb, &ctinfo);
2162 	}
2163 
2164 	return nf_confirm_cthelper(skb, ct, ctinfo);
2165 }
2166 
nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple * dst_tuple,const struct sk_buff * skb)2167 static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
2168 				       const struct sk_buff *skb)
2169 {
2170 	const struct nf_conntrack_tuple *src_tuple;
2171 	const struct nf_conntrack_tuple_hash *hash;
2172 	struct nf_conntrack_tuple srctuple;
2173 	enum ip_conntrack_info ctinfo;
2174 	struct nf_conn *ct;
2175 
2176 	ct = nf_ct_get(skb, &ctinfo);
2177 	if (ct) {
2178 		src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
2179 		memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2180 		return true;
2181 	}
2182 
2183 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
2184 			       NFPROTO_IPV4, dev_net(skb->dev),
2185 			       &srctuple))
2186 		return false;
2187 
2188 	hash = nf_conntrack_find_get(dev_net(skb->dev),
2189 				     &nf_ct_zone_dflt,
2190 				     &srctuple);
2191 	if (!hash)
2192 		return false;
2193 
2194 	ct = nf_ct_tuplehash_to_ctrack(hash);
2195 	src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
2196 	memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2197 	nf_ct_put(ct);
2198 
2199 	return true;
2200 }
2201 
2202 /* Bring out ya dead! */
2203 static struct nf_conn *
get_next_corpse(int (* iter)(struct nf_conn * i,void * data),void * data,unsigned int * bucket)2204 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
2205 		void *data, unsigned int *bucket)
2206 {
2207 	struct nf_conntrack_tuple_hash *h;
2208 	struct nf_conn *ct;
2209 	struct hlist_nulls_node *n;
2210 	spinlock_t *lockp;
2211 
2212 	for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2213 		lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2214 		local_bh_disable();
2215 		nf_conntrack_lock(lockp);
2216 		if (*bucket < nf_conntrack_htable_size) {
2217 			hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[*bucket], hnnode) {
2218 				if (NF_CT_DIRECTION(h) != IP_CT_DIR_REPLY)
2219 					continue;
2220 				/* All nf_conn objects are added to hash table twice, one
2221 				 * for original direction tuple, once for the reply tuple.
2222 				 *
2223 				 * Exception: In the IPS_NAT_CLASH case, only the reply
2224 				 * tuple is added (the original tuple already existed for
2225 				 * a different object).
2226 				 *
2227 				 * We only need to call the iterator once for each
2228 				 * conntrack, so we just use the 'reply' direction
2229 				 * tuple while iterating.
2230 				 */
2231 				ct = nf_ct_tuplehash_to_ctrack(h);
2232 				if (iter(ct, data))
2233 					goto found;
2234 			}
2235 		}
2236 		spin_unlock(lockp);
2237 		local_bh_enable();
2238 		cond_resched();
2239 	}
2240 
2241 	return NULL;
2242 found:
2243 	atomic_inc(&ct->ct_general.use);
2244 	spin_unlock(lockp);
2245 	local_bh_enable();
2246 	return ct;
2247 }
2248 
nf_ct_iterate_cleanup(int (* iter)(struct nf_conn * i,void * data),void * data,u32 portid,int report)2249 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2250 				  void *data, u32 portid, int report)
2251 {
2252 	unsigned int bucket = 0, sequence;
2253 	struct nf_conn *ct;
2254 
2255 	might_sleep();
2256 
2257 	for (;;) {
2258 		sequence = read_seqcount_begin(&nf_conntrack_generation);
2259 
2260 		while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
2261 			/* Time to push up daises... */
2262 
2263 			nf_ct_delete(ct, portid, report);
2264 			nf_ct_put(ct);
2265 			cond_resched();
2266 		}
2267 
2268 		if (!read_seqcount_retry(&nf_conntrack_generation, sequence))
2269 			break;
2270 		bucket = 0;
2271 	}
2272 }
2273 
2274 struct iter_data {
2275 	int (*iter)(struct nf_conn *i, void *data);
2276 	void *data;
2277 	struct net *net;
2278 };
2279 
iter_net_only(struct nf_conn * i,void * data)2280 static int iter_net_only(struct nf_conn *i, void *data)
2281 {
2282 	struct iter_data *d = data;
2283 
2284 	if (!net_eq(d->net, nf_ct_net(i)))
2285 		return 0;
2286 
2287 	return d->iter(i, d->data);
2288 }
2289 
2290 static void
__nf_ct_unconfirmed_destroy(struct net * net)2291 __nf_ct_unconfirmed_destroy(struct net *net)
2292 {
2293 	int cpu;
2294 
2295 	for_each_possible_cpu(cpu) {
2296 		struct nf_conntrack_tuple_hash *h;
2297 		struct hlist_nulls_node *n;
2298 		struct ct_pcpu *pcpu;
2299 
2300 		pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2301 
2302 		spin_lock_bh(&pcpu->lock);
2303 		hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
2304 			struct nf_conn *ct;
2305 
2306 			ct = nf_ct_tuplehash_to_ctrack(h);
2307 
2308 			/* we cannot call iter() on unconfirmed list, the
2309 			 * owning cpu can reallocate ct->ext at any time.
