1/*
2Copyright 2017 Google LLC
3
4Licensed under the Apache License, Version 2.0 (the "License");
5you may not use this file except in compliance with the License.
6You may obtain a copy of the License at
7
8    http://www.apache.org/licenses/LICENSE-2.0
9
10Unless required by applicable law or agreed to in writing, software
11distributed under the License is distributed on an "AS IS" BASIS,
12WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13See the License for the specific language governing permissions and
14limitations under the License.
15*/
16
17package spanner
18
19import (
20	"bytes"
21	"fmt"
22	"math/big"
23	"time"
24
25	"cloud.google.com/go/civil"
26	proto3 "github.com/golang/protobuf/ptypes/struct"
27	sppb "google.golang.org/genproto/googleapis/spanner/v1"
28	"google.golang.org/grpc/codes"
29)
30
31// A Key can be either a Cloud Spanner row's primary key or a secondary index
32// key. It is essentially an interface{} array, which represents a set of Cloud
33// Spanner columns. A Key can be used as:
34//
35//   - A primary key which uniquely identifies a Cloud Spanner row.
36//   - A secondary index key which maps to a set of Cloud Spanner rows indexed under it.
37//   - An endpoint of primary key/secondary index ranges; see the KeyRange type.
38//
39// Rows that are identified by the Key type are outputs of read operation or
40// targets of delete operation in a mutation. Note that for
41// Insert/Update/InsertOrUpdate/Update mutation types, although they don't
42// require a primary key explicitly, the column list provided must contain
43// enough columns that can comprise a primary key.
44//
45// Keys are easy to construct.  For example, suppose you have a table with a
46// primary key of username and product ID.  To make a key for this table:
47//
48//	key := spanner.Key{"john", 16}
49//
50// See the description of Row and Mutation types for how Go types are mapped to
51// Cloud Spanner types. For convenience, Key type supports a wide range of Go
52// types:
53//   - int, int8, int16, int32, int64, and NullInt64 are mapped to Cloud Spanner's INT64 type.
54//   - uint8, uint16 and uint32 are also mapped to Cloud Spanner's INT64 type.
55//   - float32, float64, NullFloat64 are mapped to Cloud Spanner's FLOAT64 type.
56//   - bool and NullBool are mapped to Cloud Spanner's BOOL type.
57//   - []byte is mapped to Cloud Spanner's BYTES type.
58//   - string and NullString are mapped to Cloud Spanner's STRING type.
59//   - time.Time and NullTime are mapped to Cloud Spanner's TIMESTAMP type.
60//   - civil.Date and NullDate are mapped to Cloud Spanner's DATE type.
61type Key []interface{}
62
63// errInvdKeyPartType returns error for unsupported key part type.
64func errInvdKeyPartType(part interface{}) error {
65	return spannerErrorf(codes.InvalidArgument, "key part has unsupported type %T", part)
66}
67
68// keyPartValue converts a part of the Key (which is a valid Cloud Spanner type)
69// into a proto3.Value. Used for encoding Key type into protobuf.
70func keyPartValue(part interface{}) (pb *proto3.Value, err error) {
71	switch v := part.(type) {
72	case int:
73		pb, _, err = encodeValue(int64(v))
74	case int8:
75		pb, _, err = encodeValue(int64(v))
76	case int16:
77		pb, _, err = encodeValue(int64(v))
78	case int32:
79		pb, _, err = encodeValue(int64(v))
80	case uint8:
81		pb, _, err = encodeValue(int64(v))
82	case uint16:
83		pb, _, err = encodeValue(int64(v))
84	case uint32:
85		pb, _, err = encodeValue(int64(v))
86	case float32:
87		pb, _, err = encodeValue(float64(v))
88	case int64, float64, NullInt64, NullFloat64, bool, NullBool, []byte, string, NullString, time.Time, civil.Date, NullTime, NullDate, big.Rat, NullNumeric:
89		pb, _, err = encodeValue(v)
90	case Encoder:
91		part, err = v.EncodeSpanner()
92		if err != nil {
93			return nil, err
94		}
95		pb, err = keyPartValue(part)
96	default:
97		return nil, errInvdKeyPartType(v)
98	}
99	return pb, err
100}
101
102// proto converts a spanner.Key into a proto3.ListValue.
