1 //! Timer implementation.
2 //!
3 //! This module contains the types needed to run a timer.
4 //!
5 //! The [`Timer`] type runs the timer logic. It holds all the necessary state
6 //! to track all associated [`Delay`] instances and delivering notifications
7 //! once the deadlines are reached.
8 //!
9 //! The [`Handle`] type is a reference to a [`Timer`] instance. This type is
10 //! `Clone`, `Send`, and `Sync`. This type is used to create instances of
11 //! [`Delay`].
12 //!
13 //! The [`Now`] trait describes how to get an [`Instant`] representing the
14 //! current moment in time. [`SystemNow`] is the default implementation, where
15 //! [`Now::now`] is implemented by calling [`Instant::now`].
16 //!
17 //! [`Timer`] is generic over [`Now`]. This allows the source of time to be
18 //! customized. This ability is especially useful in tests and any environment
19 //! where determinism is necessary.
20 //!
21 //! Note, when using the Tokio runtime, the [`Timer`] does not need to be manually
22 //! setup as the runtime comes pre-configured with a [`Timer`] instance.
23 //!
24 //! [`Timer`]: struct.Timer.html
25 //! [`Handle`]: struct.Handle.html
26 //! [`Delay`]: ../struct.Delay.html
27 //! [`Now`]: ../clock/trait.Now.html
28 //! [`Now::now`]: ../clock/trait.Now.html#method.now
29 //! [`SystemNow`]: struct.SystemNow.html
30 //! [`Instant`]: https://doc.rust-lang.org/std/time/struct.Instant.html
31 //! [`Instant::now`]: https://doc.rust-lang.org/std/time/struct.Instant.html#method.now
32 
33 // This allows the usage of the old `Now` trait.
34 #![allow(deprecated)]
35 
36 mod atomic_stack;
37 mod entry;
38 mod handle;
39 mod now;
40 mod registration;
41 mod stack;
42 
43 use self::atomic_stack::AtomicStack;
44 use self::entry::Entry;
45 use self::stack::Stack;
46 
47 pub(crate) use self::handle::HandlePriv;
48 pub use self::handle::{set_default, with_default, DefaultGuard, Handle};
49 pub use self::now::{Now, SystemNow};
50 pub(crate) use self::registration::Registration;
51 
52 use atomic::AtomicU64;
53 use wheel;
54 use Error;
55 
56 use tokio_executor::park::{Park, ParkThread, Unpark};
57 
58 use std::sync::atomic::AtomicUsize;
59 use std::sync::atomic::Ordering::SeqCst;
60 use std::sync::Arc;
61 use std::time::{Duration, Instant};
62 use std::usize;
63 use std::{cmp, fmt};
64 
65 /// Timer implementation that drives [`Delay`], [`Interval`], and [`Timeout`].
66 ///
67 /// A `Timer` instance tracks the state necessary for managing time and
68 /// notifying the [`Delay`] instances once their deadlines are reached.
69 ///
70 /// It is expected that a single `Timer` instance manages many individual
71 /// [`Delay`] instances. The `Timer` implementation is thread-safe and, as such,
72 /// is able to handle callers from across threads.
73 ///
74 /// Callers do not use `Timer` directly to create [`Delay`] instances.  Instead,
75 /// [`Handle`][Handle.struct] is used. A handle for the timer instance is obtained by calling
76 /// [`handle`]. [`Handle`][Handle.struct] is the type that implements `Clone` and is `Send +
77 /// Sync`.
78 ///
79 /// After creating the `Timer` instance, the caller must repeatedly call
80 /// [`turn`]. The timer will perform no work unless [`turn`] is called
81 /// repeatedly.
82 ///
83 /// The `Timer` has a resolution of one millisecond. Any unit of time that falls
84 /// between milliseconds are rounded up to the next millisecond.
85 ///
86 /// When the `Timer` instance is dropped, any outstanding [`Delay`] instance that
87 /// has not elapsed will be notified with an error. At this point, calling
88 /// `poll` on the [`Delay`] instance will result in `Err` being returned.
89 ///
90 /// # Implementation
91 ///
92 /// `Timer` is based on the [paper by Varghese and Lauck][paper].
93 ///
94 /// A hashed timing wheel is a vector of slots, where each slot handles a time
95 /// slice. As time progresses, the timer walks over the slot for the current
96 /// instant, and processes each entry for that slot. When the timer reaches the
97 /// end of the wheel, it starts again at the beginning.
98 ///
99 /// The `Timer` implementation maintains six wheels arranged in a set of levels.
