1 /*	$OpenBSD: queue.h,v 1.31 2005/11/25 08:06:25 otto Exp $	*/
2 /*	$NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $	*/
3 
4 /*
5  * Copyright (c) 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)queue.h	8.5 (Berkeley) 8/20/94
33  */
34 
35 #ifndef	_SYS_QUEUE_H_
36 #define	_SYS_QUEUE_H_
37 
38 /*
39  * This file defines five types of data structures: singly-linked lists,
40  * lists, simple queues, tail queues, and circular queues.
41  *
42  *
43  * A singly-linked list is headed by a single forward pointer. The elements
44  * are singly linked for minimum space and pointer manipulation overhead at
45  * the expense of O(n) removal for arbitrary elements. New elements can be
46  * added to the list after an existing element or at the head of the list.
47  * Elements being removed from the head of the list should use the explicit
48  * macro for this purpose for optimum efficiency. A singly-linked list may
49  * only be traversed in the forward direction.  Singly-linked lists are ideal
50  * for applications with large datasets and few or no removals or for
51  * implementing a LIFO queue.
52  *
53  * A list is headed by a single forward pointer (or an array of forward
54  * pointers for a hash table header). The elements are doubly linked
55  * so that an arbitrary element can be removed without a need to
56  * traverse the list. New elements can be added to the list before
57  * or after an existing element or at the head of the list. A list
58  * may only be traversed in the forward direction.
59  *
60  * A simple queue is headed by a pair of pointers, one the head of the
61  * list and the other to the tail of the list. The elements are singly
62  * linked to save space, so elements can only be removed from the
63  * head of the list. New elements can be added to the list before or after
64  * an existing element, at the head of the list, or at the end of the
65  * list. A simple queue may only be traversed in the forward direction.
66  *
67  * A tail queue is headed by a pair of pointers, one to the head of the
68  * list and the other to the tail of the list. The elements are doubly
69  * linked so that an arbitrary element can be removed without a need to
70  * traverse the list. New elements can be added to the list before or
71  * after an existing element, at the head of the list, or at the end of
72  * the list. A tail queue may be traversed in either direction.
73  *
74  * A circle queue is headed by a pair of pointers, one to the head of the
75  * list and the other to the tail of the list. The elements are doubly
76  * linked so that an arbitrary element can be removed without a need to
77  * traverse the list. New elements can be added to the list before or after
78  * an existing element, at the head of the list, or at the end of the list.
79  * A circle queue may be traversed in either direction, but has a more
80  * complex end of list detection.
81  *
82  * For details on the use of these macros, see the queue(3) manual page.
83  */
84 
85 #ifdef QUEUE_MACRO_DEBUG
86 #define _Q_INVALIDATE(a) (a) = ((void *)-1)
87 #else
88 #define _Q_INVALIDATE(a)
89 #endif
90 
91 /*
92  * Singly-linked List definitions.
93  */
94 #define SLIST_HEAD(name, type)						\
95 struct name {								\
96 	struct type *slh_first;	/* first element */			\
97 }
98 
99 #define	SLIST_HEAD_INITIALIZER(head)					\
100 	{ NULL }
101 
102 #ifdef SLIST_ENTRY
103 #undef SLIST_ENTRY
104 #endif
105 
106 #define SLIST_ENTRY(type)						\
107 struct {								\
108 	struct type *sle_next;	/* next element */			\
109 }
110 
111 /*
112  * Singly-linked List access methods.
113  */
114 #define	SLIST_FIRST(head)	((head)->slh_first)
115 #define	SLIST_END(head)		NULL
116 #define	SLIST_EMPTY(head)	(SLIST_FIRST(head) == SLIST_END(head))
117 #define	SLIST_NEXT(elm, field)	((elm)->field.sle_next)
118 
119 #define	SLIST_FOREACH(var, head, field)					\
120 	for((var) = SLIST_FIRST(head);					\
121 	    (var) != SLIST_END(head);					\
122 	    (var) = SLIST_NEXT(var, field))
123 
124 #define	SLIST_FOREACH_PREVPTR(var, varp, head, field)			\
125 	for ((varp) = &SLIST_FIRST((head));				\
126 	    ((var) = *(varp)) != SLIST_END(head);			\
127 	    (varp) = &SLIST_NEXT((var), field))
128 
129 /*
130  * Singly-linked List functions.
