1/*
2Copyright 2017 Google LLC
3
4Licensed under the Apache License, Version 2.0 (the "License");
5you may not use this file except in compliance with the License.
6You may obtain a copy of the License at
7
8    http://www.apache.org/licenses/LICENSE-2.0
9
10Unless required by applicable law or agreed to in writing, software
11distributed under the License is distributed on an "AS IS" BASIS,
12WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13See the License for the specific language governing permissions and
14limitations under the License.
15*/
16
17package spanner
18
19import (
20	"bytes"
21	"fmt"
22	"time"
23
24	"cloud.google.com/go/civil"
25	proto3 "github.com/golang/protobuf/ptypes/struct"
26	sppb "google.golang.org/genproto/googleapis/spanner/v1"
27	"google.golang.org/grpc/codes"
28)
29
30// A Key can be either a Cloud Spanner row's primary key or a secondary index
31// key. It is essentially an interface{} array, which represents a set of Cloud
32// Spanner columns. A Key can be used as:
33//
34//   - A primary key which uniquely identifies a Cloud Spanner row.
35//   - A secondary index key which maps to a set of Cloud Spanner rows indexed under it.
36//   - An endpoint of primary key/secondary index ranges; see the KeyRange type.
37//
38// Rows that are identified by the Key type are outputs of read operation or
39// targets of delete operation in a mutation. Note that for
40// Insert/Update/InsertOrUpdate/Update mutation types, although they don't
41// require a primary key explicitly, the column list provided must contain
42// enough columns that can comprise a primary key.
43//
44// Keys are easy to construct.  For example, suppose you have a table with a
45// primary key of username and product ID.  To make a key for this table:
46//
47//	key := spanner.Key{"john", 16}
48//
49// See the description of Row and Mutation types for how Go types are mapped to
50// Cloud Spanner types. For convenience, Key type supports a wide range of Go
51// types:
52//   - int, int8, int16, int32, int64, and NullInt64 are mapped to Cloud Spanner's INT64 type.
53//   - uint8, uint16 and uint32 are also mapped to Cloud Spanner's INT64 type.
54//   - float32, float64, NullFloat64 are mapped to Cloud Spanner's FLOAT64 type.
55//   - bool and NullBool are mapped to Cloud Spanner's BOOL type.
56//   - []byte is mapped to Cloud Spanner's BYTES type.
57//   - string and NullString are mapped to Cloud Spanner's STRING type.
58//   - time.Time and NullTime are mapped to Cloud Spanner's TIMESTAMP type.
59//   - civil.Date and NullDate are mapped to Cloud Spanner's DATE type.
60type Key []interface{}
61
62// errInvdKeyPartType returns error for unsupported key part type.
63func errInvdKeyPartType(part interface{}) error {
64	return spannerErrorf(codes.InvalidArgument, "key part has unsupported type %T", part)
65}
66
67// keyPartValue converts a part of the Key (which is a valid Cloud Spanner type)
68// into a proto3.Value. Used for encoding Key type into protobuf.
69func keyPartValue(part interface{}) (pb *proto3.Value, err error) {
70	switch v := part.(type) {
71	case int:
72		pb, _, err = encodeValue(int64(v))
73	case int8:
74		pb, _, err = encodeValue(int64(v))
75	case int16:
76		pb, _, err = encodeValue(int64(v))
77	case int32:
78		pb, _, err = encodeValue(int64(v))
79	case uint8:
80		pb, _, err = encodeValue(int64(v))
81	case uint16:
82		pb, _, err = encodeValue(int64(v))
83	case uint32:
84		pb, _, err = encodeValue(int64(v))
85	case float32:
86		pb, _, err = encodeValue(float64(v))
87	case int64, float64, NullInt64, NullFloat64, bool, NullBool, []byte, string, NullString, time.Time, civil.Date, NullTime, NullDate:
88		pb, _, err = encodeValue(v)
89	default:
90		return nil, errInvdKeyPartType(v)
91	}
92	return pb, err
93}
94
95// proto converts a spanner.Key into a proto3.ListValue.
96func (key Key) proto() (*proto3.ListValue, error) {
97	lv := &proto3.ListValue{}
98	lv.Values = make([]*proto3.Value, 0, len(key))
99	for _, part := range key {
100		v, err := keyPartValue(part)
101		if err != nil {
102			return nil, err
103		}
104		lv.Values = append(lv.Values, v)
105	}
106	return lv, nil
107}
108
109// keySetProto lets a single Key act as a KeySet.
110func (key Key) keySetProto() (*sppb.KeySet, error) {
111	kp, err := key.proto()
112	if err != nil {
113		return nil, err
114	}
115	return &sppb.KeySet{Keys: []*proto3.ListValue{kp}}, nil
116}
117
118// String implements fmt.Stringer for Key. For string, []byte and NullString, it
119// prints the uninterpreted bytes of their contents, leaving caller with the
120// opportunity to escape the output.