103func (key Key) proto() (*proto3.ListValue, error) {
104	lv := &proto3.ListValue{}
105	lv.Values = make([]*proto3.Value, 0, len(key))
106	for _, part := range key {
107		v, err := keyPartValue(part)
108		if err != nil {
109			return nil, err
110		}
111		lv.Values = append(lv.Values, v)
112	}
113	return lv, nil
114}
115
116// keySetProto lets a single Key act as a KeySet.
117func (key Key) keySetProto() (*sppb.KeySet, error) {
118	kp, err := key.proto()
119	if err != nil {
120		return nil, err
121	}
122	return &sppb.KeySet{Keys: []*proto3.ListValue{kp}}, nil
123}
124
125// String implements fmt.Stringer for Key. For string, []byte and NullString, it
126// prints the uninterpreted bytes of their contents, leaving caller with the
127// opportunity to escape the output.
128func (key Key) String() string {
129	b := &bytes.Buffer{}
130	fmt.Fprint(b, "(")
131	for i, part := range []interface{}(key) {
132		if i != 0 {
133			fmt.Fprint(b, ",")
134		}
135		key.elemString(b, part)
136	}
137	fmt.Fprint(b, ")")
138	return b.String()
139}
140
141func (key Key) elemString(b *bytes.Buffer, part interface{}) {
142	switch v := part.(type) {
143	case int, int8, int16, int32, int64, uint, uint8, uint16, uint32, float32, float64, bool:
144		// Use %v to print numeric types and bool.
145		fmt.Fprintf(b, "%v", v)
146	case string:
147		fmt.Fprintf(b, "%q", v)
148	case []byte:
149		if v != nil {
150			fmt.Fprintf(b, "%q", v)
151		} else {
152			fmt.Fprint(b, nullString)
153		}
154	case NullInt64, NullFloat64, NullBool, NullNumeric:
155		// The above types implement fmt.Stringer.
156		fmt.Fprintf(b, "%s", v)
157	case NullString, NullDate, NullTime:
158		// Quote the returned string if it is not null.
159		if v.(NullableValue).IsNull() {
160			fmt.Fprintf(b, "%s", nullString)
161		} else {
162			fmt.Fprintf(b, "%q", v)
163		}
164	case civil.Date:
165		fmt.Fprintf(b, "%q", v)
166	case time.Time:
167		fmt.Fprintf(b, "%q", v.Format(time.RFC3339Nano))
168	case big.Rat:
169		fmt.Fprintf(b, "%v", NumericString(&v))
170	case Encoder:
171		var err error
172		part, err = v.EncodeSpanner()
173		if err != nil {
174			fmt.Fprintf(b, "error")
175		} else {
176			key.elemString(b, part)
177		}
178	default:
179		fmt.Fprintf(b, "%v", v)
180	}
181}
182
183// AsPrefix returns a KeyRange for all keys where k is the prefix.
184func (key Key) AsPrefix() KeyRange {
185	return KeyRange{
186		Start: key,
187		End:   key,
188		Kind:  ClosedClosed,
189	}
190}
191
192// KeyRangeKind describes the kind of interval represented by a KeyRange:
193// whether it is open or closed on the left and right.
194type KeyRangeKind int
195
196const (
197	// ClosedOpen is closed on the left and open on the right: the Start
198	// key is included, the End key is excluded.
199	ClosedOpen KeyRangeKind = iota
200
201	// ClosedClosed is closed on the left and the right: both keys are included.
202	ClosedClosed
203
204	// OpenClosed is open on the left and closed on the right: the Start
205	// key is excluded, the End key is included.
