1 /*~ Welcome to the connect daemon: maintainer of connectivity!
2  *
3  * This is another separate daemon which is responsible for reaching out to
4  * other peers, and also accepting their incoming connections.  It talks to
5  * them for just long enough to validate their identity using a cryptographic
6  * handshake, then receive and send supported feature sets; then it hands them
7  * up to lightningd which will fire up a specific per-peer daemon to talk to
8  * it.
9  */
10 #include <ccan/array_size/array_size.h>
11 #include <ccan/asort/asort.h>
12 #include <ccan/fdpass/fdpass.h>
13 #include <ccan/noerr/noerr.h>
14 #include <ccan/tal/str/str.h>
15 #include <common/bech32.h>
16 #include <common/bech32_util.h>
17 #include <common/daemon_conn.h>
18 #include <common/ecdh_hsmd.h>
19 #include <common/jsonrpc_errors.h>
20 #include <common/memleak.h>
21 #include <common/pseudorand.h>
22 #include <common/status.h>
23 #include <common/subdaemon.h>
24 #include <common/timeout.h>
25 #include <common/type_to_string.h>
26 #include <common/wire_error.h>
27 #include <connectd/connectd.h>
28 #include <connectd/connectd_gossipd_wiregen.h>
29 #include <connectd/connectd_wiregen.h>
30 #include <connectd/handshake.h>
31 #include <connectd/netaddress.h>
32 #include <connectd/peer_exchange_initmsg.h>
33 #include <connectd/tor.h>
34 #include <connectd/tor_autoservice.h>
35 #include <errno.h>
36 #include <fcntl.h>
37 #include <netdb.h>
38 #include <netinet/in.h>
39 #include <sodium.h>
40 #include <sys/types.h>
41 #include <sys/wait.h>
42 #include <unistd.h>
43 #include <wire/wire_sync.h>
44 
45 /*~ We are passed two file descriptors when exec'ed from `lightningd`: the
46  * first is a connection to `hsmd`, which we need for the cryptographic
47  * handshake, and the second is to `gossipd`: it gathers network gossip and
48  * thus may know how to reach certain peers. */
49 #define HSM_FD 3
50 #define GOSSIPCTL_FD 4
51 
52 /*~ In C convention, constants are UPPERCASE macros.  Not everything needs to
53  * be a constant, but it soothes the programmer's conscience to encapsulate
54  * arbitrary decisions like these in one place. */
55 #define MAX_CONNECT_ATTEMPTS 10
56 #define INITIAL_WAIT_SECONDS	1
57 #define MAX_WAIT_SECONDS	300
58 
59 /*~ We keep a hash table (ccan/htable) of public keys, which tells us what
60  * peers are already connected.  The HTABLE_DEFINE_TYPE() macro needs a
61  * keyof() function to extract the key.  For this simple use case, that's the
62  * identity function: */
node_id_keyof(const struct node_id * pc)63 static const struct node_id *node_id_keyof(const struct node_id *pc)
64 {
65 	return pc;
66 }
67 
68 /*~ We also need to define a hashing function. siphash24 is a fast yet
69  * cryptographic hash in ccan/crypto/siphash24; we might be able to get away
70  * with a slightly faster hash with fewer guarantees, but it's good hygiene to
71  * use this unless it's a proven bottleneck.  siphash_seed() is a function in
72  * common/pseudorand which sets up a seed for our hashing; it's different
73  * every time the program is run. */
node_id_hash(const struct node_id * id)74 static size_t node_id_hash(const struct node_id *id)
75 {
76 	return siphash24(siphash_seed(), id->k, sizeof(id->k));
77 }
78 
79 /*~ This defines 'struct node_set' which contains 'struct node_id' pointers. */
80 HTABLE_DEFINE_TYPE(struct node_id,
81 		   node_id_keyof,
82 		   node_id_hash,
83 		   node_id_eq,
84 		   node_set);
85 
86 /*~ This is the global state, like `struct lightningd *ld` in lightningd. */
87 struct daemon {
88 	/* Who am I? */
89 	struct node_id id;
90 
91 	/* pubkey equivalent. */
92 	struct pubkey mykey;
93 
94 	/* Base for timeout timers, and how long to wait for init msg */
95 	struct timers timers;
96 	u32 timeout_secs;
97 
98 	/* Peers that we've handed to `lightningd`, which it hasn't told us
99 	 * have disconnected. */
100 	struct node_set peers;
101 
102 	/* Peers we are trying to reach */
103 	struct list_head connecting;
104 
105 	/* Connection to main daemon. */
106 	struct daemon_conn *master;
107 
108 	/* Allow localhost to be considered "public": DEVELOPER-only option,
109 	 * but for simplicity we don't #if DEVELOPER-wrap it here. */
110 	bool dev_allow_localhost;
111 
112 	/* We support use of a SOCKS5 proxy (e.g. Tor) */
113 	struct addrinfo *proxyaddr;
114 
115 	/* They can tell us we must use proxy even for non-Tor addresses. */
116 	bool always_use_proxy;
117 
118 	/* There are DNS seeds we can use to look up node addresses as a last
119 	 * resort, but doing so leaks our address so can be disabled. */
120 	bool use_dns;
121 
122 	/* The address that the broken response returns instead of
123 	 * NXDOMAIN. NULL if we have not detected a broken resolver. */
124 	struct sockaddr *broken_resolver_response;
125 
126 	/* File descriptors to listen on once we're activated. */
127 	struct listen_fd *listen_fds;
128 
129 	/* Allow to define the default behavior of tor services calls*/
130 	bool use_v3_autotor;
131 
132 	/* Our features, as lightningd told us */
133 	struct feature_set *our_features;
134 
135 	/* Subdaemon to proxy websocket requests. */
136 	char *websocket_helper;
137 
138 	/* If non-zero, port to listen for websocket connections. */
139 	u16 websocket_port;
140 };
141 
142 /* Peers we're trying to reach: we iterate through addrs until we succeed
143  * or fail. */
144 struct connecting {
145 	/* daemon->connecting */
146 	struct list_node list;
147 
148 	struct daemon *daemon;
149 
150 	struct io_conn *conn;
151 
152 	/* The ID of the peer (not necessarily unique, in transit!) */
153 	struct node_id id;
154 
155 	/* We iterate through the tal_count(addrs) */
156 	size_t addrnum;
157 	struct wireaddr_internal *addrs;
158 
159 	/* NULL if there wasn't a hint. */
160 	struct wireaddr_internal *addrhint;
161 
162 	/* How far did we get? */
163 	const char *connstate;
164 
165 	/* Accumulated errors */
166 	char *errors;
167 
168 	/* How many seconds did we wait this time? */
169 	u32 seconds_waited;
170 };
171 
172 /*~ C programs should generally be written bottom-to-top, with the root
173  * function at the bottom, and functions it calls above it.  That avoids
174  * us having to pre-declare functions; but in the case of mutual recursion
175  * pre-declarations are necessary (also, sometimes we do it to avoid making
176  * a patch hard to review with gratuitous reorganizations). */
177 static void try_connect_one_addr(struct connecting *connect);
178 
179 /*~ Some ISP resolvers will reply with a dummy IP to queries that would otherwise
180  * result in an NXDOMAIN reply. This just checks whether we have one such
181  * resolver upstream and remembers its reply so we can try to filter future
182  * dummies out.
183  */
broken_resolver(struct daemon * daemon)184 static bool broken_resolver(struct daemon *daemon)
185 {
186 	struct addrinfo *addrinfo;
187 	struct addrinfo hints;
188 	const char *hostname = "nxdomain-test.doesntexist";
189 	int err;
190 
191 	/* If they told us to never do DNS queries, don't even do this one and
192 	 * also not if we just say that we don't */
193 	if (!daemon->use_dns || daemon->always_use_proxy) {
194 		daemon->broken_resolver_response = NULL;
195 		return false;
196 	}
197 
198 	memset(&hints, 0, sizeof(hints));
199 	hints.ai_family = AF_UNSPEC;
200 	hints.ai_socktype = SOCK_STREAM;
201 	hints.ai_protocol = 0;
202 	hints.ai_flags = AI_ADDRCONFIG;
203 	err = getaddrinfo(hostname, tal_fmt(tmpctx, "%d", 42),
204 			  &hints, &addrinfo);
205 
206 	/*~ Note the use of tal_dup here: it is a memdup for tal, but it's
207 	 * type-aware so it's less error-prone. */
208 	if (err == 0) {
209 		daemon->broken_resolver_response
210 			= tal_dup(daemon, struct sockaddr, addrinfo->ai_addr);
211 		freeaddrinfo(addrinfo);
212 	} else
213 		daemon->broken_resolver_response = NULL;
214 
215 	return daemon->broken_resolver_response != NULL;
216 }
217 
218 /*~ Here we see our first tal destructor: in this case the 'struct connect'
219  * simply removes itself from the list of all 'connect' structs. */
destroy_connecting(struct connecting * connect)220 static void destroy_connecting(struct connecting *connect)
221 {
222 	/*~ We don't *need* the list_head here; `list_del(&connect->list)`
223 	 * would work.  But we have access to it, and `list_del_from()` is
224 	 * clearer for readers, and also does a very brief sanity check that
225 	 * the list isn't already empty which catches a surprising number of
226 	 * bugs!  (If CCAN_LIST_DEBUG were defined, it would perform a
227 	 * complete list traverse to check it was in the list before
228 	 * deletion). */
229 	list_del_from(&connect->daemon->connecting, &connect->list);
230 }
231 
232 /*~ Most simple search functions start with find_; in this case, search
233  * for an existing attempt to connect the given peer id. */
find_connecting(struct daemon * daemon,const struct node_id * id)234 static struct connecting *find_connecting(struct daemon *daemon,
235 					  const struct node_id *id)
236 {
237 	struct connecting *i;
238 
239 	/*~ Note the node_id_eq function: this is generally preferred over
240 	 * doing a memcmp() manually, as it is both typesafe and can handle
241 	 * any padding which the C compiler is allowed to insert between
242 	 * members (unnecessary here, as there's no padding in a `struct
243 	 * node_id`). */
244 	list_for_each(&daemon->connecting, i, list)
245 		if (node_id_eq(id, &i->id))
246 			return i;
247 	return NULL;
248 }
249 
250 /*~ Once we've connected out, we disable the callback which would cause us to
251  * to try the next address. */
connected_out_to_peer(struct daemon * daemon,struct io_conn * conn,const struct node_id * id)252 static void connected_out_to_peer(struct daemon *daemon,
253 				  struct io_conn *conn,
254 				  const struct node_id *id)
255 {
256 	struct connecting *connect = find_connecting(daemon, id);
257 
258 	/* We allocate 'conn' as a child of 'connect': we don't want to free
259 	 * it just yet though.  tal_steal() it onto the permanent 'daemon'
260 	 * struct. */
261 	tal_steal(daemon, conn);
262 
263 	/* We only allow one outgoing attempt at a time */
264 	assert(connect->conn == conn);
265 
266 	/* Don't call destroy_io_conn, since we're done. */
267 	io_set_finish(conn, NULL, NULL);
268 
269 	/* Now free the 'connecting' struct. */
270 	tal_free(connect);
271 }
272 
273 /*~ Once they've connected in, stop trying to connect out (if we were). */
peer_connected_in(struct daemon * daemon,struct io_conn * conn,const struct node_id * id)274 static void peer_connected_in(struct daemon *daemon,
275 			      struct io_conn *conn,
276 			      const struct node_id *id)
277 {
278 	struct connecting *connect = find_connecting(daemon, id);
279 
280 	if (!connect)
281 		return;
282 
283 	/* Don't call destroy_io_conn, since we're done. */
284 	io_set_finish(connect->conn, NULL, NULL);
285 
286 	/* Now free the 'connecting' struct since we succeeded. */
287 	tal_free(connect);
288 }
289 
290 /*~ Every per-peer daemon needs a connection to the gossip daemon; this allows
291  * it to forward gossip to/from the peer.  The gossip daemon needs to know a
292  * few of the features of the peer and its id (for reporting).
