1 /***********************************************************************
2  * Copyright (c) 2013-2015 Pieter Wuille                               *
3  * Distributed under the MIT software license, see the accompanying    *
4  * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5  ***********************************************************************/
6 
7 
8 #ifndef SECP256K1_ECDSA_IMPL_H
9 #define SECP256K1_ECDSA_IMPL_H
10 
11 #include "scalar.h"
12 #include "field.h"
13 #include "group.h"
14 #include "ecmult.h"
15 #include "ecmult_gen.h"
16 #include "ecdsa.h"
17 
18 /** Group order for secp256k1 defined as 'n' in "Standards for Efficient Cryptography" (SEC2) 2.7.1
19  *  sage: for t in xrange(1023, -1, -1):
20  *     ..   p = 2**256 - 2**32 - t
21  *     ..   if p.is_prime():
22  *     ..     print '%x'%p
23  *     ..     break
24  *   'fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f'
25  *  sage: a = 0
26  *  sage: b = 7
27  *  sage: F = FiniteField (p)
28  *  sage: '%x' % (EllipticCurve ([F (a), F (b)]).order())
29  *   'fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141'
30  */
31 static const secp256k1_fe secp256k1_ecdsa_const_order_as_fe = SECP256K1_FE_CONST(
32     0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
33     0xBAAEDCE6UL, 0xAF48A03BUL, 0xBFD25E8CUL, 0xD0364141UL
34 );
35 
36 /** Difference between field and order, values 'p' and 'n' values defined in
37  *  "Standards for Efficient Cryptography" (SEC2) 2.7.1.
38  *  sage: p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
39  *  sage: a = 0
40  *  sage: b = 7
41  *  sage: F = FiniteField (p)
42  *  sage: '%x' % (p - EllipticCurve ([F (a), F (b)]).order())
43  *   '14551231950b75fc4402da1722fc9baee'
44  */
45 static const secp256k1_fe secp256k1_ecdsa_const_p_minus_order = SECP256K1_FE_CONST(
46     0, 0, 0, 1, 0x45512319UL, 0x50B75FC4UL, 0x402DA172UL, 0x2FC9BAEEUL
47 );
48 
secp256k1_der_read_len(size_t * len,const unsigned char ** sigp,const unsigned char * sigend)49 static int secp256k1_der_read_len(size_t *len, const unsigned char **sigp, const unsigned char *sigend) {
50     size_t lenleft;
51     unsigned char b1;
52     VERIFY_CHECK(len != NULL);
53     *len = 0;
54     if (*sigp >= sigend) {
55         return 0;
56     }
57     b1 = *((*sigp)++);
58     if (b1 == 0xFF) {
59         /* X.690-0207 8.1.3.5.c the value 0xFF shall not be used. */
60         return 0;
61     }
62     if ((b1 & 0x80) == 0) {
63         /* X.690-0207 8.1.3.4 short form length octets */
64         *len = b1;
65         return 1;
66     }
67     if (b1 == 0x80) {
68         /* Indefinite length is not allowed in DER. */
69         return 0;
70     }
71     /* X.690-207 8.1.3.5 long form length octets */
72     lenleft = b1 & 0x7F; /* lenleft is at least 1 */
73     if (lenleft > (size_t)(sigend - *sigp)) {
74         return 0;
75     }
76     if (**sigp == 0) {
77         /* Not the shortest possible length encoding. */
78         return 0;
79     }
80     if (lenleft > sizeof(size_t)) {
81         /* The resulting length would exceed the range of a size_t, so
82          * certainly longer than the passed array size.
