1 // SPDX-License-Identifier: LGPL-2.1
2 /*
3  * Copyright (C) 2009, 2010 Red Hat Inc, Steven Rostedt <srostedt@redhat.com>
4  *
5  */
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 
10 #include "kbuffer.h"
11 
12 #define MISSING_EVENTS (1UL << 31)
13 #define MISSING_STORED (1UL << 30)
14 
15 #define COMMIT_MASK ((1 << 27) - 1)
16 
17 enum {
18 	KBUFFER_FL_HOST_BIG_ENDIAN	= (1<<0),
19 	KBUFFER_FL_BIG_ENDIAN		= (1<<1),
20 	KBUFFER_FL_LONG_8		= (1<<2),
21 	KBUFFER_FL_OLD_FORMAT		= (1<<3),
22 };
23 
24 #define ENDIAN_MASK (KBUFFER_FL_HOST_BIG_ENDIAN | KBUFFER_FL_BIG_ENDIAN)
25 
26 /** kbuffer
27  * @timestamp		- timestamp of current event
28  * @lost_events		- # of lost events between this subbuffer and previous
29  * @flags		- special flags of the kbuffer
30  * @subbuffer		- pointer to the sub-buffer page
31  * @data		- pointer to the start of data on the sub-buffer page
32  * @index		- index from @data to the @curr event data
33  * @curr		- offset from @data to the start of current event
34  *			   (includes metadata)
35  * @next		- offset from @data to the start of next event
36  * @size		- The size of data on @data
37  * @start		- The offset from @subbuffer where @data lives
38  *
39  * @read_4		- Function to read 4 raw bytes (may swap)
40  * @read_8		- Function to read 8 raw bytes (may swap)
41  * @read_long		- Function to read a long word (4 or 8 bytes with needed swap)
42  */
43 struct kbuffer {
44 	unsigned long long 	timestamp;
45 	long long		lost_events;
46 	unsigned long		flags;
47 	void			*subbuffer;
48 	void			*data;
49 	unsigned int		index;
50 	unsigned int		curr;
51 	unsigned int		next;
52 	unsigned int		size;
53 	unsigned int		start;
54 
55 	unsigned int (*read_4)(void *ptr);
56 	unsigned long long (*read_8)(void *ptr);
57 	unsigned long long (*read_long)(struct kbuffer *kbuf, void *ptr);
58 	int (*next_event)(struct kbuffer *kbuf);
59 };
60 
zmalloc(size_t size)61 static void *zmalloc(size_t size)
62 {
63 	return calloc(1, size);
64 }
65 
host_is_bigendian(void)66 static int host_is_bigendian(void)
67 {
68 	unsigned char str[] = { 0x1, 0x2, 0x3, 0x4 };
69 	unsigned int *ptr;
70 
71 	ptr = (unsigned int *)str;
72 	return *ptr == 0x01020304;
73 }
74 
do_swap(struct kbuffer * kbuf)75 static int do_swap(struct kbuffer *kbuf)
76 {
77 	return ((kbuf->flags & KBUFFER_FL_HOST_BIG_ENDIAN) + kbuf->flags) &
78 		ENDIAN_MASK;
79 }
80 
__read_8(void * ptr)81 static unsigned long long __read_8(void *ptr)
82 {
83 	unsigned long long data = *(unsigned long long *)ptr;
84 
85 	return data;
86 }
87 
__read_8_sw(void * ptr)88 static unsigned long long __read_8_sw(void *ptr)
89 {
90 	unsigned long long data = *(unsigned long long *)ptr;
91 	unsigned long long swap;
92 
93 	swap = ((data & 0xffULL) << 56) |
94 		((data & (0xffULL << 8)) << 40) |
95 		((data & (0xffULL << 16)) << 24) |
96 		((data & (0xffULL << 24)) << 8) |
97 		((data & (0xffULL << 32)) >> 8) |
98 		((data & (0xffULL << 40)) >> 24) |
99 		((data & (0xffULL << 48)) >> 40) |
100 		((data & (0xffULL << 56)) >> 56);
101 
102 	return swap;
103 }
104 