293  *
294  * Every peer also has read-only access to the gossip_store, which is handed
295  * out by gossipd too, and also a "gossip_state" indicating where we're up to.
296  *
297  * 'features' is a field in the `init` message, indicating properties of the
298  * node.
299  */
get_gossipfds(struct daemon * daemon,const struct node_id * id,const u8 * their_features,struct per_peer_state * pps)300 static bool get_gossipfds(struct daemon *daemon,
301 			  const struct node_id *id,
302 			  const u8 *their_features,
303 			  struct per_peer_state *pps)
304 {
305 	bool gossip_queries_feature, initial_routing_sync, success;
306 	u8 *msg;
307 
308 	/*~ The way features generally work is that both sides need to offer it;
309 	 * we always offer `gossip_queries`, but this check is explicit. */
310 	gossip_queries_feature
311 		= feature_negotiated(daemon->our_features, their_features,
312 				     OPT_GOSSIP_QUERIES);
313 
314 	/*~ `initial_routing_sync` is supported by every node, since it was in
315 	 * the initial lightning specification: it means the peer wants the
316 	 * backlog of existing gossip. */
317 	initial_routing_sync
318 		= feature_offered(their_features, OPT_INITIAL_ROUTING_SYNC);
319 
320 	/*~ We do this communication sync, since gossipd is our friend and
321 	 * it's easier.  If gossipd fails, we fail. */
322 	msg = towire_gossipd_new_peer(NULL, id, gossip_queries_feature,
323 				     initial_routing_sync);
324 	if (!wire_sync_write(GOSSIPCTL_FD, take(msg)))
325 		status_failed(STATUS_FAIL_INTERNAL_ERROR,
326 			      "Failed writing to gossipctl: %s",
327 			      strerror(errno));
328 
329 	msg = wire_sync_read(tmpctx, GOSSIPCTL_FD);
330 	if (!fromwire_gossipd_new_peer_reply(pps, msg, &success, &pps->gs))
331 		status_failed(STATUS_FAIL_INTERNAL_ERROR,
332 			      "Failed parsing msg gossipctl: %s",
333 			      tal_hex(tmpctx, msg));
334 
335 	/* Gossipd might run out of file descriptors, so it tells us, and we
336 	 * give up on connecting this peer. */
337 	if (!success) {
338 		status_broken("Gossipd did not give us an fd: losing peer %s",
339 			      type_to_string(tmpctx, struct node_id, id));
340 		return false;
341 	}
342 
343 	/* Otherwise, the next thing in the socket will be the file descriptors
344 	 * for the per-peer daemon. */
345 	pps->gossip_fd = fdpass_recv(GOSSIPCTL_FD);
346 	pps->gossip_store_fd = fdpass_recv(GOSSIPCTL_FD);
347 	return true;
348 }
349 
350 /*~ This is an ad-hoc marshalling structure where we store arguments so we
351  * can call peer_connected again. */
352 struct peer_reconnected {
353 	struct daemon *daemon;
354 	struct node_id id;
355 	struct wireaddr_internal addr;
356 	struct crypto_state cs;
357 	const u8 *their_features;
358 	bool incoming;
359 };
360 
361 /*~ For simplicity, lightningd only ever deals with a single connection per
362  * peer.  So if we already know about a peer, we tell lightning to disconnect
363  * the old one and retry once it does. */
retry_peer_connected(struct io_conn * conn,struct peer_reconnected * pr)364 static struct io_plan *retry_peer_connected(struct io_conn *conn,
365 					    struct peer_reconnected *pr)
366 {
367 	struct io_plan *plan;
368 
369 	/*~ As you can see, we've had issues with this code before :( */
370 	status_peer_debug(&pr->id, "processing now old peer gone");
371 
372 	/*~ Usually the pattern is to return this directly, but we have to free
373 	 * our temporary structure. */
374 	plan = peer_connected(conn, pr->daemon, &pr->id, &pr->addr, &pr->cs,
375 			      take(pr->their_features), pr->incoming);
376 	tal_free(pr);
377 	return plan;
378 }
379 
380 /*~ If we already know about this peer, we tell lightningd and it disconnects
381  * the old one.  We wait until it tells us that's happened. */
peer_reconnected(struct io_conn * conn,struct daemon * daemon,const struct node_id * id,const struct wireaddr_internal * addr,const struct crypto_state * cs,const u8 * their_features TAKES,bool incoming)382 static struct io_plan *peer_reconnected(struct io_conn *conn,
383 					struct daemon *daemon,
384 					const struct node_id *id,
385 					const struct wireaddr_internal *addr,
386 					const struct crypto_state *cs,
387 					const u8 *their_features TAKES,
388 					bool incoming)
389 {
390 	u8 *msg;
391 	struct peer_reconnected *pr;
392 
393 	status_peer_debug(id, "reconnect");
394 
395 	/* Tell master to kill it: will send peer_disconnect */
396 	msg = towire_connectd_reconnected(NULL, id);
397 	daemon_conn_send(daemon->master, take(msg));
398 
399 	/* Save arguments for next time. */
400 	pr = tal(daemon, struct peer_reconnected);
401 	pr->daemon = daemon;
402 	pr->id = *id;
403 	pr->cs = *cs;
404 	pr->addr = *addr;
405 	pr->incoming = incoming;
406 
407 	/*~ Note that tal_dup_talarr() will do handle the take() of features
408 	 * (turning it into a simply tal_steal() in those cases). */
409 	pr->their_features = tal_dup_talarr(pr, u8, their_features);
410 
411 	/*~ ccan/io supports waiting on an address: in this case, the key in
412 	 * the peer set.  When someone calls `io_wake()` on that address, it
413 	 * will call retry_peer_connected above. */
414 	return io_wait(conn, node_set_get(&daemon->peers, id),
415 			/*~ The notleak() wrapper is a DEVELOPER-mode hack so
416 			 * that our memory leak detection doesn't consider 'pr'
417 			 * (which is not referenced from our code) to be a
418 			 * memory leak. */
419 		       retry_peer_connected, notleak(pr));
420 }
421 
422 /*~ Note the lack of static: this is called by peer_exchange_initmsg.c once the
423  * INIT messages are exchanged, and also by the retry code above. */
peer_connected(struct io_conn * conn,struct daemon * daemon,const struct node_id * id,const struct wireaddr_internal * addr,struct crypto_state * cs,const u8 * their_features TAKES,bool incoming)424 struct io_plan *peer_connected(struct io_conn *conn,
425 			       struct daemon *daemon,
426 			       const struct node_id *id,
427 			       const struct wireaddr_internal *addr,
428 			       struct crypto_state *cs,
429 			       const u8 *their_features TAKES,
430 			       bool incoming)
431 {
432 	u8 *msg;
433 	struct per_peer_state *pps;
434 	int unsup;
435 	size_t depender, missing;
436 
437 	if (node_set_get(&daemon->peers, id))
438 		return peer_reconnected(conn, daemon, id, addr, cs,
439 					their_features, incoming);
440 
441 	/* We promised we'd take it by marking it TAKEN above; prepare to free it. */
442 	if (taken(their_features))
443 		tal_steal(tmpctx, their_features);
444 
445 	/* BOLT #1:
446 	 *
447 	 * The receiving node:
448 	 * ...
449 	 *  - upon receiving unknown _odd_ feature bits that are non-zero:
450 	 *    - MUST ignore the bit.
451 	 *  - upon receiving unknown _even_ feature bits that are non-zero:
452 	 *    - MUST fail the connection.
