1 /*
2  *  Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "video/encoder_bitrate_adjuster.h"
12 
13 #include <algorithm>
14 #include <memory>
15 #include <vector>
16 
17 #include "rtc_base/experiments/rate_control_settings.h"
18 #include "rtc_base/logging.h"
19 #include "rtc_base/time_utils.h"
20 #include "system_wrappers/include/field_trial.h"
21 
22 namespace webrtc {
23 namespace {
24 // Helper struct with metadata for a single spatial layer.
25 struct LayerRateInfo {
26   double link_utilization_factor = 0.0;
27   double media_utilization_factor = 0.0;
28   DataRate target_rate = DataRate::Zero();
29 
WantedOvershootwebrtc::__anon0750d18a0111::LayerRateInfo30   DataRate WantedOvershoot() const {
31     // If there is headroom, allow bitrate to go up to media rate limit.
32     // Still limit media utilization to 1.0, so we don't overshoot over long
33     // runs even if we have headroom.
34     const double max_media_utilization =
35         std::max(1.0, media_utilization_factor);
36     if (link_utilization_factor > max_media_utilization) {
37       return (link_utilization_factor - max_media_utilization) * target_rate;
38     }
39     return DataRate::Zero();
40   }
41 };
42 }  // namespace
43 constexpr int64_t EncoderBitrateAdjuster::kWindowSizeMs;
44 constexpr size_t EncoderBitrateAdjuster::kMinFramesSinceLayoutChange;
45 constexpr double EncoderBitrateAdjuster::kDefaultUtilizationFactor;
46 
EncoderBitrateAdjuster(const VideoCodec & codec_settings)47 EncoderBitrateAdjuster::EncoderBitrateAdjuster(const VideoCodec& codec_settings)
48     : utilize_bandwidth_headroom_(RateControlSettings::ParseFromFieldTrials()
49                                       .BitrateAdjusterCanUseNetworkHeadroom()),
50       frames_since_layout_change_(0),
51       min_bitrates_bps_{} {
52   if (codec_settings.codecType == VideoCodecType::kVideoCodecVP9) {
53     for (size_t si = 0; si < codec_settings.VP9().numberOfSpatialLayers; ++si) {
54       if (codec_settings.spatialLayers[si].active) {
55         min_bitrates_bps_[si] =
56             std::max(codec_settings.minBitrate * 1000,
57                      codec_settings.spatialLayers[si].minBitrate * 1000);
58       }
59     }
60   } else {
61     for (size_t si = 0; si < codec_settings.numberOfSimulcastStreams; ++si) {
62       if (codec_settings.simulcastStream[si].active) {
63         min_bitrates_bps_[si] =
64             std::max(codec_settings.minBitrate * 1000,
65                      codec_settings.simulcastStream[si].minBitrate * 1000);
66       }
67     }
68   }
69 }
70 
71 EncoderBitrateAdjuster::~EncoderBitrateAdjuster() = default;
72 
AdjustRateAllocation(const VideoEncoder::RateControlParameters & rates)73 VideoBitrateAllocation EncoderBitrateAdjuster::AdjustRateAllocation(
74     const VideoEncoder::RateControlParameters& rates) {
75   current_rate_control_parameters_ = rates;
76 
77   // First check that overshoot detectors exist, and store per spatial layer
78   // how many active temporal layers we have.
79   size_t active_tls_[kMaxSpatialLayers] = {};
80   for (size_t si = 0; si < kMaxSpatialLayers; ++si) {
81     active_tls_[si] = 0;
82     for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) {
83       // Layer is enabled iff it has both positive bitrate and framerate target.
84       if (rates.bitrate.GetBitrate(si, ti) > 0 &&
85           current_fps_allocation_[si].size() > ti &&
86           current_fps_allocation_[si][ti] > 0) {
87         ++active_tls_[si];
88         if (!overshoot_detectors_[si][ti]) {
89           overshoot_detectors_[si][ti] =
90               std::make_unique<EncoderOvershootDetector>(kWindowSizeMs);
91           frames_since_layout_change_ = 0;
92         }
93       } else if (overshoot_detectors_[si][ti]) {
94         // Layer removed, destroy overshoot detector.