__read_4(void * ptr)105 static unsigned int __read_4(void *ptr)
106 {
107 	unsigned int data = *(unsigned int *)ptr;
108 
109 	return data;
110 }
111 
__read_4_sw(void * ptr)112 static unsigned int __read_4_sw(void *ptr)
113 {
114 	unsigned int data = *(unsigned int *)ptr;
115 	unsigned int swap;
116 
117 	swap = ((data & 0xffULL) << 24) |
118 		((data & (0xffULL << 8)) << 8) |
119 		((data & (0xffULL << 16)) >> 8) |
120 		((data & (0xffULL << 24)) >> 24);
121 
122 	return swap;
123 }
124 
read_8(struct kbuffer * kbuf,void * ptr)125 static unsigned long long read_8(struct kbuffer *kbuf, void *ptr)
126 {
127 	return kbuf->read_8(ptr);
128 }
129 
read_4(struct kbuffer * kbuf,void * ptr)130 static unsigned int read_4(struct kbuffer *kbuf, void *ptr)
131 {
132 	return kbuf->read_4(ptr);
133 }
134 
__read_long_8(struct kbuffer * kbuf,void * ptr)135 static unsigned long long __read_long_8(struct kbuffer *kbuf, void *ptr)
136 {
137 	return kbuf->read_8(ptr);
138 }
139 
__read_long_4(struct kbuffer * kbuf,void * ptr)140 static unsigned long long __read_long_4(struct kbuffer *kbuf, void *ptr)
141 {
142 	return kbuf->read_4(ptr);
143 }
144 
read_long(struct kbuffer * kbuf,void * ptr)145 static unsigned long long read_long(struct kbuffer *kbuf, void *ptr)
146 {
147 	return kbuf->read_long(kbuf, ptr);
148 }
149 
calc_index(struct kbuffer * kbuf,void * ptr)150 static int calc_index(struct kbuffer *kbuf, void *ptr)
151 {
152 	return (unsigned long)ptr - (unsigned long)kbuf->data;
153 }
154 
155 static int __next_event(struct kbuffer *kbuf);
156 
157 /**
158  * kbuffer_alloc - allocat a new kbuffer
159  * @size;	enum to denote size of word
160  * @endian:	enum to denote endianness
161  *
162  * Allocates and returns a new kbuffer.
163  */
164 struct kbuffer *
kbuffer_alloc(enum kbuffer_long_size size,enum kbuffer_endian endian)165 kbuffer_alloc(enum kbuffer_long_size size, enum kbuffer_endian endian)
166 {
167 	struct kbuffer *kbuf;
168 	int flags = 0;
169 
170 	switch (size) {
171 	case KBUFFER_LSIZE_4:
172 		break;
173 	case KBUFFER_LSIZE_8:
174 		flags |= KBUFFER_FL_LONG_8;
175 		break;
176 	default:
177 		return NULL;
178 	}
179 
180 	switch (endian) {
181 	case KBUFFER_ENDIAN_LITTLE:
182 		break;
183 	case KBUFFER_ENDIAN_BIG:
184 		flags |= KBUFFER_FL_BIG_ENDIAN;
185 		break;
186 	default:
187 		return NULL;
188 	}
189 
190 	kbuf = zmalloc(sizeof(*kbuf));
191 	if (!kbuf)
192 		return NULL;
193 
194 	kbuf->flags = flags;
195 
196 	if (host_is_bigendian())
197 		kbuf->flags |= KBUFFER_FL_HOST_BIG_ENDIAN;
198 
199 	if (do_swap(kbuf)) {
200 		kbuf->read_8 = __read_8_sw;
201 		kbuf->read_4 = __read_4_sw;
202 	} else {
203 		kbuf->read_8 = __read_8;
204 		kbuf->read_4 = __read_4;
205 	}
206 
207 	if (kbuf->flags & KBUFFER_FL_LONG_8)
208 		kbuf->read_long = __read_long_8;
209 	else
210 		kbuf->read_long = __read_long_4;
211 
212 	/* May be changed by kbuffer_set_old_format() */
213 	kbuf->next_event = __next_event;
214 
215 	return kbuf;
216 }
217 
218 /** kbuffer_free - free an allocated kbuffer
219  * @kbuf:	The kbuffer to free
220  *
221  * Can take NULL as a parameter.
