1 /* SHA512-based Unix crypt implementation.
2 Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>.  */
3 
4 #include "sha512crypt.h"
5 
6 #ifdef __linux__
7 	#include <endian.h>
8 #elif __hpux
9 /* Nothing to do in HP-UX */
10 #elif _AIX
11 /* Nothing to do in AIX */
12 #else
13 	#if defined(ZBX_OLD_SOLARIS)
14 		#include <sys/isa_defs.h>
15 	#else
16 		#include <machine/endian.h>
17 	#endif
18 #endif
19 #include <errno.h>
20 #include <limits.h>
21 #include <stdint.h>
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <string.h>
25 #include <sys/param.h>
26 #include <sys/types.h>
27 
28 #include "common.h"
29 
30 /* Structure to save state of computation between the single steps.  */
31 struct sha512_ctx
32 {
33 	uint64_t H[8];
34 
35 	uint64_t total[2];
36 	uint64_t buflen;
37 	char buffer[256];	/* NB: always correctly aligned for uint64_t.  */
38 };
39 
40 #if __BYTE_ORDER == __LITTLE_ENDIAN
41 # define SWAP(n) \
42 	(((n) << 56)					\
43 	| (((n) & 0xff00) << 40)			\
44 	| (((n) & 0xff0000) << 24)			\
45 	| (((n) & 0xff000000) << 8)			\
46 	| (((n) >> 8) & 0xff000000)			\
47 	| (((n) >> 24) & 0xff0000)			\
48 	| (((n) >> 40) & 0xff00)			\
49 	| ((n) >> 56))
50 #else
51 # define SWAP(n) (n)
52 #endif
53 
54 /* This array contains the bytes used to pad the buffer to the next
55 64-byte boundary.  (FIPS 180-2:5.1.2)  */
56 static const unsigned char fillbuf[128] = { 0x80, 0 /* , 0, 0, ...  */ };
57 
58 /* Constants for SHA512 from FIPS 180-2:4.2.3.  */
59 static const uint64_t K[80] =
60 {
61 	UINT64_C (0x428a2f98d728ae22), UINT64_C (0x7137449123ef65cd),
62 	UINT64_C (0xb5c0fbcfec4d3b2f), UINT64_C (0xe9b5dba58189dbbc),
63 	UINT64_C (0x3956c25bf348b538), UINT64_C (0x59f111f1b605d019),
64 	UINT64_C (0x923f82a4af194f9b), UINT64_C (0xab1c5ed5da6d8118),
65 	UINT64_C (0xd807aa98a3030242), UINT64_C (0x12835b0145706fbe),
66 	UINT64_C (0x243185be4ee4b28c), UINT64_C (0x550c7dc3d5ffb4e2),
67 	UINT64_C (0x72be5d74f27b896f), UINT64_C (0x80deb1fe3b1696b1),
68 	UINT64_C (0x9bdc06a725c71235), UINT64_C (0xc19bf174cf692694),
69 	UINT64_C (0xe49b69c19ef14ad2), UINT64_C (0xefbe4786384f25e3),
70 	UINT64_C (0x0fc19dc68b8cd5b5), UINT64_C (0x240ca1cc77ac9c65),
71 	UINT64_C (0x2de92c6f592b0275), UINT64_C (0x4a7484aa6ea6e483),
72 	UINT64_C (0x5cb0a9dcbd41fbd4), UINT64_C (0x76f988da831153b5),
73 	UINT64_C (0x983e5152ee66dfab), UINT64_C (0xa831c66d2db43210),
74 	UINT64_C (0xb00327c898fb213f), UINT64_C (0xbf597fc7beef0ee4),
75 	UINT64_C (0xc6e00bf33da88fc2), UINT64_C (0xd5a79147930aa725),
76 	UINT64_C (0x06ca6351e003826f), UINT64_C (0x142929670a0e6e70),
77 	UINT64_C (0x27b70a8546d22ffc), UINT64_C (0x2e1b21385c26c926),
78 	UINT64_C (0x4d2c6dfc5ac42aed), UINT64_C (0x53380d139d95b3df),