83          */
84         return 0;
85     }
86     while (lenleft > 0) {
87         *len = (*len << 8) | **sigp;
88         (*sigp)++;
89         lenleft--;
90     }
91     if (*len > (size_t)(sigend - *sigp)) {
92         /* Result exceeds the length of the passed array. */
93         return 0;
94     }
95     if (*len < 128) {
96         /* Not the shortest possible length encoding. */
97         return 0;
98     }
99     return 1;
100 }
101 
secp256k1_der_parse_integer(secp256k1_scalar * r,const unsigned char ** sig,const unsigned char * sigend)102 static int secp256k1_der_parse_integer(secp256k1_scalar *r, const unsigned char **sig, const unsigned char *sigend) {
103     int overflow = 0;
104     unsigned char ra[32] = {0};
105     size_t rlen;
106 
107     if (*sig == sigend || **sig != 0x02) {
108         /* Not a primitive integer (X.690-0207 8.3.1). */
109         return 0;
110     }
111     (*sig)++;
112     if (secp256k1_der_read_len(&rlen, sig, sigend) == 0) {
113         return 0;
114     }
115     if (rlen == 0 || *sig + rlen > sigend) {
116         /* Exceeds bounds or not at least length 1 (X.690-0207 8.3.1).  */
117         return 0;
118     }
119     if (**sig == 0x00 && rlen > 1 && (((*sig)[1]) & 0x80) == 0x00) {
120         /* Excessive 0x00 padding. */
121         return 0;
122     }
123     if (**sig == 0xFF && rlen > 1 && (((*sig)[1]) & 0x80) == 0x80) {
124         /* Excessive 0xFF padding. */
125         return 0;
126     }
127     if ((**sig & 0x80) == 0x80) {
128         /* Negative. */
129         overflow = 1;
130     }
131     /* There is at most one leading zero byte:
132      * if there were two leading zero bytes, we would have failed and returned 0
133      * because of excessive 0x00 padding already. */
134     if (rlen > 0 && **sig == 0) {
135         /* Skip leading zero byte */
136         rlen--;
137         (*sig)++;
138     }
139     if (rlen > 32) {
140         overflow = 1;
141     }
142     if (!overflow) {
143         memcpy(ra + 32 - rlen, *sig, rlen);
144         secp256k1_scalar_set_b32(r, ra, &overflow);
145     }
146     if (overflow) {
147         secp256k1_scalar_set_int(r, 0);
148     }
149     (*sig) += rlen;
150     return 1;
151 }
152 
secp256k1_ecdsa_sig_parse(secp256k1_scalar * rr,secp256k1_scalar * rs,const unsigned char * sig,size_t size)153 static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *rr, secp256k1_scalar *rs, const unsigned char *sig, size_t size) {
154     const unsigned char *sigend = sig + size;
155     size_t rlen;
156     if (sig == sigend || *(sig++) != 0x30) {
157         /* The encoding doesn't start with a constructed sequence (X.690-0207 8.9.1). */
158         return 0;
159     }
160     if (secp256k1_der_read_len(&rlen, &sig, sigend) == 0) {
161         return 0;
162     }
163     if (rlen != (size_t)(sigend - sig)) {
164         /* Tuple exceeds bounds or garage after tuple. */
165         return 0;
166     }
167 
168     if (!secp256k1_der_parse_integer(rr, &sig, sigend)) {
169         return 0;
170     }
171     if (!secp256k1_der_parse_integer(rs, &sig, sigend)) {
172         return 0;
173     }
174 
175     if (sig != sigend) {
176         /* Trailing garbage inside tuple. */
177         return 0;
178     }
179 
180     return 1;
181 }
182 
secp256k1_ecdsa_sig_serialize(unsigned char * sig,size_t * size,const secp256k1_scalar * ar,const secp256k1_scalar * as)183 static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar* ar, const secp256k1_scalar* as) {
184     unsigned char r[33] = {0}, s[33] = {0};
185     unsigned char *rp = r, *sp = s;
186     size_t lenR = 33, lenS = 33;
187     secp256k1_scalar_get_b32(&r[1], ar);
188     secp256k1_scalar_get_b32(&s[1], as);
189     while (lenR > 1 && rp[0] == 0 && rp[1] < 0x80) { lenR--; rp++; }
190     while (lenS > 1 && sp[0] == 0 && sp[1] < 0x80) { lenS--; sp++; }
191     if (*size < 6+lenS+lenR) {
192         *size = 6 + lenS + lenR;
193         return 0;
194     }
195     *size = 6 + lenS + lenR;
196     sig[0] = 0x30;
197     sig[1] = 4 + lenS + lenR;
198     sig[2] = 0x02;
199     sig[3] = lenR;
200     memcpy(sig+4, rp, lenR);
201     sig[4+lenR] = 0x02;
202     sig[5+lenR] = lenS;
203     memcpy(sig+lenR+6, sp, lenS);
204     return 1;
205 }
206 
secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context * ctx,const secp256k1_scalar * sigr,const secp256k1_scalar * sigs,const secp256k1_ge * pubkey,const secp256k1_scalar * message)207 static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const secp256k1_scalar *sigr, const secp256k1_scalar *sigs, const secp256k1_ge *pubkey, const secp256k1_scalar *message) {
208     unsigned char c[32];