222  */
kbuffer_free(struct kbuffer * kbuf)223 void kbuffer_free(struct kbuffer *kbuf)
224 {
225 	free(kbuf);
226 }
227 
type4host(struct kbuffer * kbuf,unsigned int type_len_ts)228 static unsigned int type4host(struct kbuffer *kbuf,
229 			      unsigned int type_len_ts)
230 {
231 	if (kbuf->flags & KBUFFER_FL_BIG_ENDIAN)
232 		return (type_len_ts >> 29) & 3;
233 	else
234 		return type_len_ts & 3;
235 }
236 
len4host(struct kbuffer * kbuf,unsigned int type_len_ts)237 static unsigned int len4host(struct kbuffer *kbuf,
238 			     unsigned int type_len_ts)
239 {
240 	if (kbuf->flags & KBUFFER_FL_BIG_ENDIAN)
241 		return (type_len_ts >> 27) & 7;
242 	else
243 		return (type_len_ts >> 2) & 7;
244 }
245 
type_len4host(struct kbuffer * kbuf,unsigned int type_len_ts)246 static unsigned int type_len4host(struct kbuffer *kbuf,
247 				  unsigned int type_len_ts)
248 {
249 	if (kbuf->flags & KBUFFER_FL_BIG_ENDIAN)
250 		return (type_len_ts >> 27) & ((1 << 5) - 1);
251 	else
252 		return type_len_ts & ((1 << 5) - 1);
253 }
254 
ts4host(struct kbuffer * kbuf,unsigned int type_len_ts)255 static unsigned int ts4host(struct kbuffer *kbuf,
256 			    unsigned int type_len_ts)
257 {
258 	if (kbuf->flags & KBUFFER_FL_BIG_ENDIAN)
259 		return type_len_ts & ((1 << 27) - 1);
260 	else
261 		return type_len_ts >> 5;
262 }
263 
264 /*
265  * Linux 2.6.30 and earlier (not much ealier) had a different
266  * ring buffer format. It should be obsolete, but we handle it anyway.
267  */
268 enum old_ring_buffer_type {
269 	OLD_RINGBUF_TYPE_PADDING,
270 	OLD_RINGBUF_TYPE_TIME_EXTEND,
271 	OLD_RINGBUF_TYPE_TIME_STAMP,
272 	OLD_RINGBUF_TYPE_DATA,
273 };
274 
old_update_pointers(struct kbuffer * kbuf)275 static unsigned int old_update_pointers(struct kbuffer *kbuf)
276 {
277 	unsigned long long extend;
278 	unsigned int type_len_ts;
279 	unsigned int type;
280 	unsigned int len;
281 	unsigned int delta;
282 	unsigned int length;
283 	void *ptr = kbuf->data + kbuf->curr;
284 
285 	type_len_ts = read_4(kbuf, ptr);
286 	ptr += 4;
287 
288 	type = type4host(kbuf, type_len_ts);
289 	len = len4host(kbuf, type_len_ts);
290 	delta = ts4host(kbuf, type_len_ts);
291 
292 	switch (type) {
293 	case OLD_RINGBUF_TYPE_PADDING:
294 		kbuf->next = kbuf->size;
295 		return 0;
296 
297 	case OLD_RINGBUF_TYPE_TIME_EXTEND:
298 		extend = read_4(kbuf, ptr);
299 		extend <<= TS_SHIFT;
300 		extend += delta;
301 		delta = extend;
302 		ptr += 4;
303 		length = 0;
304 		break;
305 
306 	case OLD_RINGBUF_TYPE_TIME_STAMP:
307 		/* should never happen! */
308 		kbuf->curr = kbuf->size;
309 		kbuf->next = kbuf->size;
310 		kbuf->index = kbuf->size;
311 		return -1;
312 	default:
313 		if (len)
314 			length = len * 4;
315 		else {
316 			length = read_4(kbuf, ptr);
317 			length -= 4;
318 			ptr += 4;
319 		}
320 		break;
321 	}
322 
323 	kbuf->timestamp += delta;
324 	kbuf->index = calc_index(kbuf, ptr);
325 	kbuf->next = kbuf->index + length;
326 
327 	return type;
328 }
329 
__old_next_event(struct kbuffer * kbuf)330 static int __old_next_event(struct kbuffer *kbuf)
331 {
332 	int type;
333 
334 	do {
335 		kbuf->curr = kbuf->next;
336 		if (kbuf->next >= kbuf->size)
337 			return -1;
338 		type = old_update_pointers(kbuf);
339 	} while (type == OLD_RINGBUF_TYPE_TIME_EXTEND || type == OLD_RINGBUF_TYPE_PADDING);
340 
341 	return 0;
342 }
343 
344 static unsigned int
translate_data(struct kbuffer * kbuf,void * data,void ** rptr,unsigned long long * delta,int * length)345 translate_data(struct kbuffer *kbuf, void *data, void **rptr,
346 	       unsigned long long *delta, int *length)
