1 // Copyright (c) 2015-2020 The Bitcoin Core developers
2 // Distributed under the MIT software license, see the accompanying
3 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
4 
5 #include <consensus/merkle.h>
6 #include <test/util/setup_common.h>
7 
8 #include <boost/test/unit_test.hpp>
9 
BOOST_FIXTURE_TEST_SUITE(merkle_tests,TestingSetup)10 BOOST_FIXTURE_TEST_SUITE(merkle_tests, TestingSetup)
11 
12 static uint256 ComputeMerkleRootFromBranch(const uint256& leaf, const std::vector<uint256>& vMerkleBranch, uint32_t nIndex) {
13     uint256 hash = leaf;
14     for (std::vector<uint256>::const_iterator it = vMerkleBranch.begin(); it != vMerkleBranch.end(); ++it) {
15         if (nIndex & 1) {
16             hash = Hash(*it, hash);
17         } else {
18             hash = Hash(hash, *it);
19         }
20         nIndex >>= 1;
21     }
22     return hash;
23 }
24 
25 /* This implements a constant-space merkle root/path calculator, limited to 2^32 leaves. */
MerkleComputation(const std::vector<uint256> & leaves,uint256 * proot,bool * pmutated,uint32_t branchpos,std::vector<uint256> * pbranch)26 static void MerkleComputation(const std::vector<uint256>& leaves, uint256* proot, bool* pmutated, uint32_t branchpos, std::vector<uint256>* pbranch) {
27     if (pbranch) pbranch->clear();
28     if (leaves.size() == 0) {
29         if (pmutated) *pmutated = false;
30         if (proot) *proot = uint256();
31         return;
32     }
33     bool mutated = false;
34     // count is the number of leaves processed so far.
35     uint32_t count = 0;
36     // inner is an array of eagerly computed subtree hashes, indexed by tree
37     // level (0 being the leaves).
38     // For example, when count is 25 (11001 in binary), inner[4] is the hash of
39     // the first 16 leaves, inner[3] of the next 8 leaves, and inner[0] equal to
40     // the last leaf. The other inner entries are undefined.
41     uint256 inner[32];
42     // Which position in inner is a hash that depends on the matching leaf.
43     int matchlevel = -1;
44     // First process all leaves into 'inner' values.
45     while (count < leaves.size()) {
46         uint256 h = leaves[count];
47         bool matchh = count == branchpos;
48         count++;
49         int level;
50         // For each of the lower bits in count that are 0, do 1 step. Each
51         // corresponds to an inner value that existed before processing the
52         // current leaf, and each needs a hash to combine it.
53         for (level = 0; !(count & (((uint32_t)1) << level)); level++) {
54             if (pbranch) {
55                 if (matchh) {
56                     pbranch->push_back(inner[level]);
57                 } else if (matchlevel == level) {
58                     pbranch->push_back(h);
59                     matchh = true;
60                 }
61             }
62             mutated |= (inner[level] == h);
63             CHash256().Write(inner[level]).Write(h).Finalize(h);
64         }
65         // Store the resulting hash at inner position level.
66         inner[level] = h;
67         if (matchh) {
68             matchlevel = level;
69         }
70     }
71     // Do a final 'sweep' over the rightmost branch of the tree to process
72     // odd levels, and reduce everything to a single top value.
73     // Level is the level (counted from the bottom) up to which we've sweeped.
74     int level = 0;
75     // As long as bit number level in count is zero, skip it. It means there
76     // is nothing left at this level.
77     while (!(count & (((uint32_t)1) << level))) {
78         level++;
79     }
80     uint256 h = inner[level];
81     bool matchh = matchlevel == level;
82     while (count != (((uint32_t)1) << level)) {
83         // If we reach this point, h is an inner value that is not the top.
84         // We combine it with itself (Bitcoin's special rule for odd levels in
85         // the tree) to produce a higher level one.
86         if (pbranch && matchh) {
87             pbranch->push_back(h);
88         }
89         CHash256().Write(h).Write(h).Finalize(h);
90         // Increment count to the value it would have if two entries at this
91         // level had existed.
92         count += (((uint32_t)1) << level);
93         level++;
94         // And propagate the result upwards accordingly.
