1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Linux system calls.
6// This file is compiled as ordinary Go code,
7// but it is also input to mksyscall,
8// which parses the //sys lines and generates system call stubs.
9// Note that sometimes we use a lowercase //sys name and
10// wrap it in our own nicer implementation.
11
12package unix
13
14import (
15	"encoding/binary"
16	"runtime"
17	"syscall"
18	"unsafe"
19)
20
21/*
22 * Wrapped
23 */
24
25func Access(path string, mode uint32) (err error) {
26	return Faccessat(AT_FDCWD, path, mode, 0)
27}
28
29func Chmod(path string, mode uint32) (err error) {
30	return Fchmodat(AT_FDCWD, path, mode, 0)
31}
32
33func Chown(path string, uid int, gid int) (err error) {
34	return Fchownat(AT_FDCWD, path, uid, gid, 0)
35}
36
37func Creat(path string, mode uint32) (fd int, err error) {
38	return Open(path, O_CREAT|O_WRONLY|O_TRUNC, mode)
39}
40
41//sys	FanotifyInit(flags uint, event_f_flags uint) (fd int, err error)
42//sys	fanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname *byte) (err error)
43
44func FanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname string) (err error) {
45	if pathname == "" {
46		return fanotifyMark(fd, flags, mask, dirFd, nil)
47	}
48	p, err := BytePtrFromString(pathname)
49	if err != nil {
50		return err
51	}
52	return fanotifyMark(fd, flags, mask, dirFd, p)
53}
54
55//sys	fchmodat(dirfd int, path string, mode uint32) (err error)
56
57func Fchmodat(dirfd int, path string, mode uint32, flags int) (err error) {
58	// Linux fchmodat doesn't support the flags parameter. Mimick glibc's behavior
59	// and check the flags. Otherwise the mode would be applied to the symlink
60	// destination which is not what the user expects.
61	if flags&^AT_SYMLINK_NOFOLLOW != 0 {
62		return EINVAL
63	} else if flags&AT_SYMLINK_NOFOLLOW != 0 {
64		return EOPNOTSUPP
65	}
66	return fchmodat(dirfd, path, mode)
67}
68
69//sys	ioctl(fd int, req uint, arg uintptr) (err error)
70
71// ioctl itself should not be exposed directly, but additional get/set
72// functions for specific types are permissible.
73// These are defined in ioctl.go and ioctl_linux.go.
74
75//sys	Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error)
76
77func Link(oldpath string, newpath string) (err error) {
78	return Linkat(AT_FDCWD, oldpath, AT_FDCWD, newpath, 0)
79}
80
81func Mkdir(path string, mode uint32) (err error) {
82	return Mkdirat(AT_FDCWD, path, mode)
83}
84
85func Mknod(path string, mode uint32, dev int) (err error) {
86	return Mknodat(AT_FDCWD, path, mode, dev)
87}
88
89func Open(path string, mode int, perm uint32) (fd int, err error) {
90	return openat(AT_FDCWD, path, mode|O_LARGEFILE, perm)
91}
92
93//sys	openat(dirfd int, path string, flags int, mode uint32) (fd int, err error)
94
95func Openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) {
96	return openat(dirfd, path, flags|O_LARGEFILE, mode)
97}
98
99//sys	openat2(dirfd int, path string, open_how *OpenHow, size int) (fd int, err error)
100
101func Openat2(dirfd int, path string, how *OpenHow) (fd int, err error) {
102	return openat2(dirfd, path, how, SizeofOpenHow)
103}
104
105//sys	ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error)
106
107func Ppoll(fds []PollFd, timeout *Timespec, sigmask *Sigset_t) (n int, err error) {
108	if len(fds) == 0 {
109		return ppoll(nil, 0, timeout, sigmask)
110	}
111	return ppoll(&fds[0], len(fds), timeout, sigmask)
112}
113
114//sys	Readlinkat(dirfd int, path string, buf []byte) (n int, err error)
115
116func Readlink(path string, buf []byte) (n int, err error) {
117	return Readlinkat(AT_FDCWD, path, buf)
118}
119
120func Rename(oldpath string, newpath string) (err error) {
121	return Renameat(AT_FDCWD, oldpath, AT_FDCWD, newpath)
122}
123
124func Rmdir(path string) error {
125	return Unlinkat(AT_FDCWD, path, AT_REMOVEDIR)
126}
127
128//sys	Symlinkat(oldpath string, newdirfd int, newpath string) (err error)
129
130func Symlink(oldpath string, newpath string) (err error) {
131	return Symlinkat(oldpath, AT_FDCWD, newpath)
132}
133
134func Unlink(path string) error {
135	return Unlinkat(AT_FDCWD, path, 0)
136}
137
138//sys	Unlinkat(dirfd int, path string, flags int) (err error)
139
140func Utimes(path string, tv []Timeval) error {
141	if tv == nil {
142		err := utimensat(AT_FDCWD, path, nil, 0)
143		if err != ENOSYS {
144			return err
145		}
146		return utimes(path, nil)
147	}
148	if len(tv) != 2 {
149		return EINVAL
150	}
151	var ts [2]Timespec
152	ts[0] = NsecToTimespec(TimevalToNsec(tv[0]))
153	ts[1] = NsecToTimespec(TimevalToNsec(tv[1]))
154	err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
155	if err != ENOSYS {
156		return err
157	}
158	return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
159}
160
161//sys	utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error)
162
163func UtimesNano(path string, ts []Timespec) error {
164	if ts == nil {
165		err := utimensat(AT_FDCWD, path, nil, 0)
166		if err != ENOSYS {
167			return err
168		}
169		return utimes(path, nil)
170	}
171	if len(ts) != 2 {
172		return EINVAL
173	}
174	err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
175	if err != ENOSYS {
176		return err
177	}
178	// If the utimensat syscall isn't available (utimensat was added to Linux
179	// in 2.6.22, Released, 8 July 2007) then fall back to utimes
180	var tv [2]Timeval
181	for i := 0; i < 2; i++ {
182		tv[i] = NsecToTimeval(TimespecToNsec(ts[i]))
183	}
184	return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
185}
186
187func UtimesNanoAt(dirfd int, path string, ts []Timespec, flags int) error {
188	if ts == nil {
189		return utimensat(dirfd, path, nil, flags)
190	}
191	if len(ts) != 2 {
192		return EINVAL
193	}
194	return utimensat(dirfd, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), flags)
195}
196
197func Futimesat(dirfd int, path string, tv []Timeval) error {
198	if tv == nil {
199		return futimesat(dirfd, path, nil)
200	}
201	if len(tv) != 2 {
202		return EINVAL
203	}
204	return futimesat(dirfd, path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
205}
206
207func Futimes(fd int, tv []Timeval) (err error) {
208	// Believe it or not, this is the best we can do on Linux
209	// (and is what glibc does).
210	return Utimes("/proc/self/fd/"+itoa(fd), tv)
211}
212
213const ImplementsGetwd = true
214
215//sys	Getcwd(buf []byte) (n int, err error)
216
217func Getwd() (wd string, err error) {
218	var buf [PathMax]byte
219	n, err := Getcwd(buf[0:])
220	if err != nil {
221		return "", err
222	}
223	// Getcwd returns the number of bytes written to buf, including the NUL.
224	if n < 1 || n > len(buf) || buf[n-1] != 0 {
225		return "", EINVAL
226	}
227	return string(buf[0 : n-1]), nil
228}
229
230func Getgroups() (gids []int, err error) {
231	n, err := getgroups(0, nil)
232	if err != nil {
233		return nil, err
234	}
235	if n == 0 {
236		return nil, nil
237	}
238
239	// Sanity check group count. Max is 1<<16 on Linux.
240	if n < 0 || n > 1<<20 {
241		return nil, EINVAL
242	}
243
244	a := make([]_Gid_t, n)
245	n, err = getgroups(n, &a[0])
246	if err != nil {
247		return nil, err
248	}
249	gids = make([]int, n)
250	for i, v := range a[0:n] {
251		gids[i] = int(v)
252	}
253	return
254}
255
256func Setgroups(gids []int) (err error) {
257	if len(gids) == 0 {
258		return setgroups(0, nil)
259	}
260
261	a := make([]_Gid_t, len(gids))
262	for i, v := range gids {
263		a[i] = _Gid_t(v)
264	}
265	return setgroups(len(a), &a[0])
266}
267
268type WaitStatus uint32
269
270// Wait status is 7 bits at bottom, either 0 (exited),
271// 0x7F (stopped), or a signal number that caused an exit.
272// The 0x80 bit is whether there was a core dump.
273// An extra number (exit code, signal causing a stop)
274// is in the high bits. At least that's the idea.
275// There are various irregularities. For example, the
276// "continued" status is 0xFFFF, distinguishing itself
277// from stopped via the core dump bit.
278
279const (
280	mask    = 0x7F
281	core    = 0x80
282	exited  = 0x00
283	stopped = 0x7F
284	shift   = 8
285)
286
287func (w WaitStatus) Exited() bool { return w&mask == exited }
288
289func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited }
290
291func (w WaitStatus) Stopped() bool { return w&0xFF == stopped }
292
293func (w WaitStatus) Continued() bool { return w == 0xFFFF }
294
295func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0 }
296
297func (w WaitStatus) ExitStatus() int {
298	if !w.Exited() {
299		return -1
300	}
301	return int(w>>shift) & 0xFF
302}
303
304func (w WaitStatus) Signal() syscall.Signal {
305	if !w.Signaled() {
306		return -1
307	}
308	return syscall.Signal(w & mask)
309}
310
311func (w WaitStatus) StopSignal() syscall.Signal {
312	if !w.Stopped() {
313		return -1
314	}
315	return syscall.Signal(w>>shift) & 0xFF
316}
317
318func (w WaitStatus) TrapCause() int {
319	if w.StopSignal() != SIGTRAP {
320		return -1
321	}
322	return int(w>>shift) >> 8
323}
324
325//sys	wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error)
326
327func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, err error) {
328	var status _C_int
329	wpid, err = wait4(pid, &status, options, rusage)
330	if wstatus != nil {
331		*wstatus = WaitStatus(status)
332	}
333	return
334}
335
336func Mkfifo(path string, mode uint32) error {
337	return Mknod(path, mode|S_IFIFO, 0)
338}
339
340func Mkfifoat(dirfd int, path string, mode uint32) error {
341	return Mknodat(dirfd, path, mode|S_IFIFO, 0)
342}
343
344func (sa *SockaddrInet4) sockaddr() (unsafe.Pointer, _Socklen, error) {
345	if sa.Port < 0 || sa.Port > 0xFFFF {
346		return nil, 0, EINVAL
347	}
348	sa.raw.Family = AF_INET
349	p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
350	p[0] = byte(sa.Port >> 8)
351	p[1] = byte(sa.Port)
352	for i := 0; i < len(sa.Addr); i++ {
353		sa.raw.Addr[i] = sa.Addr[i]
354	}
355	return unsafe.Pointer(&sa.raw), SizeofSockaddrInet4, nil
356}
357
358func (sa *SockaddrInet6) sockaddr() (unsafe.Pointer, _Socklen, error) {
359	if sa.Port < 0 || sa.Port > 0xFFFF {
360		return nil, 0, EINVAL
361	}
362	sa.raw.Family = AF_INET6
363	p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
364	p[0] = byte(sa.Port >> 8)
365	p[1] = byte(sa.Port)
366	sa.raw.Scope_id = sa.ZoneId
367	for i := 0; i < len(sa.Addr); i++ {
368		sa.raw.Addr[i] = sa.Addr[i]
369	}
370	return unsafe.Pointer(&sa.raw), SizeofSockaddrInet6, nil
371}
372
373func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) {
374	name := sa.Name
375	n := len(name)
376	if n >= len(sa.raw.Path) {
377		return nil, 0, EINVAL
378	}
379	sa.raw.Family = AF_UNIX
380	for i := 0; i < n; i++ {
381		sa.raw.Path[i] = int8(name[i])
382	}
383	// length is family (uint16), name, NUL.