453 	 */
454 	unsup = features_unsupported(daemon->our_features, their_features,
455 				     INIT_FEATURE);
456 	if (unsup != -1) {
457 		status_peer_unusual(id, "Unsupported feature %u", unsup);
458 		msg = towire_warningfmt(NULL, NULL, "Unsupported feature %u",
459 					unsup);
460 		msg = cryptomsg_encrypt_msg(tmpctx, cs, take(msg));
461 		return io_write(conn, msg, tal_count(msg), io_close_cb, NULL);
462 	}
463 
464 	if (!feature_check_depends(their_features, &depender, &missing)) {
465 		status_peer_unusual(id, "Feature %zu requires feature %zu",
466 				    depender, missing);
467 		msg = towire_warningfmt(NULL, NULL,
468 				      "Feature %zu requires feature %zu",
469 				      depender, missing);
470 		msg = cryptomsg_encrypt_msg(tmpctx, cs, take(msg));
471 		return io_write(conn, msg, tal_count(msg), io_close_cb, NULL);
472 	}
473 
474 	/* We've successfully connected. */
475 	if (incoming)
476 		peer_connected_in(daemon, conn, id);
477 	else
478 		connected_out_to_peer(daemon, conn, id);
479 
480 	if (find_connecting(daemon, id))
481 		status_failed(STATUS_FAIL_INTERNAL_ERROR,
482 			      "After %s connection on %p, still trying to connect conn %p?",
483 			      incoming ? "incoming" : "outgoing",
484 			      conn, find_connecting(daemon, id)->conn);
485 
486 	/* This contains the per-peer state info; gossipd fills in pps->gs */
487 	pps = new_per_peer_state(tmpctx, cs);
488 
489 	/* If gossipd can't give us a file descriptor, we give up connecting. */
490 	if (!get_gossipfds(daemon, id, their_features, pps))
491 		return io_close(conn);
492 
493 	/* Create message to tell master peer has connected. */
494 	msg = towire_connectd_peer_connected(NULL, id, addr, incoming,
495 					     pps, their_features);
496 
497 	/*~ daemon_conn is a message queue for inter-daemon communication: we
498 	 * queue up the `connect_peer_connected` message to tell lightningd
499 	 * we have connected, and give the peer and gossip fds. */
500 	daemon_conn_send(daemon->master, take(msg));
501 	/* io_conn_fd() extracts the fd from ccan/io's io_conn */
502 	daemon_conn_send_fd(daemon->master, io_conn_fd(conn));
503 	daemon_conn_send_fd(daemon->master, pps->gossip_fd);
504 	daemon_conn_send_fd(daemon->master, pps->gossip_store_fd);
505 
506 	/* Don't try to close these on freeing. */
507 	pps->gossip_store_fd = pps->gossip_fd = -1;
508 
509 	/*~ Finally, we add it to the set of pubkeys: tal_dup will handle
510 	 * take() args for us, by simply tal_steal()ing it. */
511 	node_set_add(&daemon->peers, tal_dup(daemon, struct node_id, id));
512 
513 	/*~ We want to free the connection, but not close the fd (which is
514 	 * queued to go to lightningd), so use this variation on io_close: */
515 	return io_close_taken_fd(conn);
516 }
517 
518 /*~ handshake.c's handles setting up the crypto state once we get a connection
519  * in; we hand it straight to peer_exchange_initmsg() to send and receive INIT
520  * and call peer_connected(). */
handshake_in_success(struct io_conn * conn,const struct pubkey * id_key,const struct wireaddr_internal * addr,struct crypto_state * cs,struct daemon * daemon)521 static struct io_plan *handshake_in_success(struct io_conn *conn,
522 					    const struct pubkey *id_key,
523 					    const struct wireaddr_internal *addr,
524 					    struct crypto_state *cs,
525 					    struct daemon *daemon)
526 {
527 	struct node_id id;
528 	node_id_from_pubkey(&id, id_key);
529 	status_peer_debug(&id, "Connect IN");
530 	return peer_exchange_initmsg(conn, daemon, daemon->our_features,
531 				     cs, &id, addr, true);
532 }
533 
534 /*~ If the timer goes off, we simply free everything, which hangs up. */
conn_timeout(struct io_conn * conn)535 static void conn_timeout(struct io_conn *conn)
536 {
537 	status_debug("conn timed out");
538 	errno = ETIMEDOUT;
539 	io_close(conn);
540 }
541 
542 /*~ So, where are you from? */
get_remote_address(struct io_conn * conn,struct wireaddr_internal * addr)543 static bool get_remote_address(struct io_conn *conn,
544 			       struct wireaddr_internal *addr)
545 {
546 	struct sockaddr_storage s = {};
547 	socklen_t len = sizeof(s);
548 
549 	/* The cast here is a weird Berkeley sockets API feature... */
550 	if (getpeername(io_conn_fd(conn), (struct sockaddr *)&s, &len) != 0) {
551 		status_debug("Failed to get peername for incoming conn: %s",
552 			     strerror(errno));
553 		return false;
554 	}
555 
556 	if (s.ss_family == AF_INET6) {
557 		struct sockaddr_in6 *s6 = (void *)&s;
558 		addr->itype = ADDR_INTERNAL_WIREADDR;
559 		wireaddr_from_ipv6(&addr->u.wireaddr,
560 				   &s6->sin6_addr, ntohs(s6->sin6_port));
561 	} else if (s.ss_family == AF_INET) {
562 		struct sockaddr_in *s4 = (void *)&s;
563 		addr->itype = ADDR_INTERNAL_WIREADDR;
564 		wireaddr_from_ipv4(&addr->u.wireaddr,
565 				   &s4->sin_addr, ntohs(s4->sin_port));
566 	} else if (s.ss_family == AF_UNIX) {
567 		struct sockaddr_un *sun = (void *)&s;
568 		addr->itype = ADDR_INTERNAL_SOCKNAME;
569 		memcpy(addr->u.sockname, sun->sun_path, sizeof(sun->sun_path));
570 	} else {
571 		status_broken("Unknown socket type %i for incoming conn",
572 			      s.ss_family);
573 		return false;
574 	}
575 	return true;
576 }
577 
578 /*~ As so common in C, we need to bundle two args into a callback, so we
579  * allocate a temporary structure to hold them: */
580 struct conn_in {
581 	struct wireaddr_internal addr;
582 	struct daemon *daemon;
583 };
584 
585 /*~ Once we've got a connection in, we set it up here (whether it's via the
586  * websocket proxy, or direct). */
conn_in(struct io_conn * conn,struct conn_in * conn_in_arg)587 static struct io_plan *conn_in(struct io_conn *conn,
588 			       struct conn_in *conn_in_arg)
589 {
590 	struct daemon *daemon = conn_in_arg->daemon;
591 
592 	/* If they don't complete handshake in reasonable time, hang up */
593 	notleak(new_reltimer(&daemon->timers, conn,
594 			     time_from_sec(daemon->timeout_secs),
595 			     conn_timeout, conn));
596 
597 	/*~ The crypto handshake differs depending on whether you received or
598 	 * initiated the socket connection, so there are two entry points.
599 	 * Note, again, the notleak() to avoid our simplistic leak detection
600 	 * code from thinking `conn` (which we don't keep a pointer to) is
601 	 * leaked */
602 	return responder_handshake(notleak(conn), &daemon->mykey,
603 				   &conn_in_arg->addr,
604 				   handshake_in_success, daemon);
605 }
606 
607 /*~ When we get a direct connection in we set up its network address
608  * then call handshake.c to set up the crypto state. */
connection_in(struct io_conn * conn,struct daemon * daemon)609 static struct io_plan *connection_in(struct io_conn *conn,
610 				     struct daemon *daemon)
611 {
612 	struct conn_in conn_in_arg;
613 
614 	if (!get_remote_address(conn, &conn_in_arg.addr))
615 		return io_close(conn);
616 
617 	conn_in_arg.daemon = daemon;
618 	return conn_in(conn, &conn_in_arg);
619 }
620 
621 /*~ <hello>I speak web socket</hello>.
622  *
623  * Actually that's dumb, websocket (aka rfc6455) looks nothing like that. */
websocket_connection_in(struct io_conn * conn,struct daemon * daemon)624 static struct io_plan *websocket_connection_in(struct io_conn *conn,
625 					       struct daemon *daemon)
626 {
627 	int childmsg[2], execfail[2];
628 	pid_t childpid;
629 	int err;
630 	struct conn_in conn_in_arg;
631 
632 	if (!get_remote_address(conn, &conn_in_arg.addr))
633 		return io_close(conn);
634 
635 	status_debug("Websocket connection in from %s",
636 		     type_to_string(tmpctx, struct wireaddr_internal,
637 				    &conn_in_arg.addr));
638 
639 	if (socketpair(AF_LOCAL, SOCK_STREAM, 0, childmsg) != 0)
640 		goto fail;
641 
642 	if (pipe(execfail) != 0)
643 		goto close_msgfd_fail;
644 
645 	if (fcntl(execfail[1], F_SETFD, fcntl(execfail[1], F_GETFD)
646 		  | FD_CLOEXEC) < 0)
647 		goto close_execfail_fail;
648 
649 	childpid = fork();
650 	if (childpid < 0)
651 		goto close_execfail_fail;
652 
653 	if (childpid == 0) {
654 		size_t max;
655 		close(childmsg[0]);
656 		close(execfail[0]);
657 
658 		/* Attach remote socket to stdin. */
659 		if (dup2(io_conn_fd(conn), STDIN_FILENO) == -1)
660 			goto child_errno_fail;
661 
662 		/* Attach our socket to stdout. */
663 		if (dup2(childmsg[1], STDOUT_FILENO) == -1)
664 			goto child_errno_fail;
665 
666 		/* Make (fairly!) sure all other fds are closed. */
667 		max = sysconf(_SC_OPEN_MAX);
668 		for (size_t i = STDERR_FILENO + 1; i < max; i++)
669 			close(i);
670 
671 		/* Tell websocket helper what we read so far. */
672 		execlp(daemon->websocket_helper, daemon->websocket_helper,
673 		       NULL);
674 
675 	child_errno_fail:
676 		err = errno;
677 		/* Gcc's warn-unused-result fail. */
678 		if (write(execfail[1], &err, sizeof(err))) {
679 			;
680 		}
681 		exit(127);
682 	}
683 
684 	close(childmsg[1]);
685 	close(execfail[1]);
686 
687 	/* Child will close this without writing on successful exec. */
688 	if (read(execfail[0], &err, sizeof(err)) == sizeof(err)) {
689 		close(execfail[0]);
690 		waitpid(childpid, NULL, 0);
691 		status_broken("Exec of helper %s failed: %s",
692 			      daemon->websocket_helper, strerror(err));
693 		errno = err;
694 		return io_close(conn);
695 	}
696 
697 	close(execfail[0]);
698 
699 	/* New connection actually talks to proxy process. */
700 	conn_in_arg.daemon = daemon;
701 	io_new_conn(tal_parent(conn), childmsg[0], conn_in, &conn_in_arg);
702 
703 	/* Abandon original (doesn't close since child has dup'd fd) */
704 	return io_close(conn);
705 
706 close_execfail_fail:
707 	close_noerr(execfail[0]);
708 	close_noerr(execfail[1]);
709 close_msgfd_fail:
710 	close_noerr(childmsg[0]);
711 	close_noerr(childmsg[1]);
712 fail:
713 	status_broken("Preparation of helper failed: %s",
714 		      strerror(errno));
715 	return io_close(conn);
716 }
717 
718 /*~ These are the mirror functions for the connecting-out case. */
handshake_out_success(struct io_conn * conn,const struct pubkey * key,const struct wireaddr_internal * addr,struct crypto_state * cs,struct connecting * connect)719 static struct io_plan *handshake_out_success(struct io_conn *conn,
720 					     const struct pubkey *key,
721 					     const struct wireaddr_internal *addr,
722 					     struct crypto_state *cs,
723 					     struct connecting *connect)
724 {
725 	struct node_id id;
726 
727 	node_id_from_pubkey(&id, key);
728 	connect->connstate = "Exchanging init messages";
729 	status_peer_debug(&id, "Connect OUT");
730 	return peer_exchange_initmsg(conn, connect->daemon,
731 				     connect->daemon->our_features,
732 				     cs, &id, addr, false);
733 }
734 
connection_out(struct io_conn * conn,struct connecting * connect)735 struct io_plan *connection_out(struct io_conn *conn, struct connecting *connect)
736 {
737 	struct pubkey outkey;
738 
739 	/* This shouldn't happen: lightningd should not give invalid ids! */
740 	if (!pubkey_from_node_id(&outkey, &connect->id)) {
741 		status_broken("Connection out to invalid id %s",
742 			      type_to_string(tmpctx, struct node_id,
743 					     &connect->id));
744 		return io_close(conn);
745 	}
746 
747 	/* If they don't complete handshake in reasonable time, hang up */
748 	notleak(new_reltimer(&connect->daemon->timers, conn,
749 			     time_from_sec(connect->daemon->timeout_secs),
750 			     conn_timeout, conn));
751 	status_peer_debug(&connect->id, "Connected out, starting crypto");
752 
753 	connect->connstate = "Cryptographic handshake";
754 	return initiator_handshake(conn, &connect->daemon->mykey, &outkey,
755 				   &connect->addrs[connect->addrnum],
756 				   handshake_out_success, connect);
757 }
758 
759 /*~ When we've exhausted all addresses without success, we come here.
760  *
761  * Note that gcc gets upset if we put the PRINTF_FMT at the end like this if
762  * it's an actual function definition, but etags gets confused and ignores the
763  * rest of the file if we put PRINTF_FMT at the front.  So we put it at the
764  * end, in a gratuitous declaration.
765  */
766 static void connect_failed(struct daemon *daemon,
767 			   const struct node_id *id,
768 			   u32 seconds_waited,
769 			   const struct wireaddr_internal *addrhint,
770 			   errcode_t errcode,
771 			   const char *errfmt, ...)
772 	PRINTF_FMT(6,7);
773 
connect_failed(struct daemon * daemon,const struct node_id * id,u32 seconds_waited,const struct wireaddr_internal * addrhint,errcode_t errcode,const char * errfmt,...)774 static void connect_failed(struct daemon *daemon,
775 			   const struct node_id *id,
776 			   u32 seconds_waited,
777 			   const struct wireaddr_internal *addrhint,
778 			   errcode_t errcode,
779 			   const char *errfmt, ...)