131  */
132 #define	SLIST_INIT(head) {						\
133 	SLIST_FIRST(head) = SLIST_END(head);				\
134 }
135 
136 #define	SLIST_INSERT_AFTER(slistelm, elm, field) do {			\
137 	(elm)->field.sle_next = (slistelm)->field.sle_next;		\
138 	(slistelm)->field.sle_next = (elm);				\
139 } while (0)
140 
141 #define	SLIST_INSERT_HEAD(head, elm, field) do {			\
142 	(elm)->field.sle_next = (head)->slh_first;			\
143 	(head)->slh_first = (elm);					\
144 } while (0)
145 
146 #define	SLIST_REMOVE_NEXT(head, elm, field) do {			\
147 	(elm)->field.sle_next = (elm)->field.sle_next->field.sle_next;	\
148 } while (0)
149 
150 #define	SLIST_REMOVE_HEAD(head, field) do {				\
151 	(head)->slh_first = (head)->slh_first->field.sle_next;		\
152 } while (0)
153 
154 #define SLIST_REMOVE(head, elm, type, field) do {			\
155 	if ((head)->slh_first == (elm)) {				\
156 		SLIST_REMOVE_HEAD((head), field);			\
157 	} else {							\
158 		struct type *curelm = (head)->slh_first;		\
159 									\
160 		while (curelm->field.sle_next != (elm))			\
161 			curelm = curelm->field.sle_next;		\
162 		curelm->field.sle_next =				\
163 		    curelm->field.sle_next->field.sle_next;		\
164 		_Q_INVALIDATE((elm)->field.sle_next);			\
165 	}								\
166 } while (0)
167 
168 /*
169  * List definitions.
170  */
171 #define LIST_HEAD(name, type)						\
172 struct name {								\
173 	struct type *lh_first;	/* first element */			\
174 }
175 
176 #define LIST_HEAD_INITIALIZER(head)					\
177 	{ NULL }
178 
179 #define LIST_ENTRY(type)						\
180 struct {								\
181 	struct type *le_next;	/* next element */			\
182 	struct type **le_prev;	/* address of previous next element */	\
183 }
184 
185 /*
186  * List access methods
187  */
188 #define	LIST_FIRST(head)		((head)->lh_first)
189 #define	LIST_END(head)			NULL
190 #define	LIST_EMPTY(head)		(LIST_FIRST(head) == LIST_END(head))
191 #define	LIST_NEXT(elm, field)		((elm)->field.le_next)
192 
193 #define LIST_FOREACH(var, head, field)					\
194 	for((var) = LIST_FIRST(head);					\
195 	    (var)!= LIST_END(head);					\
196 	    (var) = LIST_NEXT(var, field))
197 
198 /*
199  * List functions.
200  */
201 #define	LIST_INIT(head) do {						\
202 	LIST_FIRST(head) = LIST_END(head);				\
203 } while (0)
204 
205 #define LIST_INSERT_AFTER(listelm, elm, field) do {			\
206 	if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)	\
207 		(listelm)->field.le_next->field.le_prev =		\
208 		    &(elm)->field.le_next;				\
209 	(listelm)->field.le_next = (elm);				\
210 	(elm)->field.le_prev = &(listelm)->field.le_next;		\
211 } while (0)
212 
213 #define	LIST_INSERT_BEFORE(listelm, elm, field) do {			\
214 	(elm)->field.le_prev = (listelm)->field.le_prev;		\
215 	(elm)->field.le_next = (listelm);				\
216 	*(listelm)->field.le_prev = (elm);				\
217 	(listelm)->field.le_prev = &(elm)->field.le_next;		\
218 } while (0)
219 
220 #define LIST_INSERT_HEAD(head, elm, field) do {				\
221 	if (((elm)->field.le_next = (head)->lh_first) != NULL)		\
222 		(head)->lh_first->field.le_prev = &(elm)->field.le_next;\
223 	(head)->lh_first = (elm);					\
224 	(elm)->field.le_prev = &(head)->lh_first;			\
225 } while (0)
226 
227 #define LIST_REMOVE(elm, field) do {					\
228 	if ((elm)->field.le_next != NULL)				\
229 		(elm)->field.le_next->field.le_prev =			\
230 		    (elm)->field.le_prev;				\
231 	*(elm)->field.le_prev = (elm)->field.le_next;			\
232 	_Q_INVALIDATE((elm)->field.le_prev);				\
233 	_Q_INVALIDATE((elm)->field.le_next);				\
234 } while (0)
235 
236 #define LIST_REPLACE(elm, elm2, field) do {				\
237 	if (((elm2)->field.le_next = (elm)->field.le_next) != NULL)	\
238 		(elm2)->field.le_next->field.le_prev =			\
239 		    &(elm2)->field.le_next;				\
240 	(elm2)->field.le_prev = (elm)->field.le_prev;			\
241 	*(elm2)->field.le_prev = (elm2);				\
242 	_Q_INVALIDATE((elm)->field.le_prev);				\
243 	_Q_INVALIDATE((elm)->field.le_next);				\
244 } while (0)
245 
246 /*
247  * Simple queue definitions.