384	sl := _Socklen(2)
385	if n > 0 {
386		sl += _Socklen(n) + 1
387	}
388	if sa.raw.Path[0] == '@' {
389		sa.raw.Path[0] = 0
390		// Don't count trailing NUL for abstract address.
391		sl--
392	}
393
394	return unsafe.Pointer(&sa.raw), sl, nil
395}
396
397// SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets.
398type SockaddrLinklayer struct {
399	Protocol uint16
400	Ifindex  int
401	Hatype   uint16
402	Pkttype  uint8
403	Halen    uint8
404	Addr     [8]byte
405	raw      RawSockaddrLinklayer
406}
407
408func (sa *SockaddrLinklayer) sockaddr() (unsafe.Pointer, _Socklen, error) {
409	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
410		return nil, 0, EINVAL
411	}
412	sa.raw.Family = AF_PACKET
413	sa.raw.Protocol = sa.Protocol
414	sa.raw.Ifindex = int32(sa.Ifindex)
415	sa.raw.Hatype = sa.Hatype
416	sa.raw.Pkttype = sa.Pkttype
417	sa.raw.Halen = sa.Halen
418	for i := 0; i < len(sa.Addr); i++ {
419		sa.raw.Addr[i] = sa.Addr[i]
420	}
421	return unsafe.Pointer(&sa.raw), SizeofSockaddrLinklayer, nil
422}
423
424// SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets.
425type SockaddrNetlink struct {
426	Family uint16
427	Pad    uint16
428	Pid    uint32
429	Groups uint32
430	raw    RawSockaddrNetlink
431}
432
433func (sa *SockaddrNetlink) sockaddr() (unsafe.Pointer, _Socklen, error) {
434	sa.raw.Family = AF_NETLINK
435	sa.raw.Pad = sa.Pad
436	sa.raw.Pid = sa.Pid
437	sa.raw.Groups = sa.Groups
438	return unsafe.Pointer(&sa.raw), SizeofSockaddrNetlink, nil
439}
440
441// SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets
442// using the HCI protocol.
443type SockaddrHCI struct {
444	Dev     uint16
445	Channel uint16
446	raw     RawSockaddrHCI
447}
448
449func (sa *SockaddrHCI) sockaddr() (unsafe.Pointer, _Socklen, error) {
450	sa.raw.Family = AF_BLUETOOTH
451	sa.raw.Dev = sa.Dev
452	sa.raw.Channel = sa.Channel
453	return unsafe.Pointer(&sa.raw), SizeofSockaddrHCI, nil
454}
455
456// SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets
457// using the L2CAP protocol.
458type SockaddrL2 struct {
459	PSM      uint16
460	CID      uint16
461	Addr     [6]uint8
462	AddrType uint8
463	raw      RawSockaddrL2
464}
465
466func (sa *SockaddrL2) sockaddr() (unsafe.Pointer, _Socklen, error) {
467	sa.raw.Family = AF_BLUETOOTH
468	psm := (*[2]byte)(unsafe.Pointer(&sa.raw.Psm))
469	psm[0] = byte(sa.PSM)
470	psm[1] = byte(sa.PSM >> 8)
471	for i := 0; i < len(sa.Addr); i++ {
472		sa.raw.Bdaddr[i] = sa.Addr[len(sa.Addr)-1-i]
473	}
474	cid := (*[2]byte)(unsafe.Pointer(&sa.raw.Cid))
475	cid[0] = byte(sa.CID)
476	cid[1] = byte(sa.CID >> 8)
477	sa.raw.Bdaddr_type = sa.AddrType
478	return unsafe.Pointer(&sa.raw), SizeofSockaddrL2, nil
479}
480
481// SockaddrRFCOMM implements the Sockaddr interface for AF_BLUETOOTH type sockets
482// using the RFCOMM protocol.
483//
484// Server example:
485//
486//      fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
487//      _ = unix.Bind(fd, &unix.SockaddrRFCOMM{
488//      	Channel: 1,
489//      	Addr:    [6]uint8{0, 0, 0, 0, 0, 0}, // BDADDR_ANY or 00:00:00:00:00:00
490//      })
491//      _ = Listen(fd, 1)
492//      nfd, sa, _ := Accept(fd)
493//      fmt.Printf("conn addr=%v fd=%d", sa.(*unix.SockaddrRFCOMM).Addr, nfd)
494//      Read(nfd, buf)
495//
496// Client example:
497//
498//      fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
499//      _ = Connect(fd, &SockaddrRFCOMM{
500//      	Channel: 1,
501//      	Addr:    [6]byte{0x11, 0x22, 0x33, 0xaa, 0xbb, 0xcc}, // CC:BB:AA:33:22:11
502//      })
503//      Write(fd, []byte(`hello`))
504type SockaddrRFCOMM struct {
505	// Addr represents a bluetooth address, byte ordering is little-endian.
506	Addr [6]uint8
507
508	// Channel is a designated bluetooth channel, only 1-30 are available for use.
509	// Since Linux 2.6.7 and further zero value is the first available channel.
510	Channel uint8
511
512	raw RawSockaddrRFCOMM
513}
514
515func (sa *SockaddrRFCOMM) sockaddr() (unsafe.Pointer, _Socklen, error) {
516	sa.raw.Family = AF_BLUETOOTH
517	sa.raw.Channel = sa.Channel
518	sa.raw.Bdaddr = sa.Addr
519	return unsafe.Pointer(&sa.raw), SizeofSockaddrRFCOMM, nil
520}
521
522// SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets.
523// The RxID and TxID fields are used for transport protocol addressing in
524// (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with
525// zero values for CAN_RAW and CAN_BCM sockets as they have no meaning.
526//
527// The SockaddrCAN struct must be bound to the socket file descriptor
528// using Bind before the CAN socket can be used.
529//
530//      // Read one raw CAN frame
531//      fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW)
532//      addr := &SockaddrCAN{Ifindex: index}
533//      Bind(fd, addr)
534//      frame := make([]byte, 16)
535//      Read(fd, frame)
536//
537// The full SocketCAN documentation can be found in the linux kernel
538// archives at: https://www.kernel.org/doc/Documentation/networking/can.txt
539type SockaddrCAN struct {
540	Ifindex int
541	RxID    uint32
542	TxID    uint32
543	raw     RawSockaddrCAN
544}
545
546func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) {
547	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
548		return nil, 0, EINVAL
549	}
550	sa.raw.Family = AF_CAN
551	sa.raw.Ifindex = int32(sa.Ifindex)
552	rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
553	for i := 0; i < 4; i++ {
554		sa.raw.Addr[i] = rx[i]
555	}
556	tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
557	for i := 0; i < 4; i++ {
558		sa.raw.Addr[i+4] = tx[i]
559	}
560	return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
561}
562
563// SockaddrCANJ1939 implements the Sockaddr interface for AF_CAN using J1939
564// protocol (https://en.wikipedia.org/wiki/SAE_J1939). For more information
565// on the purposes of the fields, check the official linux kernel documentation
566// available here: https://www.kernel.org/doc/Documentation/networking/j1939.rst
567type SockaddrCANJ1939 struct {
568	Ifindex int
569	Name    uint64
570	PGN     uint32
571	Addr    uint8
572	raw     RawSockaddrCAN
573}
574
575func (sa *SockaddrCANJ1939) sockaddr() (unsafe.Pointer, _Socklen, error) {
576	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
577		return nil, 0, EINVAL
578	}
579	sa.raw.Family = AF_CAN
580	sa.raw.Ifindex = int32(sa.Ifindex)
581	n := (*[8]byte)(unsafe.Pointer(&sa.Name))
582	for i := 0; i < 8; i++ {
583		sa.raw.Addr[i] = n[i]
584	}
585	p := (*[4]byte)(unsafe.Pointer(&sa.PGN))
586	for i := 0; i < 4; i++ {
587		sa.raw.Addr[i+8] = p[i]
588	}
589	sa.raw.Addr[12] = sa.Addr
590	return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
591}
592
593// SockaddrALG implements the Sockaddr interface for AF_ALG type sockets.
594// SockaddrALG enables userspace access to the Linux kernel's cryptography
595// subsystem. The Type and Name fields specify which type of hash or cipher
596// should be used with a given socket.
597//
598// To create a file descriptor that provides access to a hash or cipher, both
599// Bind and Accept must be used. Once the setup process is complete, input
600// data can be written to the socket, processed by the kernel, and then read
601// back as hash output or ciphertext.
602//
603// Here is an example of using an AF_ALG socket with SHA1 hashing.
604// The initial socket setup process is as follows:
605//
606//      // Open a socket to perform SHA1 hashing.
607//      fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0)
608//      addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"}
609//      unix.Bind(fd, addr)
610//      // Note: unix.Accept does not work at this time; must invoke accept()
611//      // manually using unix.Syscall.
612//      hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0)
613//
614// Once a file descriptor has been returned from Accept, it may be used to
615// perform SHA1 hashing. The descriptor is not safe for concurrent use, but
616// may be re-used repeatedly with subsequent Write and Read operations.
617//
618// When hashing a small byte slice or string, a single Write and Read may
619// be used:
620//
621//      // Assume hashfd is already configured using the setup process.
622//      hash := os.NewFile(hashfd, "sha1")
623//      // Hash an input string and read the results. Each Write discards
624//      // previous hash state. Read always reads the current state.
625//      b := make([]byte, 20)
626//      for i := 0; i < 2; i++ {
627//          io.WriteString(hash, "Hello, world.")