347 {
348 	unsigned long long extend;
349 	unsigned int type_len_ts;
350 	unsigned int type_len;
351 
352 	type_len_ts = read_4(kbuf, data);
353 	data += 4;
354 
355 	type_len = type_len4host(kbuf, type_len_ts);
356 	*delta = ts4host(kbuf, type_len_ts);
357 
358 	switch (type_len) {
359 	case KBUFFER_TYPE_PADDING:
360 		*length = read_4(kbuf, data);
361 		break;
362 
363 	case KBUFFER_TYPE_TIME_EXTEND:
364 	case KBUFFER_TYPE_TIME_STAMP:
365 		extend = read_4(kbuf, data);
366 		data += 4;
367 		extend <<= TS_SHIFT;
368 		extend += *delta;
369 		*delta = extend;
370 		*length = 0;
371 		break;
372 
373 	case 0:
374 		*length = read_4(kbuf, data) - 4;
375 		*length = (*length + 3) & ~3;
376 		data += 4;
377 		break;
378 	default:
379 		*length = type_len * 4;
380 		break;
381 	}
382 
383 	*rptr = data;
384 
385 	return type_len;
386 }
387 
update_pointers(struct kbuffer * kbuf)388 static unsigned int update_pointers(struct kbuffer *kbuf)
389 {
390 	unsigned long long delta;
391 	unsigned int type_len;
392 	int length;
393 	void *ptr = kbuf->data + kbuf->curr;
394 
395 	type_len = translate_data(kbuf, ptr, &ptr, &delta, &length);
396 
397 	if (type_len == KBUFFER_TYPE_TIME_STAMP)
398 		kbuf->timestamp = delta;
399 	else
400 		kbuf->timestamp += delta;
401 
402 	kbuf->index = calc_index(kbuf, ptr);
403 	kbuf->next = kbuf->index + length;
404 
405 	return type_len;
406 }
407 
408 /**
409  * kbuffer_translate_data - read raw data to get a record
410  * @swap:	Set to 1 if bytes in words need to be swapped when read
411  * @data:	The raw data to read
412  * @size:	Address to store the size of the event data.
413  *
414  * Returns a pointer to the event data. To determine the entire
415  * record size (record metadata + data) just add the difference between
416  * @data and the returned value to @size.
417  */
kbuffer_translate_data(int swap,void * data,unsigned int * size)418 void *kbuffer_translate_data(int swap, void *data, unsigned int *size)
419 {
420 	unsigned long long delta;
421 	struct kbuffer kbuf;
422 	int type_len;
423 	int length;
424 	void *ptr;
425 
426 	if (swap) {
427 		kbuf.read_8 = __read_8_sw;
428 		kbuf.read_4 = __read_4_sw;
429 		kbuf.flags = host_is_bigendian() ? 0 : KBUFFER_FL_BIG_ENDIAN;
430 	} else {
431 		kbuf.read_8 = __read_8;
432 		kbuf.read_4 = __read_4;
433 		kbuf.flags = host_is_bigendian() ? KBUFFER_FL_BIG_ENDIAN: 0;
434 	}
435 
436 	type_len = translate_data(&kbuf, data, &ptr, &delta, &length);
437 	switch (type_len) {
438 	case KBUFFER_TYPE_PADDING:
439 	case KBUFFER_TYPE_TIME_EXTEND:
440 	case KBUFFER_TYPE_TIME_STAMP:
441 		return NULL;
442 	}
443 
444 	*size = length;
445 
446 	return ptr;
447 }
448 
__next_event(struct kbuffer * kbuf)449 static int __next_event(struct kbuffer *kbuf)
450 {
451 	int type;
452 
453 	do {
454 		kbuf->curr = kbuf->next;
455 		if (kbuf->next >= kbuf->size)
456 			return -1;
457 		type = update_pointers(kbuf);
458 	} while (type == KBUFFER_TYPE_TIME_EXTEND ||
459 		 type == KBUFFER_TYPE_TIME_STAMP ||
460 		 type == KBUFFER_TYPE_PADDING);
461 
462 	return 0;
463 }
464 
next_event(struct kbuffer * kbuf)465 static int next_event(struct kbuffer *kbuf)
466 {
467 	return kbuf->next_event(kbuf);
468 }
469 
470 /**
471  * kbuffer_next_event - increment the current pointer
472  * @kbuf:	The kbuffer to read
473  * @ts:		Address to store the next record's timestamp (may be NULL to ignore)
474  *
475  * Increments the pointers into the subbuffer of the kbuffer to point to the
476  * next event so that the next kbuffer_read_event() will return a
477  * new event.