248  */
249 #define SIMPLEQ_HEAD(name, type)					\
250 struct name {								\
251 	struct type *sqh_first;	/* first element */			\
252 	struct type **sqh_last;	/* addr of last next element */		\
253 }
254 
255 #define SIMPLEQ_HEAD_INITIALIZER(head)					\
256 	{ NULL, &(head).sqh_first }
257 
258 #define SIMPLEQ_ENTRY(type)						\
259 struct {								\
260 	struct type *sqe_next;	/* next element */			\
261 }
262 
263 /*
264  * Simple queue access methods.
265  */
266 #define	SIMPLEQ_FIRST(head)	    ((head)->sqh_first)
267 #define	SIMPLEQ_END(head)	    NULL
268 #define	SIMPLEQ_EMPTY(head)	    (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
269 #define	SIMPLEQ_NEXT(elm, field)    ((elm)->field.sqe_next)
270 
271 #define SIMPLEQ_FOREACH(var, head, field)				\
272 	for((var) = SIMPLEQ_FIRST(head);				\
273 	    (var) != SIMPLEQ_END(head);					\
274 	    (var) = SIMPLEQ_NEXT(var, field))
275 
276 /*
277  * Simple queue functions.
278  */
279 #define	SIMPLEQ_INIT(head) do {						\
280 	(head)->sqh_first = NULL;					\
281 	(head)->sqh_last = &(head)->sqh_first;				\
282 } while (0)
283 
284 #define SIMPLEQ_INSERT_HEAD(head, elm, field) do {			\
285 	if (((elm)->field.sqe_next = (head)->sqh_first) == NULL)	\
286 		(head)->sqh_last = &(elm)->field.sqe_next;		\
287 	(head)->sqh_first = (elm);					\
288 } while (0)
289 
290 #define SIMPLEQ_INSERT_TAIL(head, elm, field) do {			\
291 	(elm)->field.sqe_next = NULL;					\
292 	*(head)->sqh_last = (elm);					\
293 	(head)->sqh_last = &(elm)->field.sqe_next;			\
294 } while (0)
295 
296 #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
297 	if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
298 		(head)->sqh_last = &(elm)->field.sqe_next;		\
299 	(listelm)->field.sqe_next = (elm);				\
300 } while (0)
301 
302 #define SIMPLEQ_REMOVE_HEAD(head, field) do {			\
303 	if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
304 		(head)->sqh_last = &(head)->sqh_first;			\
305 } while (0)
306 
307 /*
308  * Tail queue definitions.
309  */
310 #define TAILQ_HEAD(name, type)						\
311 struct name {								\
312 	struct type *tqh_first;	/* first element */			\
313 	struct type **tqh_last;	/* addr of last next element */		\
314 }
315 
316 #define TAILQ_HEAD_INITIALIZER(head)					\
317 	{ NULL, &(head).tqh_first }
318 
319 #define TAILQ_ENTRY(type)						\
320 struct {								\
321 	struct type *tqe_next;	/* next element */			\
322 	struct type **tqe_prev;	/* address of previous next element */	\
323 }
324 
325 /*
326  * tail queue access methods
327  */
328 #define	TAILQ_FIRST(head)		((head)->tqh_first)
329 #define	TAILQ_END(head)			NULL
330 #define	TAILQ_NEXT(elm, field)		((elm)->field.tqe_next)
331 #define TAILQ_LAST(head, headname)					\
332 	(*(((struct headname *)((head)->tqh_last))->tqh_last))
333 /* XXX */
334 #define TAILQ_PREV(elm, headname, field)				\
335 	(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
336 #define	TAILQ_EMPTY(head)						\
337 	(TAILQ_FIRST(head) == TAILQ_END(head))
338 
339 #define TAILQ_FOREACH(var, head, field)					\
340 	for((var) = TAILQ_FIRST(head);					\
341 	    (var) != TAILQ_END(head);					\
342 	    (var) = TAILQ_NEXT(var, field))
343 
344 #define TAILQ_FOREACH_REVERSE(var, head, headname, field)		\
345 	for((var) = TAILQ_LAST(head, headname);				\
346 	    (var) != TAILQ_END(head);					\
347 	    (var) = TAILQ_PREV(var, headname, field))
348 
349 /*
350  * Tail queue functions.