100 /// As the levels go up, the slots of the associated wheel represent larger
101 /// intervals of time. At each level, the wheel has 64 slots. Each slot covers a
102 /// range of time equal to the wheel at the lower level. At level zero, each
103 /// slot represents one millisecond of time.
104 ///
105 /// The wheels are:
106 ///
107 /// * Level 0: 64 x 1 millisecond slots.
108 /// * Level 1: 64 x 64 millisecond slots.
109 /// * Level 2: 64 x ~4 second slots.
110 /// * Level 3: 64 x ~4 minute slots.
111 /// * Level 4: 64 x ~4 hour slots.
112 /// * Level 5: 64 x ~12 day slots.
113 ///
114 /// When the timer processes entries at level zero, it will notify all the
115 /// [`Delay`] instances as their deadlines have been reached. For all higher
116 /// levels, all entries will be redistributed across the wheel at the next level
117 /// down. Eventually, as time progresses, entries will [`Delay`] instances will
118 /// either be canceled (dropped) or their associated entries will reach level
119 /// zero and be notified.
120 ///
121 /// [`Delay`]: ../struct.Delay.html
122 /// [`Interval`]: ../struct.Interval.html
123 /// [`Timeout`]: ../struct.Timeout.html
124 /// [paper]: http://www.cs.columbia.edu/~nahum/w6998/papers/ton97-timing-wheels.pdf
125 /// [`handle`]: #method.handle
126 /// [`turn`]: #method.turn
127 /// [Handle.struct]: struct.Handle.html
128 #[derive(Debug)]
129 pub struct Timer<T, N = SystemNow> {
130     /// Shared state
131     inner: Arc<Inner>,
132 
133     /// Timer wheel
134     wheel: wheel::Wheel<Stack>,
135 
136     /// Thread parker. The `Timer` park implementation delegates to this.
137     park: T,
138 
139     /// Source of "now" instances
140     now: N,
141 }
142 
143 /// Return value from the `turn` method on `Timer`.
144 ///
145 /// Currently this value doesn't actually provide any functionality, but it may
146 /// in the future give insight into what happened during `turn`.
147 #[derive(Debug)]
148 pub struct Turn(());
149 
150 /// Timer state shared between `Timer`, `Handle`, and `Registration`.
151 pub(crate) struct Inner {
152     /// The instant at which the timer started running.
153     start: Instant,
154 
155     /// The last published timer `elapsed` value.
156     elapsed: AtomicU64,
157 
158     /// Number of active timeouts
159     num: AtomicUsize,
160 
161     /// Head of the "process" linked list.
162     process: AtomicStack,
163 
164     /// Unparks the timer thread.
165     unpark: Box<dyn Unpark>,
166 }
167 
168 /// Maximum number of timeouts the system can handle concurrently.
169 const MAX_TIMEOUTS: usize = usize::MAX >> 1;
170 
171 // ===== impl Timer =====
172 
173 impl<T> Timer<T>
174 where
175     T: Park,
176 {
177     /// Create a new `Timer` instance that uses `park` to block the current
178     /// thread.
179     ///
180     /// Once the timer has been created, a handle can be obtained using
181     /// [`handle`]. The handle is used to create `Delay` instances.
182     ///
183     /// Use `default` when constructing a `Timer` using the default `park`
184     /// instance.
185     ///
186     /// [`handle`]: #method.handle
new(park: T) -> Self187     pub fn new(park: T) -> Self {
188         Timer::new_with_now(park, SystemNow::new())
189     }
190 }
191 
192 impl<T, N> Timer<T, N> {
193     /// Returns a reference to the underlying `Park` instance.
get_park(&self) -> &T194     pub fn get_park(&self) -> &T {
195         &self.park
196     }
197 
198     /// Returns a mutable reference to the underlying `Park` instance.
get_park_mut(&mut self) -> &mut T199     pub fn get_park_mut(&mut self) -> &mut T {
200         &mut self.park
201     }
202 }
203 
204 impl<T, N> Timer<T, N>
205 where
206     T: Park,
207     N: Now,
208 {
209     /// Create a new `Timer` instance that uses `park` to block the current
210     /// thread and `now` to get the current `Instant`.
211     ///
212     /// Specifying the source of time is useful when testing.
new_with_now(park: T, mut now: N) -> Self213     pub fn new_with_now(park: T, mut now: N) -> Self {
214         let unpark = Box::new(park.unpark());
215 
216         Timer {
217             inner: Arc::new(Inner::new(now.now(), unpark)),
218             wheel: wheel::Wheel::new(),
219             park,
220             now,
221         }
222     }
223 
224     /// Returns a handle to the timer.
