1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package fmt
6
7import (
8	"strconv"
9	"unicode/utf8"
10)
11
12const (
13	ldigits = "0123456789abcdefx"
14	udigits = "0123456789ABCDEFX"
15)
16
17const (
18	signed   = true
19	unsigned = false
20)
21
22// flags placed in a separate struct for easy clearing.
23type fmtFlags struct {
24	widPresent  bool
25	precPresent bool
26	minus       bool
27	plus        bool
28	sharp       bool
29	space       bool
30	zero        bool
31
32	// For the formats %+v %#v, we set the plusV/sharpV flags
33	// and clear the plus/sharp flags since %+v and %#v are in effect
34	// different, flagless formats set at the top level.
35	plusV  bool
36	sharpV bool
37}
38
39// A fmt is the raw formatter used by Printf etc.
40// It prints into a buffer that must be set up separately.
41type fmt struct {
42	buf *buffer
43
44	fmtFlags
45
46	wid  int // width
47	prec int // precision
48
49	// intbuf is large enough to store %b of an int64 with a sign and
50	// avoids padding at the end of the struct on 32 bit architectures.
51	intbuf [68]byte
52}
53
54func (f *fmt) clearflags() {
55	f.fmtFlags = fmtFlags{}
56}
57
58func (f *fmt) init(buf *buffer) {
59	f.buf = buf
60	f.clearflags()
61}
62
63// writePadding generates n bytes of padding.
64func (f *fmt) writePadding(n int) {
65	if n <= 0 { // No padding bytes needed.
66		return
67	}
68	buf := *f.buf
69	oldLen := len(buf)
70	newLen := oldLen + n
71	// Make enough room for padding.
72	if newLen > cap(buf) {
73		buf = make(buffer, cap(buf)*2+n)
74		copy(buf, *f.buf)
75	}
76	// Decide which byte the padding should be filled with.
77	padByte := byte(' ')
78	if f.zero {
79		padByte = byte('0')
80	}
81	// Fill padding with padByte.
82	padding := buf[oldLen:newLen]
83	for i := range padding {
84		padding[i] = padByte
85	}
86	*f.buf = buf[:newLen]
87}
88
89// pad appends b to f.buf, padded on left (!f.minus) or right (f.minus).
90func (f *fmt) pad(b []byte) {
91	if !f.widPresent || f.wid == 0 {
92		f.buf.Write(b)
93		return
94	}
95	width := f.wid - utf8.RuneCount(b)
96	if !f.minus {
97		// left padding
98		f.writePadding(width)
99		f.buf.Write(b)
100	} else {
101		// right padding
102		f.buf.Write(b)
103		f.writePadding(width)
104	}
105}
106
107// padString appends s to f.buf, padded on left (!f.minus) or right (f.minus).
108func (f *fmt) padString(s string) {
109	if !f.widPresent || f.wid == 0 {
110		f.buf.WriteString(s)
111		return
112	}
113	width := f.wid - utf8.RuneCountInString(s)
114	if !f.minus {
115		// left padding
116		f.writePadding(width)
117		f.buf.WriteString(s)
118	} else {
119		// right padding
120		f.buf.WriteString(s)
121		f.writePadding(width)
122	}
123}
124
125// fmt_boolean formats a boolean.
126func (f *fmt) fmt_boolean(v bool) {
127	if v {
128		f.padString("true")
129	} else {
130		f.padString("false")
131	}
132}
133
134// fmt_unicode formats a uint64 as "U+0078" or with f.sharp set as "U+0078 'x'".
135func (f *fmt) fmt_unicode(u uint64) {
136	buf := f.intbuf[0:]
137
138	// With default precision set the maximum needed buf length is 18
139	// for formatting -1 with %#U ("U+FFFFFFFFFFFFFFFF") which fits
140	// into the already allocated intbuf with a capacity of 68 bytes.
141	prec := 4
142	if f.precPresent && f.prec > 4 {
143		prec = f.prec
144		// Compute space needed for "U+" , number, " '", character, "'".