780 {
781 	u8 *msg;
782 	va_list ap;
783 	char *errmsg;
784 	u32 wait_seconds;
785 
786 	va_start(ap, errfmt);
787 	errmsg = tal_vfmt(tmpctx, errfmt, ap);
788 	va_end(ap);
789 
790 	/* Wait twice as long to reconnect, between min and max. */
791 	wait_seconds = seconds_waited * 2;
792 	if (wait_seconds > MAX_WAIT_SECONDS)
793 		wait_seconds = MAX_WAIT_SECONDS;
794 	if (wait_seconds < INITIAL_WAIT_SECONDS)
795 		wait_seconds = INITIAL_WAIT_SECONDS;
796 
797 	/* lightningd may have a connect command waiting to know what
798 	 * happened.  We leave it to lightningd to decide if it wants to try
799 	 * again, with the wait_seconds as a hint of how long before
800 	 * asking. */
801 	msg = towire_connectd_connect_failed(NULL, id, errcode, errmsg,
802 					       wait_seconds, addrhint);
803 	daemon_conn_send(daemon->master, take(msg));
804 
805 	status_peer_debug(id, "Failed connected out: %s", errmsg);
806 }
807 
808 /* add errors to error list */
add_errors_to_error_list(struct connecting * connect,const char * error)809 void add_errors_to_error_list(struct connecting *connect, const char *error)
810 {
811 	tal_append_fmt(&connect->errors,
812 		       "%s. ", error);
813 }
814 
815 /*~ This is the destructor for the (unsuccessful) outgoing connection.  We accumulate
816  * the errors which occurred, so we can report to lightningd properly in case
817  * they all fail, and try the next address.
818  *
819  * This is a specialized form of destructor which takes an extra argument;
820  * it set up by either the creatively-named tal_add_destructor2(), or by
821  * the ccan/io's io_set_finish() on a connection. */
destroy_io_conn(struct io_conn * conn,struct connecting * connect)822 static void destroy_io_conn(struct io_conn *conn, struct connecting *connect)
823 {
824 	/*~ tal_append_fmt appends to a tal string.  It's terribly convenient */
825 	const char *errstr = strerror(errno);
826 	/* errno 0 means they hung up on us. */
827 	if (errno == 0) {
828 		errstr = "peer closed connection";
829 		if (streq(connect->connstate, "Cryptographic handshake"))
830 			errstr = "peer closed connection (wrong key?)";
831 	}
832 
833 	add_errors_to_error_list(connect,
834 		       tal_fmt(tmpctx, "%s: %s: %s",
835 		       type_to_string(tmpctx, struct wireaddr_internal,
836 				      &connect->addrs[connect->addrnum]),
837 		       connect->connstate, errstr));
838 	connect->addrnum++;
839 	try_connect_one_addr(connect);
840 }
841 
842 /* This initializes a fresh io_conn by setting it to io_connect to the
843  * destination */
conn_init(struct io_conn * conn,struct connecting * connect)844 static struct io_plan *conn_init(struct io_conn *conn,
845 				 struct connecting *connect)
846 {
847 	/*~ I generally dislike the pattern of "set to NULL, assert if NULL at
848 	 * bottom".  On -O2 and above the compiler will warn you at compile time
849 	 * if a there is a path by which the variable is not set, which is always
850 	 * preferable to a runtime assertion.  In this case, it's the best way
851 	 * to use the "enum in a switch" trick to make sure we handle all enum
852 	 * cases, so I use it. */
853 	struct addrinfo *ai = NULL;
854 	const struct wireaddr_internal *addr = &connect->addrs[connect->addrnum];
855 
856 	switch (addr->itype) {
857 	case ADDR_INTERNAL_SOCKNAME:
858 		ai = wireaddr_internal_to_addrinfo(tmpctx, addr);
859 		break;
860 	case ADDR_INTERNAL_ALLPROTO:
861 		status_failed(STATUS_FAIL_INTERNAL_ERROR,
862 			      "Can't connect to all protocols");
863 		break;
864 	case ADDR_INTERNAL_AUTOTOR:
865 		status_failed(STATUS_FAIL_INTERNAL_ERROR,
866 			      "Can't connect to autotor address");
867 		break;
868 	case ADDR_INTERNAL_STATICTOR:
869 		status_failed(STATUS_FAIL_INTERNAL_ERROR,
870 			      "Can't connect to statictor address");
871 		break;
872 	case ADDR_INTERNAL_FORPROXY:
873 		status_failed(STATUS_FAIL_INTERNAL_ERROR,
874 			      "Can't connect to forproxy address");
875 		break;
876 	case ADDR_INTERNAL_WIREADDR:
877 		/* If it was a Tor address, we wouldn't be here. */
878 		ai = wireaddr_to_addrinfo(tmpctx, &addr->u.wireaddr);
879 		break;
880 	}
881 	assert(ai);
882 
883 	io_set_finish(conn, destroy_io_conn, connect);
884 	return io_connect(conn, ai, connection_out, connect);
885 }
886 
887 /* This initializes a fresh io_conn by setting it to io_connect to the
888  * SOCKS proxy, as handled in tor.c. */
conn_proxy_init(struct io_conn * conn,struct connecting * connect)889 static struct io_plan *conn_proxy_init(struct io_conn *conn,
890 				       struct connecting *connect)
891 {
892 	const char *host = NULL;
893 	u16 port;
894 	const struct wireaddr_internal *addr = &connect->addrs[connect->addrnum];
895 
896 	switch (addr->itype) {
897 	case ADDR_INTERNAL_FORPROXY:
898 		host = addr->u.unresolved.name;
899 		port = addr->u.unresolved.port;
900 		break;
901 	case ADDR_INTERNAL_WIREADDR:
902 		host = fmt_wireaddr_without_port(tmpctx, &addr->u.wireaddr);
903 		port = addr->u.wireaddr.port;
904 		break;
905 	case ADDR_INTERNAL_SOCKNAME:
906 	case ADDR_INTERNAL_ALLPROTO:
907 	case ADDR_INTERNAL_AUTOTOR:
908 	case ADDR_INTERNAL_STATICTOR:
909 		break;
910 	}
911 
912 	if (!host)
913 		status_failed(STATUS_FAIL_INTERNAL_ERROR,
914 			      "Can't connect to %u address", addr->itype);
915 
916 	io_set_finish(conn, destroy_io_conn, connect);
917 	return io_tor_connect(conn, connect->daemon->proxyaddr, host, port,
918 			      connect);
919 }
920 
921 /*~ This is the routine which tries to connect. */
try_connect_one_addr(struct connecting * connect)922 static void try_connect_one_addr(struct connecting *connect)
923 {
924  	int fd, af;
925 	bool use_proxy = connect->daemon->always_use_proxy;
926 	const struct wireaddr_internal *addr = &connect->addrs[connect->addrnum];
927 	struct io_conn *conn;
928 
929 	/* In case we fail without a connection, make destroy_io_conn happy */
930 	connect->conn = NULL;
931 
932 	/* Out of addresses? */
933 	if (connect->addrnum == tal_count(connect->addrs)) {
934 		connect_failed(connect->daemon, &connect->id,
935 			       connect->seconds_waited,
936 			       connect->addrhint, CONNECT_ALL_ADDRESSES_FAILED,
937 			       "%s", connect->errors);
938 		tal_free(connect);
939 		return;
940 	}
941 
942  	/* Might not even be able to create eg. IPv6 sockets */
943  	af = -1;
944 
945 	switch (addr->itype) {
946 	case ADDR_INTERNAL_SOCKNAME:
947 		af = AF_LOCAL;
948 		/* Local sockets don't use tor proxy */
949 		use_proxy = false;
950 		break;
951 	case ADDR_INTERNAL_ALLPROTO:
952 		status_failed(STATUS_FAIL_INTERNAL_ERROR,
953 			      "Can't connect ALLPROTO");
954 	case ADDR_INTERNAL_AUTOTOR:
955 		status_failed(STATUS_FAIL_INTERNAL_ERROR,
956 			      "Can't connect AUTOTOR");
957 	case ADDR_INTERNAL_STATICTOR:
958 		status_failed(STATUS_FAIL_INTERNAL_ERROR,
959 			      "Can't connect STATICTOR");
960 	case ADDR_INTERNAL_FORPROXY:
961 		use_proxy = true;
962 		break;
963 	case ADDR_INTERNAL_WIREADDR:
964 		switch (addr->u.wireaddr.type) {
965 		case ADDR_TYPE_TOR_V2:
966 		case ADDR_TYPE_TOR_V3:
967 			use_proxy = true;
968 			break;
969 		case ADDR_TYPE_IPV4:
970 			af = AF_INET;
971 			break;
972 		case ADDR_TYPE_IPV6:
973 			af = AF_INET6;
974 			break;
975 		case ADDR_TYPE_WEBSOCKET:
976 			af = -1;
977 			break;
978 		}
979 	}
980 
981 	/* If we have to use proxy but we don't have one, we fail. */
982 	if (use_proxy) {
983 		if (!connect->daemon->proxyaddr) {
984 			tal_append_fmt(&connect->errors,
985 				       "%s: need a proxy. ",
986 				       type_to_string(tmpctx,
987 						      struct wireaddr_internal,
988 						      addr));
989 			goto next;
990 		}
991 		af = connect->daemon->proxyaddr->ai_family;
992 	}
993 
994 	if (af == -1) {
995 		tal_append_fmt(&connect->errors,
996 			       "%s: not supported. ",
997 			       type_to_string(tmpctx, struct wireaddr_internal,
998 					      addr));
999 		goto next;
1000 	}
1001 
1002 	fd = socket(af, SOCK_STREAM, 0);
1003 	if (fd < 0) {
1004 		tal_append_fmt(&connect->errors,
1005 			       "%s: opening %i socket gave %s. ",
1006 			       type_to_string(tmpctx, struct wireaddr_internal,
1007 					      addr),
1008 			       af, strerror(errno));
1009 		goto next;
1010 	}
1011 
1012 	/* This creates the new connection using our fd, with the initialization
1013 	 * function one of the above. */
1014 	if (use_proxy)
1015 		conn = io_new_conn(connect, fd, conn_proxy_init, connect);
1016 	else
1017 		conn = io_new_conn(connect, fd, conn_init, connect);
1018 
1019 	/* Careful!  io_new_conn can fail (immediate connect() failure), and
1020 	 * that frees connect. */
1021 	if (conn)
1022 		connect->conn = conn;
1023 
1024 	return;
1025 
1026 next:
1027 	/* This causes very limited recursion. */
1028 	connect->addrnum++;
1029 	try_connect_one_addr(connect);
1030 }
1031 
1032 /*~ connectd is responsible for incoming connections, but it's the process of
1033  * setting up the listening ports which gives us information we need for startup
1034  * (such as our own address).  So we perform setup in two phases: first we bind
1035  * the sockets according to the command line arguments (if any), then we start
1036  * listening for connections to them once lightningd is ready.
1037  *
1038  * This stores the fds we're going to listen on: */
1039 struct listen_fd {
1040 	int fd;
1041 	/* If we bind() IPv6 then IPv4 to same port, we *may* fail to listen()
1042 	 * on the IPv4 socket: under Linux, by default, the IPv6 listen()
1043 	 * covers IPv4 too.  Normally we'd consider failing to listen on a
1044 	 * port to be fatal, so we note this when setting up addresses. */
1045 	bool mayfail;
1046 	/* Callback to use for the listening: either connection_in, or for
1047 	 * our much-derided WebSocket ability, websocket_connection_in! */
1048 	struct io_plan *(*in_cb)(struct io_conn *conn, struct daemon *daemon);
1049 };
1050 
add_listen_fd(struct daemon * daemon,int fd,bool mayfail,struct io_plan * (* in_cb)(struct io_conn *,struct daemon *))1051 static void add_listen_fd(struct daemon *daemon, int fd, bool mayfail,
1052 			  struct io_plan *(*in_cb)(struct io_conn *,
1053 						   struct daemon *))
1054 {
1055 	/*~ utils.h contains a convenience macro tal_arr_expand which
1056 	 * reallocates a tal_arr to make it one longer, then returns a pointer
1057 	 * to the (new) last element. */
1058 	struct listen_fd l;
1059 	l.fd = fd;
1060 	l.mayfail = mayfail;
1061 	l.in_cb = in_cb;
1062 	tal_arr_expand(&daemon->listen_fds, l);
1063 }
1064 
1065 /*~ Helper routine to create and bind a socket of a given type; like many
1066  * daemons we set it SO_REUSEADDR so we won't have to wait 2 minutes to reuse
1067  * it on restart.
