1 // Copyright (c) 2012-2020 The Bitcoin Core developers
2 // Distributed under the MIT software license, see the accompanying
3 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
4 
5 #include <bloom.h>
6 
7 #include <primitives/transaction.h>
8 #include <hash.h>
9 #include <script/script.h>
10 #include <script/standard.h>
11 #include <random.h>
12 #include <streams.h>
13 
14 #include <math.h>
15 #include <stdlib.h>
16 
17 #include <algorithm>
18 
19 #define LN2SQUARED 0.4804530139182014246671025263266649717305529515945455
20 #define LN2 0.6931471805599453094172321214581765680755001343602552
21 
CBloomFilter(const unsigned int nElements,const double nFPRate,const unsigned int nTweakIn,unsigned char nFlagsIn)22 CBloomFilter::CBloomFilter(const unsigned int nElements, const double nFPRate, const unsigned int nTweakIn, unsigned char nFlagsIn) :
23     /**
24      * The ideal size for a bloom filter with a given number of elements and false positive rate is:
25      * - nElements * log(fp rate) / ln(2)^2
26      * We ignore filter parameters which will create a bloom filter larger than the protocol limits
27      */
28     vData(std::min((unsigned int)(-1  / LN2SQUARED * nElements * log(nFPRate)), MAX_BLOOM_FILTER_SIZE * 8) / 8),
29     /**
30      * The ideal number of hash functions is filter size * ln(2) / number of elements
31      * Again, we ignore filter parameters which will create a bloom filter with more hash functions than the protocol limits
32      * See https://en.wikipedia.org/wiki/Bloom_filter for an explanation of these formulas
33      */
34     nHashFuncs(std::min((unsigned int)(vData.size() * 8 / nElements * LN2), MAX_HASH_FUNCS)),
35     nTweak(nTweakIn),
36     nFlags(nFlagsIn)
37 {
38 }
39 
Hash(unsigned int nHashNum,const std::vector<unsigned char> & vDataToHash) const40 inline unsigned int CBloomFilter::Hash(unsigned int nHashNum, const std::vector<unsigned char>& vDataToHash) const
41 {
42     // 0xFBA4C795 chosen as it guarantees a reasonable bit difference between nHashNum values.
43     return MurmurHash3(nHashNum * 0xFBA4C795 + nTweak, vDataToHash) % (vData.size() * 8);
44 }
45 
insert(const std::vector<unsigned char> & vKey)46 void CBloomFilter::insert(const std::vector<unsigned char>& vKey)
47 {
48     if (vData.empty()) // Avoid divide-by-zero (CVE-2013-5700)
49         return;
50     for (unsigned int i = 0; i < nHashFuncs; i++)
51     {
52         unsigned int nIndex = Hash(i, vKey);
53         // Sets bit nIndex of vData
54         vData[nIndex >> 3] |= (1 << (7 & nIndex));
55     }
56 }
57 
insert(const COutPoint & outpoint)58 void CBloomFilter::insert(const COutPoint& outpoint)
59 {
60     CDataStream stream(SER_NETWORK, PROTOCOL_VERSION);
61     stream << outpoint;
62     std::vector<unsigned char> data(stream.begin(), stream.end());
63     insert(data);
64 }
65 
insert(const uint256 & hash)66 void CBloomFilter::insert(const uint256& hash)
67 {
68     std::vector<unsigned char> data(hash.begin(), hash.end());
69     insert(data);
70 }
71 
contains(const std::vector<unsigned char> & vKey) const72 bool CBloomFilter::contains(const std::vector<unsigned char>& vKey) const
73 {
74     if (vData.empty()) // Avoid divide-by-zero (CVE-2013-5700)
75         return true;
76     for (unsigned int i = 0; i < nHashFuncs; i++)
77     {
78         unsigned int nIndex = Hash(i, vKey);
79         // Checks bit nIndex of vData
80         if (!(vData[nIndex >> 3] & (1 << (7 & nIndex))))
81             return false;
82     }
83     return true;
84 }
85 
contains(const COutPoint & outpoint) const86 bool CBloomFilter::contains(const COutPoint& outpoint) const
87 {
88     CDataStream stream(SER_NETWORK, PROTOCOL_VERSION);
89     stream << outpoint;
90     std::vector<unsigned char> data(stream.begin(), stream.end());
91     return contains(data);
92 }
93 
contains(const uint256 & hash) const94 bool CBloomFilter::contains(const uint256& hash) const
95 {
96     std::vector<unsigned char> data(hash.begin(), hash.end());
97     return contains(data);
98 }
99 
IsWithinSizeConstraints() const100 bool CBloomFilter::IsWithinSizeConstraints() const
101 {
102     return vData.size() <= MAX_BLOOM_FILTER_SIZE && nHashFuncs <= MAX_HASH_FUNCS;
103 }
104 
IsRelevantAndUpdate(const CTransaction & tx)105 bool CBloomFilter::IsRelevantAndUpdate(const CTransaction& tx)
106 {
107     bool fFound = false;
108     // Match if the filter contains the hash of tx
109     //  for finding tx when they appear in a block
110     if (vData.empty()) // zero-size = "match-all" filter
111         return true;
112     const uint256& hash = tx.GetHash();
113     if (contains(hash))
114         fFound = true;
115 
116     for (unsigned int i = 0; i < tx.vout.size(); i++)
117     {
118         const CTxOut& txout = tx.vout[i];
119         // Match if the filter contains any arbitrary script data element in any scriptPubKey in tx
120         // If this matches, also add the specific output that was matched.