121func (key Key) String() string {
122	b := &bytes.Buffer{}
123	fmt.Fprint(b, "(")
124	for i, part := range []interface{}(key) {
125		if i != 0 {
126			fmt.Fprint(b, ",")
127		}
128		switch v := part.(type) {
129		case int, int8, int16, int32, int64, uint, uint8, uint16, uint32, float32, float64, bool:
130			// Use %v to print numeric types and bool.
131			fmt.Fprintf(b, "%v", v)
132		case string:
133			fmt.Fprintf(b, "%q", v)
134		case []byte:
135			if v != nil {
136				fmt.Fprintf(b, "%q", v)
137			} else {
138				fmt.Fprint(b, nullString)
139			}
140		case NullInt64, NullFloat64, NullBool:
141			// The above types implement fmt.Stringer.
142			fmt.Fprintf(b, "%s", v)
143		case NullString, NullDate, NullTime:
144			// Quote the returned string if it is not null.
145			if v.(NullableValue).IsNull() {
146				fmt.Fprintf(b, "%s", nullString)
147			} else {
148				fmt.Fprintf(b, "%q", v)
149			}
150		case civil.Date:
151			fmt.Fprintf(b, "%q", v)
152		case time.Time:
153			fmt.Fprintf(b, "%q", v.Format(time.RFC3339Nano))
154		default:
155			fmt.Fprintf(b, "%v", v)
156		}
157	}
158	fmt.Fprint(b, ")")
159	return b.String()
160}
161
162// AsPrefix returns a KeyRange for all keys where k is the prefix.
163func (key Key) AsPrefix() KeyRange {
164	return KeyRange{
165		Start: key,
166		End:   key,
167		Kind:  ClosedClosed,
168	}
169}
170
171// KeyRangeKind describes the kind of interval represented by a KeyRange:
172// whether it is open or closed on the left and right.
173type KeyRangeKind int
174
175const (
176	// ClosedOpen is closed on the left and open on the right: the Start
177	// key is included, the End key is excluded.
178	ClosedOpen KeyRangeKind = iota
179
180	// ClosedClosed is closed on the left and the right: both keys are included.
181	ClosedClosed
182
183	// OpenClosed is open on the left and closed on the right: the Start
184	// key is excluded, the End key is included.
185	OpenClosed
186
187	// OpenOpen is open on the left and the right: neither key is included.
188	OpenOpen
189)
190
191// A KeyRange represents a range of rows in a table or index.
192//
193// A range has a Start key and an End key.  IncludeStart and IncludeEnd
194// indicate whether the Start and End keys are included in the range.
195//
196// For example, consider the following table definition:
197//
198//	CREATE TABLE UserEvents (
199//	  UserName STRING(MAX),
200//	  EventDate STRING(10),
201//	) PRIMARY KEY(UserName, EventDate);
202//
203// The following keys name rows in this table:
204//
205//	spanner.Key{"Bob", "2014-09-23"}
206//	spanner.Key{"Alfred", "2015-06-12"}
207//
208// Since the UserEvents table's PRIMARY KEY clause names two columns, each
209// UserEvents key has two elements; the first is the UserName, and the second
210// is the EventDate.
211//
212// Key ranges with multiple components are interpreted lexicographically by
213// component using the table or index key's declared sort order. For example,
214// the following range returns all events for user "Bob" that occurred in the
215// year 2015:
216//
217// 	spanner.KeyRange{
218//		Start: spanner.Key{"Bob", "2015-01-01"},
219//		End:   spanner.Key{"Bob", "2015-12-31"},
220//		Kind:  ClosedClosed,
221//	}
222//
223// Start and end keys can omit trailing key components. This affects the
224// inclusion and exclusion of rows that exactly match the provided key
225// components: if IncludeStart is true, then rows that exactly match the
226// provided components of the Start key are included; if IncludeStart is false
227// then rows that exactly match are not included.  IncludeEnd and End key
228// behave in the same fashion.
229//
230// For example, the following range includes all events for "Bob" that occurred
231// during and after the year 2000:
232//
233//	spanner.KeyRange{
234//		Start: spanner.Key{"Bob", "2000-01-01"},
235//		End:   spanner.Key{"Bob"},
236//		Kind:  ClosedClosed,
237//	}
238//
239// The next example retrieves all events for "Bob":
240//
241//	spanner.Key{"Bob"}.AsPrefix()
242//
243// To retrieve events before the year 2000:
244//
245//	spanner.KeyRange{
246//		Start: spanner.Key{"Bob"},
247//		End:   spanner.Key{"Bob", "2000-01-01"},
248//		Kind:  ClosedOpen,
249//	}
250//
251// Although we specified a Kind for this KeyRange, we didn't need to, because
252// the default is ClosedOpen. In later examples we'll omit Kind if it is
253// ClosedOpen.