2310 			 */
2311 			set_bit(IPS_DYING_BIT, &ct->status);
2312 		}
2313 		spin_unlock_bh(&pcpu->lock);
2314 		cond_resched();
2315 	}
2316 }
2317 
nf_ct_unconfirmed_destroy(struct net * net)2318 void nf_ct_unconfirmed_destroy(struct net *net)
2319 {
2320 	struct nf_conntrack_net *cnet = net_generic(net, nf_conntrack_net_id);
2321 
2322 	might_sleep();
2323 
2324 	if (atomic_read(&cnet->count) > 0) {
2325 		__nf_ct_unconfirmed_destroy(net);
2326 		nf_queue_nf_hook_drop(net);
2327 		synchronize_net();
2328 	}
2329 }
2330 EXPORT_SYMBOL_GPL(nf_ct_unconfirmed_destroy);
2331 
nf_ct_iterate_cleanup_net(struct net * net,int (* iter)(struct nf_conn * i,void * data),void * data,u32 portid,int report)2332 void nf_ct_iterate_cleanup_net(struct net *net,
2333 			       int (*iter)(struct nf_conn *i, void *data),
2334 			       void *data, u32 portid, int report)
2335 {
2336 	struct nf_conntrack_net *cnet = net_generic(net, nf_conntrack_net_id);
2337 	struct iter_data d;
2338 
2339 	might_sleep();
2340 
2341 	if (atomic_read(&cnet->count) == 0)
2342 		return;
2343 
2344 	d.iter = iter;
2345 	d.data = data;
2346 	d.net = net;
2347 
2348 	nf_ct_iterate_cleanup(iter_net_only, &d, portid, report);
2349 }
2350 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2351 
2352 /**
2353  * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2354  * @iter: callback to invoke for each conntrack
2355  * @data: data to pass to @iter
2356  *
2357  * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2358  * unconfirmed list as dying (so they will not be inserted into
2359  * main table).
2360  *
2361  * Can only be called in module exit path.
2362  */
2363 void
nf_ct_iterate_destroy(int (* iter)(struct nf_conn * i,void * data),void * data)2364 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2365 {
2366 	struct net *net;
2367 
2368 	down_read(&net_rwsem);
2369 	for_each_net(net) {
2370 		struct nf_conntrack_net *cnet = net_generic(net, nf_conntrack_net_id);
2371 
2372 		if (atomic_read(&cnet->count) == 0)
2373 			continue;
2374 		__nf_ct_unconfirmed_destroy(net);
2375 		nf_queue_nf_hook_drop(net);
2376 	}
2377 	up_read(&net_rwsem);
2378 
2379 	/* Need to wait for netns cleanup worker to finish, if its
2380 	 * running -- it might have deleted a net namespace from
2381 	 * the global list, so our __nf_ct_unconfirmed_destroy() might
2382 	 * not have affected all namespaces.
2383 	 */
2384 	net_ns_barrier();
2385 
2386 	/* a conntrack could have been unlinked from unconfirmed list
2387 	 * before we grabbed pcpu lock in __nf_ct_unconfirmed_destroy().
2388 	 * This makes sure its inserted into conntrack table.
2389 	 */
2390 	synchronize_net();
2391 
2392 	nf_ct_iterate_cleanup(iter, data, 0, 0);
2393 }
2394 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2395 
kill_all(struct nf_conn * i,void * data)2396 static int kill_all(struct nf_conn *i, void *data)
2397 {
2398 	return net_eq(nf_ct_net(i), data);
2399 }
2400 
nf_conntrack_cleanup_start(void)2401 void nf_conntrack_cleanup_start(void)
2402 {
2403 	conntrack_gc_work.exiting = true;
2404 	RCU_INIT_POINTER(ip_ct_attach, NULL);
2405 }
2406 
nf_conntrack_cleanup_end(void)2407 void nf_conntrack_cleanup_end(void)
2408 {
2409 	RCU_INIT_POINTER(nf_ct_hook, NULL);
2410 	cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2411 	kvfree(nf_conntrack_hash);
2412 
2413 	nf_conntrack_proto_fini();
2414 	nf_conntrack_seqadj_fini();
2415 	nf_conntrack_labels_fini();
2416 	nf_conntrack_helper_fini();
2417 	nf_conntrack_timeout_fini();
2418 	nf_conntrack_ecache_fini();
2419 	nf_conntrack_tstamp_fini();
2420 	nf_conntrack_acct_fini();
2421 	nf_conntrack_expect_fini();
2422 
2423 	kmem_cache_destroy(nf_conntrack_cachep);
2424 }
2425 
2426 /*
2427  * Mishearing the voices in his head, our hero wonders how he's
2428  * supposed to kill the mall.