145		width := 2 + prec + 2 + utf8.UTFMax + 1
146		if width > len(buf) {
147			buf = make([]byte, width)
148		}
149	}
150
151	// Format into buf, ending at buf[i]. Formatting numbers is easier right-to-left.
152	i := len(buf)
153
154	// For %#U we want to add a space and a quoted character at the end of the buffer.
155	if f.sharp && u <= utf8.MaxRune && strconv.IsPrint(rune(u)) {
156		i--
157		buf[i] = '\''
158		i -= utf8.RuneLen(rune(u))
159		utf8.EncodeRune(buf[i:], rune(u))
160		i--
161		buf[i] = '\''
162		i--
163		buf[i] = ' '
164	}
165	// Format the Unicode code point u as a hexadecimal number.
166	for u >= 16 {
167		i--
168		buf[i] = udigits[u&0xF]
169		prec--
170		u >>= 4
171	}
172	i--
173	buf[i] = udigits[u]
174	prec--
175	// Add zeros in front of the number until requested precision is reached.
176	for prec > 0 {
177		i--
178		buf[i] = '0'
179		prec--
180	}
181	// Add a leading "U+".
182	i--
183	buf[i] = '+'
184	i--
185	buf[i] = 'U'
186
187	oldZero := f.zero
188	f.zero = false
189	f.pad(buf[i:])
190	f.zero = oldZero
191}
192
193// fmt_integer formats signed and unsigned integers.
194func (f *fmt) fmt_integer(u uint64, base int, isSigned bool, digits string) {
195	negative := isSigned && int64(u) < 0
196	if negative {
197		u = -u
198	}
199
200	buf := f.intbuf[0:]
201	// The already allocated f.intbuf with a capacity of 68 bytes
202	// is large enough for integer formatting when no precision or width is set.
203	if f.widPresent || f.precPresent {
204		// Account 3 extra bytes for possible addition of a sign and "0x".
205		width := 3 + f.wid + f.prec // wid and prec are always positive.
206		if width > len(buf) {
207			// We're going to need a bigger boat.
208			buf = make([]byte, width)
209		}
210	}
211
212	// Two ways to ask for extra leading zero digits: %.3d or %03d.
213	// If both are specified the f.zero flag is ignored and
214	// padding with spaces is used instead.
215	prec := 0
216	if f.precPresent {
217		prec = f.prec
218		// Precision of 0 and value of 0 means "print nothing" but padding.
219		if prec == 0 && u == 0 {
220			oldZero := f.zero
221			f.zero = false
222			f.writePadding(f.wid)
223			f.zero = oldZero
224			return
225		}
226	} else if f.zero && f.widPresent {
227		prec = f.wid
228		if negative || f.plus || f.space {
229			prec-- // leave room for sign
230		}
231	}
232
233	// Because printing is easier right-to-left: format u into buf, ending at buf[i].
234	// We could make things marginally faster by splitting the 32-bit case out
235	// into a separate block but it's not worth the duplication, so u has 64 bits.
236	i := len(buf)
237	// Use constants for the division and modulo for more efficient code.
238	// Switch cases ordered by popularity.
239	switch base {
240	case 10:
241		for u >= 10 {
242			i--
243			next := u / 10
244			buf[i] = byte('0' + u - next*10)
245			u = next
246		}
247	case 16:
248		for u >= 16 {
249			i--
250			buf[i] = digits[u&0xF]
251			u >>= 4
252		}
253	case 8:
254		for u >= 8 {
255			i--
256			buf[i] = byte('0' + u&7)
257			u >>= 3
258		}
259	case 2:
260		for u >= 2 {
261			i--
262			buf[i] = byte('0' + u&1)
263			u >>= 1
264		}
265	default:
266		panic("fmt: unknown base; can't happen")
267	}
268	i--
269	buf[i] = digits[u]
270	for i > 0 && prec > len(buf)-i {
271		i--
272		buf[i] = '0'
273	}
274
275	// Various prefixes: 0x, -, etc.
276	if f.sharp {
277		switch base {
278		case 8:
279			if buf[i] != '0' {
280				i--
281				buf[i] = '0'
282			}
283		case 16:
284			// Add a leading 0x or 0X.