121         // This means clients don't have to update the filter themselves when a new relevant tx
122         // is discovered in order to find spending transactions, which avoids round-tripping and race conditions.
123         CScript::const_iterator pc = txout.scriptPubKey.begin();
124         std::vector<unsigned char> data;
125         while (pc < txout.scriptPubKey.end())
126         {
127             opcodetype opcode;
128             if (!txout.scriptPubKey.GetOp(pc, opcode, data))
129                 break;
130             if (data.size() != 0 && contains(data))
131             {
132                 fFound = true;
133                 if ((nFlags & BLOOM_UPDATE_MASK) == BLOOM_UPDATE_ALL)
134                     insert(COutPoint(hash, i));
135                 else if ((nFlags & BLOOM_UPDATE_MASK) == BLOOM_UPDATE_P2PUBKEY_ONLY)
136                 {
137                     std::vector<std::vector<unsigned char> > vSolutions;
138                     TxoutType type = Solver(txout.scriptPubKey, vSolutions);
139                     if (type == TxoutType::PUBKEY || type == TxoutType::MULTISIG) {
140                         insert(COutPoint(hash, i));
141                     }
142                 }
143                 break;
144             }
145         }
146     }
147 
148     if (fFound)
149         return true;
150 
151     for (const CTxIn& txin : tx.vin)
152     {
153         // Match if the filter contains an outpoint tx spends
154         if (contains(txin.prevout))
155             return true;
156 
157         // Match if the filter contains any arbitrary script data element in any scriptSig in tx
158         CScript::const_iterator pc = txin.scriptSig.begin();
159         std::vector<unsigned char> data;
160         while (pc < txin.scriptSig.end())
161         {
162             opcodetype opcode;
163             if (!txin.scriptSig.GetOp(pc, opcode, data))
164                 break;
165             if (data.size() != 0 && contains(data))
166                 return true;
167         }
168     }
169 
170     return false;
171 }
172 
CRollingBloomFilter(const unsigned int nElements,const double fpRate)173 CRollingBloomFilter::CRollingBloomFilter(const unsigned int nElements, const double fpRate)
174 {
175     double logFpRate = log(fpRate);
176     /* The optimal number of hash functions is log(fpRate) / log(0.5), but
177      * restrict it to the range 1-50. */
178     nHashFuncs = std::max(1, std::min((int)round(logFpRate / log(0.5)), 50));
179     /* In this rolling bloom filter, we'll store between 2 and 3 generations of nElements / 2 entries. */
180     nEntriesPerGeneration = (nElements + 1) / 2;
181     uint32_t nMaxElements = nEntriesPerGeneration * 3;
182     /* The maximum fpRate = pow(1.0 - exp(-nHashFuncs * nMaxElements / nFilterBits), nHashFuncs)
183      * =>          pow(fpRate, 1.0 / nHashFuncs) = 1.0 - exp(-nHashFuncs * nMaxElements / nFilterBits)
184      * =>          1.0 - pow(fpRate, 1.0 / nHashFuncs) = exp(-nHashFuncs * nMaxElements / nFilterBits)
185      * =>          log(1.0 - pow(fpRate, 1.0 / nHashFuncs)) = -nHashFuncs * nMaxElements / nFilterBits
186      * =>          nFilterBits = -nHashFuncs * nMaxElements / log(1.0 - pow(fpRate, 1.0 / nHashFuncs))
187      * =>          nFilterBits = -nHashFuncs * nMaxElements / log(1.0 - exp(logFpRate / nHashFuncs))
188      */
189     uint32_t nFilterBits = (uint32_t)ceil(-1.0 * nHashFuncs * nMaxElements / log(1.0 - exp(logFpRate / nHashFuncs)));
190     data.clear();
191     /* For each data element we need to store 2 bits. If both bits are 0, the
192      * bit is treated as unset. If the bits are (01), (10), or (11), the bit is
193      * treated as set in generation 1, 2, or 3 respectively.