95         overshoot_detectors_[si][ti].reset();
96         frames_since_layout_change_ = 0;
97       }
98     }
99   }
100 
101   // Next poll the overshoot detectors and populate the adjusted allocation.
102   const int64_t now_ms = rtc::TimeMillis();
103   VideoBitrateAllocation adjusted_allocation;
104   std::vector<LayerRateInfo> layer_infos;
105   DataRate wanted_overshoot_sum = DataRate::Zero();
106 
107   for (size_t si = 0; si < kMaxSpatialLayers; ++si) {
108     layer_infos.emplace_back();
109     LayerRateInfo& layer_info = layer_infos.back();
110 
111     layer_info.target_rate =
112         DataRate::BitsPerSec(rates.bitrate.GetSpatialLayerSum(si));
113 
114     // Adjustment is done per spatial layer only (not per temporal layer).
115     if (frames_since_layout_change_ < kMinFramesSinceLayoutChange) {
116       layer_info.link_utilization_factor = kDefaultUtilizationFactor;
117       layer_info.media_utilization_factor = kDefaultUtilizationFactor;
118     } else if (active_tls_[si] == 0 ||
119                layer_info.target_rate == DataRate::Zero()) {
120       // No signaled temporal layers, or no bitrate set. Could either be unused
121       // spatial layer or bitrate dynamic mode; pass bitrate through without any
122       // change.
123       layer_info.link_utilization_factor = 1.0;
124       layer_info.media_utilization_factor = 1.0;
125     } else if (active_tls_[si] == 1) {
126       // A single active temporal layer, this might mean single layer or that
127       // encoder does not support temporal layers. Merge target bitrates for
128       // this spatial layer.
129       RTC_DCHECK(overshoot_detectors_[si][0]);
130       layer_info.link_utilization_factor =
131           overshoot_detectors_[si][0]
132               ->GetNetworkRateUtilizationFactor(now_ms)
133               .value_or(kDefaultUtilizationFactor);
134       layer_info.media_utilization_factor =
135           overshoot_detectors_[si][0]
136               ->GetMediaRateUtilizationFactor(now_ms)
137               .value_or(kDefaultUtilizationFactor);
138     } else if (layer_info.target_rate > DataRate::Zero()) {
139       // Multiple temporal layers enabled for this spatial layer. Update rate
140       // for each of them and make a weighted average of utilization factors,
141       // with bitrate fraction used as weight.
142       // If any layer is missing a utilization factor, fall back to default.
143       layer_info.link_utilization_factor = 0.0;
144       layer_info.media_utilization_factor = 0.0;
145       for (size_t ti = 0; ti < active_tls_[si]; ++ti) {
146         RTC_DCHECK(overshoot_detectors_[si][ti]);
147         const absl::optional<double> ti_link_utilization_factor =
148             overshoot_detectors_[si][ti]->GetNetworkRateUtilizationFactor(
149                 now_ms);
150         const absl::optional<double> ti_media_utilization_factor =
151             overshoot_detectors_[si][ti]->GetMediaRateUtilizationFactor(now_ms);
152         if (!ti_link_utilization_factor || !ti_media_utilization_factor) {
153           layer_info.link_utilization_factor = kDefaultUtilizationFactor;
154           layer_info.media_utilization_factor = kDefaultUtilizationFactor;
155           break;
156         }
157         const double weight =
158             static_cast<double>(rates.bitrate.GetBitrate(si, ti)) /
159             layer_info.target_rate.bps();
160         layer_info.link_utilization_factor +=
161             weight * ti_link_utilization_factor.value();
162         layer_info.media_utilization_factor +=
163             weight * ti_media_utilization_factor.value();
164       }
165     } else {
166       RTC_NOTREACHED();
167     }
168 
169     if (layer_info.link_utilization_factor < 1.0) {
170       // TODO(sprang): Consider checking underuse and allowing it to cancel some
171       // potential overuse by other streams.