285			i--
286			buf[i] = digits[16]
287			i--
288			buf[i] = '0'
289		}
290	}
291
292	if negative {
293		i--
294		buf[i] = '-'
295	} else if f.plus {
296		i--
297		buf[i] = '+'
298	} else if f.space {
299		i--
300		buf[i] = ' '
301	}
302
303	// Left padding with zeros has already been handled like precision earlier
304	// or the f.zero flag is ignored due to an explicitly set precision.
305	oldZero := f.zero
306	f.zero = false
307	f.pad(buf[i:])
308	f.zero = oldZero
309}
310
311// truncate truncates the string to the specified precision, if present.
312func (f *fmt) truncate(s string) string {
313	if f.precPresent {
314		n := f.prec
315		for i := range s {
316			n--
317			if n < 0 {
318				return s[:i]
319			}
320		}
321	}
322	return s
323}
324
325// fmt_s formats a string.
326func (f *fmt) fmt_s(s string) {
327	s = f.truncate(s)
328	f.padString(s)
329}
330
331// fmt_sbx formats a string or byte slice as a hexadecimal encoding of its bytes.
332func (f *fmt) fmt_sbx(s string, b []byte, digits string) {
333	length := len(b)
334	if b == nil {
335		// No byte slice present. Assume string s should be encoded.
336		length = len(s)
337	}
338	// Set length to not process more bytes than the precision demands.
339	if f.precPresent && f.prec < length {
340		length = f.prec
341	}
342	// Compute width of the encoding taking into account the f.sharp and f.space flag.
343	width := 2 * length
344	if width > 0 {
345		if f.space {
346			// Each element encoded by two hexadecimals will get a leading 0x or 0X.
347			if f.sharp {
348				width *= 2
349			}
350			// Elements will be separated by a space.
351			width += length - 1
352		} else if f.sharp {
353			// Only a leading 0x or 0X will be added for the whole string.
354			width += 2
355		}
356	} else { // The byte slice or string that should be encoded is empty.
357		if f.widPresent {
358			f.writePadding(f.wid)
359		}
360		return
361	}
362	// Handle padding to the left.
363	if f.widPresent && f.wid > width && !f.minus {
364		f.writePadding(f.wid - width)
365	}
366	// Write the encoding directly into the output buffer.
367	buf := *f.buf
368	if f.sharp {
369		// Add leading 0x or 0X.
370		buf = append(buf, '0', digits[16])
371	}
372	var c byte
373	for i := 0; i < length; i++ {
374		if f.space && i > 0 {
375			// Separate elements with a space.
376			buf = append(buf, ' ')
377			if f.sharp {
378				// Add leading 0x or 0X for each element.
379				buf = append(buf, '0', digits[16])
380			}
381		}
382		if b != nil {
383			c = b[i] // Take a byte from the input byte slice.
384		} else {
385			c = s[i] // Take a byte from the input string.
386		}
387		// Encode each byte as two hexadecimal digits.
388		buf = append(buf, digits[c>>4], digits[c&0xF])
389	}
390	*f.buf = buf
391	// Handle padding to the right.
392	if f.widPresent && f.wid > width && f.minus {
393		f.writePadding(f.wid - width)
394	}
395}
396
397// fmt_sx formats a string as a hexadecimal encoding of its bytes.
398func (f *fmt) fmt_sx(s, digits string) {
399	f.fmt_sbx(s, nil, digits)
400}
401
402// fmt_bx formats a byte slice as a hexadecimal encoding of its bytes.
403func (f *fmt) fmt_bx(b []byte, digits string) {
404	f.fmt_sbx("", b, digits)
405}
406
407// fmt_q formats a string as a double-quoted, escaped Go string constant.
408// If f.sharp is set a raw (backquoted) string may be returned instead
409// if the string does not contain any control characters other than tab.
410func (f *fmt) fmt_q(s string) {
411	s = f.truncate(s)
412	if f.sharp && strconv.CanBackquote(s) {
413		f.padString("`" + s + "`")
414		return
415	}
416	buf := f.intbuf[:0]
417	if f.plus {
418		f.pad(strconv.AppendQuoteToASCII(buf, s))
419	} else {
420		f.pad(strconv.AppendQuote(buf, s))
421	}
422}
423
424// fmt_c formats an integer as a Unicode character.
