1// Copyright 2010 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// This file implements multi-precision rational numbers.
6
7package big
8
9import (
10	"fmt"
11	"math"
12)
13
14// A Rat represents a quotient a/b of arbitrary precision.
15// The zero value for a Rat represents the value 0.
16type Rat struct {
17	// To make zero values for Rat work w/o initialization,
18	// a zero value of b (len(b) == 0) acts like b == 1.
19	// a.neg determines the sign of the Rat, b.neg is ignored.
20	a, b Int
21}
22
23// NewRat creates a new Rat with numerator a and denominator b.
24func NewRat(a, b int64) *Rat {
25	return new(Rat).SetFrac64(a, b)
26}
27
28// SetFloat64 sets z to exactly f and returns z.
29// If f is not finite, SetFloat returns nil.
30func (z *Rat) SetFloat64(f float64) *Rat {
31	const expMask = 1<<11 - 1
32	bits := math.Float64bits(f)
33	mantissa := bits & (1<<52 - 1)
34	exp := int((bits >> 52) & expMask)
35	switch exp {
36	case expMask: // non-finite
37		return nil
38	case 0: // denormal
39		exp -= 1022
40	default: // normal
41		mantissa |= 1 << 52
42		exp -= 1023
43	}
44
45	shift := 52 - exp
46
47	// Optimization (?): partially pre-normalise.
48	for mantissa&1 == 0 && shift > 0 {
49		mantissa >>= 1
50		shift--
51	}
52
53	z.a.SetUint64(mantissa)
54	z.a.neg = f < 0
55	z.b.Set(intOne)
56	if shift > 0 {
57		z.b.Lsh(&z.b, uint(shift))
58	} else {
59		z.a.Lsh(&z.a, uint(-shift))
60	}
61	return z.norm()
62}
63
64// quotToFloat32 returns the non-negative float32 value
65// nearest to the quotient a/b, using round-to-even in
66// halfway cases. It does not mutate its arguments.
67// Preconditions: b is non-zero; a and b have no common factors.
68func quotToFloat32(a, b nat) (f float32, exact bool) {
69	const (
70		// float size in bits
71		Fsize = 32
72
73		// mantissa
74		Msize  = 23
75		Msize1 = Msize + 1 // incl. implicit 1
76		Msize2 = Msize1 + 1
77
78		// exponent
79		Esize = Fsize - Msize1
80		Ebias = 1<<(Esize-1) - 1
81		Emin  = 1 - Ebias
82		Emax  = Ebias
83	)
84
85	// TODO(adonovan): specialize common degenerate cases: 1.0, integers.
86	alen := a.bitLen()
87	if alen == 0 {
88		return 0, true
89	}
90	blen := b.bitLen()
91	if blen == 0 {
92		panic("division by zero")
93	}
94
95	// 1. Left-shift A or B such that quotient A/B is in [1<<Msize1, 1<<(Msize2+1)
96	// (Msize2 bits if A < B when they are left-aligned, Msize2+1 bits if A >= B).
97	// This is 2 or 3 more than the float32 mantissa field width of Msize:
98	// - the optional extra bit is shifted away in step 3 below.
99	// - the high-order 1 is omitted in "normal" representation;
100	// - the low-order 1 will be used during rounding then discarded.
101	exp := alen - blen
102	var a2, b2 nat
103	a2 = a2.set(a)
104	b2 = b2.set(b)
105	if shift := Msize2 - exp; shift > 0 {
106		a2 = a2.shl(a2, uint(shift))
107	} else if shift < 0 {
108		b2 = b2.shl(b2, uint(-shift))
109	}
110
111	// 2. Compute quotient and remainder (q, r).  NB: due to the
112	// extra shift, the low-order bit of q is logically the
113	// high-order bit of r.
114	var q nat
115	q, r := q.div(a2, a2, b2) // (recycle a2)
116	mantissa := low32(q)
117	haveRem := len(r) > 0 // mantissa&1 && !haveRem => remainder is exactly half
118
119	// 3. If quotient didn't fit in Msize2 bits, redo division by b2<<1
120	// (in effect---we accomplish this incrementally).
121	if mantissa>>Msize2 == 1 {
122		if mantissa&1 == 1 {
123			haveRem = true
124		}
125		mantissa >>= 1
126		exp++
127	}
128	if mantissa>>Msize1 != 1 {
129		panic(fmt.Sprintf("expected exactly %d bits of result", Msize2))
130	}
131
132	// 4. Rounding.