1068  *
1069  * I generally avoid "return -1 on error", but for file-descriptors it's the
1070  * UNIX standard, so it's not as offensive here as it would be in other
1071  * contexts.
1072  */
make_listen_fd(int domain,void * addr,socklen_t len,bool mayfail)1073 static int make_listen_fd(int domain, void *addr, socklen_t len, bool mayfail)
1074 {
1075 	int fd = socket(domain, SOCK_STREAM, 0);
1076 	int on = 1;
1077 
1078 	if (fd < 0) {
1079 		if (!mayfail)
1080 			status_failed(STATUS_FAIL_INTERNAL_ERROR,
1081 				      "Failed to create %u socket: %s",
1082 				      domain, strerror(errno));
1083 		status_debug("Failed to create %u socket: %s",
1084 			     domain, strerror(errno));
1085 		return -1;
1086 	}
1087 
1088 
1089 	/* Re-use, please.. */
1090 	if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on)))
1091 		status_unusual("Failed setting socket reuse: %s",
1092 			       strerror(errno));
1093 
1094 	if (bind(fd, addr, len) != 0) {
1095 		if (!mayfail)
1096 			status_failed(STATUS_FAIL_INTERNAL_ERROR,
1097 				      "Failed to bind on %u socket: %s",
1098 				      domain, strerror(errno));
1099 		status_debug("Failed to create %u socket: %s",
1100 			     domain, strerror(errno));
1101 		goto fail;
1102 	}
1103 
1104 	return fd;
1105 
1106 fail:
1107 	/*~ ccan/noerr contains convenient routines which don't clobber the
1108 	 * errno global; in this case, the caller can report errno. */
1109 	close_noerr(fd);
1110 	return -1;
1111 }
1112 
1113 /* Return true if it created socket successfully. */
handle_wireaddr_listen(struct daemon * daemon,const struct wireaddr * wireaddr,bool mayfail,bool websocket)1114 static bool handle_wireaddr_listen(struct daemon *daemon,
1115 				   const struct wireaddr *wireaddr,
1116 				   bool mayfail,
1117 				   bool websocket)
1118 {
1119 	int fd;
1120 	struct sockaddr_in addr;
1121 	struct sockaddr_in6 addr6;
1122 	struct io_plan *(*in_cb)(struct io_conn *, struct daemon *);
1123 
1124 	if (websocket)
1125 		in_cb = websocket_connection_in;
1126 	else
1127 		in_cb = connection_in;
1128 
1129 	/* Note the use of a switch() over enum here, even though it must be
1130 	 * IPv4 or IPv6 here; that will catch future changes. */
1131 	switch (wireaddr->type) {
1132 	case ADDR_TYPE_IPV4:
1133 		wireaddr_to_ipv4(wireaddr, &addr);
1134 		/* We might fail if IPv6 bound to port first */
1135 		fd = make_listen_fd(AF_INET, &addr, sizeof(addr), mayfail);
1136 		if (fd >= 0) {
1137 			status_debug("Created IPv4 %slistener on port %u",
1138 				     websocket ? "websocket ": "",
1139 				     wireaddr->port);
1140 			add_listen_fd(daemon, fd, mayfail, in_cb);
1141 			return true;
1142 		}
1143 		return false;
1144 	case ADDR_TYPE_IPV6:
1145 		wireaddr_to_ipv6(wireaddr, &addr6);
1146 		fd = make_listen_fd(AF_INET6, &addr6, sizeof(addr6), mayfail);
1147 		if (fd >= 0) {
1148 			status_debug("Created IPv6 %slistener on port %u",
1149 				     websocket ? "websocket ": "",
1150 				     wireaddr->port);
1151 			add_listen_fd(daemon, fd, mayfail, in_cb);
1152 			return true;
1153 		}
1154 		return false;
1155 	/* Handle specially by callers. */
1156 	case ADDR_TYPE_WEBSOCKET:
1157 	case ADDR_TYPE_TOR_V2:
1158 	case ADDR_TYPE_TOR_V3:
1159 		break;
1160 	}
1161 	status_failed(STATUS_FAIL_INTERNAL_ERROR,
1162 		      "Invalid listener wireaddress type %u", wireaddr->type);
1163 }
1164 
1165 /* If it's a wildcard, turns it into a real address pointing to internet */
public_address(struct daemon * daemon,struct wireaddr * wireaddr)1166 static bool public_address(struct daemon *daemon, struct wireaddr *wireaddr)
1167 {
1168 	if (wireaddr_is_wildcard(wireaddr)) {
1169 		if (!guess_address(wireaddr))
1170 			return false;
1171 	}
1172 
1173 	/* --dev-allow-localhost treats the localhost as "public" for testing */
1174 	return address_routable(wireaddr, daemon->dev_allow_localhost);
1175 }
1176 
add_announcable(struct wireaddr ** announcable,const struct wireaddr * addr)1177 static void add_announcable(struct wireaddr **announcable,
1178 			    const struct wireaddr *addr)
1179 {
1180 	tal_arr_expand(announcable, *addr);
1181 }
1182 
add_binding(struct wireaddr_internal ** binding,const struct wireaddr_internal * addr)1183 static void add_binding(struct wireaddr_internal **binding,
1184 			const struct wireaddr_internal *addr)
1185 {
1186 	tal_arr_expand(binding, *addr);
1187 }
1188 
1189 /*~ ccan/asort provides a type-safe sorting function; it requires a comparison
1190  * function, which takes an optional extra argument which is usually unused as
1191  * here, but deeply painful if you need it and don't have it! */
wireaddr_cmp_type(const struct wireaddr * a,const struct wireaddr * b,void * unused)1192 static int wireaddr_cmp_type(const struct wireaddr *a,
1193 			     const struct wireaddr *b, void *unused)
1194 {
1195 	/* This works, but of course it's inefficient.  We don't
1196 	 * really care, since it's called only once at startup. */
1197 	u8 *a_wire = tal_arr(tmpctx, u8, 0), *b_wire = tal_arr(tmpctx, u8, 0);
1198 	int cmp, minlen;
1199 
1200 	towire_wireaddr(&a_wire, a);
1201 	towire_wireaddr(&b_wire, b);
1202 
1203 	minlen = tal_bytelen(a_wire) < tal_bytelen(b_wire)
1204 		? tal_bytelen(a_wire) : tal_bytelen(b_wire);
1205 	cmp = memcmp(a_wire, b_wire, minlen);
1206 	/* On a tie, shorter one goes first. */
1207 	if (cmp == 0)
1208 		return tal_bytelen(a_wire) - tal_bytelen(b_wire);
1209 	return cmp;
1210 }
1211 
1212 /*~ The user can specify three kinds of addresses: ones we bind to but don't
1213  * announce, ones we announce but don't bind to, and ones we bind to and
1214  * announce if they seem to be public addresses.
1215  *
1216  * This routine sorts out the mess: it populates the daemon->announcable array,
1217  * and returns the addresses we bound to (by convention, return is allocated
1218  * off `ctx` argument).
1219  */
setup_listeners(const tal_t * ctx,struct daemon * daemon,const struct wireaddr_internal * proposed_wireaddr,const enum addr_listen_announce * proposed_listen_announce,const char * tor_password,struct wireaddr ** announcable)1220 static struct wireaddr_internal *setup_listeners(const tal_t *ctx,
1221 						 struct daemon *daemon,
1222 						 /* The proposed address. */
1223 						 const struct wireaddr_internal *proposed_wireaddr,
1224 						 /* For each one, listen,
1225 						    announce or both */
1226 						 const enum addr_listen_announce *proposed_listen_announce,
1227 						 const char *tor_password,
1228 						 struct wireaddr **announcable)
1229 {
1230 	struct sockaddr_un addrun;
1231 	int fd;
1232 	struct wireaddr_internal *binding;
1233 	const u8 *blob = NULL;
1234 	struct secret random;
1235 	struct pubkey pb;
1236 	struct wireaddr *toraddr;
1237 
1238 	/* Start with empty arrays, for tal_arr_expand() */
1239 	binding = tal_arr(ctx, struct wireaddr_internal, 0);
1240 	*announcable = tal_arr(ctx, struct wireaddr, 0);
1241 
1242 	/* Add addresses we've explicitly been told to *first*: implicit
1243 	 * addresses will be discarded then if we have multiple. */
1244 	for (size_t i = 0; i < tal_count(proposed_wireaddr); i++) {
1245 		struct wireaddr_internal wa = proposed_wireaddr[i];
1246 
1247 		/* We want announce-only addresses. */
1248 		if (proposed_listen_announce[i] & ADDR_LISTEN)
1249 			continue;
1250 
1251 		assert(proposed_listen_announce[i] & ADDR_ANNOUNCE);
1252 		/* You can only announce wiretypes, not internal formats! */
1253 		assert(proposed_wireaddr[i].itype
1254 		       == ADDR_INTERNAL_WIREADDR);
1255 		add_announcable(announcable, &wa.u.wireaddr);
1256 	}
1257 
1258 	/* Now look for listening addresses. */
1259 	for (size_t i = 0; i < tal_count(proposed_wireaddr); i++) {
1260 		struct wireaddr_internal wa = proposed_wireaddr[i];
1261 		bool announce = (proposed_listen_announce[i] & ADDR_ANNOUNCE);
1262 		if (!(proposed_listen_announce[i] & ADDR_LISTEN))
1263 			continue;
1264 
1265 		switch (wa.itype) {
1266 		/* We support UNIX domain sockets, but can't announce */
1267 		case ADDR_INTERNAL_SOCKNAME:
1268 			addrun.sun_family = AF_UNIX;
1269 			memcpy(addrun.sun_path, wa.u.sockname,
1270 			       sizeof(addrun.sun_path));
1271 			/* Remove any existing one. */
1272 			unlink(wa.u.sockname);
1273 			fd = make_listen_fd(AF_UNIX, &addrun, sizeof(addrun),
1274 					    false);
1275 			status_debug("Created socket listener on file %s",
1276 				     addrun.sun_path);
1277 			add_listen_fd(daemon, fd, false, connection_in);
1278 			/* We don't announce socket names, though we allow
1279 			 * them to lazily specify --addr=/socket. */
1280 			add_binding(&binding, &wa);
1281 			continue;
1282 		case ADDR_INTERNAL_AUTOTOR:
1283 			/* We handle these after we have all bindings. */
1284 			continue;
1285 		case ADDR_INTERNAL_STATICTOR:
1286 			/* We handle these after we have all bindings. */
1287 			continue;
1288 		/* Special case meaning IPv6 and IPv4 */
1289 		case ADDR_INTERNAL_ALLPROTO: {
1290 			bool ipv6_ok;
1291 
1292 			wa.itype = ADDR_INTERNAL_WIREADDR;
1293 			wa.u.wireaddr.port = wa.u.port;
1294 
1295 			/* First, create wildcard IPv6 address. */
1296 			wa.u.wireaddr.type = ADDR_TYPE_IPV6;
1297 			wa.u.wireaddr.addrlen = 16;
1298 			memset(wa.u.wireaddr.addr, 0,
1299 			       sizeof(wa.u.wireaddr.addr));
1300 
1301 			ipv6_ok = handle_wireaddr_listen(daemon, &wa.u.wireaddr,
1302 							 true, false);
1303 			if (ipv6_ok) {
1304 				add_binding(&binding, &wa);
1305 				if (announce
1306 				    && public_address(daemon, &wa.u.wireaddr))
1307 					add_announcable(announcable,
1308 							&wa.u.wireaddr);
1309 			}
1310 
1311 			/* Now, create wildcard IPv4 address. */