95         while (!(count & (((uint32_t)1) << level))) {
96             if (pbranch) {
97                 if (matchh) {
98                     pbranch->push_back(inner[level]);
99                 } else if (matchlevel == level) {
100                     pbranch->push_back(h);
101                     matchh = true;
102                 }
103             }
104             CHash256().Write(inner[level]).Write(h).Finalize(h);
105             level++;
106         }
107     }
108     // Return result.
109     if (pmutated) *pmutated = mutated;
110     if (proot) *proot = h;
111 }
112 
ComputeMerkleBranch(const std::vector<uint256> & leaves,uint32_t position)113 static std::vector<uint256> ComputeMerkleBranch(const std::vector<uint256>& leaves, uint32_t position) {
114     std::vector<uint256> ret;
115     MerkleComputation(leaves, nullptr, nullptr, position, &ret);
116     return ret;
117 }
118 
BlockMerkleBranch(const CBlock & block,uint32_t position)119 static std::vector<uint256> BlockMerkleBranch(const CBlock& block, uint32_t position)
120 {
121     std::vector<uint256> leaves;
122     leaves.resize(block.vtx.size());
123     for (size_t s = 0; s < block.vtx.size(); s++) {
124         leaves[s] = block.vtx[s]->GetHash();
125     }
126     return ComputeMerkleBranch(leaves, position);
127 }
128 
129 // Older version of the merkle root computation code, for comparison.
BlockBuildMerkleTree(const CBlock & block,bool * fMutated,std::vector<uint256> & vMerkleTree)130 static uint256 BlockBuildMerkleTree(const CBlock& block, bool* fMutated, std::vector<uint256>& vMerkleTree)
131 {
132     vMerkleTree.clear();
133     vMerkleTree.reserve(block.vtx.size() * 2 + 16); // Safe upper bound for the number of total nodes.
134     for (std::vector<CTransactionRef>::const_iterator it(block.vtx.begin()); it != block.vtx.end(); ++it)
135         vMerkleTree.push_back((*it)->GetHash());
136     int j = 0;
137     bool mutated = false;
138     for (int nSize = block.vtx.size(); nSize > 1; nSize = (nSize + 1) / 2)
139     {
140         for (int i = 0; i < nSize; i += 2)
141         {
142             int i2 = std::min(i+1, nSize-1);
143             if (i2 == i + 1 && i2 + 1 == nSize && vMerkleTree[j+i] == vMerkleTree[j+i2]) {
144                 // Two identical hashes at the end of the list at a particular level.
145                 mutated = true;
146             }
147             vMerkleTree.push_back(Hash(vMerkleTree[j+i], vMerkleTree[j+i2]));
148         }
149         j += nSize;
150     }
151     if (fMutated) {
152         *fMutated = mutated;
153     }
154     return (vMerkleTree.empty() ? uint256() : vMerkleTree.back());
155 }
156 
157 // Older version of the merkle branch computation code, for comparison.
BlockGetMerkleBranch(const CBlock & block,const std::vector<uint256> & vMerkleTree,int nIndex)158 static std::vector<uint256> BlockGetMerkleBranch(const CBlock& block, const std::vector<uint256>& vMerkleTree, int nIndex)
159 {
160     std::vector<uint256> vMerkleBranch;
161     int j = 0;
162     for (int nSize = block.vtx.size(); nSize > 1; nSize = (nSize + 1) / 2)
163     {
164         int i = std::min(nIndex^1, nSize-1);
165         vMerkleBranch.push_back(vMerkleTree[j+i]);
166         nIndex >>= 1;
167         j += nSize;
168     }
169     return vMerkleBranch;
170 }
171 
ctz(uint32_t i)172 static inline int ctz(uint32_t i) {
173     if (i == 0) return 0;
174     int j = 0;
175     while (!(i & 1)) {
176         j++;
177         i >>= 1;
178     }
179     return j;
180 }
181 
BOOST_AUTO_TEST_CASE(merkle_test)182 BOOST_AUTO_TEST_CASE(merkle_test)
183 {
184     for (int i = 0; i < 32; i++) {
185         // Try 32 block sizes: all sizes from 0 to 16 inclusive, and then 15 random sizes.
186         int ntx = (i <= 16) ? i : 17 + (InsecureRandRange(4000));
187         // Try up to 3 mutations.