206	OpenClosed
207
208	// OpenOpen is open on the left and the right: neither key is included.
209	OpenOpen
210)
211
212// A KeyRange represents a range of rows in a table or index.
213//
214// A range has a Start key and an End key.  IncludeStart and IncludeEnd
215// indicate whether the Start and End keys are included in the range.
216//
217// For example, consider the following table definition:
218//
219//	CREATE TABLE UserEvents (
220//	  UserName STRING(MAX),
221//	  EventDate STRING(10),
222//	) PRIMARY KEY(UserName, EventDate);
223//
224// The following keys name rows in this table:
225//
226//	spanner.Key{"Bob", "2014-09-23"}
227//	spanner.Key{"Alfred", "2015-06-12"}
228//
229// Since the UserEvents table's PRIMARY KEY clause names two columns, each
230// UserEvents key has two elements; the first is the UserName, and the second
231// is the EventDate.
232//
233// Key ranges with multiple components are interpreted lexicographically by
234// component using the table or index key's declared sort order. For example,
235// the following range returns all events for user "Bob" that occurred in the
236// year 2015:
237//
238// 	spanner.KeyRange{
239//		Start: spanner.Key{"Bob", "2015-01-01"},
240//		End:   spanner.Key{"Bob", "2015-12-31"},
241//		Kind:  ClosedClosed,
242//	}
243//
244// Start and end keys can omit trailing key components. This affects the
245// inclusion and exclusion of rows that exactly match the provided key
246// components: if IncludeStart is true, then rows that exactly match the
247// provided components of the Start key are included; if IncludeStart is false
248// then rows that exactly match are not included.  IncludeEnd and End key
249// behave in the same fashion.
250//
251// For example, the following range includes all events for "Bob" that occurred
252// during and after the year 2000:
253//
254//	spanner.KeyRange{
255//		Start: spanner.Key{"Bob", "2000-01-01"},
256//		End:   spanner.Key{"Bob"},
257//		Kind:  ClosedClosed,
258//	}
259//
260// The next example retrieves all events for "Bob":
261//
262//	spanner.Key{"Bob"}.AsPrefix()
263//
264// To retrieve events before the year 2000:
265//
266//	spanner.KeyRange{
267//		Start: spanner.Key{"Bob"},
268//		End:   spanner.Key{"Bob", "2000-01-01"},
269//		Kind:  ClosedOpen,
270//	}
271//
272// Although we specified a Kind for this KeyRange, we didn't need to, because
273// the default is ClosedOpen. In later examples we'll omit Kind if it is
274// ClosedOpen.
275//
276// The following range includes all rows in a table or under a
277// index:
278//
279//	spanner.AllKeys()
280//
281// This range returns all users whose UserName begins with any
282// character from A to C:
283//
284//	spanner.KeyRange{
285//		Start: spanner.Key{"A"},
286//		End:   spanner.Key{"D"},
287//	}
288//
289// This range returns all users whose UserName begins with B:
290//
291//	spanner.KeyRange{
292//		Start: spanner.Key{"B"},
293//		End:   spanner.Key{"C"},
294//	}
295//
296// Key ranges honor column sort order. For example, suppose a table is defined
297// as follows:
298//
299//	CREATE TABLE DescendingSortedTable {
300//	  Key INT64,
301//	  ...
302//	) PRIMARY KEY(Key DESC);
303//
304// The following range retrieves all rows with key values between 1 and 100
305// inclusive:
306//
307//	spanner.KeyRange{
308//		Start: spanner.Key{100},
309//		End:   spanner.Key{1},
310//		Kind:  ClosedClosed,
311//	}
312//
313// Note that 100 is passed as the start, and 1 is passed as the end, because
314// Key is a descending column in the schema.
315type KeyRange struct {
316	// Start specifies the left boundary of the key range; End specifies
317	// the right boundary of the key range.
318	Start, End Key
319
320	// Kind describes whether the boundaries of the key range include
321	// their keys.