133	if Emin-Msize <= exp && exp <= Emin {
134		// Denormal case; lose 'shift' bits of precision.
135		shift := uint(Emin - (exp - 1)) // [1..Esize1)
136		lostbits := mantissa & (1<<shift - 1)
137		haveRem = haveRem || lostbits != 0
138		mantissa >>= shift
139		exp = 2 - Ebias // == exp + shift
140	}
141	// Round q using round-half-to-even.
142	exact = !haveRem
143	if mantissa&1 != 0 {
144		exact = false
145		if haveRem || mantissa&2 != 0 {
146			if mantissa++; mantissa >= 1<<Msize2 {
147				// Complete rollover 11...1 => 100...0, so shift is safe
148				mantissa >>= 1
149				exp++
150			}
151		}
152	}
153	mantissa >>= 1 // discard rounding bit.  Mantissa now scaled by 1<<Msize1.
154
155	f = float32(math.Ldexp(float64(mantissa), exp-Msize1))
156	if math.IsInf(float64(f), 0) {
157		exact = false
158	}
159	return
160}
161
162// quotToFloat64 returns the non-negative float64 value
163// nearest to the quotient a/b, using round-to-even in
164// halfway cases. It does not mutate its arguments.
165// Preconditions: b is non-zero; a and b have no common factors.
166func quotToFloat64(a, b nat) (f float64, exact bool) {
167	const (
168		// float size in bits
169		Fsize = 64
170
171		// mantissa
172		Msize  = 52
173		Msize1 = Msize + 1 // incl. implicit 1
174		Msize2 = Msize1 + 1
175
176		// exponent
177		Esize = Fsize - Msize1
178		Ebias = 1<<(Esize-1) - 1
179		Emin  = 1 - Ebias
180		Emax  = Ebias
181	)
182
183	// TODO(adonovan): specialize common degenerate cases: 1.0, integers.
184	alen := a.bitLen()
185	if alen == 0 {
186		return 0, true
187	}
188	blen := b.bitLen()
189	if blen == 0 {
190		panic("division by zero")
191	}
192
193	// 1. Left-shift A or B such that quotient A/B is in [1<<Msize1, 1<<(Msize2+1)
194	// (Msize2 bits if A < B when they are left-aligned, Msize2+1 bits if A >= B).
195	// This is 2 or 3 more than the float64 mantissa field width of Msize:
196	// - the optional extra bit is shifted away in step 3 below.
197	// - the high-order 1 is omitted in "normal" representation;
198	// - the low-order 1 will be used during rounding then discarded.
199	exp := alen - blen
200	var a2, b2 nat
201	a2 = a2.set(a)
202	b2 = b2.set(b)
203	if shift := Msize2 - exp; shift > 0 {
204		a2 = a2.shl(a2, uint(shift))
205	} else if shift < 0 {
206		b2 = b2.shl(b2, uint(-shift))
207	}
208
209	// 2. Compute quotient and remainder (q, r).  NB: due to the
210	// extra shift, the low-order bit of q is logically the
211	// high-order bit of r.
212	var q nat
213	q, r := q.div(a2, a2, b2) // (recycle a2)
214	mantissa := low64(q)
215	haveRem := len(r) > 0 // mantissa&1 && !haveRem => remainder is exactly half
216
217	// 3. If quotient didn't fit in Msize2 bits, redo division by b2<<1
218	// (in effect---we accomplish this incrementally).
219	if mantissa>>Msize2 == 1 {
220		if mantissa&1 == 1 {
221			haveRem = true
222		}
223		mantissa >>= 1
224		exp++
225	}
226	if mantissa>>Msize1 != 1 {
227		panic(fmt.Sprintf("expected exactly %d bits of result", Msize2))
228	}
229
230	// 4. Rounding.
231	if Emin-Msize <= exp && exp <= Emin {
232		// Denormal case; lose 'shift' bits of precision.
233		shift := uint(Emin - (exp - 1)) // [1..Esize1)
234		lostbits := mantissa & (1<<shift - 1)
235		haveRem = haveRem || lostbits != 0
236		mantissa >>= shift
237		exp = 2 - Ebias // == exp + shift
238	}
239	// Round q using round-half-to-even.
240	exact = !haveRem
241	if mantissa&1 != 0 {
242		exact = false
243		if haveRem || mantissa&2 != 0 {
244			if mantissa++; mantissa >= 1<<Msize2 {
245				// Complete rollover 11...1 => 100...0, so shift is safe
246				mantissa >>= 1
247				exp++
248			}
249		}
250	}
251	mantissa >>= 1 // discard rounding bit.  Mantissa now scaled by 1<<Msize1.