1312 			wa.u.wireaddr.type = ADDR_TYPE_IPV4;
1313 			wa.u.wireaddr.addrlen = 4;
1314 			memset(wa.u.wireaddr.addr, 0,
1315 			       sizeof(wa.u.wireaddr.addr));
1316 			/* OK if this fails, as long as one succeeds! */
1317 			if (handle_wireaddr_listen(daemon, &wa.u.wireaddr,
1318 						   ipv6_ok, false)) {
1319 				add_binding(&binding, &wa);
1320 				if (announce
1321 				    && public_address(daemon, &wa.u.wireaddr))
1322 					add_announcable(announcable,
1323 							&wa.u.wireaddr);
1324 			}
1325 			continue;
1326 		}
1327 		/* This is a vanilla wireaddr as per BOLT #7 */
1328 		case ADDR_INTERNAL_WIREADDR:
1329 			handle_wireaddr_listen(daemon, &wa.u.wireaddr,
1330 					       false, false);
1331 			add_binding(&binding, &wa);
1332 			if (announce && public_address(daemon, &wa.u.wireaddr))
1333 				add_announcable(announcable, &wa.u.wireaddr);
1334 			continue;
1335 		case ADDR_INTERNAL_FORPROXY:
1336 			break;
1337 		}
1338 		/* Shouldn't happen. */
1339 		status_failed(STATUS_FAIL_INTERNAL_ERROR,
1340 			      "Invalid listener address type %u",
1341 			      proposed_wireaddr[i].itype);
1342 	}
1343 
1344 	/* If we want websockets to match IPv4/v6, set it up now. */
1345 	if (daemon->websocket_port) {
1346 		bool announced_some = false;
1347 		struct wireaddr addr;
1348 
1349 		for (size_t i = 0; i < tal_count(binding); i++) {
1350 			/* Ignore UNIX sockets */
1351 			if (binding[i].itype != ADDR_INTERNAL_WIREADDR)
1352 				continue;
1353 
1354 			/* Override with websocket port */
1355 			addr = binding[i].u.wireaddr;
1356 			addr.port = daemon->websocket_port;
1357 			handle_wireaddr_listen(daemon, &addr, false, true);
1358 			announced_some = true;
1359 			/* FIXME: We don't report these bindings to
1360 			 * lightningd, so they don't appear in
1361 			 * getinfo. */
1362 		}
1363 
1364 
1365 		/* We add the websocket port to the announcement if it
1366 		 * applies to any */
1367 		if (announced_some) {
1368 			wireaddr_from_websocket(&addr, daemon->websocket_port);
1369 			add_announcable(announcable, &addr);
1370 		}
1371 	}
1372 
1373 	/* FIXME: Websocket over Tor (difficult for autotor, since we need
1374 	 * to use the same onion addr!) */
1375 
1376 	/* Now we have bindings, set up any Tor auto addresses: we will point
1377 	 * it at the first bound IPv4 or IPv6 address we have. */
1378 	for (size_t i = 0; i < tal_count(proposed_wireaddr); i++) {
1379 		if (!(proposed_listen_announce[i] & ADDR_LISTEN))
1380 			continue;
1381 		if (proposed_wireaddr[i].itype != ADDR_INTERNAL_AUTOTOR)
1382 			continue;
1383 		toraddr = tor_autoservice(tmpctx,
1384 					  &proposed_wireaddr[i],
1385 					  tor_password,
1386 					  binding,
1387 					  daemon->use_v3_autotor);
1388 
1389 		if (!(proposed_listen_announce[i] & ADDR_ANNOUNCE)) {
1390 			continue;
1391 		};
1392 		add_announcable(announcable, toraddr);
1393 	}
1394 
1395 	/* Now we have bindings, set up any Tor static addresses: we will point
1396 	 * it at the first bound IPv4 or IPv6 address we have. */
1397 	for (size_t i = 0; i < tal_count(proposed_wireaddr); i++) {
1398 		if (!(proposed_listen_announce[i] & ADDR_LISTEN))
1399 			continue;
1400 		if (proposed_wireaddr[i].itype != ADDR_INTERNAL_STATICTOR)
1401 			continue;
1402 		blob = proposed_wireaddr[i].u.torservice.blob;
1403 
1404 		if (tal_strreg(tmpctx, (char *)proposed_wireaddr[i].u.torservice.blob, STATIC_TOR_MAGIC_STRING)) {
1405 			if (pubkey_from_node_id(&pb, &daemon->id)) {
1406 				if (sodium_mlock(&random, sizeof(random)) != 0)
1407 						status_failed(STATUS_FAIL_INTERNAL_ERROR,
1408 									"Could not lock the random prf key memory.");
1409 				randombytes_buf((void * const)&random, 32);
1410 				/* generate static tor node address, take first 32 bytes from secret of node_id plus 32 random bytes from sodiom */
1411 				struct sha256 sha;
1412 				struct secret ss;
1413 
1414 				ecdh(&pb, &ss);
1415 				/* let's sha, that will clear ctx of hsm data */
1416 				sha256(&sha, &ss, 32);
1417 				/* even if it's a secret pub derived, tor shall see only the single sha */
1418 				memcpy((void *)&blob[0], &sha, 32);
1419 				memcpy((void *)&blob[32], &random, 32);
1420 				/* clear our temp buffer, don't leak by extern libs core-dumps, our blob we/tal handle later */
1421 				sodium_munlock(&random, sizeof(random));
1422 
1423 			} else status_failed(STATUS_FAIL_INTERNAL_ERROR,
1424 							"Could not get the pub of our node id from hsm");
1425 		}
1426 
1427 		toraddr = tor_fixed_service(tmpctx,
1428 					    &proposed_wireaddr[i],
1429 					    tor_password,
1430 					    blob,
1431 					    find_local_address(binding),
1432 					    0);
1433 		/* get rid of blob data on our side of tor and add jitter */
1434 		randombytes_buf((void * const)proposed_wireaddr[i].u.torservice.blob, TOR_V3_BLOBLEN);
1435 
1436 		if (!(proposed_listen_announce[i] & ADDR_ANNOUNCE)) {
1437 				continue;
1438 		};
1439 		add_announcable(announcable, toraddr);
1440 	}
1441 
1442 	/*~ The spec used to ban more than one address of each type, but
1443 	 * nobody could remember exactly why, so now that's allowed. */
1444 	/* BOLT #7:
1445 	 *
1446 	 * The origin node:
1447 	 *...
1448 	 *   - MUST place address descriptors in ascending order.
1449 	 */
1450 	asort(*announcable, tal_count(*announcable), wireaddr_cmp_type, NULL);
1451 
1452 	return binding;
1453 }
1454 
1455 
1456 /*~ Parse the incoming connect init message from lightningd ("master") and
1457  * assign config variables to the daemon; it should be the first message we
1458  * get. */
connect_init(struct io_conn * conn,struct daemon * daemon,const u8 * msg)1459 static struct io_plan *connect_init(struct io_conn *conn,
1460 				    struct daemon *daemon,
1461 				    const u8 *msg)
1462 {
1463 	struct wireaddr *proxyaddr;
1464 	struct wireaddr_internal *binding;
1465 	struct wireaddr_internal *proposed_wireaddr;
1466 	enum addr_listen_announce *proposed_listen_announce;
1467 	struct wireaddr *announcable;
1468 	char *tor_password;
1469 
1470 	/* Fields which require allocation are allocated off daemon */
1471 	if (!fromwire_connectd_init(
1472 		daemon, msg,
1473 		&chainparams,
1474 		&daemon->our_features,
1475 		&daemon->id,
1476 		&proposed_wireaddr,
1477 		&proposed_listen_announce,
1478 		&proxyaddr, &daemon->always_use_proxy,
1479 		&daemon->dev_allow_localhost, &daemon->use_dns,
1480 		&tor_password,
1481 		&daemon->use_v3_autotor,
1482 		&daemon->timeout_secs,
1483 		&daemon->websocket_helper,
1484 		&daemon->websocket_port)) {
1485 		/* This is a helper which prints the type expected and the actual
1486 		 * message, then exits (it should never be called!). */
1487 		master_badmsg(WIRE_CONNECTD_INIT, msg);
1488 	}
1489 
1490 	if (!pubkey_from_node_id(&daemon->mykey, &daemon->id))
1491 		status_failed(STATUS_FAIL_INTERNAL_ERROR,
1492 			      "Invalid id for me %s",
1493 			      type_to_string(tmpctx, struct node_id,
1494 					     &daemon->id));
1495 
1496 	/* Resolve Tor proxy address if any: we need an addrinfo to connect()
1497 	 * to. */
1498 	if (proxyaddr) {
1499 		status_debug("Proxy address: %s",
1500 			     fmt_wireaddr(tmpctx, proxyaddr));
1501 		daemon->proxyaddr = wireaddr_to_addrinfo(daemon, proxyaddr);
1502 		tal_free(proxyaddr);
1503 	} else
1504 		daemon->proxyaddr = NULL;
1505 
1506 	if (broken_resolver(daemon)) {
1507 		status_debug("Broken DNS resolver detected, will check for "
1508 			     "dummy replies");
1509 	}
1510 
1511 	/* Figure out our addresses. */
1512 	binding = setup_listeners(tmpctx, daemon,
1513 				  proposed_wireaddr,
1514 				  proposed_listen_announce,
1515 				  tor_password,
1516 				  &announcable);
1517 
1518 	/* Free up old allocations */
1519 	tal_free(proposed_wireaddr);
1520 	tal_free(proposed_listen_announce);
1521 	tal_free(tor_password);
1522 
1523 	/* Tell it we're ready, handing it the addresses we have. */
1524 	daemon_conn_send(daemon->master,
1525 			 take(towire_connectd_init_reply(NULL,
1526 							   binding,
1527 							   announcable)));
1528 
1529 	/* Read the next message. */
1530 	return daemon_conn_read_next(conn, daemon->master);
1531 }
1532 
1533 /*~ lightningd tells us to go! */
connect_activate(struct io_conn * conn,struct daemon * daemon,const u8 * msg)1534 static struct io_plan *connect_activate(struct io_conn *conn,
1535 					struct daemon *daemon,
1536 					const u8 *msg)
1537 {
1538 	bool do_listen;
1539 
1540 	if (!fromwire_connectd_activate(msg, &do_listen))
1541 		master_badmsg(WIRE_CONNECTD_ACTIVATE, msg);
1542 
1543 	/* If we're --offline, lightningd tells us not to actually listen. */
1544 	if (do_listen) {
1545 		for (size_t i = 0; i < tal_count(daemon->listen_fds); i++) {
1546 			/* On Linux, at least, we may bind to all addresses
1547 			 * for IPv4 and IPv6, but we'll fail to listen. */
1548 			if (listen(daemon->listen_fds[i].fd, 64) != 0) {
1549 				if (daemon->listen_fds[i].mayfail)
1550 					continue;
1551 				status_failed(STATUS_FAIL_INTERNAL_ERROR,
1552 					      "Failed to listen on socket: %s",
1553 					      strerror(errno));
1554 			}
1555 			notleak(io_new_listener(daemon,
1556 						daemon->listen_fds[i].fd,
1557 						daemon->listen_fds[i].in_cb,
1558 						daemon));
1559 		}
1560 	}
1561 	/* Free, with NULL assignment just as an extra sanity check. */
1562 	daemon->listen_fds = tal_free(daemon->listen_fds);
1563 
1564 	/* OK, we're ready! */
1565 	daemon_conn_send(daemon->master,
1566 			 take(towire_connectd_activate_reply(NULL)));
1567 	return daemon_conn_read_next(conn, daemon->master);
1568 }
1569 
1570 /* BOLT #10:
1571  *
1572  * The DNS seed:
1573  *   ...