172 
173       // Don't boost target bitrate if encoder is under-using.
174       layer_info.link_utilization_factor = 1.0;
175     } else {
176       // Don't reduce encoder target below 50%, in which case the frame dropper
177       // should kick in instead.
178       layer_info.link_utilization_factor =
179           std::min(layer_info.link_utilization_factor, 2.0);
180 
181       // Keep track of sum of desired overshoot bitrate.
182       wanted_overshoot_sum += layer_info.WantedOvershoot();
183     }
184   }
185 
186   // Available link headroom that can be used to fill wanted overshoot.
187   DataRate available_headroom = DataRate::Zero();
188   if (utilize_bandwidth_headroom_) {
189     available_headroom = rates.bandwidth_allocation -
190                          DataRate::BitsPerSec(rates.bitrate.get_sum_bps());
191   }
192 
193   // All wanted overshoots are satisfied in the same proportion based on
194   // available headroom.
195   const double granted_overshoot_ratio =
196       wanted_overshoot_sum == DataRate::Zero()
197           ? 0.0
198           : std::min(1.0, available_headroom.bps<double>() /
199                               wanted_overshoot_sum.bps());
200 
201   for (size_t si = 0; si < kMaxSpatialLayers; ++si) {
202     LayerRateInfo& layer_info = layer_infos[si];
203     double utilization_factor = layer_info.link_utilization_factor;
204     DataRate allowed_overshoot =
205         granted_overshoot_ratio * layer_info.WantedOvershoot();
206     if (allowed_overshoot > DataRate::Zero()) {
207       // Pretend the target bitrate is higher by the allowed overshoot.
208       // Since utilization_factor = actual_bitrate / target_bitrate, it can be
209       // done by multiplying by old_target_bitrate / new_target_bitrate.
210       utilization_factor *= layer_info.target_rate.bps<double>() /
211                             (allowed_overshoot.bps<double>() +
212                              layer_info.target_rate.bps<double>());
213     }
214 
215     if (min_bitrates_bps_[si] > 0 &&
216         layer_info.target_rate > DataRate::Zero() &&
217         DataRate::BitsPerSec(min_bitrates_bps_[si]) < layer_info.target_rate) {
218       // Make sure rate adjuster doesn't push target bitrate below minimum.
219       utilization_factor =
220           std::min(utilization_factor, layer_info.target_rate.bps<double>() /
221                                            min_bitrates_bps_[si]);
222     }
223 
224     if (layer_info.target_rate > DataRate::Zero()) {
225       RTC_LOG(LS_VERBOSE) << "Utilization factors for spatial index " << si
226                           << ": link = " << layer_info.link_utilization_factor
227                           << ", media = " << layer_info.media_utilization_factor
228                           << ", wanted overshoot = "
229                           << layer_info.WantedOvershoot().bps()
230                           << " bps, available headroom = "
231                           << available_headroom.bps()
232                           << " bps, total utilization factor = "
233                           << utilization_factor;
234     }
235 
236     // Populate the adjusted allocation with determined utilization factor.
237     if (active_tls_[si] == 1 &&
238         layer_info.target_rate >
239             DataRate::BitsPerSec(rates.bitrate.GetBitrate(si, 0))) {
240       // Bitrate allocation indicates temporal layer usage, but encoder
241       // does not seem to support it. Pipe all bitrate into a single
242       // overshoot detector.
243       uint32_t adjusted_layer_bitrate_bps =
244           std::min(static_cast<uint32_t>(
245                        layer_info.target_rate.bps() / utilization_factor + 0.5),
246                    layer_info.target_rate.bps<uint32_t>());
247       adjusted_allocation.SetBitrate(si, 0, adjusted_layer_bitrate_bps);
248     } else {
249       for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) {
250         if (rates.bitrate.HasBitrate(si, ti)) {
251           uint32_t adjusted_layer_bitrate_bps = std::min(
252               static_cast<uint32_t>(
253                   rates.bitrate.GetBitrate(si, ti) / utilization_factor + 0.5),
254               rates.bitrate.GetBitrate(si, ti));
255           adjusted_allocation.SetBitrate(si, ti, adjusted_layer_bitrate_bps);
256         }
257       }
258     }
259 
260     // In case of rounding errors, add bitrate to TL0 until min bitrate
261     // constraint has been met.