2429  */
nf_conntrack_cleanup_net(struct net * net)2430 void nf_conntrack_cleanup_net(struct net *net)
2431 {
2432 	LIST_HEAD(single);
2433 
2434 	list_add(&net->exit_list, &single);
2435 	nf_conntrack_cleanup_net_list(&single);
2436 }
2437 
nf_conntrack_cleanup_net_list(struct list_head * net_exit_list)2438 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2439 {
2440 	int busy;
2441 	struct net *net;
2442 
2443 	/*
2444 	 * This makes sure all current packets have passed through
2445 	 *  netfilter framework.  Roll on, two-stage module
2446 	 *  delete...
2447 	 */
2448 	synchronize_net();
2449 i_see_dead_people:
2450 	busy = 0;
2451 	list_for_each_entry(net, net_exit_list, exit_list) {
2452 		struct nf_conntrack_net *cnet = net_generic(net, nf_conntrack_net_id);
2453 
2454 		nf_ct_iterate_cleanup(kill_all, net, 0, 0);
2455 		if (atomic_read(&cnet->count) != 0)
2456 			busy = 1;
2457 	}
2458 	if (busy) {
2459 		schedule();
2460 		goto i_see_dead_people;
2461 	}
2462 
2463 	list_for_each_entry(net, net_exit_list, exit_list) {
2464 		nf_conntrack_proto_pernet_fini(net);
2465 		nf_conntrack_ecache_pernet_fini(net);
2466 		nf_conntrack_expect_pernet_fini(net);
2467 		free_percpu(net->ct.stat);
2468 		free_percpu(net->ct.pcpu_lists);
2469 	}
2470 }
2471 
nf_ct_alloc_hashtable(unsigned int * sizep,int nulls)2472 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2473 {
2474 	struct hlist_nulls_head *hash;
2475 	unsigned int nr_slots, i;
2476 
2477 	if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2478 		return NULL;
2479 
2480 	BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2481 	nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2482 
2483 	hash = kvcalloc(nr_slots, sizeof(struct hlist_nulls_head), GFP_KERNEL);
2484 
2485 	if (hash && nulls)
2486 		for (i = 0; i < nr_slots; i++)
2487 			INIT_HLIST_NULLS_HEAD(&hash[i], i);
2488 
2489 	return hash;
2490 }
2491 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2492 
nf_conntrack_hash_resize(unsigned int hashsize)2493 int nf_conntrack_hash_resize(unsigned int hashsize)
2494 {
2495 	int i, bucket;
2496 	unsigned int old_size;
2497 	struct hlist_nulls_head *hash, *old_hash;
2498 	struct nf_conntrack_tuple_hash *h;
2499 	struct nf_conn *ct;
2500 
2501 	if (!hashsize)
2502 		return -EINVAL;
2503 
2504 	hash = nf_ct_alloc_hashtable(&hashsize, 1);
2505 	if (!hash)
2506 		return -ENOMEM;
2507 
2508 	old_size = nf_conntrack_htable_size;
2509 	if (old_size == hashsize) {
2510 		kvfree(hash);
2511 		return 0;
2512 	}
2513 
2514 	local_bh_disable();
2515 	nf_conntrack_all_lock();
2516 	write_seqcount_begin(&nf_conntrack_generation);
2517 
2518 	/* Lookups in the old hash might happen in parallel, which means we
2519 	 * might get false negatives during connection lookup. New connections
2520 	 * created because of a false negative won't make it into the hash
2521 	 * though since that required taking the locks.