209     secp256k1_scalar sn, u1, u2;
210 #if !defined(EXHAUSTIVE_TEST_ORDER)
211     secp256k1_fe xr;
212 #endif
213     secp256k1_gej pubkeyj;
214     secp256k1_gej pr;
215 
216     if (secp256k1_scalar_is_zero(sigr) || secp256k1_scalar_is_zero(sigs)) {
217         return 0;
218     }
219 
220     secp256k1_scalar_inverse_var(&sn, sigs);
221     secp256k1_scalar_mul(&u1, &sn, message);
222     secp256k1_scalar_mul(&u2, &sn, sigr);
223     secp256k1_gej_set_ge(&pubkeyj, pubkey);
224     secp256k1_ecmult(ctx, &pr, &pubkeyj, &u2, &u1);
225     if (secp256k1_gej_is_infinity(&pr)) {
226         return 0;
227     }
228 
229 #if defined(EXHAUSTIVE_TEST_ORDER)
230 {
231     secp256k1_scalar computed_r;
232     secp256k1_ge pr_ge;
233     secp256k1_ge_set_gej(&pr_ge, &pr);
234     secp256k1_fe_normalize(&pr_ge.x);
235 
236     secp256k1_fe_get_b32(c, &pr_ge.x);
237     secp256k1_scalar_set_b32(&computed_r, c, NULL);
238     return secp256k1_scalar_eq(sigr, &computed_r);
239 }
240 #else
241     secp256k1_scalar_get_b32(c, sigr);
242     secp256k1_fe_set_b32(&xr, c);
243 
244     /** We now have the recomputed R point in pr, and its claimed x coordinate (modulo n)
245      *  in xr. Naively, we would extract the x coordinate from pr (requiring a inversion modulo p),
246      *  compute the remainder modulo n, and compare it to xr. However:
247      *
248      *        xr == X(pr) mod n
249      *    <=> exists h. (xr + h * n < p && xr + h * n == X(pr))
250      *    [Since 2 * n > p, h can only be 0 or 1]
251      *    <=> (xr == X(pr)) || (xr + n < p && xr + n == X(pr))
252      *    [In Jacobian coordinates, X(pr) is pr.x / pr.z^2 mod p]
253      *    <=> (xr == pr.x / pr.z^2 mod p) || (xr + n < p && xr + n == pr.x / pr.z^2 mod p)
254      *    [Multiplying both sides of the equations by pr.z^2 mod p]
255      *    <=> (xr * pr.z^2 mod p == pr.x) || (xr + n < p && (xr + n) * pr.z^2 mod p == pr.x)
256      *
257      *  Thus, we can avoid the inversion, but we have to check both cases separately.
258      *  secp256k1_gej_eq_x implements the (xr * pr.z^2 mod p == pr.x) test.
259      */
260     if (secp256k1_gej_eq_x_var(&xr, &pr)) {
261         /* xr * pr.z^2 mod p == pr.x, so the signature is valid. */
262         return 1;
263     }
264     if (secp256k1_fe_cmp_var(&xr, &secp256k1_ecdsa_const_p_minus_order) >= 0) {
265         /* xr + n >= p, so we can skip testing the second case. */
266         return 0;
267     }
268     secp256k1_fe_add(&xr, &secp256k1_ecdsa_const_order_as_fe);
269     if (secp256k1_gej_eq_x_var(&xr, &pr)) {
270         /* (xr + n) * pr.z^2 mod p == pr.x, so the signature is valid. */
271         return 1;
272     }
273     return 0;
274 #endif
275 }
276 
secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context * ctx,secp256k1_scalar * sigr,secp256k1_scalar * sigs,const secp256k1_scalar * seckey,const secp256k1_scalar * message,const secp256k1_scalar * nonce,int * recid)277 static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar *sigr, secp256k1_scalar *sigs, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid) {
278     unsigned char b[32];
279     secp256k1_gej rp;
280     secp256k1_ge r;
281     secp256k1_scalar n;
282     int overflow = 0;
283     int high;
284 
285     secp256k1_ecmult_gen(ctx, &rp, nonce);
286     secp256k1_ge_set_gej(&r, &rp);
287     secp256k1_fe_normalize(&r.x);
288     secp256k1_fe_normalize(&r.y);
289     secp256k1_fe_get_b32(b, &r.x);
290     secp256k1_scalar_set_b32(sigr, b, &overflow);
291     if (recid) {
292         /* The overflow condition is cryptographically unreachable as hitting it requires finding the discrete log
293          * of some P where P.x >= order, and only 1 in about 2^127 points meet this criteria.
294          */
295         *recid = (overflow << 1) | secp256k1_fe_is_odd(&r.y);
296     }
297     secp256k1_scalar_mul(&n, sigr, seckey);
298     secp256k1_scalar_add(&n, &n, message);
299     secp256k1_scalar_inverse(sigs, nonce);
300     secp256k1_scalar_mul(sigs, sigs, &n);
301     secp256k1_scalar_clear(&n);
302     secp256k1_gej_clear(&rp);
303     secp256k1_ge_clear(&r);
304     high = secp256k1_scalar_is_high(sigs);
305     secp256k1_scalar_cond_negate(sigs, high);
306     if (recid) {
307             *recid ^= high;
308     }
309     /* P.x = order is on the curve, so technically sig->r could end up being zero, which would be an invalid signature.
310      * This is cryptographically unreachable as hitting it requires finding the discrete log of P.x = N.
311      */
312     return !secp256k1_scalar_is_zero(sigr) & !secp256k1_scalar_is_zero(sigs);
313 }
314 
315 #endif /* SECP256K1_ECDSA_IMPL_H */
316