425// If the character is not valid Unicode, it will print '\ufffd'.
426func (f *fmt) fmt_c(c uint64) {
427	r := rune(c)
428	if c > utf8.MaxRune {
429		r = utf8.RuneError
430	}
431	buf := f.intbuf[:0]
432	w := utf8.EncodeRune(buf[:utf8.UTFMax], r)
433	f.pad(buf[:w])
434}
435
436// fmt_qc formats an integer as a single-quoted, escaped Go character constant.
437// If the character is not valid Unicode, it will print '\ufffd'.
438func (f *fmt) fmt_qc(c uint64) {
439	r := rune(c)
440	if c > utf8.MaxRune {
441		r = utf8.RuneError
442	}
443	buf := f.intbuf[:0]
444	if f.plus {
445		f.pad(strconv.AppendQuoteRuneToASCII(buf, r))
446	} else {
447		f.pad(strconv.AppendQuoteRune(buf, r))
448	}
449}
450
451// fmt_float formats a float64. It assumes that verb is a valid format specifier
452// for strconv.AppendFloat and therefore fits into a byte.
453func (f *fmt) fmt_float(v float64, size int, verb rune, prec int) {
454	// Explicit precision in format specifier overrules default precision.
455	if f.precPresent {
456		prec = f.prec
457	}
458	// Format number, reserving space for leading + sign if needed.
459	num := strconv.AppendFloat(f.intbuf[:1], v, byte(verb), prec, size)
460	if num[1] == '-' || num[1] == '+' {
461		num = num[1:]
462	} else {
463		num[0] = '+'
464	}
465	// f.space means to add a leading space instead of a "+" sign unless
466	// the sign is explicitly asked for by f.plus.
467	if f.space && num[0] == '+' && !f.plus {
468		num[0] = ' '
469	}
470	// Special handling for infinities and NaN,
471	// which don't look like a number so shouldn't be padded with zeros.
472	if num[1] == 'I' || num[1] == 'N' {
473		oldZero := f.zero
474		f.zero = false
475		// Remove sign before NaN if not asked for.
476		if num[1] == 'N' && !f.space && !f.plus {
477			num = num[1:]
478		}
479		f.pad(num)
480		f.zero = oldZero
481		return
482	}
483	// The sharp flag forces printing a decimal point for non-binary formats
484	// and retains trailing zeros, which we may need to restore.
485	if f.sharp && verb != 'b' {
486		digits := 0
487		switch verb {
488		case 'v', 'g', 'G':
489			digits = prec
490			// If no precision is set explicitly use a precision of 6.
491			if digits == -1 {
492				digits = 6
493			}
494		}
495
496		// Buffer pre-allocated with enough room for
497		// exponent notations of the form "e+123".
498		var tailBuf [5]byte
499		tail := tailBuf[:0]
500
501		hasDecimalPoint := false
502		// Starting from i = 1 to skip sign at num[0].
503		for i := 1; i < len(num); i++ {
504			switch num[i] {
505			case '.':
506				hasDecimalPoint = true
507			case 'e', 'E':
508				tail = append(tail, num[i:]...)
509				num = num[:i]
510			default:
511				digits--
512			}
513		}
514		if !hasDecimalPoint {
515			num = append(num, '.')
516		}
517		for digits > 0 {
518			num = append(num, '0')
519			digits--
520		}
521		num = append(num, tail...)
522	}
523	// We want a sign if asked for and if the sign is not positive.
524	if f.plus || num[0] != '+' {
525		// If we're zero padding to the left we want the sign before the leading zeros.
526		// Achieve this by writing the sign out and then padding the unsigned number.
527		if f.zero && f.widPresent && f.wid > len(num) {
528			f.buf.WriteByte(num[0])
529			f.writePadding(f.wid - len(num))
530			f.buf.Write(num[1:])
531			return
532		}
533		f.pad(num)
534		return
535	}
536	// No sign to show and the number is positive; just print the unsigned number.
537	f.pad(num[1:])
538}
539