2522 	 */
2523 
2524 	for (i = 0; i < nf_conntrack_htable_size; i++) {
2525 		while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2526 			h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2527 					      struct nf_conntrack_tuple_hash, hnnode);
2528 			ct = nf_ct_tuplehash_to_ctrack(h);
2529 			hlist_nulls_del_rcu(&h->hnnode);
2530 			bucket = __hash_conntrack(nf_ct_net(ct),
2531 						  &h->tuple, hashsize);
2532 			hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2533 		}
2534 	}
2535 	old_size = nf_conntrack_htable_size;
2536 	old_hash = nf_conntrack_hash;
2537 
2538 	nf_conntrack_hash = hash;
2539 	nf_conntrack_htable_size = hashsize;
2540 
2541 	write_seqcount_end(&nf_conntrack_generation);
2542 	nf_conntrack_all_unlock();
2543 	local_bh_enable();
2544 
2545 	synchronize_net();
2546 	kvfree(old_hash);
2547 	return 0;
2548 }
2549 
nf_conntrack_set_hashsize(const char * val,const struct kernel_param * kp)2550 int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2551 {
2552 	unsigned int hashsize;
2553 	int rc;
2554 
2555 	if (current->nsproxy->net_ns != &init_net)
2556 		return -EOPNOTSUPP;
2557 
2558 	/* On boot, we can set this without any fancy locking. */
2559 	if (!nf_conntrack_hash)
2560 		return param_set_uint(val, kp);
2561 
2562 	rc = kstrtouint(val, 0, &hashsize);
2563 	if (rc)
2564 		return rc;
2565 
2566 	return nf_conntrack_hash_resize(hashsize);
2567 }
2568 
total_extension_size(void)2569 static __always_inline unsigned int total_extension_size(void)
2570 {
2571 	/* remember to add new extensions below */
2572 	BUILD_BUG_ON(NF_CT_EXT_NUM > 9);
2573 
2574 	return sizeof(struct nf_ct_ext) +
2575 	       sizeof(struct nf_conn_help)
2576 #if IS_ENABLED(CONFIG_NF_NAT)
2577 		+ sizeof(struct nf_conn_nat)
2578 #endif
2579 		+ sizeof(struct nf_conn_seqadj)
2580 		+ sizeof(struct nf_conn_acct)
2581 #ifdef CONFIG_NF_CONNTRACK_EVENTS
2582 		+ sizeof(struct nf_conntrack_ecache)
2583 #endif
2584 #ifdef CONFIG_NF_CONNTRACK_TIMESTAMP
2585 		+ sizeof(struct nf_conn_tstamp)
2586 #endif
2587 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
2588 		+ sizeof(struct nf_conn_timeout)
2589 #endif
2590 #ifdef CONFIG_NF_CONNTRACK_LABELS
2591 		+ sizeof(struct nf_conn_labels)
2592 #endif
2593 #if IS_ENABLED(CONFIG_NETFILTER_SYNPROXY)
2594 		+ sizeof(struct nf_conn_synproxy)
2595 #endif
2596 	;
2597 };
2598 
nf_conntrack_init_start(void)2599 int nf_conntrack_init_start(void)
2600 {
2601 	unsigned long nr_pages = totalram_pages();
2602 	int max_factor = 8;
2603 	int ret = -ENOMEM;
2604 	int i;
2605 
2606 	/* struct nf_ct_ext uses u8 to store offsets/size */
2607 	BUILD_BUG_ON(total_extension_size() > 255u);
2608 
2609 	seqcount_spinlock_init(&nf_conntrack_generation,
2610 			       &nf_conntrack_locks_all_lock);
2611 
2612 	for (i = 0; i < CONNTRACK_LOCKS; i++)
2613 		spin_lock_init(&nf_conntrack_locks[i]);
2614 
2615 	if (!nf_conntrack_htable_size) {
2616 		/* Idea from tcp.c: use 1/16384 of memory.
2617 		 * On i386: 32MB machine has 512 buckets.
2618 		 * >= 1GB machines have 16384 buckets.
2619 		 * >= 4GB machines have 65536 buckets.
2620 		 */
2621 		nf_conntrack_htable_size
2622 			= (((nr_pages << PAGE_SHIFT) / 16384)
2623 			   / sizeof(struct hlist_head));
2624 		if (nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2625 			nf_conntrack_htable_size = 65536;
2626 		else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2627 			nf_conntrack_htable_size = 16384;
2628 		if (nf_conntrack_htable_size < 32)
2629 			nf_conntrack_htable_size = 32;
2630 
2631 		/* Use a max. factor of four by default to get the same max as
2632 		 * with the old struct list_heads. When a table size is given
2633 		 * we use the old value of 8 to avoid reducing the max.