188         for (int mutate = 0; mutate <= 3; mutate++) {
189             int duplicate1 = mutate >= 1 ? 1 << ctz(ntx) : 0; // The last how many transactions to duplicate first.
190             if (duplicate1 >= ntx) break; // Duplication of the entire tree results in a different root (it adds a level).
191             int ntx1 = ntx + duplicate1; // The resulting number of transactions after the first duplication.
192             int duplicate2 = mutate >= 2 ? 1 << ctz(ntx1) : 0; // Likewise for the second mutation.
193             if (duplicate2 >= ntx1) break;
194             int ntx2 = ntx1 + duplicate2;
195             int duplicate3 = mutate >= 3 ? 1 << ctz(ntx2) : 0; // And for the third mutation.
196             if (duplicate3 >= ntx2) break;
197             int ntx3 = ntx2 + duplicate3;
198             // Build a block with ntx different transactions.
199             CBlock block;
200             block.vtx.resize(ntx);
201             for (int j = 0; j < ntx; j++) {
202                 CMutableTransaction mtx;
203                 mtx.nLockTime = j;
204                 block.vtx[j] = MakeTransactionRef(std::move(mtx));
205             }
206             // Compute the root of the block before mutating it.
207             bool unmutatedMutated = false;
208             uint256 unmutatedRoot = BlockMerkleRoot(block, &unmutatedMutated);
209             BOOST_CHECK(unmutatedMutated == false);
210             // Optionally mutate by duplicating the last transactions, resulting in the same merkle root.
211             block.vtx.resize(ntx3);
212             for (int j = 0; j < duplicate1; j++) {
213                 block.vtx[ntx + j] = block.vtx[ntx + j - duplicate1];
214             }
215             for (int j = 0; j < duplicate2; j++) {
216                 block.vtx[ntx1 + j] = block.vtx[ntx1 + j - duplicate2];
217             }
218             for (int j = 0; j < duplicate3; j++) {
219                 block.vtx[ntx2 + j] = block.vtx[ntx2 + j - duplicate3];
220             }
221             // Compute the merkle root and merkle tree using the old mechanism.
222             bool oldMutated = false;
223             std::vector<uint256> merkleTree;
224             uint256 oldRoot = BlockBuildMerkleTree(block, &oldMutated, merkleTree);
225             // Compute the merkle root using the new mechanism.
226             bool newMutated = false;
227             uint256 newRoot = BlockMerkleRoot(block, &newMutated);
228             BOOST_CHECK(oldRoot == newRoot);
229             BOOST_CHECK(newRoot == unmutatedRoot);
230             BOOST_CHECK((newRoot == uint256()) == (ntx == 0));
231             BOOST_CHECK(oldMutated == newMutated);
232             BOOST_CHECK(newMutated == !!mutate);
233             // If no mutation was done (once for every ntx value), try up to 16 branches.
234             if (mutate == 0) {
235                 for (int loop = 0; loop < std::min(ntx, 16); loop++) {
236                     // If ntx <= 16, try all branches. Otherwise, try 16 random ones.
