1 /*
2  * HTTP protocol analyzer
3  *
4  * Copyright 2000-2011 Willy Tarreau <w@1wt.eu>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  *
11  */
12 
13 #include <ctype.h>
14 #include <errno.h>
15 #include <fcntl.h>
16 #include <stdio.h>
17 #include <stdlib.h>
18 #include <string.h>
19 #include <syslog.h>
20 #include <time.h>
21 
22 #include <sys/socket.h>
23 #include <sys/stat.h>
24 #include <sys/types.h>
25 
26 #include <netinet/tcp.h>
27 
28 #include <common/base64.h>
29 #include <common/chunk.h>
30 #include <common/compat.h>
31 #include <common/config.h>
32 #include <common/debug.h>
33 #include <common/memory.h>
34 #include <common/mini-clist.h>
35 #include <common/standard.h>
36 #include <common/ticks.h>
37 #include <common/time.h>
38 #include <common/uri_auth.h>
39 #include <common/version.h>
40 
41 #include <types/capture.h>
42 #include <types/cli.h>
43 #include <types/filters.h>
44 #include <types/global.h>
45 #include <types/cache.h>
46 #include <types/stats.h>
47 
48 #include <proto/acl.h>
49 #include <proto/action.h>
50 #include <proto/arg.h>
51 #include <proto/auth.h>
52 #include <proto/backend.h>
53 #include <proto/channel.h>
54 #include <proto/checks.h>
55 #include <proto/cli.h>
56 #include <proto/compression.h>
57 #include <proto/stats.h>
58 #include <proto/fd.h>
59 #include <proto/filters.h>
60 #include <proto/frontend.h>
61 #include <proto/h1.h>
62 #include <proto/log.h>
63 #include <proto/hdr_idx.h>
64 #include <proto/hlua.h>
65 #include <proto/pattern.h>
66 #include <proto/proto_tcp.h>
67 #include <proto/proto_http.h>
68 #include <proto/proxy.h>
69 #include <proto/queue.h>
70 #include <proto/sample.h>
71 #include <proto/server.h>
72 #include <proto/stream.h>
73 #include <proto/stream_interface.h>
74 #include <proto/task.h>
75 #include <proto/pattern.h>
76 #include <proto/vars.h>
77 
78 const char HTTP_100[] =
79 	"HTTP/1.1 100 Continue\r\n\r\n";
80 
81 const struct chunk http_100_chunk = {
82 	.str = (char *)&HTTP_100,
83 	.len = sizeof(HTTP_100)-1
84 };
85 
86 /* Warning: no "connection" header is provided with the 3xx messages below */
87 const char *HTTP_301 =
88 	"HTTP/1.1 301 Moved Permanently\r\n"
89 	"Content-length: 0\r\n"
90 	"Location: "; /* not terminated since it will be concatenated with the URL */
91 
92 const char *HTTP_302 =
93 	"HTTP/1.1 302 Found\r\n"
94 	"Cache-Control: no-cache\r\n"
95 	"Content-length: 0\r\n"
96 	"Location: "; /* not terminated since it will be concatenated with the URL */
97 
98 /* same as 302 except that the browser MUST retry with the GET method */
99 const char *HTTP_303 =
100 	"HTTP/1.1 303 See Other\r\n"
101 	"Cache-Control: no-cache\r\n"
102 	"Content-length: 0\r\n"
103 	"Location: "; /* not terminated since it will be concatenated with the URL */
104 
105 
106 /* same as 302 except that the browser MUST retry with the same method */
107 const char *HTTP_307 =
108 	"HTTP/1.1 307 Temporary Redirect\r\n"
109 	"Cache-Control: no-cache\r\n"
110 	"Content-length: 0\r\n"
111 	"Location: "; /* not terminated since it will be concatenated with the URL */
112 