628//          hash.Read(b)
629//          fmt.Println(hex.EncodeToString(b))
630//      }
631//      // Output:
632//      // 2ae01472317d1935a84797ec1983ae243fc6aa28
633//      // 2ae01472317d1935a84797ec1983ae243fc6aa28
634//
635// For hashing larger byte slices, or byte streams such as those read from
636// a file or socket, use Sendto with MSG_MORE to instruct the kernel to update
637// the hash digest instead of creating a new one for a given chunk and finalizing it.
638//
639//      // Assume hashfd and addr are already configured using the setup process.
640//      hash := os.NewFile(hashfd, "sha1")
641//      // Hash the contents of a file.
642//      f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz")
643//      b := make([]byte, 4096)
644//      for {
645//          n, err := f.Read(b)
646//          if err == io.EOF {
647//              break
648//          }
649//          unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr)
650//      }
651//      hash.Read(b)
652//      fmt.Println(hex.EncodeToString(b))
653//      // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5
654//
655// For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html.
656type SockaddrALG struct {
657	Type    string
658	Name    string
659	Feature uint32
660	Mask    uint32
661	raw     RawSockaddrALG
662}
663
664func (sa *SockaddrALG) sockaddr() (unsafe.Pointer, _Socklen, error) {
665	// Leave room for NUL byte terminator.
666	if len(sa.Type) > 13 {
667		return nil, 0, EINVAL
668	}
669	if len(sa.Name) > 63 {
670		return nil, 0, EINVAL
671	}
672
673	sa.raw.Family = AF_ALG
674	sa.raw.Feat = sa.Feature
675	sa.raw.Mask = sa.Mask
676
677	typ, err := ByteSliceFromString(sa.Type)
678	if err != nil {
679		return nil, 0, err
680	}
681	name, err := ByteSliceFromString(sa.Name)
682	if err != nil {
683		return nil, 0, err
684	}
685
686	copy(sa.raw.Type[:], typ)
687	copy(sa.raw.Name[:], name)
688
689	return unsafe.Pointer(&sa.raw), SizeofSockaddrALG, nil
690}
691
692// SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets.
693// SockaddrVM provides access to Linux VM sockets: a mechanism that enables
694// bidirectional communication between a hypervisor and its guest virtual
695// machines.
696type SockaddrVM struct {
697	// CID and Port specify a context ID and port address for a VM socket.
698	// Guests have a unique CID, and hosts may have a well-known CID of:
699	//  - VMADDR_CID_HYPERVISOR: refers to the hypervisor process.
700	//  - VMADDR_CID_LOCAL: refers to local communication (loopback).
701	//  - VMADDR_CID_HOST: refers to other processes on the host.
702	CID   uint32
703	Port  uint32
704	Flags uint8
705	raw   RawSockaddrVM
706}
707
708func (sa *SockaddrVM) sockaddr() (unsafe.Pointer, _Socklen, error) {
709	sa.raw.Family = AF_VSOCK
710	sa.raw.Port = sa.Port
711	sa.raw.Cid = sa.CID
712	sa.raw.Flags = sa.Flags
713
714	return unsafe.Pointer(&sa.raw), SizeofSockaddrVM, nil
715}
716
717type SockaddrXDP struct {
718	Flags        uint16
719	Ifindex      uint32
720	QueueID      uint32
721	SharedUmemFD uint32
722	raw          RawSockaddrXDP
723}
724
725func (sa *SockaddrXDP) sockaddr() (unsafe.Pointer, _Socklen, error) {
726	sa.raw.Family = AF_XDP
727	sa.raw.Flags = sa.Flags
728	sa.raw.Ifindex = sa.Ifindex
729	sa.raw.Queue_id = sa.QueueID
730	sa.raw.Shared_umem_fd = sa.SharedUmemFD
731
732	return unsafe.Pointer(&sa.raw), SizeofSockaddrXDP, nil
733}
734
735// This constant mirrors the #define of PX_PROTO_OE in
736// linux/if_pppox.h. We're defining this by hand here instead of
737// autogenerating through mkerrors.sh because including
738// linux/if_pppox.h causes some declaration conflicts with other
739// includes (linux/if_pppox.h includes linux/in.h, which conflicts
740// with netinet/in.h). Given that we only need a single zero constant
741// out of that file, it's cleaner to just define it by hand here.
742const px_proto_oe = 0
743
744type SockaddrPPPoE struct {
745	SID    uint16
746	Remote []byte
747	Dev    string
748	raw    RawSockaddrPPPoX
749}
750
751func (sa *SockaddrPPPoE) sockaddr() (unsafe.Pointer, _Socklen, error) {
752	if len(sa.Remote) != 6 {
753		return nil, 0, EINVAL
754	}
755	if len(sa.Dev) > IFNAMSIZ-1 {
756		return nil, 0, EINVAL
757	}
758
759	*(*uint16)(unsafe.Pointer(&sa.raw[0])) = AF_PPPOX
760	// This next field is in host-endian byte order. We can't use the
761	// same unsafe pointer cast as above, because this value is not
762	// 32-bit aligned and some architectures don't allow unaligned
763	// access.
764	//
765	// However, the value of px_proto_oe is 0, so we can use
766	// encoding/binary helpers to write the bytes without worrying
767	// about the ordering.
768	binary.BigEndian.PutUint32(sa.raw[2:6], px_proto_oe)
769	// This field is deliberately big-endian, unlike the previous
770	// one. The kernel expects SID to be in network byte order.
771	binary.BigEndian.PutUint16(sa.raw[6:8], sa.SID)
772	copy(sa.raw[8:14], sa.Remote)
773	for i := 14; i < 14+IFNAMSIZ; i++ {
774		sa.raw[i] = 0
775	}
776	copy(sa.raw[14:], sa.Dev)
777	return unsafe.Pointer(&sa.raw), SizeofSockaddrPPPoX, nil
778}
779
780// SockaddrTIPC implements the Sockaddr interface for AF_TIPC type sockets.
781// For more information on TIPC, see: http://tipc.sourceforge.net/.
782type SockaddrTIPC struct {
783	// Scope is the publication scopes when binding service/service range.
784	// Should be set to TIPC_CLUSTER_SCOPE or TIPC_NODE_SCOPE.
785	Scope int
786
787	// Addr is the type of address used to manipulate a socket. Addr must be
788	// one of:
789	//  - *TIPCSocketAddr: "id" variant in the C addr union
790	//  - *TIPCServiceRange: "nameseq" variant in the C addr union
791	//  - *TIPCServiceName: "name" variant in the C addr union
792	//
793	// If nil, EINVAL will be returned when the structure is used.
794	Addr TIPCAddr
795
796	raw RawSockaddrTIPC
797}
798
799// TIPCAddr is implemented by types that can be used as an address for
800// SockaddrTIPC. It is only implemented by *TIPCSocketAddr, *TIPCServiceRange,
801// and *TIPCServiceName.
802type TIPCAddr interface {
803	tipcAddrtype() uint8
804	tipcAddr() [12]byte
805}
806
807func (sa *TIPCSocketAddr) tipcAddr() [12]byte {
808	var out [12]byte
809	copy(out[:], (*(*[unsafe.Sizeof(TIPCSocketAddr{})]byte)(unsafe.Pointer(sa)))[:])
810	return out
811}
812
813func (sa *TIPCSocketAddr) tipcAddrtype() uint8 { return TIPC_SOCKET_ADDR }
814
815func (sa *TIPCServiceRange) tipcAddr() [12]byte {
816	var out [12]byte
817	copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceRange{})]byte)(unsafe.Pointer(sa)))[:])
818	return out
819}
820
821func (sa *TIPCServiceRange) tipcAddrtype() uint8 { return TIPC_SERVICE_RANGE }
822
823func (sa *TIPCServiceName) tipcAddr() [12]byte {
824	var out [12]byte
825	copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceName{})]byte)(unsafe.Pointer(sa)))[:])
826	return out
827}
828
829func (sa *TIPCServiceName) tipcAddrtype() uint8 { return TIPC_SERVICE_ADDR }
830
831func (sa *SockaddrTIPC) sockaddr() (unsafe.Pointer, _Socklen, error) {
832	if sa.Addr == nil {
833		return nil, 0, EINVAL
834	}
835
836	sa.raw.Family = AF_TIPC
837	sa.raw.Scope = int8(sa.Scope)
838	sa.raw.Addrtype = sa.Addr.tipcAddrtype()
839	sa.raw.Addr = sa.Addr.tipcAddr()
840
841	return unsafe.Pointer(&sa.raw), SizeofSockaddrTIPC, nil
842}
843
844// SockaddrL2TPIP implements the Sockaddr interface for IPPROTO_L2TP/AF_INET sockets.
845type SockaddrL2TPIP struct {
846	Addr   [4]byte
847	ConnId uint32
848	raw    RawSockaddrL2TPIP
849}
850
851func (sa *SockaddrL2TPIP) sockaddr() (unsafe.Pointer, _Socklen, error) {
852	sa.raw.Family = AF_INET
853	sa.raw.Conn_id = sa.ConnId
854	for i := 0; i < len(sa.Addr); i++ {
855		sa.raw.Addr[i] = sa.Addr[i]
856	}
857	return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP, nil
858}
859
860// SockaddrL2TPIP6 implements the Sockaddr interface for IPPROTO_L2TP/AF_INET6 sockets.
861type SockaddrL2TPIP6 struct {
862	Addr   [16]byte
863	ZoneId uint32
864	ConnId uint32
865	raw    RawSockaddrL2TPIP6
866}
867
868func (sa *SockaddrL2TPIP6) sockaddr() (unsafe.Pointer, _Socklen, error) {
869	sa.raw.Family = AF_INET6
870	sa.raw.Conn_id = sa.ConnId
871	sa.raw.Scope_id = sa.ZoneId
872	for i := 0; i < len(sa.Addr); i++ {
873		sa.raw.Addr[i] = sa.Addr[i]
874	}
875	return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP6, nil
876}
877
878// SockaddrIUCV implements the Sockaddr interface for AF_IUCV sockets.
879type SockaddrIUCV struct {
880	UserID string
881	Name   string
882	raw    RawSockaddrIUCV
883}
884
885func (sa *SockaddrIUCV) sockaddr() (unsafe.Pointer, _Socklen, error) {
886	sa.raw.Family = AF_IUCV
887	// These are EBCDIC encoded by the kernel, but we still need to pad them
888	// with blanks. Initializing with blanks allows the caller to feed in either
889	// a padded or an unpadded string.