1574  *   - upon receiving a _node_ query:
1575  *     - MUST select the record matching the `node_id`, if any, AND return all
1576  *       addresses associated with that node.
1577  */
seednames(const tal_t * ctx,const struct node_id * id)1578 static const char **seednames(const tal_t *ctx, const struct node_id *id)
1579 {
1580 	char bech32[100];
1581 	u5 *data = tal_arr(ctx, u5, 0);
1582 	const char **seednames = tal_arr(ctx, const char *, 0);
1583 
1584 	bech32_push_bits(&data, id->k, ARRAY_SIZE(id->k)*8);
1585 	bech32_encode(bech32, "ln", data, tal_count(data), sizeof(bech32),
1586 		      BECH32_ENCODING_BECH32);
1587 	/* This is cdecker's seed */
1588 	tal_arr_expand(&seednames, tal_fmt(seednames, "%s.lseed.bitcoinstats.com", bech32));
1589 	/* This is darosior's seed */
1590 	tal_arr_expand(&seednames, tal_fmt(seednames, "%s.lseed.darosior.ninja", bech32));
1591 	return seednames;
1592 }
1593 
1594 /*~ As a last resort, we do a DNS lookup to the lightning DNS seed to
1595  * resolve a node name when they say to connect to it.  This is synchronous,
1596  * so connectd blocks, but it's not very common so we haven't fixed it.
1597  *
1598  * This "seed by DNS" approach is similar to what bitcoind uses, and in fact
1599  * has the nice property that DNS is cached, and the seed only sees a request
1600  * from the ISP, not directly from the user. */
add_seed_addrs(struct wireaddr_internal ** addrs,const struct node_id * id,struct sockaddr * broken_reply)1601 static void add_seed_addrs(struct wireaddr_internal **addrs,
1602 			   const struct node_id *id,
1603 			   struct sockaddr *broken_reply)
1604 {
1605 	struct wireaddr *new_addrs;
1606 	const char **hostnames = seednames(tmpctx, id);
1607 
1608 	for (size_t i = 0; i < tal_count(hostnames); i++) {
1609 		status_peer_debug(id, "Resolving %s", hostnames[i]);
1610 		new_addrs = wireaddr_from_hostname(tmpctx, hostnames[i], DEFAULT_PORT,
1611 		                                   NULL, broken_reply, NULL);
1612 		if (new_addrs) {
1613 			for (size_t j = 0; j < tal_count(new_addrs); j++) {
1614 				struct wireaddr_internal a;
1615 				a.itype = ADDR_INTERNAL_WIREADDR;
1616 				a.u.wireaddr = new_addrs[j];
1617 				status_peer_debug(id, "Resolved %s to %s", hostnames[i],
1618 						  type_to_string(tmpctx, struct wireaddr,
1619 								 &a.u.wireaddr));
1620 				tal_arr_expand(addrs, a);
1621 			}
1622 			/* Other seeds will likely have the same information. */
1623 			return;
1624 		} else
1625 			status_peer_debug(id, "Could not resolve %s", hostnames[i]);
1626 	}
1627 }
1628 
wireaddr_int_equals_wireaddr(struct wireaddr_internal * addr_a,struct wireaddr * addr_b)1629 static bool wireaddr_int_equals_wireaddr(struct wireaddr_internal *addr_a,
1630 					 struct wireaddr *addr_b)
1631 {
1632 	if (!addr_a || !addr_b)
1633 		return false;
1634 	return wireaddr_eq(&addr_a->u.wireaddr, addr_b);
1635 }
1636 
1637 /*~ This asks gossipd for any addresses advertized by the node. */
add_gossip_addrs(struct wireaddr_internal ** addrs,const struct node_id * id,struct wireaddr_internal * addrhint)1638 static void add_gossip_addrs(struct wireaddr_internal **addrs,
1639 			     const struct node_id *id,
1640 			     struct wireaddr_internal *addrhint)
1641 {
1642 	u8 *msg;
1643 	struct wireaddr *normal_addrs;
1644 
1645 	/* For simplicity, we do this synchronous. */
1646 	msg = towire_gossipd_get_addrs(NULL, id);
1647 	if (!wire_sync_write(GOSSIPCTL_FD, take(msg)))
1648 		status_failed(STATUS_FAIL_INTERNAL_ERROR,
1649 			      "Failed writing to gossipctl: %s",
1650 			      strerror(errno));
1651 
1652 	/* This returns 'struct wireaddr's since that's what's supported by
1653 	 * the BOLT #7 protocol. */
1654 	msg = wire_sync_read(tmpctx, GOSSIPCTL_FD);
1655 	if (!fromwire_gossipd_get_addrs_reply(tmpctx, msg, &normal_addrs))
1656 		status_failed(STATUS_FAIL_INTERNAL_ERROR,
1657 			      "Failed parsing get_addrs_reply gossipctl: %s",
1658 			      tal_hex(tmpctx, msg));
1659 
1660 	/* Wrap each one in a wireaddr_internal and add to addrs. */
1661 	for (size_t i = 0; i < tal_count(normal_addrs); i++) {
1662 		/* add TOR addresses in a second loop */
1663 		if (normal_addrs[i].type == ADDR_TYPE_TOR_V2 ||
1664 		    normal_addrs[i].type == ADDR_TYPE_TOR_V3)
1665 			continue;
1666 		if (wireaddr_int_equals_wireaddr(addrhint, &normal_addrs[i]))
1667 			continue;
1668 		struct wireaddr_internal addr;
1669 		addr.itype = ADDR_INTERNAL_WIREADDR;
1670 		addr.u.wireaddr = normal_addrs[i];
1671 		tal_arr_expand(addrs, addr);
1672 	}
1673 	/* so connectd prefers direct connections if possible. */
1674 	for (size_t i = 0; i < tal_count(normal_addrs); i++) {
1675 		if (normal_addrs[i].type != ADDR_TYPE_TOR_V2 &&
1676 		    normal_addrs[i].type != ADDR_TYPE_TOR_V3)
1677 			continue;
1678 		if (wireaddr_int_equals_wireaddr(addrhint, &normal_addrs[i]))
1679 			continue;
1680 		struct wireaddr_internal addr;
1681 		addr.itype = ADDR_INTERNAL_WIREADDR;
1682 		addr.u.wireaddr = normal_addrs[i];
1683 		tal_arr_expand(addrs, addr);
1684 	}
1685 }
1686 
1687 /*~ Consumes addrhint if not NULL.
1688  *
1689  * That's a pretty ugly interface: we should use TAKEN, but we only have one
1690  * caller so it's marginal. */
try_connect_peer(struct daemon * daemon,const struct node_id * id,u32 seconds_waited,struct wireaddr_internal * addrhint)1691 static void try_connect_peer(struct daemon *daemon,
1692 			     const struct node_id *id,
1693 			     u32 seconds_waited,
1694 			     struct wireaddr_internal *addrhint)
1695 {
1696 	struct wireaddr_internal *addrs;
1697 	bool use_proxy = daemon->always_use_proxy;
1698 	struct connecting *connect;
1699 
1700 	/* Already done?  May happen with timer. */
1701 	if (node_set_get(&daemon->peers, id))
1702 		return;
1703 
1704 	/* If we're trying to connect it right now, that's OK. */
1705 	if ((connect = find_connecting(daemon, id))) {
1706 		/* If we've been passed in new connection details
1707 		 * for this connection, update our addrhint + add
1708 		 * to addresses to check */
1709 		if (addrhint) {
1710 			connect->addrhint = tal_steal(connect, addrhint);
1711 			tal_arr_expand(&connect->addrs, *addrhint);
1712 		}
1713 
1714 		return;
1715 	}
1716 
1717 	/* Start an array of addresses to try. */
1718 	addrs = tal_arr(tmpctx, struct wireaddr_internal, 0);
1719 
1720 	/* They can supply an optional address for the connect RPC */
1721 	/* We add this first so its tried first by connectd */
1722 	if (addrhint)
1723 		tal_arr_expand(&addrs, *addrhint);
1724 
1725 	add_gossip_addrs(&addrs, id, addrhint);
1726 
1727 	if (tal_count(addrs) == 0) {
1728 		/* Don't resolve via DNS seed if we're supposed to use proxy. */
1729 		if (use_proxy) {
1730 			/* You're allowed to use names with proxies; in fact it's
1731 			 * a good idea. */
1732 			struct wireaddr_internal unresolved;
1733 			const char **hostnames = seednames(tmpctx, id);
1734 			for (size_t i = 0; i < tal_count(hostnames); i++) {
1735 				wireaddr_from_unresolved(&unresolved,
1736 				                         hostnames[i],
1737 				                         DEFAULT_PORT);
1738 				tal_arr_expand(&addrs, unresolved);
1739 			}
1740 		} else if (daemon->use_dns) {
1741 			add_seed_addrs(&addrs, id,
1742 			               daemon->broken_resolver_response);
1743 		}
1744 	}
1745 
1746 	/* Still no address?  Fail immediately.  Lightningd can still choose
1747 	* to retry; an address may get gossiped or appear on the DNS seed. */
1748 	if (tal_count(addrs) == 0) {
1749 		connect_failed(daemon, id, seconds_waited, addrhint,
1750 			       CONNECT_NO_KNOWN_ADDRESS,
1751 			       "Unable to connect, no address known for peer");
1752 		return;
1753 	}
1754 
1755 	/* Start connecting to it: since this is the only place we allocate
1756 	 * a 'struct connecting' we don't write a separate new_connecting(). */
1757 	connect = tal(daemon, struct connecting);
1758 	connect->daemon = daemon;
1759 	connect->id = *id;
1760 	connect->addrs = tal_steal(connect, addrs);
1761 	connect->addrnum = 0;
1762 	/* connstate is supposed to be updated as we go, to give context for
1763 	 * errors which occur.  We miss it in a few places; would be nice to
1764 	 * fix! */
1765 	connect->connstate = "Connection establishment";
1766 	connect->seconds_waited = seconds_waited;
1767 	connect->addrhint = tal_steal(connect, addrhint);
1768 	connect->errors = tal_strdup(connect, "");
1769 	list_add_tail(&daemon->connecting, &connect->list);
1770 	tal_add_destructor(connect, destroy_connecting);
1771 
1772 	/* Now we kick it off by recursively trying connect->addrs[connect->addrnum] */
1773 	try_connect_one_addr(connect);
1774 }
1775 
1776 /* lightningd tells us to connect to a peer by id, with optional addr hint. */
connect_to_peer(struct io_conn * conn,struct daemon * daemon,const u8 * msg)1777 static struct io_plan *connect_to_peer(struct io_conn *conn,