252
253	f = math.Ldexp(float64(mantissa), exp-Msize1)
254	if math.IsInf(f, 0) {
255		exact = false
256	}
257	return
258}
259
260// Float32 returns the nearest float32 value for x and a bool indicating
261// whether f represents x exactly. If the magnitude of x is too large to
262// be represented by a float32, f is an infinity and exact is false.
263// The sign of f always matches the sign of x, even if f == 0.
264func (x *Rat) Float32() (f float32, exact bool) {
265	b := x.b.abs
266	if len(b) == 0 {
267		b = b.set(natOne) // materialize denominator
268	}
269	f, exact = quotToFloat32(x.a.abs, b)
270	if x.a.neg {
271		f = -f
272	}
273	return
274}
275
276// Float64 returns the nearest float64 value for x and a bool indicating
277// whether f represents x exactly. If the magnitude of x is too large to
278// be represented by a float64, f is an infinity and exact is false.
279// The sign of f always matches the sign of x, even if f == 0.
280func (x *Rat) Float64() (f float64, exact bool) {
281	b := x.b.abs
282	if len(b) == 0 {
283		b = b.set(natOne) // materialize denominator
284	}
285	f, exact = quotToFloat64(x.a.abs, b)
286	if x.a.neg {
287		f = -f
288	}
289	return
290}
291
292// SetFrac sets z to a/b and returns z.
293func (z *Rat) SetFrac(a, b *Int) *Rat {
294	z.a.neg = a.neg != b.neg
295	babs := b.abs
296	if len(babs) == 0 {
297		panic("division by zero")
298	}
299	if &z.a == b || alias(z.a.abs, babs) {
300		babs = nat(nil).set(babs) // make a copy
301	}
302	z.a.abs = z.a.abs.set(a.abs)
303	z.b.abs = z.b.abs.set(babs)
304	return z.norm()
305}
306
307// SetFrac64 sets z to a/b and returns z.
308func (z *Rat) SetFrac64(a, b int64) *Rat {
309	z.a.SetInt64(a)
310	if b == 0 {
311		panic("division by zero")
312	}
313	if b < 0 {
314		b = -b
315		z.a.neg = !z.a.neg
316	}
317	z.b.abs = z.b.abs.setUint64(uint64(b))
318	return z.norm()
319}
320
321// SetInt sets z to x (by making a copy of x) and returns z.
322func (z *Rat) SetInt(x *Int) *Rat {
323	z.a.Set(x)
324	z.b.abs = z.b.abs[:0]
325	return z
326}
327
328// SetInt64 sets z to x and returns z.
329func (z *Rat) SetInt64(x int64) *Rat {
330	z.a.SetInt64(x)
331	z.b.abs = z.b.abs[:0]
332	return z
333}
334
335// Set sets z to x (by making a copy of x) and returns z.
336func (z *Rat) Set(x *Rat) *Rat {
337	if z != x {
338		z.a.Set(&x.a)
339		z.b.Set(&x.b)
340	}
341	return z
342}
343
344// Abs sets z to |x| (the absolute value of x) and returns z.
345func (z *Rat) Abs(x *Rat) *Rat {
346	z.Set(x)
347	z.a.neg = false
348	return z
349}
350
351// Neg sets z to -x and returns z.
352func (z *Rat) Neg(x *Rat) *Rat {
353	z.Set(x)
354	z.a.neg = len(z.a.abs) > 0 && !z.a.neg // 0 has no sign
355	return z
356}
357
358// Inv sets z to 1/x and returns z.
359func (z *Rat) Inv(x *Rat) *Rat {
360	if len(x.a.abs) == 0 {
361		panic("division by zero")
362	}
363	z.Set(x)
364	a := z.b.abs
365	if len(a) == 0 {
366		a = a.set(natOne) // materialize numerator
367	}
368	b := z.a.abs
369	if b.cmp(natOne) == 0 {
370		b = b[:0] // normalize denominator
371	}
372	z.a.abs, z.b.abs = a, b // sign doesn't change
373	return z
374}
375
376// Sign returns:
377//
378//	-1 if x <  0
379//	 0 if x == 0
380//	+1 if x >  0
381//
382func (x *Rat) Sign() int {
383	return x.a.Sign()
384}
385
386// IsInt reports whether the denominator of x is 1.