890	for i := 0; i < 8; i++ {
891		sa.raw.Nodeid[i] = ' '
892		sa.raw.User_id[i] = ' '
893		sa.raw.Name[i] = ' '
894	}
895	if len(sa.UserID) > 8 || len(sa.Name) > 8 {
896		return nil, 0, EINVAL
897	}
898	for i, b := range []byte(sa.UserID[:]) {
899		sa.raw.User_id[i] = int8(b)
900	}
901	for i, b := range []byte(sa.Name[:]) {
902		sa.raw.Name[i] = int8(b)
903	}
904	return unsafe.Pointer(&sa.raw), SizeofSockaddrIUCV, nil
905}
906
907var socketProtocol = func(fd int) (int, error) {
908	return GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL)
909}
910
911func anyToSockaddr(fd int, rsa *RawSockaddrAny) (Sockaddr, error) {
912	switch rsa.Addr.Family {
913	case AF_NETLINK:
914		pp := (*RawSockaddrNetlink)(unsafe.Pointer(rsa))
915		sa := new(SockaddrNetlink)
916		sa.Family = pp.Family
917		sa.Pad = pp.Pad
918		sa.Pid = pp.Pid
919		sa.Groups = pp.Groups
920		return sa, nil
921
922	case AF_PACKET:
923		pp := (*RawSockaddrLinklayer)(unsafe.Pointer(rsa))
924		sa := new(SockaddrLinklayer)
925		sa.Protocol = pp.Protocol
926		sa.Ifindex = int(pp.Ifindex)
927		sa.Hatype = pp.Hatype
928		sa.Pkttype = pp.Pkttype
929		sa.Halen = pp.Halen
930		for i := 0; i < len(sa.Addr); i++ {
931			sa.Addr[i] = pp.Addr[i]
932		}
933		return sa, nil
934
935	case AF_UNIX:
936		pp := (*RawSockaddrUnix)(unsafe.Pointer(rsa))
937		sa := new(SockaddrUnix)
938		if pp.Path[0] == 0 {
939			// "Abstract" Unix domain socket.
940			// Rewrite leading NUL as @ for textual display.
941			// (This is the standard convention.)
942			// Not friendly to overwrite in place,
943			// but the callers below don't care.
944			pp.Path[0] = '@'
945		}
946
947		// Assume path ends at NUL.
948		// This is not technically the Linux semantics for
949		// abstract Unix domain sockets--they are supposed
950		// to be uninterpreted fixed-size binary blobs--but
951		// everyone uses this convention.
952		n := 0
953		for n < len(pp.Path) && pp.Path[n] != 0 {
954			n++
955		}
956		bytes := (*[len(pp.Path)]byte)(unsafe.Pointer(&pp.Path[0]))[0:n]
957		sa.Name = string(bytes)
958		return sa, nil
959
960	case AF_INET:
961		proto, err := socketProtocol(fd)
962		if err != nil {
963			return nil, err
964		}
965
966		switch proto {
967		case IPPROTO_L2TP:
968			pp := (*RawSockaddrL2TPIP)(unsafe.Pointer(rsa))
969			sa := new(SockaddrL2TPIP)
970			sa.ConnId = pp.Conn_id
971			for i := 0; i < len(sa.Addr); i++ {
972				sa.Addr[i] = pp.Addr[i]
973			}
974			return sa, nil
975		default:
976			pp := (*RawSockaddrInet4)(unsafe.Pointer(rsa))
977			sa := new(SockaddrInet4)
978			p := (*[2]byte)(unsafe.Pointer(&pp.Port))
979			sa.Port = int(p[0])<<8 + int(p[1])
980			for i := 0; i < len(sa.Addr); i++ {
981				sa.Addr[i] = pp.Addr[i]
982			}
983			return sa, nil
984		}
985
986	case AF_INET6:
987		proto, err := socketProtocol(fd)
988		if err != nil {
989			return nil, err
990		}
991
992		switch proto {
993		case IPPROTO_L2TP:
994			pp := (*RawSockaddrL2TPIP6)(unsafe.Pointer(rsa))
995			sa := new(SockaddrL2TPIP6)
996			sa.ConnId = pp.Conn_id
997			sa.ZoneId = pp.Scope_id
998			for i := 0; i < len(sa.Addr); i++ {
999				sa.Addr[i] = pp.Addr[i]
1000			}
1001			return sa, nil
1002		default:
1003			pp := (*RawSockaddrInet6)(unsafe.Pointer(rsa))
1004			sa := new(SockaddrInet6)
1005			p := (*[2]byte)(unsafe.Pointer(&pp.Port))
1006			sa.Port = int(p[0])<<8 + int(p[1])
1007			sa.ZoneId = pp.Scope_id
1008			for i := 0; i < len(sa.Addr); i++ {
1009				sa.Addr[i] = pp.Addr[i]
1010			}
1011			return sa, nil
1012		}
1013
1014	case AF_VSOCK:
1015		pp := (*RawSockaddrVM)(unsafe.Pointer(rsa))
1016		sa := &SockaddrVM{
1017			CID:   pp.Cid,
1018			Port:  pp.Port,
1019			Flags: pp.Flags,
1020		}
1021		return sa, nil
1022	case AF_BLUETOOTH:
1023		proto, err := socketProtocol(fd)
1024		if err != nil {
1025			return nil, err
1026		}
1027		// only BTPROTO_L2CAP and BTPROTO_RFCOMM can accept connections
1028		switch proto {
1029		case BTPROTO_L2CAP:
1030			pp := (*RawSockaddrL2)(unsafe.Pointer(rsa))
1031			sa := &SockaddrL2{
1032				PSM:      pp.Psm,
1033				CID:      pp.Cid,
1034				Addr:     pp.Bdaddr,
1035				AddrType: pp.Bdaddr_type,
1036			}
1037			return sa, nil
1038		case BTPROTO_RFCOMM:
1039			pp := (*RawSockaddrRFCOMM)(unsafe.Pointer(rsa))
1040			sa := &SockaddrRFCOMM{
1041				Channel: pp.Channel,
1042				Addr:    pp.Bdaddr,
1043			}
1044			return sa, nil
1045		}
1046	case AF_XDP:
1047		pp := (*RawSockaddrXDP)(unsafe.Pointer(rsa))
1048		sa := &SockaddrXDP{
1049			Flags:        pp.Flags,
1050			Ifindex:      pp.Ifindex,
1051			QueueID:      pp.Queue_id,
1052			SharedUmemFD: pp.Shared_umem_fd,
1053		}
1054		return sa, nil
1055	case AF_PPPOX:
1056		pp := (*RawSockaddrPPPoX)(unsafe.Pointer(rsa))
1057		if binary.BigEndian.Uint32(pp[2:6]) != px_proto_oe {
1058			return nil, EINVAL
1059		}
1060		sa := &SockaddrPPPoE{
1061			SID:    binary.BigEndian.Uint16(pp[6:8]),
1062			Remote: pp[8:14],
1063		}
1064		for i := 14; i < 14+IFNAMSIZ; i++ {
1065			if pp[i] == 0 {
1066				sa.Dev = string(pp[14:i])
1067				break
1068			}
1069		}
1070		return sa, nil
1071	case AF_TIPC:
1072		pp := (*RawSockaddrTIPC)(unsafe.Pointer(rsa))
1073
1074		sa := &SockaddrTIPC{
1075			Scope: int(pp.Scope),
1076		}
1077
1078		// Determine which union variant is present in pp.Addr by checking
1079		// pp.Addrtype.
1080		switch pp.Addrtype {
1081		case TIPC_SERVICE_RANGE:
1082			sa.Addr = (*TIPCServiceRange)(unsafe.Pointer(&pp.Addr))
1083		case TIPC_SERVICE_ADDR:
1084			sa.Addr = (*TIPCServiceName)(unsafe.Pointer(&pp.Addr))
1085		case TIPC_SOCKET_ADDR:
1086			sa.Addr = (*TIPCSocketAddr)(unsafe.Pointer(&pp.Addr))
1087		default:
1088			return nil, EINVAL
1089		}
1090
1091		return sa, nil
1092	case AF_IUCV:
1093		pp := (*RawSockaddrIUCV)(unsafe.Pointer(rsa))
1094
1095		var user [8]byte
1096		var name [8]byte
1097
1098		for i := 0; i < 8; i++ {
1099			user[i] = byte(pp.User_id[i])
1100			name[i] = byte(pp.Name[i])
1101		}
1102
1103		sa := &SockaddrIUCV{
1104			UserID: string(user[:]),
1105			Name:   string(name[:]),
1106		}
1107		return sa, nil
1108
1109	case AF_CAN:
1110		proto, err := socketProtocol(fd)
1111		if err != nil {
1112			return nil, err
1113		}
1114
1115		pp := (*RawSockaddrCAN)(unsafe.Pointer(rsa))
1116
1117		switch proto {
1118		case CAN_J1939:
1119			sa := &SockaddrCANJ1939{
1120				Ifindex: int(pp.Ifindex),
1121			}
1122			name := (*[8]byte)(unsafe.Pointer(&sa.Name))
1123			for i := 0; i < 8; i++ {
1124				name[i] = pp.Addr[i]
1125			}
1126			pgn := (*[4]byte)(unsafe.Pointer(&sa.PGN))
1127			for i := 0; i < 4; i++ {
1128				pgn[i] = pp.Addr[i+8]
1129			}
1130			addr := (*[1]byte)(unsafe.Pointer(&sa.Addr))
1131			addr[0] = pp.Addr[12]
1132			return sa, nil
1133		default:
1134			sa := &SockaddrCAN{
1135				Ifindex: int(pp.Ifindex),
1136			}
1137			rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
1138			for i := 0; i < 4; i++ {
1139				rx[i] = pp.Addr[i]
1140			}
1141			tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
1142			for i := 0; i < 4; i++ {
1143				tx[i] = pp.Addr[i+4]
1144			}
1145			return sa, nil
1146		}
1147	}
1148	return nil, EAFNOSUPPORT
1149}
1150
1151func Accept(fd int) (nfd int, sa Sockaddr, err error) {
1152	var rsa RawSockaddrAny
1153	var len _Socklen = SizeofSockaddrAny
1154	// Try accept4 first for Android, then try accept for kernel older than 2.6.28
1155	nfd, err = accept4(fd, &rsa, &len, 0)
1156	if err == ENOSYS {
1157		nfd, err = accept(fd, &rsa, &len)
1158	}
1159	if err != nil {
1160		return
1161	}
1162	sa, err = anyToSockaddr(fd, &rsa)
1163	if err != nil {
1164		Close(nfd)
1165		nfd = 0
1166	}
1167	return
1168}
1169
1170func Accept4(fd int, flags int) (nfd int, sa Sockaddr, err error) {
1171	var rsa RawSockaddrAny
1172	var len _Socklen = SizeofSockaddrAny
1173	nfd, err = accept4(fd, &rsa, &len, flags)
1174	if err != nil {
1175		return
1176	}
1177	if len > SizeofSockaddrAny {
1178		panic("RawSockaddrAny too small")
1179	}
1180	sa, err = anyToSockaddr(fd, &rsa)
1181	if err != nil {
1182		Close(nfd)
1183		nfd = 0
1184	}
1185	return
1186}
1187
1188func Getsockname(fd int) (sa Sockaddr, err error) {
1189	var rsa RawSockaddrAny
1190	var len _Socklen = SizeofSockaddrAny
1191	if err = getsockname(fd, &rsa, &len); err != nil {
1192		return
1193	}
1194	return anyToSockaddr(fd, &rsa)
1195}
1196
1197func GetsockoptIPMreqn(fd, level, opt int) (*IPMreqn, error) {
1198	var value IPMreqn
1199	vallen := _Socklen(SizeofIPMreqn)
1200	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1201	return &value, err
1202}
1203
1204func GetsockoptUcred(fd, level, opt int) (*Ucred, error) {
1205	var value Ucred
1206	vallen := _Socklen(SizeofUcred)
1207	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1208	return &value, err
1209}
1210
1211func GetsockoptTCPInfo(fd, level, opt int) (*TCPInfo, error) {
1212	var value TCPInfo
1213	vallen := _Socklen(SizeofTCPInfo)
1214	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1215	return &value, err
1216}
1217
1218// GetsockoptString returns the string value of the socket option opt for the
1219// socket associated with fd at the given socket level.