113 /* same as 301 except that the browser MUST retry with the same method */
114 const char *HTTP_308 =
115 	"HTTP/1.1 308 Permanent Redirect\r\n"
116 	"Content-length: 0\r\n"
117 	"Location: "; /* not terminated since it will be concatenated with the URL */
118 
119 /* Warning: this one is an sprintf() fmt string, with <realm> as its only argument */
120 const char *HTTP_401_fmt =
121 	"HTTP/1.0 401 Unauthorized\r\n"
122 	"Cache-Control: no-cache\r\n"
123 	"Connection: close\r\n"
124 	"Content-Type: text/html\r\n"
125 	"WWW-Authenticate: Basic realm=\"%s\"\r\n"
126 	"\r\n"
127 	"<html><body><h1>401 Unauthorized</h1>\nYou need a valid user and password to access this content.\n</body></html>\n";
128 
129 const char *HTTP_407_fmt =
130 	"HTTP/1.0 407 Unauthorized\r\n"
131 	"Cache-Control: no-cache\r\n"
132 	"Connection: close\r\n"
133 	"Content-Type: text/html\r\n"
134 	"Proxy-Authenticate: Basic realm=\"%s\"\r\n"
135 	"\r\n"
136 	"<html><body><h1>407 Unauthorized</h1>\nYou need a valid user and password to access this content.\n</body></html>\n";
137 
138 
139 const int http_err_codes[HTTP_ERR_SIZE] = {
140 	[HTTP_ERR_200] = 200,  /* used by "monitor-uri" */
141 	[HTTP_ERR_400] = 400,
142 	[HTTP_ERR_403] = 403,
143 	[HTTP_ERR_405] = 405,
144 	[HTTP_ERR_408] = 408,
145 	[HTTP_ERR_425] = 425,
146 	[HTTP_ERR_429] = 429,
147 	[HTTP_ERR_500] = 500,
148 	[HTTP_ERR_502] = 502,
149 	[HTTP_ERR_503] = 503,
150 	[HTTP_ERR_504] = 504,
151 };
152 
153 static const char *http_err_msgs[HTTP_ERR_SIZE] = {
154 	[HTTP_ERR_200] =
155 	"HTTP/1.0 200 OK\r\n"
156 	"Cache-Control: no-cache\r\n"
157 	"Connection: close\r\n"
158 	"Content-Type: text/html\r\n"
159 	"\r\n"
160 	"<html><body><h1>200 OK</h1>\nService ready.\n</body></html>\n",
161 
162 	[HTTP_ERR_400] =
163 	"HTTP/1.0 400 Bad request\r\n"
164 	"Cache-Control: no-cache\r\n"
165 	"Connection: close\r\n"
166 	"Content-Type: text/html\r\n"
167 	"\r\n"
168 	"<html><body><h1>400 Bad request</h1>\nYour browser sent an invalid request.\n</body></html>\n",
169 
170 	[HTTP_ERR_403] =
171 	"HTTP/1.0 403 Forbidden\r\n"
172 	"Cache-Control: no-cache\r\n"
173 	"Connection: close\r\n"
174 	"Content-Type: text/html\r\n"
175 	"\r\n"
176 	"<html><body><h1>403 Forbidden</h1>\nRequest forbidden by administrative rules.\n</body></html>\n",
177 
178 	[HTTP_ERR_405] =
179 	"HTTP/1.0 405 Method Not Allowed\r\n"
180 	"Cache-Control: no-cache\r\n"
181 	"Connection: close\r\n"
182 	"Content-Type: text/html\r\n"
183 	"\r\n"
184 	"<html><body><h1>405 Method Not Allowed</h1>\nA request was made of a resource using a request method not supported by that resource\n</body></html>\n",
185 
186 	[HTTP_ERR_408] =
187 	"HTTP/1.0 408 Request Time-out\r\n"
188 	"Cache-Control: no-cache\r\n"
189 	"Connection: close\r\n"
190 	"Content-Type: text/html\r\n"
191 	"\r\n"
192 	"<html><body><h1>408 Request Time-out</h1>\nYour browser didn't send a complete request in time.\n</body></html>\n",
193 
194 	[HTTP_ERR_425] =
195 	"HTTP/1.0 425 Too Early\r\n"
196 	"Cache-Control: no-cache\r\n"
197 	"Connection: close\r\n"
198 	"Content-Type: text/html\r\n"
199 	"\r\n"