237                     int mtx = loop;
238                     if (ntx > 16) {
239                         mtx = InsecureRandRange(ntx);
240                     }
241                     std::vector<uint256> newBranch = BlockMerkleBranch(block, mtx);
242                     std::vector<uint256> oldBranch = BlockGetMerkleBranch(block, merkleTree, mtx);
243                     BOOST_CHECK(oldBranch == newBranch);
244                     BOOST_CHECK(ComputeMerkleRootFromBranch(block.vtx[mtx]->GetHash(), newBranch, mtx) == oldRoot);
245                 }
246             }
247         }
248     }
249 }
250 
251 
BOOST_AUTO_TEST_CASE(merkle_test_empty_block)252 BOOST_AUTO_TEST_CASE(merkle_test_empty_block)
253 {
254     bool mutated = false;
255     CBlock block;
256     uint256 root = BlockMerkleRoot(block, &mutated);
257 
258     BOOST_CHECK_EQUAL(root.IsNull(), true);
259     BOOST_CHECK_EQUAL(mutated, false);
260 }
261 
BOOST_AUTO_TEST_CASE(merkle_test_oneTx_block)262 BOOST_AUTO_TEST_CASE(merkle_test_oneTx_block)
263 {
264     bool mutated = false;
265     CBlock block;
266 
267     block.vtx.resize(1);
268     CMutableTransaction mtx;
269     mtx.nLockTime = 0;
270     block.vtx[0] = MakeTransactionRef(std::move(mtx));
271     uint256 root = BlockMerkleRoot(block, &mutated);
272     BOOST_CHECK_EQUAL(root, block.vtx[0]->GetHash());
273     BOOST_CHECK_EQUAL(mutated, false);
274 }
275 
BOOST_AUTO_TEST_CASE(merkle_test_OddTxWithRepeatedLastTx_block)276 BOOST_AUTO_TEST_CASE(merkle_test_OddTxWithRepeatedLastTx_block)
277 {
278     bool mutated;
279     CBlock block, blockWithRepeatedLastTx;
280 
281     block.vtx.resize(3);
282 
283     for (std::size_t pos = 0; pos < block.vtx.size(); pos++) {
284         CMutableTransaction mtx;
285         mtx.nLockTime = pos;
286         block.vtx[pos] = MakeTransactionRef(std::move(mtx));
287     }
288 
289     blockWithRepeatedLastTx = block;
290     blockWithRepeatedLastTx.vtx.push_back(blockWithRepeatedLastTx.vtx.back());
291 
292     uint256 rootofBlock = BlockMerkleRoot(block, &mutated);
293     BOOST_CHECK_EQUAL(mutated, false);
294 
295     uint256 rootofBlockWithRepeatedLastTx = BlockMerkleRoot(blockWithRepeatedLastTx, &mutated);
296     BOOST_CHECK_EQUAL(rootofBlock, rootofBlockWithRepeatedLastTx);
297     BOOST_CHECK_EQUAL(mutated, true);
298 }
299 
BOOST_AUTO_TEST_CASE(merkle_test_LeftSubtreeRightSubtree)300 BOOST_AUTO_TEST_CASE(merkle_test_LeftSubtreeRightSubtree)
301 {
302     CBlock block, leftSubtreeBlock, rightSubtreeBlock;
303 
304     block.vtx.resize(4);
305     std::size_t pos;
306     for (pos = 0; pos < block.vtx.size(); pos++) {
307         CMutableTransaction mtx;
308         mtx.nLockTime = pos;
309         block.vtx[pos] = MakeTransactionRef(std::move(mtx));
310     }
311 
312     for (pos = 0; pos < block.vtx.size() / 2; pos++)
313         leftSubtreeBlock.vtx.push_back(block.vtx[pos]);
314 
315     for (pos = block.vtx.size() / 2; pos < block.vtx.size(); pos++)
316         rightSubtreeBlock.vtx.push_back(block.vtx[pos]);
317 
318     uint256 root = BlockMerkleRoot(block);
319     uint256 rootOfLeftSubtree = BlockMerkleRoot(leftSubtreeBlock);
320     uint256 rootOfRightSubtree = BlockMerkleRoot(rightSubtreeBlock);
321     std::vector<uint256> leftRight;
322     leftRight.push_back(rootOfLeftSubtree);
323     leftRight.push_back(rootOfRightSubtree);
324     uint256 rootOfLR = ComputeMerkleRoot(leftRight);
325 
326     BOOST_CHECK_EQUAL(root, rootOfLR);
327 }
328 
BOOST_AUTO_TEST_CASE(merkle_test_BlockWitness)329 BOOST_AUTO_TEST_CASE(merkle_test_BlockWitness)
330 {
331     CBlock block;
332 
333     block.vtx.resize(2);
334     for (std::size_t pos = 0; pos < block.vtx.size(); pos++) {
335         CMutableTransaction mtx;
336         mtx.nLockTime = pos;
337         block.vtx[pos] = MakeTransactionRef(std::move(mtx));
338     }
339 
340     uint256 blockWitness = BlockWitnessMerkleRoot(block);
341 
342     std::vector<uint256> hashes;
343     hashes.resize(block.vtx.size());
344     hashes[0].SetNull();
345     hashes[1] = block.vtx[1]->GetHash();
346 
347     uint256 merkleRootofHashes = ComputeMerkleRoot(hashes);
348 
349     BOOST_CHECK_EQUAL(merkleRootofHashes, blockWitness);
350 }
351 BOOST_AUTO_TEST_SUITE_END()
352