2634 		 * entries. */
2635 		max_factor = 4;
2636 	}
2637 
2638 	nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2639 	if (!nf_conntrack_hash)
2640 		return -ENOMEM;
2641 
2642 	nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2643 
2644 	nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2645 						sizeof(struct nf_conn),
2646 						NFCT_INFOMASK + 1,
2647 						SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2648 	if (!nf_conntrack_cachep)
2649 		goto err_cachep;
2650 
2651 	ret = nf_conntrack_expect_init();
2652 	if (ret < 0)
2653 		goto err_expect;
2654 
2655 	ret = nf_conntrack_acct_init();
2656 	if (ret < 0)
2657 		goto err_acct;
2658 
2659 	ret = nf_conntrack_tstamp_init();
2660 	if (ret < 0)
2661 		goto err_tstamp;
2662 
2663 	ret = nf_conntrack_ecache_init();
2664 	if (ret < 0)
2665 		goto err_ecache;
2666 
2667 	ret = nf_conntrack_timeout_init();
2668 	if (ret < 0)
2669 		goto err_timeout;
2670 
2671 	ret = nf_conntrack_helper_init();
2672 	if (ret < 0)
2673 		goto err_helper;
2674 
2675 	ret = nf_conntrack_labels_init();
2676 	if (ret < 0)
2677 		goto err_labels;
2678 
2679 	ret = nf_conntrack_seqadj_init();
2680 	if (ret < 0)
2681 		goto err_seqadj;
2682 
2683 	ret = nf_conntrack_proto_init();
2684 	if (ret < 0)
2685 		goto err_proto;
2686 
2687 	conntrack_gc_work_init(&conntrack_gc_work);
2688 	queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2689 
2690 	return 0;
2691 
2692 err_proto:
2693 	nf_conntrack_seqadj_fini();
2694 err_seqadj:
2695 	nf_conntrack_labels_fini();
2696 err_labels:
2697 	nf_conntrack_helper_fini();
2698 err_helper:
2699 	nf_conntrack_timeout_fini();
2700 err_timeout:
2701 	nf_conntrack_ecache_fini();
2702 err_ecache:
2703 	nf_conntrack_tstamp_fini();
2704 err_tstamp:
2705 	nf_conntrack_acct_fini();
2706 err_acct:
2707 	nf_conntrack_expect_fini();
2708 err_expect:
2709 	kmem_cache_destroy(nf_conntrack_cachep);
2710 err_cachep:
2711 	kvfree(nf_conntrack_hash);
2712 	return ret;
2713 }
2714 
2715 static struct nf_ct_hook nf_conntrack_hook = {
2716 	.update		= nf_conntrack_update,
2717 	.destroy	= destroy_conntrack,
2718 	.get_tuple_skb  = nf_conntrack_get_tuple_skb,
2719 };
2720 
nf_conntrack_init_end(void)2721 void nf_conntrack_init_end(void)
2722 {
2723 	/* For use by REJECT target */
2724 	RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
2725 	RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2726 }
2727 
2728 /*
2729  * We need to use special "null" values, not used in hash table
2730  */
2731 #define UNCONFIRMED_NULLS_VAL	((1<<30)+0)
2732 #define DYING_NULLS_VAL		((1<<30)+1)
2733 
nf_conntrack_init_net(struct net * net)2734 int nf_conntrack_init_net(struct net *net)
2735 {
2736 	struct nf_conntrack_net *cnet = net_generic(net, nf_conntrack_net_id);
2737 	int ret = -ENOMEM;
2738 	int cpu;
2739 
2740 	BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2741 	BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2742 	atomic_set(&cnet->count, 0);
2743 
2744 	net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
2745 	if (!net->ct.pcpu_lists)
2746 		goto err_stat;
2747 
2748 	for_each_possible_cpu(cpu) {
2749 		struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2750 
2751 		spin_lock_init(&pcpu->lock);
2752 		INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
2753 		INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
2754 	}
2755 
2756 	net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2757 	if (!net->ct.stat)
2758 		goto err_pcpu_lists;
2759 
2760 	ret = nf_conntrack_expect_pernet_init(net);
2761 	if (ret < 0)
2762 		goto err_expect;
2763 
2764 	nf_conntrack_acct_pernet_init(net);
2765 	nf_conntrack_tstamp_pernet_init(net);
2766 	nf_conntrack_ecache_pernet_init(net);
2767 	nf_conntrack_helper_pernet_init(net);
2768 	nf_conntrack_proto_pernet_init(net);
2769 
2770 	return 0;
2771 
2772 err_expect:
2773 	free_percpu(net->ct.stat);
2774 err_pcpu_lists:
2775 	free_percpu(net->ct.pcpu_lists);
2776 err_stat:
2777 	return ret;
2778 }
2779