254//
255// The following range includes all rows in a table or under a
256// index:
257//
258//	spanner.AllKeys()
259//
260// This range returns all users whose UserName begins with any
261// character from A to C:
262//
263//	spanner.KeyRange{
264//		Start: spanner.Key{"A"},
265//		End:   spanner.Key{"D"},
266//	}
267//
268// This range returns all users whose UserName begins with B:
269//
270//	spanner.KeyRange{
271//		Start: spanner.Key{"B"},
272//		End:   spanner.Key{"C"},
273//	}
274//
275// Key ranges honor column sort order. For example, suppose a table is defined
276// as follows:
277//
278//	CREATE TABLE DescendingSortedTable {
279//	  Key INT64,
280//	  ...
281//	) PRIMARY KEY(Key DESC);
282//
283// The following range retrieves all rows with key values between 1 and 100
284// inclusive:
285//
286//	spanner.KeyRange{
287//		Start: spanner.Key{100},
288//		End:   spanner.Key{1},
289//		Kind:  ClosedClosed,
290//	}
291//
292// Note that 100 is passed as the start, and 1 is passed as the end, because
293// Key is a descending column in the schema.
294type KeyRange struct {
295	// Start specifies the left boundary of the key range; End specifies
296	// the right boundary of the key range.
297	Start, End Key
298
299	// Kind describes whether the boundaries of the key range include
300	// their keys.
301	Kind KeyRangeKind
302}
303
304// String implements fmt.Stringer for KeyRange type.
305func (r KeyRange) String() string {
306	var left, right string
307	switch r.Kind {
308	case ClosedClosed:
309		left, right = "[", "]"
310	case ClosedOpen:
311		left, right = "[", ")"
312	case OpenClosed:
313		left, right = "(", "]"
314	case OpenOpen:
315		left, right = "(", ")"
316	default:
317		left, right = "?", "?"
318	}
319	return fmt.Sprintf("%s%s,%s%s", left, r.Start, r.End, right)
320}
321
322// proto converts KeyRange into sppb.KeyRange.
323func (r KeyRange) proto() (*sppb.KeyRange, error) {
324	var err error
325	var start, end *proto3.ListValue
326	pb := &sppb.KeyRange{}
327	if start, err = r.Start.proto(); err != nil {
328		return nil, err
329	}
330	if end, err = r.End.proto(); err != nil {
331		return nil, err
332	}
333	if r.Kind == ClosedClosed || r.Kind == ClosedOpen {
334		pb.StartKeyType = &sppb.KeyRange_StartClosed{StartClosed: start}
335	} else {
336		pb.StartKeyType = &sppb.KeyRange_StartOpen{StartOpen: start}
337	}
338	if r.Kind == ClosedClosed || r.Kind == OpenClosed {
339		pb.EndKeyType = &sppb.KeyRange_EndClosed{EndClosed: end}
340	} else {
341		pb.EndKeyType = &sppb.KeyRange_EndOpen{EndOpen: end}
342	}
343	return pb, nil
344}
345
346// keySetProto lets a KeyRange act as a KeySet.
347func (r KeyRange) keySetProto() (*sppb.KeySet, error) {
348	rp, err := r.proto()
349	if err != nil {
350		return nil, err
351	}
352	return &sppb.KeySet{Ranges: []*sppb.KeyRange{rp}}, nil
353}
354
355// A KeySet defines a collection of Cloud Spanner keys and/or key ranges. All
356// the keys are expected to be in the same table or index. The keys need not be
357// sorted in any particular way.
358//
359// An individual Key can act as a KeySet, as can a KeyRange. Use the KeySets
360// function to create a KeySet consisting of multiple Keys and KeyRanges. To
361// obtain an empty KeySet, call KeySets with no arguments.
362//
363// If the same key is specified multiple times in the set (for example if two
364// ranges, two keys, or a key and a range overlap), the Cloud Spanner backend
365// behaves as if the key were only specified once.
366type KeySet interface {
367	keySetProto() (*sppb.KeySet, error)
368}
369
370// AllKeys returns a KeySet that represents all Keys of a table or a index.
371func AllKeys() KeySet {
372	return all{}
373}
374
375type all struct{}
376
377func (all) keySetProto() (*sppb.KeySet, error) {
378	return &sppb.KeySet{All: true}, nil
379}
380
381// KeySets returns the union of the KeySets. If any of the KeySets is AllKeys,
382// then the resulting KeySet will be equivalent to AllKeys.
383func KeySets(keySets ...KeySet) KeySet {
384	u := make(union, len(keySets))
385	copy(u, keySets)
386	return u
387}
388
389type union []KeySet
390
391func (u union) keySetProto() (*sppb.KeySet, error) {
392	upb := &sppb.KeySet{}
393	for _, ks := range u {
394		pb, err := ks.keySetProto()
395		if err != nil {
396			return nil, err
397		}
398		if pb.All {
399			return pb, nil
400		}
401		upb.Keys = append(upb.Keys, pb.Keys...)
402		upb.Ranges = append(upb.Ranges, pb.Ranges...)
403	}
404	return upb, nil
405}
406