1220func GetsockoptString(fd, level, opt int) (string, error) {
1221	buf := make([]byte, 256)
1222	vallen := _Socklen(len(buf))
1223	err := getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
1224	if err != nil {
1225		if err == ERANGE {
1226			buf = make([]byte, vallen)
1227			err = getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
1228		}
1229		if err != nil {
1230			return "", err
1231		}
1232	}
1233	return string(buf[:vallen-1]), nil
1234}
1235
1236func GetsockoptTpacketStats(fd, level, opt int) (*TpacketStats, error) {
1237	var value TpacketStats
1238	vallen := _Socklen(SizeofTpacketStats)
1239	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1240	return &value, err
1241}
1242
1243func GetsockoptTpacketStatsV3(fd, level, opt int) (*TpacketStatsV3, error) {
1244	var value TpacketStatsV3
1245	vallen := _Socklen(SizeofTpacketStatsV3)
1246	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1247	return &value, err
1248}
1249
1250func SetsockoptIPMreqn(fd, level, opt int, mreq *IPMreqn) (err error) {
1251	return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
1252}
1253
1254func SetsockoptPacketMreq(fd, level, opt int, mreq *PacketMreq) error {
1255	return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
1256}
1257
1258// SetsockoptSockFprog attaches a classic BPF or an extended BPF program to a
1259// socket to filter incoming packets.  See 'man 7 socket' for usage information.
1260func SetsockoptSockFprog(fd, level, opt int, fprog *SockFprog) error {
1261	return setsockopt(fd, level, opt, unsafe.Pointer(fprog), unsafe.Sizeof(*fprog))
1262}
1263
1264func SetsockoptCanRawFilter(fd, level, opt int, filter []CanFilter) error {
1265	var p unsafe.Pointer
1266	if len(filter) > 0 {
1267		p = unsafe.Pointer(&filter[0])
1268	}
1269	return setsockopt(fd, level, opt, p, uintptr(len(filter)*SizeofCanFilter))
1270}
1271
1272func SetsockoptTpacketReq(fd, level, opt int, tp *TpacketReq) error {
1273	return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
1274}
1275
1276func SetsockoptTpacketReq3(fd, level, opt int, tp *TpacketReq3) error {
1277	return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
1278}
1279
1280// Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html)
1281
1282// KeyctlInt calls keyctl commands in which each argument is an int.
1283// These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK,
1284// KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT,
1285// KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT,
1286// KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT.
1287//sys	KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL
1288
1289// KeyctlBuffer calls keyctl commands in which the third and fourth
1290// arguments are a buffer and its length, respectively.
1291// These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE.
1292//sys	KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL
1293
1294// KeyctlString calls keyctl commands which return a string.
1295// These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY.
1296func KeyctlString(cmd int, id int) (string, error) {
1297	// We must loop as the string data may change in between the syscalls.
1298	// We could allocate a large buffer here to reduce the chance that the
1299	// syscall needs to be called twice; however, this is unnecessary as
1300	// the performance loss is negligible.
1301	var buffer []byte
1302	for {
1303		// Try to fill the buffer with data
1304		length, err := KeyctlBuffer(cmd, id, buffer, 0)
1305		if err != nil {
1306			return "", err
1307		}
1308
1309		// Check if the data was written
1310		if length <= len(buffer) {
1311			// Exclude the null terminator
1312			return string(buffer[:length-1]), nil
1313		}
1314
1315		// Make a bigger buffer if needed
1316		buffer = make([]byte, length)
1317	}
1318}
1319
1320// Keyctl commands with special signatures.
1321
1322// KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command.
1323// See the full documentation at:
1324// http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html
1325func KeyctlGetKeyringID(id int, create bool) (ringid int, err error) {
1326	createInt := 0
1327	if create {
1328		createInt = 1
1329	}
1330	return KeyctlInt(KEYCTL_GET_KEYRING_ID, id, createInt, 0, 0)
1331}
1332
1333// KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the
1334// key handle permission mask as described in the "keyctl setperm" section of
1335// http://man7.org/linux/man-pages/man1/keyctl.1.html.
1336// See the full documentation at:
1337// http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html
1338func KeyctlSetperm(id int, perm uint32) error {
1339	_, err := KeyctlInt(KEYCTL_SETPERM, id, int(perm), 0, 0)
1340	return err
1341}
1342
1343//sys	keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL
1344
1345// KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command.
1346// See the full documentation at:
1347// http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html
1348func KeyctlJoinSessionKeyring(name string) (ringid int, err error) {
1349	return keyctlJoin(KEYCTL_JOIN_SESSION_KEYRING, name)
1350}
1351
1352//sys	keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL
1353
1354// KeyctlSearch implements the KEYCTL_SEARCH command.
1355// See the full documentation at:
1356// http://man7.org/linux/man-pages/man3/keyctl_search.3.html
1357func KeyctlSearch(ringid int, keyType, description string, destRingid int) (id int, err error) {
1358	return keyctlSearch(KEYCTL_SEARCH, ringid, keyType, description, destRingid)
1359}
1360
1361//sys	keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL
1362
1363// KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This
1364// command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice
1365// of Iovec (each of which represents a buffer) instead of a single buffer.
1366// See the full documentation at:
1367// http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html
1368func KeyctlInstantiateIOV(id int, payload []Iovec, ringid int) error {
1369	return keyctlIOV(KEYCTL_INSTANTIATE_IOV, id, payload, ringid)
1370}
1371
1372//sys	keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL
1373
1374// KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command
1375// computes a Diffie-Hellman shared secret based on the provide params. The
1376// secret is written to the provided buffer and the returned size is the number
1377// of bytes written (returning an error if there is insufficient space in the
1378// buffer). If a nil buffer is passed in, this function returns the minimum
1379// buffer length needed to store the appropriate data. Note that this differs
1380// from KEYCTL_READ's behavior which always returns the requested payload size.
1381// See the full documentation at:
1382// http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html
1383func KeyctlDHCompute(params *KeyctlDHParams, buffer []byte) (size int, err error) {
1384	return keyctlDH(KEYCTL_DH_COMPUTE, params, buffer)
1385}
1386
1387// KeyctlRestrictKeyring implements the KEYCTL_RESTRICT_KEYRING command. This
1388// command limits the set of keys that can be linked to the keyring, regardless
1389// of keyring permissions. The command requires the "setattr" permission.
1390//
1391// When called with an empty keyType the command locks the keyring, preventing
1392// any further keys from being linked to the keyring.
1393//
1394// The "asymmetric" keyType defines restrictions requiring key payloads to be
1395// DER encoded X.509 certificates signed by keys in another keyring. Restrictions
1396// for "asymmetric" include "builtin_trusted", "builtin_and_secondary_trusted",
1397// "key_or_keyring:<key>", and "key_or_keyring:<key>:chain".
1398//
1399// As of Linux 4.12, only the "asymmetric" keyType defines type-specific
1400// restrictions.
1401//
1402// See the full documentation at:
1403// http://man7.org/linux/man-pages/man3/keyctl_restrict_keyring.3.html
1404// http://man7.org/linux/man-pages/man2/keyctl.2.html
1405func KeyctlRestrictKeyring(ringid int, keyType string, restriction string) error {
1406	if keyType == "" {
1407		return keyctlRestrictKeyring(KEYCTL_RESTRICT_KEYRING, ringid)
1408	}
1409	return keyctlRestrictKeyringByType(KEYCTL_RESTRICT_KEYRING, ringid, keyType, restriction)
1410}
1411
1412//sys	keyctlRestrictKeyringByType(cmd int, arg2 int, keyType string, restriction string) (err error) = SYS_KEYCTL
1413//sys	keyctlRestrictKeyring(cmd int, arg2 int) (err error) = SYS_KEYCTL
1414
1415func Recvmsg(fd int, p, oob []byte, flags int) (n, oobn int, recvflags int, from Sockaddr, err error) {
1416	var msg Msghdr
1417	var rsa RawSockaddrAny
1418	msg.Name = (*byte)(unsafe.Pointer(&rsa))
1419	msg.Namelen = uint32(SizeofSockaddrAny)
1420	var iov Iovec
1421	if len(p) > 0 {
1422		iov.Base = &p[0]
1423		iov.SetLen(len(p))
1424	}
1425	var dummy byte
1426	if len(oob) > 0 {
1427		if len(p) == 0 {
1428			var sockType int
1429			sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
1430			if err != nil {
1431				return
1432			}
1433			// receive at least one normal byte
1434			if sockType != SOCK_DGRAM {
1435				iov.Base = &dummy
1436				iov.SetLen(1)
1437			}
1438		}
1439		msg.Control = &oob[0]
1440		msg.SetControllen(len(oob))
1441	}
1442	msg.Iov = &iov
1443	msg.Iovlen = 1
1444	if n, err = recvmsg(fd, &msg, flags); err != nil {
1445		return
1446	}
1447	oobn = int(msg.Controllen)
1448	recvflags = int(msg.Flags)
1449	// source address is only specified if the socket is unconnected
1450	if rsa.Addr.Family != AF_UNSPEC {
1451		from, err = anyToSockaddr(fd, &rsa)
1452	}
1453	return
1454}
1455
1456func Sendmsg(fd int, p, oob []byte, to Sockaddr, flags int) (err error) {
1457	_, err = SendmsgN(fd, p, oob, to, flags)
1458	return
1459}
1460
1461func SendmsgN(fd int, p, oob []byte, to Sockaddr, flags int) (n int, err error) {
1462	var ptr unsafe.Pointer
1463	var salen _Socklen
1464	if to != nil {
1465		var err error
1466		ptr, salen, err = to.sockaddr()
1467		if err != nil {
1468			return 0, err
1469		}
1470	}
1471	var msg Msghdr
1472	msg.Name = (*byte)(ptr)
1473	msg.Namelen = uint32(salen)
1474	var iov Iovec
1475	if len(p) > 0 {
1476		iov.Base = &p[0]
1477		iov.SetLen(len(p))
1478	}
1479	var dummy byte
1480	if len(oob) > 0 {
1481		if len(p) == 0 {
1482			var sockType int
1483			sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
1484			if err != nil {
1485				return 0, err
1486			}
1487			// send at least one normal byte
1488			if sockType != SOCK_DGRAM {
1489				iov.Base = &dummy
1490				iov.SetLen(1)
1491			}
1492		}
1493		msg.Control = &oob[0]
1494		msg.SetControllen(len(oob))
1495	}
1496	msg.Iov = &iov
1497	msg.Iovlen = 1
1498	if n, err = sendmsg(fd, &msg, flags); err != nil {
1499		return 0, err
1500	}
1501	if len(oob) > 0 && len(p) == 0 {
1502		n = 0
1503	}
1504	return n, nil
1505}
1506
1507// BindToDevice binds the socket associated with fd to device.