79 	UINT64_C (0x650a73548baf63de), UINT64_C (0x766a0abb3c77b2a8),
80 	UINT64_C (0x81c2c92e47edaee6), UINT64_C (0x92722c851482353b),
81 	UINT64_C (0xa2bfe8a14cf10364), UINT64_C (0xa81a664bbc423001),
82 	UINT64_C (0xc24b8b70d0f89791), UINT64_C (0xc76c51a30654be30),
83 	UINT64_C (0xd192e819d6ef5218), UINT64_C (0xd69906245565a910),
84 	UINT64_C (0xf40e35855771202a), UINT64_C (0x106aa07032bbd1b8),
85 	UINT64_C (0x19a4c116b8d2d0c8), UINT64_C (0x1e376c085141ab53),
86 	UINT64_C (0x2748774cdf8eeb99), UINT64_C (0x34b0bcb5e19b48a8),
87 	UINT64_C (0x391c0cb3c5c95a63), UINT64_C (0x4ed8aa4ae3418acb),
88 	UINT64_C (0x5b9cca4f7763e373), UINT64_C (0x682e6ff3d6b2b8a3),
89 	UINT64_C (0x748f82ee5defb2fc), UINT64_C (0x78a5636f43172f60),
90 	UINT64_C (0x84c87814a1f0ab72), UINT64_C (0x8cc702081a6439ec),
91 	UINT64_C (0x90befffa23631e28), UINT64_C (0xa4506cebde82bde9),
92 	UINT64_C (0xbef9a3f7b2c67915), UINT64_C (0xc67178f2e372532b),
93 	UINT64_C (0xca273eceea26619c), UINT64_C (0xd186b8c721c0c207),
94 	UINT64_C (0xeada7dd6cde0eb1e), UINT64_C (0xf57d4f7fee6ed178),
95 	UINT64_C (0x06f067aa72176fba), UINT64_C (0x0a637dc5a2c898a6),
96 	UINT64_C (0x113f9804bef90dae), UINT64_C (0x1b710b35131c471b),
97 	UINT64_C (0x28db77f523047d84), UINT64_C (0x32caab7b40c72493),
98 	UINT64_C (0x3c9ebe0a15c9bebc), UINT64_C (0x431d67c49c100d4c),
99 	UINT64_C (0x4cc5d4becb3e42b6), UINT64_C (0x597f299cfc657e2a),
100 	UINT64_C (0x5fcb6fab3ad6faec), UINT64_C (0x6c44198c4a475817)
101 };
102 
103 /* Process LEN bytes of BUFFER, accumulating context into CTX.
104 It is assumed that LEN % 128 == 0.  */
105 static void
sha512_process_block(const void * buffer,size_t len,struct sha512_ctx * ctx)106 sha512_process_block (const void *buffer, size_t len, struct sha512_ctx *ctx)
107 {
108 	const uint64_t *words = buffer;
109 	size_t nwords = len / sizeof (uint64_t);
110 	uint64_t a = ctx->H[0];
111 	uint64_t b = ctx->H[1];
112 	uint64_t c = ctx->H[2];
113 	uint64_t d = ctx->H[3];
114 	uint64_t e = ctx->H[4];
115 	uint64_t f = ctx->H[5];
116 	uint64_t g = ctx->H[6];
117 	uint64_t h = ctx->H[7];
118 
119 /* First increment the byte count.  FIPS 180-2 specifies the possible
120 length of the file up to 2^128 bits.  Here we only compute the
121 number of bytes.  Do a double word increment.  */
122 	ctx->total[0] += len;
123 	if (ctx->total[0] < len)
124 		++ctx->total[1];
125 
126 /* Process all bytes in the buffer with 128 bytes in each round of
127 the loop.  */
128 	while (nwords > 0)
129 	{
130 		uint64_t W[80];
131 		uint64_t a_save = a;
132 		uint64_t b_save = b;
133 		uint64_t c_save = c;
134 		uint64_t d_save = d;
135 		uint64_t e_save = e;
136 		uint64_t f_save = f;