478  *
479  * Returns the data of the next event if a new event exists on the subbuffer,
480  * NULL otherwise.
481  */
kbuffer_next_event(struct kbuffer * kbuf,unsigned long long * ts)482 void *kbuffer_next_event(struct kbuffer *kbuf, unsigned long long *ts)
483 {
484 	int ret;
485 
486 	if (!kbuf || !kbuf->subbuffer)
487 		return NULL;
488 
489 	ret = next_event(kbuf);
490 	if (ret < 0)
491 		return NULL;
492 
493 	if (ts)
494 		*ts = kbuf->timestamp;
495 
496 	return kbuf->data + kbuf->index;
497 }
498 
499 /**
500  * kbuffer_load_subbuffer - load a new subbuffer into the kbuffer
501  * @kbuf:	The kbuffer to load
502  * @subbuffer:	The subbuffer to load into @kbuf.
503  *
504  * Load a new subbuffer (page) into @kbuf. This will reset all
505  * the pointers and update the @kbuf timestamp. The next read will
506  * return the first event on @subbuffer.
507  *
508  * Returns 0 on succes, -1 otherwise.
509  */
kbuffer_load_subbuffer(struct kbuffer * kbuf,void * subbuffer)510 int kbuffer_load_subbuffer(struct kbuffer *kbuf, void *subbuffer)
511 {
512 	unsigned long long flags;
513 	void *ptr = subbuffer;
514 
515 	if (!kbuf || !subbuffer)
516 		return -1;
517 
518 	kbuf->subbuffer = subbuffer;
519 
520 	kbuf->timestamp = read_8(kbuf, ptr);
521 	ptr += 8;
522 
523 	kbuf->curr = 0;
524 
525 	if (kbuf->flags & KBUFFER_FL_LONG_8)
526 		kbuf->start = 16;
527 	else
528 		kbuf->start = 12;
529 
530 	kbuf->data = subbuffer + kbuf->start;
531 
532 	flags = read_long(kbuf, ptr);
533 	kbuf->size = (unsigned int)flags & COMMIT_MASK;
534 
535 	if (flags & MISSING_EVENTS) {
536 		if (flags & MISSING_STORED) {
537 			ptr = kbuf->data + kbuf->size;
538 			kbuf->lost_events = read_long(kbuf, ptr);
539 		} else
540 			kbuf->lost_events = -1;
541 	} else
542 		kbuf->lost_events = 0;
543 
544 	kbuf->index = 0;
545 	kbuf->next = 0;
546 
547 	next_event(kbuf);
548 
549 	return 0;
550 }
551 
552 /**
553  * kbuffer_subbuf_timestamp - read the timestamp from a sub buffer
554  * @kbuf:      The kbuffer to load
555  * @subbuf:    The subbuffer to read from.
556  *
557  * Return the timestamp from a subbuffer.
558  */
kbuffer_subbuf_timestamp(struct kbuffer * kbuf,void * subbuf)559 unsigned long long kbuffer_subbuf_timestamp(struct kbuffer *kbuf, void *subbuf)
560 {
561 	return kbuf->read_8(subbuf);
562 }
563 
564 /**
565  * kbuffer_ptr_delta - read the delta field from a record
566  * @kbuf:      The kbuffer to load
567  * @ptr:       The record in the buffe.
568  *
569  * Return the timestamp delta from a record
570  */
kbuffer_ptr_delta(struct kbuffer * kbuf,void * ptr)571 unsigned int kbuffer_ptr_delta(struct kbuffer *kbuf, void *ptr)
572 {
573 	unsigned int type_len_ts;
574 
575 	type_len_ts = read_4(kbuf, ptr);
576 	return ts4host(kbuf, type_len_ts);
577 }
578 
579 
580 /**
581  * kbuffer_read_event - read the next event in the kbuffer subbuffer
582  * @kbuf:	The kbuffer to read from
583  * @ts:		The address to store the timestamp of the event (may be NULL to ignore)
584  *
585  * Returns a pointer to the data part of the current event.