194      * These bits are stored in separate integers: position P corresponds to bit
195      * (P & 63) of the integers data[(P >> 6) * 2] and data[(P >> 6) * 2 + 1]. */
196     data.resize(((nFilterBits + 63) / 64) << 1);
197     reset();
198 }
199 
200 /* Similar to CBloomFilter::Hash */
RollingBloomHash(unsigned int nHashNum,uint32_t nTweak,const std::vector<unsigned char> & vDataToHash)201 static inline uint32_t RollingBloomHash(unsigned int nHashNum, uint32_t nTweak, const std::vector<unsigned char>& vDataToHash) {
202     return MurmurHash3(nHashNum * 0xFBA4C795 + nTweak, vDataToHash);
203 }
204 
205 
206 // A replacement for x % n. This assumes that x and n are 32bit integers, and x is a uniformly random distributed 32bit value
207 // which should be the case for a good hash.
208 // See https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
FastMod(uint32_t x,size_t n)209 static inline uint32_t FastMod(uint32_t x, size_t n) {
210     return ((uint64_t)x * (uint64_t)n) >> 32;
211 }
212 
insert(const std::vector<unsigned char> & vKey)213 void CRollingBloomFilter::insert(const std::vector<unsigned char>& vKey)
214 {
215     if (nEntriesThisGeneration == nEntriesPerGeneration) {
216         nEntriesThisGeneration = 0;
217         nGeneration++;
218         if (nGeneration == 4) {
219             nGeneration = 1;
220         }
221         uint64_t nGenerationMask1 = 0 - (uint64_t)(nGeneration & 1);
222         uint64_t nGenerationMask2 = 0 - (uint64_t)(nGeneration >> 1);
223         /* Wipe old entries that used this generation number. */
224         for (uint32_t p = 0; p < data.size(); p += 2) {
225             uint64_t p1 = data[p], p2 = data[p + 1];
226             uint64_t mask = (p1 ^ nGenerationMask1) | (p2 ^ nGenerationMask2);
227             data[p] = p1 & mask;
228             data[p + 1] = p2 & mask;
229         }
230     }
231     nEntriesThisGeneration++;
232 
233     for (int n = 0; n < nHashFuncs; n++) {
234         uint32_t h = RollingBloomHash(n, nTweak, vKey);
235         int bit = h & 0x3F;
236         /* FastMod works with the upper bits of h, so it is safe to ignore that the lower bits of h are already used for bit. */
237         uint32_t pos = FastMod(h, data.size());
238         /* The lowest bit of pos is ignored, and set to zero for the first bit, and to one for the second. */
239         data[pos & ~1] = (data[pos & ~1] & ~(((uint64_t)1) << bit)) | ((uint64_t)(nGeneration & 1)) << bit;
240         data[pos | 1] = (data[pos | 1] & ~(((uint64_t)1) << bit)) | ((uint64_t)(nGeneration >> 1)) << bit;
241     }
242 }
243 
insert(const uint256 & hash)244 void CRollingBloomFilter::insert(const uint256& hash)
245 {
246     std::vector<unsigned char> vData(hash.begin(), hash.end());
247     insert(vData);
248 }
249 
contains(const std::vector<unsigned char> & vKey) const250 bool CRollingBloomFilter::contains(const std::vector<unsigned char>& vKey) const
251 {
252     for (int n = 0; n < nHashFuncs; n++) {
253         uint32_t h = RollingBloomHash(n, nTweak, vKey);
254         int bit = h & 0x3F;
255         uint32_t pos = FastMod(h, data.size());
256         /* If the relevant bit is not set in either data[pos & ~1] or data[pos | 1], the filter does not contain vKey */
257         if (!(((data[pos & ~1] | data[pos | 1]) >> bit) & 1)) {
258             return false;
259         }
260     }
261     return true;
262 }
263 
contains(const uint256 & hash) const264 bool CRollingBloomFilter::contains(const uint256& hash) const
265 {
266     std::vector<unsigned char> vData(hash.begin(), hash.end());
267     return contains(vData);
268 }
269 
reset()270 void CRollingBloomFilter::reset()
271 {
272     nTweak = GetRand(std::numeric_limits<unsigned int>::max());
273     nEntriesThisGeneration = 0;
274     nGeneration = 1;
275     std::fill(data.begin(), data.end(), 0);
276 }
277