1778 				       struct daemon *daemon, const u8 *msg)
1779 {
1780 	struct node_id id;
1781 	u32 seconds_waited;
1782 	struct wireaddr_internal *addrhint;
1783 
1784 	if (!fromwire_connectd_connect_to_peer(tmpctx, msg,
1785 						 &id, &seconds_waited,
1786 						 &addrhint))
1787 		master_badmsg(WIRE_CONNECTD_CONNECT_TO_PEER, msg);
1788 
1789 	try_connect_peer(daemon, &id, seconds_waited, addrhint);
1790 	return daemon_conn_read_next(conn, daemon->master);
1791 }
1792 
1793 /* A peer is gone: clean things up. */
cleanup_dead_peer(struct daemon * daemon,const struct node_id * id)1794 static void cleanup_dead_peer(struct daemon *daemon, const struct node_id *id)
1795 {
1796 	struct node_id *node;
1797 
1798 	/* We should stay in sync with lightningd at all times. */
1799 	node = node_set_get(&daemon->peers, id);
1800 	if (!node)
1801 		status_failed(STATUS_FAIL_INTERNAL_ERROR,
1802 			      "peer_disconnected unknown peer: %s",
1803 			      type_to_string(tmpctx, struct node_id, id));
1804 	node_set_del(&daemon->peers, node);
1805 	status_peer_debug(id, "disconnect");
1806 
1807 	/* Wake up in case there's a reconnecting peer waiting in io_wait. */
1808 	io_wake(node);
1809 
1810 	/* Note: deleting from a htable (a-la node_set_del) does not free it:
1811 	 * htable doesn't assume it's a tal object at all. */
1812 	tal_free(node);
1813 }
1814 
1815 /* lightningd tells us a peer has disconnected. */
peer_disconnected(struct io_conn * conn,struct daemon * daemon,const u8 * msg)1816 static struct io_plan *peer_disconnected(struct io_conn *conn,
1817 					 struct daemon *daemon, const u8 *msg)
1818 {
1819 	struct node_id id;
1820 
1821 	if (!fromwire_connectd_peer_disconnected(msg, &id))
1822 		master_badmsg(WIRE_CONNECTD_PEER_DISCONNECTED, msg);
1823 
1824 	cleanup_dead_peer(daemon, &id);
1825 
1826 	/* Read the next message from lightningd. */
1827 	return daemon_conn_read_next(conn, daemon->master);
1828 }
1829 
1830 /* lightningd tells us to send a final (usually error) message to peer, then
1831  * disconnect. */
1832 struct final_msg_data {
1833 	struct daemon *daemon;
1834 	struct node_id id;
1835 };
1836 
destroy_final_msg_data(struct final_msg_data * f)1837 static void destroy_final_msg_data(struct final_msg_data *f)
1838 {
1839 	cleanup_dead_peer(f->daemon, &f->id);
1840 }
1841 
send_final_msg(struct io_conn * conn,u8 * msg)1842 static struct io_plan *send_final_msg(struct io_conn *conn, u8 *msg)
1843 {
1844 	return io_write(conn, msg, tal_bytelen(msg), io_close_cb, NULL);
1845 }
1846 
1847 /* lightningd tells us to send a msg and disconnect. */
peer_final_msg(struct io_conn * conn,struct daemon * daemon,const u8 * msg)1848 static struct io_plan *peer_final_msg(struct io_conn *conn,
1849 				      struct daemon *daemon, const u8 *msg)
1850 {
1851 	struct per_peer_state *pps;
1852 	struct final_msg_data *f = tal(NULL, struct final_msg_data);
1853 	u8 *finalmsg;
1854 	int fds[3];
1855 
1856 	f->daemon = daemon;
1857 	/* pps is allocated off f, so fds are closed when f freed. */
1858 	if (!fromwire_connectd_peer_final_msg(f, msg, &f->id, &pps, &finalmsg))
1859 		master_badmsg(WIRE_CONNECTD_PEER_FINAL_MSG, msg);
1860 
1861 	/* When f is freed, we want to mark node as dead. */
1862 	tal_add_destructor(f, destroy_final_msg_data);
1863 
1864 	/* Get the fds for this peer. */
1865 	io_fd_block(io_conn_fd(conn), true);
1866 	for (size_t i = 0; i < ARRAY_SIZE(fds); i++) {
1867 		fds[i] = fdpass_recv(io_conn_fd(conn));
1868 		if (fds[i] == -1)
1869 			status_failed(STATUS_FAIL_MASTER_IO,
1870 				      "Getting fd %zu after peer_final_msg: %s",
1871 				      i, strerror(errno));
1872 	}
1873 	io_fd_block(io_conn_fd(conn), false);
1874 
1875 	/* We put peer fd into conn, but pps needs to free the rest */
1876 	per_peer_state_set_fds(pps, -1, fds[1], fds[2]);
1877 
1878 	/* Log and encrypt message for peer. */
1879 	status_peer_io(LOG_IO_OUT, &f->id, finalmsg);
1880 	finalmsg = cryptomsg_encrypt_msg(f, &pps->cs, take(finalmsg));
1881 
1882 	/* Organize io loop to write out that message, it will free f
1883 	 * once closed */
1884 	tal_steal(io_new_conn(daemon, fds[0], send_final_msg, finalmsg), f);
1885 
1886 	/* Read the next message from lightningd. */
1887 	return daemon_conn_read_next(conn, daemon->master);
1888 }
1889 
1890 #if DEVELOPER
dev_connect_memleak(struct io_conn * conn,struct daemon * daemon,const u8 * msg)1891 static struct io_plan *dev_connect_memleak(struct io_conn *conn,
1892 					   struct daemon *daemon,
1893 					   const u8 *msg)
1894 {
1895 	struct htable *memtable;
1896 	bool found_leak;
1897 
1898 	memtable = memleak_find_allocations(tmpctx, msg, msg);
1899 
1900 	/* Now delete daemon and those which it has pointers to. */
1901 	memleak_remove_region(memtable, daemon, sizeof(daemon));
1902 
1903 	found_leak = dump_memleak(memtable, memleak_status_broken);
1904 	daemon_conn_send(daemon->master,
1905 			 take(towire_connectd_dev_memleak_reply(NULL,
1906 							      found_leak)));
1907 	return daemon_conn_read_next(conn, daemon->master);
1908 }
1909 #endif /* DEVELOPER */
1910 
recv_req(struct io_conn * conn,const u8 * msg,struct daemon * daemon)1911 static struct io_plan *recv_req(struct io_conn *conn,
1912 				const u8 *msg,
1913 				struct daemon *daemon)
1914 {
1915 	enum connectd_wire t = fromwire_peektype(msg);
1916 
1917 	/* Demux requests from lightningd: we expect INIT then ACTIVATE, then
1918 	 * connect requests and disconnected messages. */
1919 	switch (t) {
1920 	case WIRE_CONNECTD_INIT:
1921 		return connect_init(conn, daemon, msg);
1922 
1923 	case WIRE_CONNECTD_ACTIVATE:
1924 		return connect_activate(conn, daemon, msg);
1925 
1926 	case WIRE_CONNECTD_CONNECT_TO_PEER:
1927 		return connect_to_peer(conn, daemon, msg);
1928 
1929 	case WIRE_CONNECTD_PEER_DISCONNECTED:
1930 		return peer_disconnected(conn, daemon, msg);
1931 
1932 	case WIRE_CONNECTD_PEER_FINAL_MSG:
1933 		return peer_final_msg(conn, daemon, msg);
1934 
1935 	case WIRE_CONNECTD_DEV_MEMLEAK:
1936 #if DEVELOPER
1937 		return dev_connect_memleak(conn, daemon, msg);
1938 #endif
1939 	/* We send these, we don't receive them */
1940 	case WIRE_CONNECTD_INIT_REPLY:
1941 	case WIRE_CONNECTD_ACTIVATE_REPLY:
1942 	case WIRE_CONNECTD_PEER_CONNECTED:
1943 	case WIRE_CONNECTD_RECONNECTED:
1944 	case WIRE_CONNECTD_CONNECT_FAILED:
1945 	case WIRE_CONNECTD_DEV_MEMLEAK_REPLY:
1946 		break;
1947 	}
1948 
1949 	/* Master shouldn't give bad requests. */
1950 	status_failed(STATUS_FAIL_MASTER_IO, "%i: %s",
1951 		      t, tal_hex(tmpctx, msg));
1952 }
1953 
1954 /*~ UNUSED is defined to an __attribute__ for GCC; at one stage we tried to use
1955  * it ubiquitously to make us compile cleanly with -Wunused, but it's bitrotted
1956  * and we'd need to start again.
1957  *
1958  * The C++ method of omitting unused parameter names is *much* neater, and I
1959  * hope we'll eventually see it in a C standard. */
master_gone(struct daemon_conn * master UNUSED)1960 static void master_gone(struct daemon_conn *master UNUSED)
1961 {
1962 	/* Can't tell master, it's gone. */
1963 	exit(2);
1964 }
1965 
1966 /*~ This is a hook used by the memleak code (if DEVELOPER=1): it can't see
1967  * pointers inside hash tables, so we give it a hint here. */
1968 #if DEVELOPER
memleak_daemon_cb(struct htable * memtable,struct daemon * daemon)1969 static void memleak_daemon_cb(struct htable *memtable, struct daemon *daemon)
1970 {
1971 	memleak_remove_htable(memtable, &daemon->peers.raw);
1972 }
1973 #endif /* DEVELOPER */
1974 
main(int argc,char * argv[])1975 int main(int argc, char *argv[])
1976 {
1977 	setup_locale();
1978 
1979 	struct daemon *daemon;
1980 
1981 	/* Common subdaemon setup code. */
1982 	subdaemon_setup(argc, argv);
1983 
1984 	/* Allocate and set up our simple top-level structure. */
1985 	daemon = tal(NULL, struct daemon);
1986 	node_set_init(&daemon->peers);
1987 	memleak_add_helper(daemon, memleak_daemon_cb);
1988 	list_head_init(&daemon->connecting);
1989 	daemon->listen_fds = tal_arr(daemon, struct listen_fd, 0);
1990 	timers_init(&daemon->timers, time_mono());
1991 	/* stdin == control */
1992 	daemon->master = daemon_conn_new(daemon, STDIN_FILENO, recv_req, NULL,
1993 					 daemon);
1994 	tal_add_destructor(daemon->master, master_gone);
1995 
1996 	/* This tells the status_* subsystem to use this connection to send
1997 	 * our status_ and failed messages. */
1998 	status_setup_async(daemon->master);
1999 
2000 	/* Set up ecdh() function so it uses our HSM fd, and calls
2001 	 * status_failed on error. */
2002 	ecdh_hsmd_setup(HSM_FD, status_failed);
2003 
2004 	for (;;) {
2005 		struct timer *expired;
2006 		io_loop(&daemon->timers, &expired);
2007 		timer_expired(daemon, expired);
2008 	}
2009 }
2010 
2011 /*~ Getting bored?  This was a pretty simple daemon!
2012  *
2013  * The good news is that the next daemon gossipd/gossipd.c is the most complex
2014  * global daemon we have!
2015  */
2016