586  * NULL if no event is left on the subbuffer.
587  */
kbuffer_read_event(struct kbuffer * kbuf,unsigned long long * ts)588 void *kbuffer_read_event(struct kbuffer *kbuf, unsigned long long *ts)
589 {
590 	if (!kbuf || !kbuf->subbuffer)
591 		return NULL;
592 
593 	if (kbuf->curr >= kbuf->size)
594 		return NULL;
595 
596 	if (ts)
597 		*ts = kbuf->timestamp;
598 	return kbuf->data + kbuf->index;
599 }
600 
601 /**
602  * kbuffer_timestamp - Return the timestamp of the current event
603  * @kbuf:	The kbuffer to read from
604  *
605  * Returns the timestamp of the current (next) event.
606  */
kbuffer_timestamp(struct kbuffer * kbuf)607 unsigned long long kbuffer_timestamp(struct kbuffer *kbuf)
608 {
609 	return kbuf->timestamp;
610 }
611 
612 /**
613  * kbuffer_read_at_offset - read the event that is at offset
614  * @kbuf:	The kbuffer to read from
615  * @offset:	The offset into the subbuffer
616  * @ts:		The address to store the timestamp of the event (may be NULL to ignore)
617  *
618  * The @offset must be an index from the @kbuf subbuffer beginning.
619  * If @offset is bigger than the stored subbuffer, NULL will be returned.
620  *
621  * Returns the data of the record that is at @offset. Note, @offset does
622  * not need to be the start of the record, the offset just needs to be
623  * in the record (or beginning of it).
624  *
625  * Note, the kbuf timestamp and pointers are updated to the
626  * returned record. That is, kbuffer_read_event() will return the same
627  * data and timestamp, and kbuffer_next_event() will increment from
628  * this record.
629  */
kbuffer_read_at_offset(struct kbuffer * kbuf,int offset,unsigned long long * ts)630 void *kbuffer_read_at_offset(struct kbuffer *kbuf, int offset,
631 			     unsigned long long *ts)
632 {
633 	void *data;
634 
635 	if (offset < kbuf->start)
636 		offset = 0;
637 	else
638 		offset -= kbuf->start;
639 
640 	/* Reset the buffer */
641 	kbuffer_load_subbuffer(kbuf, kbuf->subbuffer);
642 	data = kbuffer_read_event(kbuf, ts);
643 
644 	while (kbuf->curr < offset) {
645 		data = kbuffer_next_event(kbuf, ts);
646 		if (!data)
647 			break;
648 	}
649 
650 	return data;
651 }
652 
653 /**
654  * kbuffer_subbuffer_size - the size of the loaded subbuffer
655  * @kbuf:	The kbuffer to read from
656  *
657  * Returns the size of the subbuffer. Note, this size is
658  * where the last event resides. The stored subbuffer may actually be
659  * bigger due to padding and such.
660  */
kbuffer_subbuffer_size(struct kbuffer * kbuf)661 int kbuffer_subbuffer_size(struct kbuffer *kbuf)
662 {
663 	return kbuf->size;
664 }
665 
666 /**
667  * kbuffer_curr_index - Return the index of the record
668  * @kbuf:	The kbuffer to read from
669  *
670  * Returns the index from the start of the data part of
671  * the subbuffer to the current location. Note this is not
672  * from the start of the subbuffer. An index of zero will
673  * point to the first record. Use kbuffer_curr_offset() for
674  * the actually offset (that can be used by kbuffer_read_at_offset())
675  */
kbuffer_curr_index(struct kbuffer * kbuf)676 int kbuffer_curr_index(struct kbuffer *kbuf)
677 {
678 	return kbuf->curr;
679 }
680 
681 /**
682  * kbuffer_curr_offset - Return the offset of the record
683  * @kbuf:	The kbuffer to read from
684  *
685  * Returns the offset from the start of the subbuffer to the
686  * current location.