262     const uint32_t adjusted_spatial_layer_sum =
263         adjusted_allocation.GetSpatialLayerSum(si);
264     if (layer_info.target_rate > DataRate::Zero() &&
265         adjusted_spatial_layer_sum < min_bitrates_bps_[si]) {
266       adjusted_allocation.SetBitrate(si, 0,
267                                      adjusted_allocation.GetBitrate(si, 0) +
268                                          min_bitrates_bps_[si] -
269                                          adjusted_spatial_layer_sum);
270     }
271 
272     // Update all detectors with the new adjusted bitrate targets.
273     for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) {
274       const uint32_t layer_bitrate_bps = adjusted_allocation.GetBitrate(si, ti);
275       // Overshoot detector may not exist, eg for ScreenshareLayers case.
276       if (layer_bitrate_bps > 0 && overshoot_detectors_[si][ti]) {
277         // Number of frames in this layer alone is not cumulative, so
278         // subtract fps from any low temporal layer.
279         const double fps_fraction =
280             static_cast<double>(
281                 current_fps_allocation_[si][ti] -
282                 (ti == 0 ? 0 : current_fps_allocation_[si][ti - 1])) /
283             VideoEncoder::EncoderInfo::kMaxFramerateFraction;
284 
285         if (fps_fraction <= 0.0) {
286           RTC_LOG(LS_WARNING)
287               << "Encoder config has temporal layer with non-zero bitrate "
288                  "allocation but zero framerate allocation.";
289           continue;
290         }
291 
292         overshoot_detectors_[si][ti]->SetTargetRate(
293             DataRate::BitsPerSec(layer_bitrate_bps),
294             fps_fraction * rates.framerate_fps, now_ms);
295       }
296     }
297   }
298 
299   // Since no spatial layers or streams are toggled by the adjustment
300   // bw-limited flag stays the same.
301   adjusted_allocation.set_bw_limited(rates.bitrate.is_bw_limited());
302 
303   return adjusted_allocation;
304 }
305 
OnEncoderInfo(const VideoEncoder::EncoderInfo & encoder_info)306 void EncoderBitrateAdjuster::OnEncoderInfo(
307     const VideoEncoder::EncoderInfo& encoder_info) {
308   // Copy allocation into current state and re-allocate.
309   for (size_t si = 0; si < kMaxSpatialLayers; ++si) {
310     current_fps_allocation_[si] = encoder_info.fps_allocation[si];
311   }
312 
313   // Trigger re-allocation so that overshoot detectors have correct targets.
314   AdjustRateAllocation(current_rate_control_parameters_);
315 }
316 
OnEncodedFrame(DataSize size,int spatial_index,int temporal_index)317 void EncoderBitrateAdjuster::OnEncodedFrame(DataSize size,
318                                             int spatial_index,
319                                             int temporal_index) {
320   ++frames_since_layout_change_;
321   // Detectors may not exist, for instance if ScreenshareLayers is used.
322   auto& detector = overshoot_detectors_[spatial_index][temporal_index];
323   if (detector) {
324     detector->OnEncodedFrame(size.bytes(), rtc::TimeMillis());
325   }
326 }
327 
Reset()328 void EncoderBitrateAdjuster::Reset() {
329   for (size_t si = 0; si < kMaxSpatialLayers; ++si) {
330     for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) {
331       overshoot_detectors_[si][ti].reset();
332     }
333   }
334   // Call AdjustRateAllocation() with the last know bitrate allocation, so that
335   // the appropriate overuse detectors are immediately re-created.
336   AdjustRateAllocation(current_rate_control_parameters_);
337 }
338 
339 }  // namespace webrtc
340