1508func BindToDevice(fd int, device string) (err error) {
1509	return SetsockoptString(fd, SOL_SOCKET, SO_BINDTODEVICE, device)
1510}
1511
1512//sys	ptrace(request int, pid int, addr uintptr, data uintptr) (err error)
1513
1514func ptracePeek(req int, pid int, addr uintptr, out []byte) (count int, err error) {
1515	// The peek requests are machine-size oriented, so we wrap it
1516	// to retrieve arbitrary-length data.
1517
1518	// The ptrace syscall differs from glibc's ptrace.
1519	// Peeks returns the word in *data, not as the return value.
1520
1521	var buf [SizeofPtr]byte
1522
1523	// Leading edge. PEEKTEXT/PEEKDATA don't require aligned
1524	// access (PEEKUSER warns that it might), but if we don't
1525	// align our reads, we might straddle an unmapped page
1526	// boundary and not get the bytes leading up to the page
1527	// boundary.
1528	n := 0
1529	if addr%SizeofPtr != 0 {
1530		err = ptrace(req, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1531		if err != nil {
1532			return 0, err
1533		}
1534		n += copy(out, buf[addr%SizeofPtr:])
1535		out = out[n:]
1536	}
1537
1538	// Remainder.
1539	for len(out) > 0 {
1540		// We use an internal buffer to guarantee alignment.
1541		// It's not documented if this is necessary, but we're paranoid.
1542		err = ptrace(req, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1543		if err != nil {
1544			return n, err
1545		}
1546		copied := copy(out, buf[0:])
1547		n += copied
1548		out = out[copied:]
1549	}
1550
1551	return n, nil
1552}
1553
1554func PtracePeekText(pid int, addr uintptr, out []byte) (count int, err error) {
1555	return ptracePeek(PTRACE_PEEKTEXT, pid, addr, out)
1556}
1557
1558func PtracePeekData(pid int, addr uintptr, out []byte) (count int, err error) {
1559	return ptracePeek(PTRACE_PEEKDATA, pid, addr, out)
1560}
1561
1562func PtracePeekUser(pid int, addr uintptr, out []byte) (count int, err error) {
1563	return ptracePeek(PTRACE_PEEKUSR, pid, addr, out)
1564}
1565
1566func ptracePoke(pokeReq int, peekReq int, pid int, addr uintptr, data []byte) (count int, err error) {
1567	// As for ptracePeek, we need to align our accesses to deal
1568	// with the possibility of straddling an invalid page.
1569
1570	// Leading edge.
1571	n := 0
1572	if addr%SizeofPtr != 0 {
1573		var buf [SizeofPtr]byte
1574		err = ptrace(peekReq, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1575		if err != nil {
1576			return 0, err
1577		}
1578		n += copy(buf[addr%SizeofPtr:], data)
1579		word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1580		err = ptrace(pokeReq, pid, addr-addr%SizeofPtr, word)
1581		if err != nil {
1582			return 0, err
1583		}
1584		data = data[n:]
1585	}
1586
1587	// Interior.
1588	for len(data) > SizeofPtr {
1589		word := *((*uintptr)(unsafe.Pointer(&data[0])))
1590		err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1591		if err != nil {
1592			return n, err
1593		}
1594		n += SizeofPtr
1595		data = data[SizeofPtr:]
1596	}
1597
1598	// Trailing edge.
1599	if len(data) > 0 {
1600		var buf [SizeofPtr]byte
1601		err = ptrace(peekReq, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1602		if err != nil {
1603			return n, err
1604		}
1605		copy(buf[0:], data)
1606		word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1607		err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1608		if err != nil {
1609			return n, err
1610		}
1611		n += len(data)
1612	}
1613
1614	return n, nil
1615}
1616
1617func PtracePokeText(pid int, addr uintptr, data []byte) (count int, err error) {
1618	return ptracePoke(PTRACE_POKETEXT, PTRACE_PEEKTEXT, pid, addr, data)
1619}
1620
1621func PtracePokeData(pid int, addr uintptr, data []byte) (count int, err error) {
1622	return ptracePoke(PTRACE_POKEDATA, PTRACE_PEEKDATA, pid, addr, data)
1623}
1624
1625func PtracePokeUser(pid int, addr uintptr, data []byte) (count int, err error) {
1626	return ptracePoke(PTRACE_POKEUSR, PTRACE_PEEKUSR, pid, addr, data)
1627}
1628
1629func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) {
1630	return ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout)))
1631}
1632
1633func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) {
1634	return ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs)))
1635}
1636
1637func PtraceSetOptions(pid int, options int) (err error) {
1638	return ptrace(PTRACE_SETOPTIONS, pid, 0, uintptr(options))
1639}
1640
1641func PtraceGetEventMsg(pid int) (msg uint, err error) {
1642	var data _C_long
1643	err = ptrace(PTRACE_GETEVENTMSG, pid, 0, uintptr(unsafe.Pointer(&data)))
1644	msg = uint(data)
1645	return
1646}
1647
1648func PtraceCont(pid int, signal int) (err error) {
1649	return ptrace(PTRACE_CONT, pid, 0, uintptr(signal))
1650}
1651
1652func PtraceSyscall(pid int, signal int) (err error) {
1653	return ptrace(PTRACE_SYSCALL, pid, 0, uintptr(signal))
1654}
1655
1656func PtraceSingleStep(pid int) (err error) { return ptrace(PTRACE_SINGLESTEP, pid, 0, 0) }
1657
1658func PtraceInterrupt(pid int) (err error) { return ptrace(PTRACE_INTERRUPT, pid, 0, 0) }
1659
1660func PtraceAttach(pid int) (err error) { return ptrace(PTRACE_ATTACH, pid, 0, 0) }
1661
1662func PtraceSeize(pid int) (err error) { return ptrace(PTRACE_SEIZE, pid, 0, 0) }
1663
1664func PtraceDetach(pid int) (err error) { return ptrace(PTRACE_DETACH, pid, 0, 0) }
1665
1666//sys	reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error)
1667
1668func Reboot(cmd int) (err error) {
1669	return reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, "")
1670}
1671
1672func direntIno(buf []byte) (uint64, bool) {
1673	return readInt(buf, unsafe.Offsetof(Dirent{}.Ino), unsafe.Sizeof(Dirent{}.Ino))
1674}
1675
1676func direntReclen(buf []byte) (uint64, bool) {
1677	return readInt(buf, unsafe.Offsetof(Dirent{}.Reclen), unsafe.Sizeof(Dirent{}.Reclen))
1678}
1679
1680func direntNamlen(buf []byte) (uint64, bool) {
1681	reclen, ok := direntReclen(buf)
1682	if !ok {
1683		return 0, false
1684	}
1685	return reclen - uint64(unsafe.Offsetof(Dirent{}.Name)), true
1686}
1687
1688//sys	mount(source string, target string, fstype string, flags uintptr, data *byte) (err error)
1689
1690func Mount(source string, target string, fstype string, flags uintptr, data string) (err error) {
1691	// Certain file systems get rather angry and EINVAL if you give
1692	// them an empty string of data, rather than NULL.
1693	if data == "" {
1694		return mount(source, target, fstype, flags, nil)
1695	}
1696	datap, err := BytePtrFromString(data)
1697	if err != nil {
1698		return err
1699	}
1700	return mount(source, target, fstype, flags, datap)
1701}
1702
1703func Sendfile(outfd int, infd int, offset *int64, count int) (written int, err error) {
1704	if raceenabled {
1705		raceReleaseMerge(unsafe.Pointer(&ioSync))
1706	}
1707	return sendfile(outfd, infd, offset, count)
1708}
1709
1710// Sendto
1711// Recvfrom
1712// Socketpair
1713
1714/*
1715 * Direct access
1716 */
1717//sys	Acct(path string) (err error)
1718//sys	AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error)
1719//sys	Adjtimex(buf *Timex) (state int, err error)
1720//sysnb	Capget(hdr *CapUserHeader, data *CapUserData) (err error)
1721//sysnb	Capset(hdr *CapUserHeader, data *CapUserData) (err error)
1722//sys	Chdir(path string) (err error)
1723//sys	Chroot(path string) (err error)
1724//sys	ClockGetres(clockid int32, res *Timespec) (err error)
1725//sys	ClockGettime(clockid int32, time *Timespec) (err error)
1726//sys	ClockNanosleep(clockid int32, flags int, request *Timespec, remain *Timespec) (err error)
1727//sys	Close(fd int) (err error)
1728//sys	CloseRange(first uint, last uint, flags uint) (err error)
1729//sys	CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error)
1730//sys	DeleteModule(name string, flags int) (err error)
1731//sys	Dup(oldfd int) (fd int, err error)
1732
1733func Dup2(oldfd, newfd int) error {
1734	// Android O and newer blocks dup2; riscv and arm64 don't implement dup2.