387func (x *Rat) IsInt() bool {
388	return len(x.b.abs) == 0 || x.b.abs.cmp(natOne) == 0
389}
390
391// Num returns the numerator of x; it may be <= 0.
392// The result is a reference to x's numerator; it
393// may change if a new value is assigned to x, and vice versa.
394// The sign of the numerator corresponds to the sign of x.
395func (x *Rat) Num() *Int {
396	return &x.a
397}
398
399// Denom returns the denominator of x; it is always > 0.
400// The result is a reference to x's denominator; it
401// may change if a new value is assigned to x, and vice versa.
402func (x *Rat) Denom() *Int {
403	x.b.neg = false // the result is always >= 0
404	if len(x.b.abs) == 0 {
405		x.b.abs = x.b.abs.set(natOne) // materialize denominator
406	}
407	return &x.b
408}
409
410func (z *Rat) norm() *Rat {
411	switch {
412	case len(z.a.abs) == 0:
413		// z == 0 - normalize sign and denominator
414		z.a.neg = false
415		z.b.abs = z.b.abs[:0]
416	case len(z.b.abs) == 0:
417		// z is normalized int - nothing to do
418	case z.b.abs.cmp(natOne) == 0:
419		// z is int - normalize denominator
420		z.b.abs = z.b.abs[:0]
421	default:
422		neg := z.a.neg
423		z.a.neg = false
424		z.b.neg = false
425		if f := NewInt(0).binaryGCD(&z.a, &z.b); f.Cmp(intOne) != 0 {
426			z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f.abs)
427			z.b.abs, _ = z.b.abs.div(nil, z.b.abs, f.abs)
428			if z.b.abs.cmp(natOne) == 0 {
429				// z is int - normalize denominator
430				z.b.abs = z.b.abs[:0]
431			}
432		}
433		z.a.neg = neg
434	}
435	return z
436}
437
438// mulDenom sets z to the denominator product x*y (by taking into
439// account that 0 values for x or y must be interpreted as 1) and
440// returns z.
441func mulDenom(z, x, y nat) nat {
442	switch {
443	case len(x) == 0:
444		return z.set(y)
445	case len(y) == 0:
446		return z.set(x)
447	}
448	return z.mul(x, y)
449}
450
451// scaleDenom computes x*f.
452// If f == 0 (zero value of denominator), the result is (a copy of) x.
453func scaleDenom(x *Int, f nat) *Int {
454	var z Int
455	if len(f) == 0 {
456		return z.Set(x)
457	}
458	z.abs = z.abs.mul(x.abs, f)
459	z.neg = x.neg
460	return &z
461}
462
463// Cmp compares x and y and returns:
464//
465//   -1 if x <  y
466//    0 if x == y
467//   +1 if x >  y
468//
469func (x *Rat) Cmp(y *Rat) int {
470	return scaleDenom(&x.a, y.b.abs).Cmp(scaleDenom(&y.a, x.b.abs))
471}
472
473// Add sets z to the sum x+y and returns z.
474func (z *Rat) Add(x, y *Rat) *Rat {
475	a1 := scaleDenom(&x.a, y.b.abs)
476	a2 := scaleDenom(&y.a, x.b.abs)
477	z.a.Add(a1, a2)
478	z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
479	return z.norm()
480}
481
482// Sub sets z to the difference x-y and returns z.
483func (z *Rat) Sub(x, y *Rat) *Rat {
484	a1 := scaleDenom(&x.a, y.b.abs)
485	a2 := scaleDenom(&y.a, x.b.abs)
486	z.a.Sub(a1, a2)
487	z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
488	return z.norm()
489}
490
491// Mul sets z to the product x*y and returns z.
492func (z *Rat) Mul(x, y *Rat) *Rat {
493	z.a.Mul(&x.a, &y.a)
494	z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
495	return z.norm()
496}
497
498// Quo sets z to the quotient x/y and returns z.
499// If y == 0, a division-by-zero run-time panic occurs.
500func (z *Rat) Quo(x, y *Rat) *Rat {
501	if len(y.a.abs) == 0 {
502		panic("division by zero")
503	}
504	a := scaleDenom(&x.a, y.b.abs)
505	b := scaleDenom(&y.a, x.b.abs)
506	z.a.abs = a.abs
507	z.b.abs = b.abs
508	z.a.neg = a.neg != b.neg
509	return z.norm()
510}
511