687  */
kbuffer_curr_offset(struct kbuffer * kbuf)688 int kbuffer_curr_offset(struct kbuffer *kbuf)
689 {
690 	return kbuf->curr + kbuf->start;
691 }
692 
693 /**
694  * kbuffer_event_size - return the size of the event data
695  * @kbuf:	The kbuffer to read
696  *
697  * Returns the size of the event data (the payload not counting
698  * the meta data of the record) of the current event.
699  */
kbuffer_event_size(struct kbuffer * kbuf)700 int kbuffer_event_size(struct kbuffer *kbuf)
701 {
702 	return kbuf->next - kbuf->index;
703 }
704 
705 /**
706  * kbuffer_curr_size - return the size of the entire record
707  * @kbuf:	The kbuffer to read
708  *
709  * Returns the size of the entire record (meta data and payload)
710  * of the current event.
711  */
kbuffer_curr_size(struct kbuffer * kbuf)712 int kbuffer_curr_size(struct kbuffer *kbuf)
713 {
714 	return kbuf->next - kbuf->curr;
715 }
716 
717 /**
718  * kbuffer_missed_events - return the # of missed events from last event.
719  * @kbuf: 	The kbuffer to read from
720  *
721  * Returns the # of missed events (if recorded) before the current
722  * event. Note, only events on the beginning of a subbuffer can
723  * have missed events, all other events within the buffer will be
724  * zero.
725  */
kbuffer_missed_events(struct kbuffer * kbuf)726 int kbuffer_missed_events(struct kbuffer *kbuf)
727 {
728 	/* Only the first event can have missed events */
729 	if (kbuf->curr)
730 		return 0;
731 
732 	return kbuf->lost_events;
733 }
734 
735 /**
736  * kbuffer_set_old_forma - set the kbuffer to use the old format parsing
737  * @kbuf:	The kbuffer to set
738  *
739  * This is obsolete (or should be). The first kernels to use the
740  * new ring buffer had a slightly different ring buffer format
741  * (2.6.30 and earlier). It is still somewhat supported by kbuffer,
742  * but should not be counted on in the future.
743  */
kbuffer_set_old_format(struct kbuffer * kbuf)744 void kbuffer_set_old_format(struct kbuffer *kbuf)
745 {
746 	kbuf->flags |= KBUFFER_FL_OLD_FORMAT;
747 
748 	kbuf->next_event = __old_next_event;
749 }
750 
751 /**
752  * kbuffer_start_of_data - return offset of where data starts on subbuffer
753  * @kbuf:	The kbuffer
754  *
755  * Returns the location on the subbuffer where the data starts.
756  */
kbuffer_start_of_data(struct kbuffer * kbuf)757 int kbuffer_start_of_data(struct kbuffer *kbuf)
758 {
759 	return kbuf->start;
760 }
761 
762 /**
763  * kbuffer_raw_get - get raw buffer info
764  * @kbuf:	The kbuffer
765  * @subbuf:	Start of mapped subbuffer
766  * @info:	Info descriptor to fill in
767  *
768  * For debugging. This can return internals of the ring buffer.
769  * Expects to have info->next set to what it will read.
770  * The type, length and timestamp delta will be filled in, and
771  * @info->next will be updated to the next element.
772  * The @subbuf is used to know if the info is passed the end of
773  * data and NULL will be returned if it is.
774  */
775 struct kbuffer_raw_info *
kbuffer_raw_get(struct kbuffer * kbuf,void * subbuf,struct kbuffer_raw_info * info)776 kbuffer_raw_get(struct kbuffer *kbuf, void *subbuf, struct kbuffer_raw_info *info)
777 {
778 	unsigned long long flags;
779 	unsigned long long delta;
780 	unsigned int type_len;
781 	unsigned int size;
782 	int start;
783 	int length;
784 	void *ptr = info->next;
785 
786 	if (!kbuf || !subbuf)
787 		return NULL;
788 
789 	if (kbuf->flags & KBUFFER_FL_LONG_8)
790 		start = 16;
791 	else
792 		start = 12;
793 
794 	flags = read_long(kbuf, subbuf + 8);
795 	size = (unsigned int)flags & COMMIT_MASK;
796 
797 	if (ptr < subbuf || ptr >= subbuf + start + size)
798 		return NULL;
799 
800 	type_len = translate_data(kbuf, ptr, &ptr, &delta, &length);
801 
802 	info->next = ptr + length;
803 
804 	info->type = type_len;
805 	info->delta = delta;
806 	info->length = length;
807 
808 	return info;
809 }
810