137 		uint64_t g_save = g;
138 		uint64_t h_save = h;
139 
140 /* Operators defined in FIPS 180-2:4.1.2.  */
141 #define Ch(x, y, z) ((x & y) ^ (~x & z))
142 #define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
143 #define S0(x) (CYCLIC (x, 28) ^ CYCLIC (x, 34) ^ CYCLIC (x, 39))
144 #define S1(x) (CYCLIC (x, 14) ^ CYCLIC (x, 18) ^ CYCLIC (x, 41))
145 #define R0(x) (CYCLIC (x, 1) ^ CYCLIC (x, 8) ^ (x >> 7))
146 #define R1(x) (CYCLIC (x, 19) ^ CYCLIC (x, 61) ^ (x >> 6))
147 
148 /* It is unfortunate that C does not provide an operator for
149 cyclic rotation.  Hope the C compiler is smart enough.  */
150 #define CYCLIC(w, s) ((w >> s) | (w << (64 - s)))
151 
152 		/* Compute the message schedule according to FIPS 180-2:6.3.2 step 2.  */
153 		unsigned int t = 0;
154 		for (t = 0; t < 16; ++t)
155 		{
156 			W[t] = SWAP (*words);
157 			++words;
158 		}
159 		for (t = 16; t < 80; ++t)
160 			W[t] = R1 (W[t - 2]) + W[t - 7] + R0 (W[t - 15]) + W[t - 16];
161 
162 		/* The actual computation according to FIPS 180-2:6.3.2 step 3.  */
163 		for (t = 0; t < 80; ++t)
164 		{
165 			uint64_t T1 = h + S1 (e) + Ch (e, f, g) + K[t] + W[t];
166 			uint64_t T2 = S0 (a) + Maj (a, b, c);
167 			h = g;
168 			g = f;
169 			f = e;
170 			e = d + T1;
171 			d = c;
172 			c = b;
173 			b = a;
174 			a = T1 + T2;
175 		}
176 
177 		/* Add the starting values of the context according to FIPS 180-2:6.3.2 step 4.  */
178 		a += a_save;
179 		b += b_save;
180 		c += c_save;
181 		d += d_save;
182 		e += e_save;
183 		f += f_save;
184 		g += g_save;
185 		h += h_save;
186 
187 		/* Prepare for the next round.  */
188 		nwords -= 16;
189 	}
190 
191 	/* Put checksum in context given as argument.  */
192 	ctx->H[0] = a;
193 	ctx->H[1] = b;
194 	ctx->H[2] = c;
195 	ctx->H[3] = d;
196 	ctx->H[4] = e;
197 	ctx->H[5] = f;
198 	ctx->H[6] = g;
199 	ctx->H[7] = h;
200 }
201 
202 /* Initialize structure containing state of computation.
203 (FIPS 180-2:5.3.3)  */
204 static void
sha512_init_ctx(struct sha512_ctx * ctx)205 sha512_init_ctx (struct sha512_ctx *ctx)
206 {
207 	ctx->H[0] = UINT64_C (0x6a09e667f3bcc908);
208 	ctx->H[1] = UINT64_C (0xbb67ae8584caa73b);
209 	ctx->H[2] = UINT64_C (0x3c6ef372fe94f82b);
210 	ctx->H[3] = UINT64_C (0xa54ff53a5f1d36f1);
211 	ctx->H[4] = UINT64_C (0x510e527fade682d1);
212 	ctx->H[5] = UINT64_C (0x9b05688c2b3e6c1f);
213 	ctx->H[6] = UINT64_C (0x1f83d9abfb41bd6b);
214 	ctx->H[7] = UINT64_C (0x5be0cd19137e2179);
215 
216 	ctx->total[0] = ctx->total[1] = 0;
217 	ctx->buflen = 0;
218 }
219 
220 /* Process the remaining bytes in the internal buffer and the usual
221 prolog according to the standard and write the result to RESBUF.