351  */
352 #define	TAILQ_INIT(head) do {						\
353 	(head)->tqh_first = NULL;					\
354 	(head)->tqh_last = &(head)->tqh_first;				\
355 } while (0)
356 
357 #define TAILQ_INSERT_HEAD(head, elm, field) do {			\
358 	if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)	\
359 		(head)->tqh_first->field.tqe_prev =			\
360 		    &(elm)->field.tqe_next;				\
361 	else								\
362 		(head)->tqh_last = &(elm)->field.tqe_next;		\
363 	(head)->tqh_first = (elm);					\
364 	(elm)->field.tqe_prev = &(head)->tqh_first;			\
365 } while (0)
366 
367 #define TAILQ_INSERT_TAIL(head, elm, field) do {			\
368 	(elm)->field.tqe_next = NULL;					\
369 	(elm)->field.tqe_prev = (head)->tqh_last;			\
370 	*(head)->tqh_last = (elm);					\
371 	(head)->tqh_last = &(elm)->field.tqe_next;			\
372 } while (0)
373 
374 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do {		\
375 	if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
376 		(elm)->field.tqe_next->field.tqe_prev =			\
377 		    &(elm)->field.tqe_next;				\
378 	else								\
379 		(head)->tqh_last = &(elm)->field.tqe_next;		\
380 	(listelm)->field.tqe_next = (elm);				\
381 	(elm)->field.tqe_prev = &(listelm)->field.tqe_next;		\
382 } while (0)
383 
384 #define	TAILQ_INSERT_BEFORE(listelm, elm, field) do {			\
385 	(elm)->field.tqe_prev = (listelm)->field.tqe_prev;		\
386 	(elm)->field.tqe_next = (listelm);				\
387 	*(listelm)->field.tqe_prev = (elm);				\
388 	(listelm)->field.tqe_prev = &(elm)->field.tqe_next;		\
389 } while (0)
390 
391 #define TAILQ_REMOVE(head, elm, field) do {				\
392 	if (((elm)->field.tqe_next) != NULL)				\
393 		(elm)->field.tqe_next->field.tqe_prev =			\
394 		    (elm)->field.tqe_prev;				\
395 	else								\
396 		(head)->tqh_last = (elm)->field.tqe_prev;		\
397 	*(elm)->field.tqe_prev = (elm)->field.tqe_next;			\
398 	_Q_INVALIDATE((elm)->field.tqe_prev);				\
399 	_Q_INVALIDATE((elm)->field.tqe_next);				\
400 } while (0)
401 
402 #define TAILQ_REPLACE(head, elm, elm2, field) do {			\
403 	if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL)	\
404 		(elm2)->field.tqe_next->field.tqe_prev =		\
405 		    &(elm2)->field.tqe_next;				\
406 	else								\
407 		(head)->tqh_last = &(elm2)->field.tqe_next;		\
408 	(elm2)->field.tqe_prev = (elm)->field.tqe_prev;			\
409 	*(elm2)->field.tqe_prev = (elm2);				\
410 	_Q_INVALIDATE((elm)->field.tqe_prev);				\
411 	_Q_INVALIDATE((elm)->field.tqe_next);				\
412 } while (0)
413 
414 /*
415  * Circular queue definitions.
416  */
417 #define CIRCLEQ_HEAD(name, type)					\
418 struct name {								\
419 	struct type *cqh_first;		/* first element */		\
420 	struct type *cqh_last;		/* last element */		\
421 }
422 
423 #define CIRCLEQ_HEAD_INITIALIZER(head)					\
424 	{ CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
425 
426 #define CIRCLEQ_ENTRY(type)						\
427 struct {								\
428 	struct type *cqe_next;		/* next element */		\
429 	struct type *cqe_prev;		/* previous element */		\
430 }
431 
432 /*
433  * Circular queue access methods
434  */
435 #define	CIRCLEQ_FIRST(head)		((head)->cqh_first)
436 #define	CIRCLEQ_LAST(head)		((head)->cqh_last)
437 #define	CIRCLEQ_END(head)		((void *)(head))
438 #define	CIRCLEQ_NEXT(elm, field)	((elm)->field.cqe_next)
439 #define	CIRCLEQ_PREV(elm, field)	((elm)->field.cqe_prev)
440 #define	CIRCLEQ_EMPTY(head)						\
441 	(CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
442 
443 #define CIRCLEQ_FOREACH(var, head, field)				\
444 	for((var) = CIRCLEQ_FIRST(head);				\
445 	    (var) != CIRCLEQ_END(head);					\
446 	    (var) = CIRCLEQ_NEXT(var, field))
447 
448 #define CIRCLEQ_FOREACH_REVERSE(var, head, field)			\
449 	for((var) = CIRCLEQ_LAST(head);					\
450 	    (var) != CIRCLEQ_END(head);					\
451 	    (var) = CIRCLEQ_PREV(var, field))
452 
453 /*
454  * Circular queue functions.