1735	if runtime.GOOS == "android" || runtime.GOARCH == "riscv64" || runtime.GOARCH == "arm64" {
1736		return Dup3(oldfd, newfd, 0)
1737	}
1738	return dup2(oldfd, newfd)
1739}
1740
1741//sys	Dup3(oldfd int, newfd int, flags int) (err error)
1742//sysnb	EpollCreate1(flag int) (fd int, err error)
1743//sysnb	EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error)
1744//sys	Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2
1745//sys	Exit(code int) = SYS_EXIT_GROUP
1746//sys	Fallocate(fd int, mode uint32, off int64, len int64) (err error)
1747//sys	Fchdir(fd int) (err error)
1748//sys	Fchmod(fd int, mode uint32) (err error)
1749//sys	Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error)
1750//sys	Fdatasync(fd int) (err error)
1751//sys	Fgetxattr(fd int, attr string, dest []byte) (sz int, err error)
1752//sys	FinitModule(fd int, params string, flags int) (err error)
1753//sys	Flistxattr(fd int, dest []byte) (sz int, err error)
1754//sys	Flock(fd int, how int) (err error)
1755//sys	Fremovexattr(fd int, attr string) (err error)
1756//sys	Fsetxattr(fd int, attr string, dest []byte, flags int) (err error)
1757//sys	Fsync(fd int) (err error)
1758//sys	Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64
1759//sysnb	Getpgid(pid int) (pgid int, err error)
1760
1761func Getpgrp() (pid int) {
1762	pid, _ = Getpgid(0)
1763	return
1764}
1765
1766//sysnb	Getpid() (pid int)
1767//sysnb	Getppid() (ppid int)
1768//sys	Getpriority(which int, who int) (prio int, err error)
1769//sys	Getrandom(buf []byte, flags int) (n int, err error)
1770//sysnb	Getrusage(who int, rusage *Rusage) (err error)
1771//sysnb	Getsid(pid int) (sid int, err error)
1772//sysnb	Gettid() (tid int)
1773//sys	Getxattr(path string, attr string, dest []byte) (sz int, err error)
1774//sys	InitModule(moduleImage []byte, params string) (err error)
1775//sys	InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error)
1776//sysnb	InotifyInit1(flags int) (fd int, err error)
1777//sysnb	InotifyRmWatch(fd int, watchdesc uint32) (success int, err error)
1778//sysnb	Kill(pid int, sig syscall.Signal) (err error)
1779//sys	Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG
1780//sys	Lgetxattr(path string, attr string, dest []byte) (sz int, err error)
1781//sys	Listxattr(path string, dest []byte) (sz int, err error)
1782//sys	Llistxattr(path string, dest []byte) (sz int, err error)
1783//sys	Lremovexattr(path string, attr string) (err error)
1784//sys	Lsetxattr(path string, attr string, data []byte, flags int) (err error)
1785//sys	MemfdCreate(name string, flags int) (fd int, err error)
1786//sys	Mkdirat(dirfd int, path string, mode uint32) (err error)
1787//sys	Mknodat(dirfd int, path string, mode uint32, dev int) (err error)
1788//sys	Nanosleep(time *Timespec, leftover *Timespec) (err error)
1789//sys	PerfEventOpen(attr *PerfEventAttr, pid int, cpu int, groupFd int, flags int) (fd int, err error)
1790//sys	PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT
1791//sysnb	prlimit(pid int, resource int, newlimit *Rlimit, old *Rlimit) (err error) = SYS_PRLIMIT64
1792//sys	Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error)
1793//sys	Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) = SYS_PSELECT6
1794//sys	read(fd int, p []byte) (n int, err error)
1795//sys	Removexattr(path string, attr string) (err error)
1796//sys	Renameat2(olddirfd int, oldpath string, newdirfd int, newpath string, flags uint) (err error)
1797//sys	RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error)
1798//sys	Setdomainname(p []byte) (err error)
1799//sys	Sethostname(p []byte) (err error)
1800//sysnb	Setpgid(pid int, pgid int) (err error)
1801//sysnb	Setsid() (pid int, err error)
1802//sysnb	Settimeofday(tv *Timeval) (err error)
1803//sys	Setns(fd int, nstype int) (err error)
1804
1805// PrctlRetInt performs a prctl operation specified by option and further
1806// optional arguments arg2 through arg5 depending on option. It returns a
1807// non-negative integer that is returned by the prctl syscall.
1808func PrctlRetInt(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (int, error) {
1809	ret, _, err := Syscall6(SYS_PRCTL, uintptr(option), uintptr(arg2), uintptr(arg3), uintptr(arg4), uintptr(arg5), 0)
1810	if err != 0 {
1811		return 0, err
1812	}
1813	return int(ret), nil
1814}
1815
1816// issue 1435.
1817// On linux Setuid and Setgid only affects the current thread, not the process.
1818// This does not match what most callers expect so we must return an error
1819// here rather than letting the caller think that the call succeeded.
1820
1821func Setuid(uid int) (err error) {
1822	return EOPNOTSUPP
1823}
1824
1825func Setgid(uid int) (err error) {
1826	return EOPNOTSUPP
1827}
1828
1829// SetfsgidRetGid sets fsgid for current thread and returns previous fsgid set.
1830// setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability.
1831// If the call fails due to other reasons, current fsgid will be returned.
1832func SetfsgidRetGid(gid int) (int, error) {
1833	return setfsgid(gid)
1834}
1835
1836// SetfsuidRetUid sets fsuid for current thread and returns previous fsuid set.
1837// setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability
1838// If the call fails due to other reasons, current fsuid will be returned.
1839func SetfsuidRetUid(uid int) (int, error) {
1840	return setfsuid(uid)
1841}
1842
1843func Setfsgid(gid int) error {
1844	_, err := setfsgid(gid)
1845	return err
1846}
1847
1848func Setfsuid(uid int) error {
1849	_, err := setfsuid(uid)
1850	return err
1851}
1852
1853func Signalfd(fd int, sigmask *Sigset_t, flags int) (newfd int, err error) {
1854	return signalfd(fd, sigmask, _C__NSIG/8, flags)
1855}
1856
1857//sys	Setpriority(which int, who int, prio int) (err error)
1858//sys	Setxattr(path string, attr string, data []byte, flags int) (err error)
1859//sys	signalfd(fd int, sigmask *Sigset_t, maskSize uintptr, flags int) (newfd int, err error) = SYS_SIGNALFD4
1860//sys	Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error)
1861//sys	Sync()
1862//sys	Syncfs(fd int) (err error)
1863//sysnb	Sysinfo(info *Sysinfo_t) (err error)
1864//sys	Tee(rfd int, wfd int, len int, flags int) (n int64, err error)
1865//sysnb	TimerfdCreate(clockid int, flags int) (fd int, err error)
1866//sysnb	TimerfdGettime(fd int, currValue *ItimerSpec) (err error)
1867//sysnb	TimerfdSettime(fd int, flags int, newValue *ItimerSpec, oldValue *ItimerSpec) (err error)
1868//sysnb	Tgkill(tgid int, tid int, sig syscall.Signal) (err error)
1869//sysnb	Times(tms *Tms) (ticks uintptr, err error)
1870//sysnb	Umask(mask int) (oldmask int)
1871//sysnb	Uname(buf *Utsname) (err error)
1872//sys	Unmount(target string, flags int) (err error) = SYS_UMOUNT2
1873//sys	Unshare(flags int) (err error)
1874//sys	write(fd int, p []byte) (n int, err error)
1875//sys	exitThread(code int) (err error) = SYS_EXIT
1876//sys	readlen(fd int, p *byte, np int) (n int, err error) = SYS_READ
1877//sys	writelen(fd int, p *byte, np int) (n int, err error) = SYS_WRITE
1878//sys	readv(fd int, iovs []Iovec) (n int, err error) = SYS_READV
1879//sys	writev(fd int, iovs []Iovec) (n int, err error) = SYS_WRITEV
1880//sys	preadv(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PREADV
1881//sys	pwritev(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PWRITEV
1882//sys	preadv2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PREADV2
1883//sys	pwritev2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PWRITEV2
1884
1885func bytes2iovec(bs [][]byte) []Iovec {
1886	iovecs := make([]Iovec, len(bs))
1887	for i, b := range bs {
1888		iovecs[i].SetLen(len(b))
1889		if len(b) > 0 {
1890			iovecs[i].Base = &b[0]
1891		} else {
1892			iovecs[i].Base = (*byte)(unsafe.Pointer(&_zero))
1893		}
1894	}
1895	return iovecs
1896}
1897
1898// offs2lohi splits offs into its lower and upper unsigned long. On 64-bit
1899// systems, hi will always be 0. On 32-bit systems, offs will be split in half.
1900// preadv/pwritev chose this calling convention so they don't need to add a
1901// padding-register for alignment on ARM.
1902func offs2lohi(offs int64) (lo, hi uintptr) {
1903	return uintptr(offs), uintptr(uint64(offs) >> SizeofLong)
1904}
1905
1906func Readv(fd int, iovs [][]byte) (n int, err error) {
1907	iovecs := bytes2iovec(iovs)
1908	n, err = readv(fd, iovecs)
1909	readvRacedetect(iovecs, n, err)
1910	return n, err
1911}
1912
1913func Preadv(fd int, iovs [][]byte, offset int64) (n int, err error) {
1914	iovecs := bytes2iovec(iovs)
1915	lo, hi := offs2lohi(offset)
1916	n, err = preadv(fd, iovecs, lo, hi)
1917	readvRacedetect(iovecs, n, err)
1918	return n, err
1919}
1920
1921func Preadv2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) {
1922	iovecs := bytes2iovec(iovs)
1923	lo, hi := offs2lohi(offset)
1924	n, err = preadv2(fd, iovecs, lo, hi, flags)
1925	readvRacedetect(iovecs, n, err)
1926	return n, err
1927}
1928
1929func readvRacedetect(iovecs []Iovec, n int, err error) {
1930	if !raceenabled {
1931		return
1932	}
1933	for i := 0; n > 0 && i < len(iovecs); i++ {
1934		m := int(iovecs[i].Len)
1935		if m > n {
1936			m = n
1937		}
1938		n -= m
1939		if m > 0 {
1940			raceWriteRange(unsafe.Pointer(iovecs[i].Base), m)
1941		}
1942	}
1943	if err == nil {
1944		raceAcquire(unsafe.Pointer(&ioSync))
1945	}
1946}
1947
1948func Writev(fd int, iovs [][]byte) (n int, err error) {
1949	iovecs := bytes2iovec(iovs)
1950	if raceenabled {
1951		raceReleaseMerge(unsafe.Pointer(&ioSync))
1952	}
1953	n, err = writev(fd, iovecs)
1954	writevRacedetect(iovecs, n)
1955	return n, err
1956}
1957
1958func Pwritev(fd int, iovs [][]byte, offset int64) (n int, err error) {
1959	iovecs := bytes2iovec(iovs)
1960	if raceenabled {
1961		raceReleaseMerge(unsafe.Pointer(&ioSync))
1962	}
1963	lo, hi := offs2lohi(offset)
1964	n, err = pwritev(fd, iovecs, lo, hi)
1965	writevRacedetect(iovecs, n)
1966	return n, err
1967}
1968
1969func Pwritev2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) {
1970	iovecs := bytes2iovec(iovs)
1971	if raceenabled {
1972		raceReleaseMerge(unsafe.Pointer(&ioSync))
1973	}
1974	lo, hi := offs2lohi(offset)
1975	n, err = pwritev2(fd, iovecs, lo, hi, flags)
1976	writevRacedetect(iovecs, n)
1977	return n, err
1978}
1979
1980func writevRacedetect(iovecs []Iovec, n int) {
1981	if !raceenabled {
1982		return
1983	}
1984	for i := 0; n > 0 && i < len(iovecs); i++ {
1985		m := int(iovecs[i].Len)
1986		if m > n {
1987			m = n
1988		}
1989		n -= m
1990		if m > 0 {
1991			raceReadRange(unsafe.Pointer(iovecs[i].Base), m)
1992		}
1993	}
1994}
1995
1996// mmap varies by architecture; see syscall_linux_*.go.