322	Kind KeyRangeKind
323}
324
325// String implements fmt.Stringer for KeyRange type.
326func (r KeyRange) String() string {
327	var left, right string
328	switch r.Kind {
329	case ClosedClosed:
330		left, right = "[", "]"
331	case ClosedOpen:
332		left, right = "[", ")"
333	case OpenClosed:
334		left, right = "(", "]"
335	case OpenOpen:
336		left, right = "(", ")"
337	default:
338		left, right = "?", "?"
339	}
340	return fmt.Sprintf("%s%s,%s%s", left, r.Start, r.End, right)
341}
342
343// proto converts KeyRange into sppb.KeyRange.
344func (r KeyRange) proto() (*sppb.KeyRange, error) {
345	var err error
346	var start, end *proto3.ListValue
347	pb := &sppb.KeyRange{}
348	if start, err = r.Start.proto(); err != nil {
349		return nil, err
350	}
351	if end, err = r.End.proto(); err != nil {
352		return nil, err
353	}
354	if r.Kind == ClosedClosed || r.Kind == ClosedOpen {
355		pb.StartKeyType = &sppb.KeyRange_StartClosed{StartClosed: start}
356	} else {
357		pb.StartKeyType = &sppb.KeyRange_StartOpen{StartOpen: start}
358	}
359	if r.Kind == ClosedClosed || r.Kind == OpenClosed {
360		pb.EndKeyType = &sppb.KeyRange_EndClosed{EndClosed: end}
361	} else {
362		pb.EndKeyType = &sppb.KeyRange_EndOpen{EndOpen: end}
363	}
364	return pb, nil
365}
366
367// keySetProto lets a KeyRange act as a KeySet.
368func (r KeyRange) keySetProto() (*sppb.KeySet, error) {
369	rp, err := r.proto()
370	if err != nil {
371		return nil, err
372	}
373	return &sppb.KeySet{Ranges: []*sppb.KeyRange{rp}}, nil
374}
375
376// A KeySet defines a collection of Cloud Spanner keys and/or key ranges. All
377// the keys are expected to be in the same table or index. The keys need not be
378// sorted in any particular way.
379//
380// An individual Key can act as a KeySet, as can a KeyRange. Use the KeySets
381// function to create a KeySet consisting of multiple Keys and KeyRanges. To
382// obtain an empty KeySet, call KeySets with no arguments.
383//
384// If the same key is specified multiple times in the set (for example if two
385// ranges, two keys, or a key and a range overlap), the Cloud Spanner backend
386// behaves as if the key were only specified once.
387type KeySet interface {
388	keySetProto() (*sppb.KeySet, error)
389}
390
391// AllKeys returns a KeySet that represents all Keys of a table or a index.
392func AllKeys() KeySet {
393	return all{}
394}
395
396type all struct{}
397
398func (all) keySetProto() (*sppb.KeySet, error) {
399	return &sppb.KeySet{All: true}, nil
400}
401
402// KeySets returns the union of the KeySets. If any of the KeySets is AllKeys,
403// then the resulting KeySet will be equivalent to AllKeys.
404func KeySets(keySets ...KeySet) KeySet {
405	u := make(union, len(keySets))
406	copy(u, keySets)
407	return u
408}
409
410// KeySetFromKeys returns a KeySet containing the given slice of keys.
411func KeySetFromKeys(keys ...Key) KeySet {
412	u := make(union, len(keys))
413	for i, k := range keys {
414		u[i] = k
415	}
416	return u
417}
418
419type union []KeySet
420
421func (u union) keySetProto() (*sppb.KeySet, error) {
422	upb := &sppb.KeySet{}
423	for _, ks := range u {
424		pb, err := ks.keySetProto()
425		if err != nil {
426			return nil, err
427		}
428		if pb.All {
429			return pb, nil
430		}
431		upb.Keys = append(upb.Keys, pb.Keys...)
432		upb.Ranges = append(upb.Ranges, pb.Ranges...)
433	}
434	return upb, nil
435}
436