225     ///
226     /// The `Handle` is how `Delay` instances are created. The `Delay` instances
227     /// can either be created directly or the `Handle` instance can be passed to
228     /// `with_default`, setting the timer as the default timer for the execution
229     /// context.
handle(&self) -> Handle230     pub fn handle(&self) -> Handle {
231         Handle::new(Arc::downgrade(&self.inner))
232     }
233 
234     /// Performs one iteration of the timer loop.
235     ///
236     /// This function must be called repeatedly in order for the `Timer`
237     /// instance to make progress. This is where the work happens.
238     ///
239     /// The `Timer` will use the `Park` instance that was specified in [`new`]
240     /// to block the current thread until the next `Delay` instance elapses. One
241     /// call to `turn` results in at most one call to `park.park()`.
242     ///
243     /// # Return
244     ///
245     /// On success, `Ok(Turn)` is returned, where `Turn` is a placeholder type
246     /// that currently does nothing but may, in the future, have functions add
247     /// to provide information about the call to `turn`.
248     ///
249     /// If the call to `park.park()` fails, then `Err` is returned with the
250     /// error.
251     ///
252     /// [`new`]: #method.new
turn(&mut self, max_wait: Option<Duration>) -> Result<Turn, T::Error>253     pub fn turn(&mut self, max_wait: Option<Duration>) -> Result<Turn, T::Error> {
254         match max_wait {
255             Some(timeout) => self.park_timeout(timeout)?,
256             None => self.park()?,
257         }
258 
259         Ok(Turn(()))
260     }
261 
262     /// Converts an `Expiration` to an `Instant`.
expiration_instant(&self, when: u64) -> Instant263     fn expiration_instant(&self, when: u64) -> Instant {
264         self.inner.start + Duration::from_millis(when)
265     }
266 
267     /// Run timer related logic
process(&mut self)268     fn process(&mut self) {
269         let now = ::ms(self.now.now() - self.inner.start, ::Round::Down);
270         let mut poll = wheel::Poll::new(now);
271 
272         while let Some(entry) = self.wheel.poll(&mut poll, &mut ()) {
273             let when = entry.when_internal().expect("invalid internal entry state");
274 
275             // Fire the entry
276             entry.fire(when);
277 
278             // Track that the entry has been fired
279             entry.set_when_internal(None);
280         }
281 
282         // Update the elapsed cache
283         self.inner.elapsed.store(self.wheel.elapsed(), SeqCst);
284     }
285 
286     /// Process the entry queue
287     ///
288     /// This handles adding and canceling timeouts.
process_queue(&mut self)289     fn process_queue(&mut self) {
290         for entry in self.inner.process.take() {
291             match (entry.when_internal(), entry.load_state()) {
292                 (None, None) => {
293                     // Nothing to do
294                 }
295                 (Some(_), None) => {
296                     // Remove the entry
297                     self.clear_entry(&entry);
298                 }
299                 (None, Some(when)) => {
300                     // Queue the entry
301                     self.add_entry(entry, when);
302                 }
303                 (Some(_), Some(next)) => {
304                     self.clear_entry(&entry);
305                     self.add_entry(entry, next);
306                 }
307             }
308         }
309     }
310 
clear_entry(&mut self, entry: &Arc<Entry>)311     fn clear_entry(&mut self, entry: &Arc<Entry>) {
312         self.wheel.remove(entry, &mut ());
313         entry.set_when_internal(None);
314     }
315 
316     /// Fire the entry if it needs to, otherwise queue it to be processed later.
317     ///
318     /// Returns `None` if the entry was fired.
add_entry(&mut self, entry: Arc<Entry>, when: u64)319     fn add_entry(&mut self, entry: Arc<Entry>, when: u64) {
320         use wheel::InsertError;
321 
322         entry.set_when_internal(Some(when));
323 
324         match self.wheel.insert(when, entry, &mut ()) {
325             Ok(_) => {}
326             Err((entry, InsertError::Elapsed)) => {
327                 // The entry's deadline has elapsed, so fire it and update the
328                 // internal state accordingly.
329                 entry.set_when_internal(None);
330                 entry.fire(when);
331             }
332             Err((entry, InsertError::Invalid)) => {
333                 // The entry's deadline is invalid, so error it and update the
334                 // internal state accordingly.