1997//sys	munmap(addr uintptr, length uintptr) (err error)
1998
1999var mapper = &mmapper{
2000	active: make(map[*byte][]byte),
2001	mmap:   mmap,
2002	munmap: munmap,
2003}
2004
2005func Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) {
2006	return mapper.Mmap(fd, offset, length, prot, flags)
2007}
2008
2009func Munmap(b []byte) (err error) {
2010	return mapper.Munmap(b)
2011}
2012
2013//sys	Madvise(b []byte, advice int) (err error)
2014//sys	Mprotect(b []byte, prot int) (err error)
2015//sys	Mlock(b []byte) (err error)
2016//sys	Mlockall(flags int) (err error)
2017//sys	Msync(b []byte, flags int) (err error)
2018//sys	Munlock(b []byte) (err error)
2019//sys	Munlockall() (err error)
2020
2021// Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd,
2022// using the specified flags.
2023func Vmsplice(fd int, iovs []Iovec, flags int) (int, error) {
2024	var p unsafe.Pointer
2025	if len(iovs) > 0 {
2026		p = unsafe.Pointer(&iovs[0])
2027	}
2028
2029	n, _, errno := Syscall6(SYS_VMSPLICE, uintptr(fd), uintptr(p), uintptr(len(iovs)), uintptr(flags), 0, 0)
2030	if errno != 0 {
2031		return 0, syscall.Errno(errno)
2032	}
2033
2034	return int(n), nil
2035}
2036
2037func isGroupMember(gid int) bool {
2038	groups, err := Getgroups()
2039	if err != nil {
2040		return false
2041	}
2042
2043	for _, g := range groups {
2044		if g == gid {
2045			return true
2046		}
2047	}
2048	return false
2049}
2050
2051//sys	faccessat(dirfd int, path string, mode uint32) (err error)
2052//sys	Faccessat2(dirfd int, path string, mode uint32, flags int) (err error)
2053
2054func Faccessat(dirfd int, path string, mode uint32, flags int) (err error) {
2055	if flags == 0 {
2056		return faccessat(dirfd, path, mode)
2057	}
2058
2059	if err := Faccessat2(dirfd, path, mode, flags); err != ENOSYS && err != EPERM {
2060		return err
2061	}
2062
2063	// The Linux kernel faccessat system call does not take any flags.
2064	// The glibc faccessat implements the flags itself; see
2065	// https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/faccessat.c;hb=HEAD
2066	// Because people naturally expect syscall.Faccessat to act
2067	// like C faccessat, we do the same.
2068
2069	if flags & ^(AT_SYMLINK_NOFOLLOW|AT_EACCESS) != 0 {
2070		return EINVAL
2071	}
2072
2073	var st Stat_t
2074	if err := Fstatat(dirfd, path, &st, flags&AT_SYMLINK_NOFOLLOW); err != nil {
2075		return err
2076	}
2077
2078	mode &= 7
2079	if mode == 0 {
2080		return nil
2081	}
2082
2083	var uid int
2084	if flags&AT_EACCESS != 0 {
2085		uid = Geteuid()
2086	} else {
2087		uid = Getuid()
2088	}
2089
2090	if uid == 0 {
2091		if mode&1 == 0 {
2092			// Root can read and write any file.
2093			return nil
2094		}
2095		if st.Mode&0111 != 0 {
2096			// Root can execute any file that anybody can execute.
2097			return nil
2098		}
2099		return EACCES
2100	}
2101
2102	var fmode uint32
2103	if uint32(uid) == st.Uid {
2104		fmode = (st.Mode >> 6) & 7
2105	} else {
2106		var gid int
2107		if flags&AT_EACCESS != 0 {
2108			gid = Getegid()
2109		} else {
2110			gid = Getgid()
2111		}
2112
2113		if uint32(gid) == st.Gid || isGroupMember(gid) {
2114			fmode = (st.Mode >> 3) & 7
2115		} else {
2116			fmode = st.Mode & 7
2117		}
2118	}
2119
2120	if fmode&mode == mode {
2121		return nil
2122	}
2123
2124	return EACCES
2125}
2126
2127//sys	nameToHandleAt(dirFD int, pathname string, fh *fileHandle, mountID *_C_int, flags int) (err error) = SYS_NAME_TO_HANDLE_AT
2128//sys	openByHandleAt(mountFD int, fh *fileHandle, flags int) (fd int, err error) = SYS_OPEN_BY_HANDLE_AT
2129
2130// fileHandle is the argument to nameToHandleAt and openByHandleAt. We
2131// originally tried to generate it via unix/linux/types.go with "type
2132// fileHandle C.struct_file_handle" but that generated empty structs
2133// for mips64 and mips64le. Instead, hard code it for now (it's the
2134// same everywhere else) until the mips64 generator issue is fixed.
2135type fileHandle struct {
2136	Bytes uint32
2137	Type  int32
2138}
2139
2140// FileHandle represents the C struct file_handle used by
2141// name_to_handle_at (see NameToHandleAt) and open_by_handle_at (see
2142// OpenByHandleAt).
2143type FileHandle struct {
2144	*fileHandle
2145}
2146
2147// NewFileHandle constructs a FileHandle.
2148func NewFileHandle(handleType int32, handle []byte) FileHandle {
2149	const hdrSize = unsafe.Sizeof(fileHandle{})
2150	buf := make([]byte, hdrSize+uintptr(len(handle)))
2151	copy(buf[hdrSize:], handle)
2152	fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
2153	fh.Type = handleType
2154	fh.Bytes = uint32(len(handle))
2155	return FileHandle{fh}
2156}
2157
2158func (fh *FileHandle) Size() int   { return int(fh.fileHandle.Bytes) }
2159func (fh *FileHandle) Type() int32 { return fh.fileHandle.Type }
2160func (fh *FileHandle) Bytes() []byte {
2161	n := fh.Size()
2162	if n == 0 {
2163		return nil
2164	}
2165	return (*[1 << 30]byte)(unsafe.Pointer(uintptr(unsafe.Pointer(&fh.fileHandle.Type)) + 4))[:n:n]
2166}
2167
2168// NameToHandleAt wraps the name_to_handle_at system call; it obtains
2169// a handle for a path name.
2170func NameToHandleAt(dirfd int, path string, flags int) (handle FileHandle, mountID int, err error) {
2171	var mid _C_int
2172	// Try first with a small buffer, assuming the handle will
2173	// only be 32 bytes.
2174	size := uint32(32 + unsafe.Sizeof(fileHandle{}))
2175	didResize := false
2176	for {
2177		buf := make([]byte, size)
2178		fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
2179		fh.Bytes = size - uint32(unsafe.Sizeof(fileHandle{}))
2180		err = nameToHandleAt(dirfd, path, fh, &mid, flags)
2181		if err == EOVERFLOW {
2182			if didResize {
2183				// We shouldn't need to resize more than once
2184				return
2185			}
2186			didResize = true
2187			size = fh.Bytes + uint32(unsafe.Sizeof(fileHandle{}))
2188			continue
2189		}
2190		if err != nil {
2191			return
2192		}
2193		return FileHandle{fh}, int(mid), nil
2194	}
2195}
2196
2197// OpenByHandleAt wraps the open_by_handle_at system call; it opens a
2198// file via a handle as previously returned by NameToHandleAt.
2199func OpenByHandleAt(mountFD int, handle FileHandle, flags int) (fd int, err error) {
2200	return openByHandleAt(mountFD, handle.fileHandle, flags)
2201}
2202
2203// Klogset wraps the sys_syslog system call; it sets console_loglevel to
2204// the value specified by arg and passes a dummy pointer to bufp.
2205func Klogset(typ int, arg int) (err error) {
2206	var p unsafe.Pointer
2207	_, _, errno := Syscall(SYS_SYSLOG, uintptr(typ), uintptr(p), uintptr(arg))
2208	if errno != 0 {
2209		return errnoErr(errno)
2210	}
2211	return nil
2212}
2213
2214// RemoteIovec is Iovec with the pointer replaced with an integer.
2215// It is used for ProcessVMReadv and ProcessVMWritev, where the pointer
2216// refers to a location in a different process' address space, which
2217// would confuse the Go garbage collector.
2218type RemoteIovec struct {
2219	Base uintptr
2220	Len  int
2221}
2222
2223//sys	ProcessVMReadv(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_READV
2224//sys	ProcessVMWritev(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_WRITEV
2225
2226/*
2227 * Unimplemented
2228 */
2229// AfsSyscall
2230// Alarm
2231// ArchPrctl
2232// Brk
2233// ClockNanosleep
2234// ClockSettime
2235// Clone
2236// EpollCtlOld
2237// EpollPwait
2238// EpollWaitOld
2239// Execve
2240// Fork
2241// Futex
2242// GetKernelSyms
2243// GetMempolicy
2244// GetRobustList
2245// GetThreadArea
2246// Getitimer
2247// Getpmsg
2248// IoCancel
2249// IoDestroy
2250// IoGetevents
2251// IoSetup
2252// IoSubmit
2253// IoprioGet
2254// IoprioSet
2255// KexecLoad
2256// LookupDcookie
2257// Mbind
2258// MigratePages
2259// Mincore
2260// ModifyLdt
2261// Mount
2262// MovePages
2263// MqGetsetattr
2264// MqNotify
2265// MqOpen
2266// MqTimedreceive
2267// MqTimedsend
2268// MqUnlink
2269// Mremap
2270// Msgctl
2271// Msgget
2272// Msgrcv
2273// Msgsnd
2274// Nfsservctl
2275// Personality
2276// Pselect6
2277// Ptrace
2278// Putpmsg
2279// Quotactl
2280// Readahead
2281// Readv
2282// RemapFilePages
2283// RestartSyscall
2284// RtSigaction
2285// RtSigpending
2286// RtSigprocmask
2287// RtSigqueueinfo
2288// RtSigreturn
2289// RtSigsuspend
2290// RtSigtimedwait
2291// SchedGetPriorityMax
2292// SchedGetPriorityMin
2293// SchedGetparam
2294// SchedGetscheduler
2295// SchedRrGetInterval
2296// SchedSetparam
2297// SchedYield
2298// Security
2299// Semctl
2300// Semget
2301// Semop
2302// Semtimedop
2303// SetMempolicy
2304// SetRobustList
2305// SetThreadArea
2306// SetTidAddress
2307// Shmat
2308// Shmctl
2309// Shmdt
2310// Shmget
2311// Sigaltstack
2312// Swapoff
2313// Swapon
2314// Sysfs
2315// TimerCreate
2316// TimerDelete
2317// TimerGetoverrun
2318// TimerGettime
2319// TimerSettime
2320// Tkill (obsolete)
2321// Tuxcall
2322// Umount2
2323// Uselib
2324// Utimensat
2325// Vfork
2326// Vhangup
2327// Vserver
2328// Waitid
2329// _Sysctl
2330