222 
223 IMPORTANT: On some systems it is required that RESBUF is correctly
224 aligned for a 32 bits value.  */
225 static void *
sha512_finish_ctx(struct sha512_ctx * ctx,void * resbuf)226 sha512_finish_ctx (struct sha512_ctx *ctx, void *resbuf)
227 {
228 	/* Take yet unprocessed bytes into account.  */
229 	uint64_t bytes = ctx->buflen;
230 	unsigned int i = 0;
231 	size_t pad;
232 
233 	/* Now count remaining bytes.  */
234 	ctx->total[0] += bytes;
235 	if (ctx->total[0] < bytes)
236 		++ctx->total[1];
237 
238 	pad = bytes >= 112 ? 128 + 112 - bytes : 112 - bytes;
239 	memcpy (&ctx->buffer[bytes], fillbuf, pad);
240 
241 	/* Put the 128-bit file length in *bits* at the end of the buffer.  */
242 	*(uint64_t *) &ctx->buffer[bytes + pad + 8] = SWAP (ctx->total[0] << 3);
243 	*(uint64_t *) &ctx->buffer[bytes + pad] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 61));
244 
245 	/* Process last bytes.  */
246 	sha512_process_block (ctx->buffer, bytes + pad + 16, ctx);
247 
248 	/* Put result from CTX in first 64 bytes following RESBUF.  */
249 	for (i = 0; i < 8; ++i)
250 		((uint64_t *) resbuf)[i] = SWAP (ctx->H[i]);
251 
252 	return resbuf;
253 }
254 
255 
256 static void
sha512_process_bytes(const void * buffer,size_t len,struct sha512_ctx * ctx)257 sha512_process_bytes (const void *buffer, size_t len, struct sha512_ctx *ctx)
258 {
259 	/* When we already have some bits in our internal buffer concatenate
260 	both inputs first.  */
261 	if (ctx->buflen != 0)
262 	{
263 		size_t left_over = ctx->buflen;
264 		size_t add = 256 - left_over > len ? len : 256 - left_over;
265 
266 		memcpy (&ctx->buffer[left_over], buffer, add);
267 		ctx->buflen += add;
268 
269 		if (ctx->buflen > 128)
270 		{
271 			sha512_process_block (ctx->buffer, ctx->buflen & ~127, ctx);
272 
273 			ctx->buflen &= 127;
274 			/* The regions in the following copy operation cannot overlap.  */
275 			memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~127],
276 			ctx->buflen);
277 		}
278 
279 		buffer = (const char *) buffer + add;
280 		len -= add;
281 	}
282 
283 	/* Process available complete blocks.  */
284 	if (len >= 128)
285 	{
286 #if !_STRING_ARCH_unaligned
287 	/* To check alignment gcc has an appropriate operator.  Other
288 	compilers don't.  */
289 # if __GNUC__ >= 2
290 #  define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint64_t) != 0)
291 # else
292 #  define UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint64_t) != 0)
293 # endif
294 		if (UNALIGNED_P (buffer))
295 			while (len > 128)
296 			{
297 				sha512_process_block (memcpy (ctx->buffer, buffer, 128), 128, ctx);
298 				buffer = (const char *) buffer + 128;
299 				len -= 128;
300 			}
301 		else
302 #endif
303 		{
304 			sha512_process_block (buffer, len & ~127, ctx);
305 			buffer = (const char *) buffer + (len & ~127);
306 			len &= 127;
307 		}
308 	}
309 
310 	/* Move remaining bytes into internal buffer.  */
311 	if (len > 0)
312 	{
313 		size_t left_over = ctx->buflen;
314 
315 		memcpy (&ctx->buffer[left_over], buffer, len);
316 		left_over += len;
317 		if (left_over >= 128)
318 		{
319 			sha512_process_block (ctx->buffer, 128, ctx);
320 			left_over -= 128;
321 			memmove (ctx->buffer, &ctx->buffer[128], left_over);
322 		}
323 		ctx->buflen = left_over;
324 	}
325 }
326 
327 /* Maximum salt string length.  */
328 #define SALT_LEN_MAX 16
329 /* Default number of rounds if not explicitly specified.  */
330 #define ROUNDS_DEFAULT 5000
331 /* Minimum number of rounds.  */
332 #define ROUNDS_MIN 1000
333 /* Maximum number of rounds.  */
334 #define ROUNDS_MAX 999999999
335 
zbx_sha512_hash(const char * in,char * out)336 void zbx_sha512_hash(const char *in, char *out)
337 {
338 	struct	sha512_ctx ctx;
339 	sha512_init_ctx (&ctx);
340 	sha512_process_bytes (in, strlen (in), &ctx);
341 	sha512_finish_ctx (&ctx, out);
342 }
343