455  */
456 #define	CIRCLEQ_INIT(head) do {						\
457 	(head)->cqh_first = CIRCLEQ_END(head);				\
458 	(head)->cqh_last = CIRCLEQ_END(head);				\
459 } while (0)
460 
461 #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
462 	(elm)->field.cqe_next = (listelm)->field.cqe_next;		\
463 	(elm)->field.cqe_prev = (listelm);				\
464 	if ((listelm)->field.cqe_next == CIRCLEQ_END(head))		\
465 		(head)->cqh_last = (elm);				\
466 	else								\
467 		(listelm)->field.cqe_next->field.cqe_prev = (elm);	\
468 	(listelm)->field.cqe_next = (elm);				\
469 } while (0)
470 
471 #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {		\
472 	(elm)->field.cqe_next = (listelm);				\
473 	(elm)->field.cqe_prev = (listelm)->field.cqe_prev;		\
474 	if ((listelm)->field.cqe_prev == CIRCLEQ_END(head))		\
475 		(head)->cqh_first = (elm);				\
476 	else								\
477 		(listelm)->field.cqe_prev->field.cqe_next = (elm);	\
478 	(listelm)->field.cqe_prev = (elm);				\
479 } while (0)
480 
481 #define CIRCLEQ_INSERT_HEAD(head, elm, field) do {			\
482 	(elm)->field.cqe_next = (head)->cqh_first;			\
483 	(elm)->field.cqe_prev = CIRCLEQ_END(head);			\
484 	if ((head)->cqh_last == CIRCLEQ_END(head))			\
485 		(head)->cqh_last = (elm);				\
486 	else								\
487 		(head)->cqh_first->field.cqe_prev = (elm);		\
488 	(head)->cqh_first = (elm);					\
489 } while (0)
490 
491 #define CIRCLEQ_INSERT_TAIL(head, elm, field) do {			\
492 	(elm)->field.cqe_next = CIRCLEQ_END(head);			\
493 	(elm)->field.cqe_prev = (head)->cqh_last;			\
494 	if ((head)->cqh_first == CIRCLEQ_END(head))			\
495 		(head)->cqh_first = (elm);				\
496 	else								\
497 		(head)->cqh_last->field.cqe_next = (elm);		\
498 	(head)->cqh_last = (elm);					\
499 } while (0)
500 
501 #define	CIRCLEQ_REMOVE(head, elm, field) do {				\
502 	if ((elm)->field.cqe_next == CIRCLEQ_END(head))			\
503 		(head)->cqh_last = (elm)->field.cqe_prev;		\
504 	else								\
505 		(elm)->field.cqe_next->field.cqe_prev =			\
506 		    (elm)->field.cqe_prev;				\
507 	if ((elm)->field.cqe_prev == CIRCLEQ_END(head))			\
508 		(head)->cqh_first = (elm)->field.cqe_next;		\
509 	else								\
510 		(elm)->field.cqe_prev->field.cqe_next =			\
511 		    (elm)->field.cqe_next;				\
512 	_Q_INVALIDATE((elm)->field.cqe_prev);				\
513 	_Q_INVALIDATE((elm)->field.cqe_next);				\
514 } while (0)
515 
516 #define CIRCLEQ_REPLACE(head, elm, elm2, field) do {			\
517 	if (((elm2)->field.cqe_next = (elm)->field.cqe_next) ==		\
518 	    CIRCLEQ_END(head))						\
519 		(head).cqh_last = (elm2);				\
520 	else								\
521 		(elm2)->field.cqe_next->field.cqe_prev = (elm2);	\
522 	if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) ==		\
523 	    CIRCLEQ_END(head))						\
524 		(head).cqh_first = (elm2);				\
525 	else								\
526 		(elm2)->field.cqe_prev->field.cqe_next = (elm2);	\
527 	_Q_INVALIDATE((elm)->field.cqe_prev);				\
528 	_Q_INVALIDATE((elm)->field.cqe_next);				\
529 } while (0)
530 
531 #endif	/* !_SYS_QUEUE_H_ */
532