335                 entry.set_when_internal(None);
336                 entry.error();
337             }
338         }
339     }
340 }
341 
342 impl Default for Timer<ParkThread, SystemNow> {
default() -> Self343     fn default() -> Self {
344         Timer::new(ParkThread::new())
345     }
346 }
347 
348 impl<T, N> Park for Timer<T, N>
349 where
350     T: Park,
351     N: Now,
352 {
353     type Unpark = T::Unpark;
354     type Error = T::Error;
355 
unpark(&self) -> Self::Unpark356     fn unpark(&self) -> Self::Unpark {
357         self.park.unpark()
358     }
359 
park(&mut self) -> Result<(), Self::Error>360     fn park(&mut self) -> Result<(), Self::Error> {
361         self.process_queue();
362 
363         match self.wheel.poll_at() {
364             Some(when) => {
365                 let now = self.now.now();
366                 let deadline = self.expiration_instant(when);
367 
368                 if deadline > now {
369                     self.park.park_timeout(deadline - now)?;
370                 } else {
371                     self.park.park_timeout(Duration::from_secs(0))?;
372                 }
373             }
374             None => {
375                 self.park.park()?;
376             }
377         }
378 
379         self.process();
380 
381         Ok(())
382     }
383 
park_timeout(&mut self, duration: Duration) -> Result<(), Self::Error>384     fn park_timeout(&mut self, duration: Duration) -> Result<(), Self::Error> {
385         self.process_queue();
386 
387         match self.wheel.poll_at() {
388             Some(when) => {
389                 let now = self.now.now();
390                 let deadline = self.expiration_instant(when);
391 
392                 if deadline > now {
393                     self.park.park_timeout(cmp::min(deadline - now, duration))?;
394                 } else {
395                     self.park.park_timeout(Duration::from_secs(0))?;
396                 }
397             }
398             None => {
399                 self.park.park_timeout(duration)?;
400             }
401         }
402 
403         self.process();
404 
405         Ok(())
406     }
407 }
408 
409 impl<T, N> Drop for Timer<T, N> {
drop(&mut self)410     fn drop(&mut self) {
411         use std::u64;
412 
413         // Shutdown the stack of entries to process, preventing any new entries
414         // from being pushed.
415         self.inner.process.shutdown();
416 
417         // Clear the wheel, using u64::MAX allows us to drain everything
418         let mut poll = wheel::Poll::new(u64::MAX);
419 
420         while let Some(entry) = self.wheel.poll(&mut poll, &mut ()) {
421             entry.error();
422         }
423     }
424 }
425 
426 // ===== impl Inner =====
427 
428 impl Inner {
new(start: Instant, unpark: Box<dyn Unpark>) -> Inner429     fn new(start: Instant, unpark: Box<dyn Unpark>) -> Inner {
430         Inner {
431             num: AtomicUsize::new(0),
432             elapsed: AtomicU64::new(0),
433             process: AtomicStack::new(),
434             start,
435             unpark,
436         }
437     }
438 
elapsed(&self) -> u64439     fn elapsed(&self) -> u64 {
440         self.elapsed.load(SeqCst)
441     }
442 
443     /// Increment the number of active timeouts
increment(&self) -> Result<(), Error>444     fn increment(&self) -> Result<(), Error> {
445         let mut curr = self.num.load(SeqCst);
446 
447         loop {
448             if curr == MAX_TIMEOUTS {
449                 return Err(Error::at_capacity());
450             }
451 
452             let actual = self.num.compare_and_swap(curr, curr + 1, SeqCst);
453 
454             if curr == actual {
455                 return Ok(());
456             }
457 
458             curr = actual;
459         }
460     }
461 
462     /// Decrement the number of active timeouts
decrement(&self)463     fn decrement(&self) {
464         let prev = self.num.fetch_sub(1, SeqCst);
465         debug_assert!(prev <= MAX_TIMEOUTS);
466     }
467 
queue(&self, entry: &Arc<Entry>) -> Result<(), Error>468     fn queue(&self, entry: &Arc<Entry>) -> Result<(), Error> {
469         if self.process.push(entry)? {
470             // The timer is notified so that it can process the timeout
471             self.unpark.unpark();
472         }
473 
474         Ok(())
475     }
476 
normalize_deadline(&self, deadline: Instant) -> u64477     fn normalize_deadline(&self, deadline: Instant) -> u64 {
478         if deadline < self.start {
479             return 0;
480         }
481 
482         ::ms(deadline - self.start, ::Round::Up)
483     }
484 }
485 
486 impl fmt::Debug for Inner {
fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result487     fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
488         fmt.debug_struct("Inner").finish()
489     }
490 }
491