200 	"<html><body><h1>425 Too Early</h1>\nYour browser sent early data.\n</body></html>\n",
201 
202 	[HTTP_ERR_429] =
203 	"HTTP/1.0 429 Too Many Requests\r\n"
204 	"Cache-Control: no-cache\r\n"
205 	"Connection: close\r\n"
206 	"Content-Type: text/html\r\n"
207 	"\r\n"
208 	"<html><body><h1>429 Too Many Requests</h1>\nYou have sent too many requests in a given amount of time.\n</body></html>\n",
209 
210 	[HTTP_ERR_500] =
211 	"HTTP/1.0 500 Internal Server Error\r\n"
212 	"Cache-Control: no-cache\r\n"
213 	"Connection: close\r\n"
214 	"Content-Type: text/html\r\n"
215 	"\r\n"
216 	"<html><body><h1>500 Internal Server Error</h1>\nAn internal server error occured.\n</body></html>\n",
217 
218 	[HTTP_ERR_502] =
219 	"HTTP/1.0 502 Bad Gateway\r\n"
220 	"Cache-Control: no-cache\r\n"
221 	"Connection: close\r\n"
222 	"Content-Type: text/html\r\n"
223 	"\r\n"
224 	"<html><body><h1>502 Bad Gateway</h1>\nThe server returned an invalid or incomplete response.\n</body></html>\n",
225 
226 	[HTTP_ERR_503] =
227 	"HTTP/1.0 503 Service Unavailable\r\n"
228 	"Cache-Control: no-cache\r\n"
229 	"Connection: close\r\n"
230 	"Content-Type: text/html\r\n"
231 	"\r\n"
232 	"<html><body><h1>503 Service Unavailable</h1>\nNo server is available to handle this request.\n</body></html>\n",
233 
234 	[HTTP_ERR_504] =
235 	"HTTP/1.0 504 Gateway Time-out\r\n"
236 	"Cache-Control: no-cache\r\n"
237 	"Connection: close\r\n"
238 	"Content-Type: text/html\r\n"
239 	"\r\n"
240 	"<html><body><h1>504 Gateway Time-out</h1>\nThe server didn't respond in time.\n</body></html>\n",
241 
242 };
243 
244 /* status codes available for the stats admin page (strictly 4 chars length) */
245 const char *stat_status_codes[STAT_STATUS_SIZE] = {
246 	[STAT_STATUS_DENY] = "DENY",
247 	[STAT_STATUS_DONE] = "DONE",
248 	[STAT_STATUS_ERRP] = "ERRP",
249 	[STAT_STATUS_EXCD] = "EXCD",
250 	[STAT_STATUS_NONE] = "NONE",
251 	[STAT_STATUS_PART] = "PART",
252 	[STAT_STATUS_UNKN] = "UNKN",
253 };
254 
255 
256 /* List head of all known action keywords for "http-request" */
257 struct action_kw_list http_req_keywords = {
258        .list = LIST_HEAD_INIT(http_req_keywords.list)
259 };
260 
261 /* List head of all known action keywords for "http-response" */
262 struct action_kw_list http_res_keywords = {
263        .list = LIST_HEAD_INIT(http_res_keywords.list)
264 };
265 
266 /* We must put the messages here since GCC cannot initialize consts depending
267  * on strlen().
268  */
269 struct chunk http_err_chunks[HTTP_ERR_SIZE];
270 
271 /* this struct is used between calls to smp_fetch_hdr() or smp_fetch_cookie() */
272 static THREAD_LOCAL struct hdr_ctx static_hdr_ctx;
273 
274 #define FD_SETS_ARE_BITFIELDS
275 #ifdef FD_SETS_ARE_BITFIELDS
276 /*
277  * This map is used with all the FD_* macros to check whether a particular bit
278  * is set or not. Each bit represents an ACSII code. FD_SET() sets those bytes
279  * which should be encoded. When FD_ISSET() returns non-zero, it means that the
280  * byte should be encoded. Be careful to always pass bytes from 0 to 255
281  * exclusively to the macros.
282  */
283 fd_set hdr_encode_map[(sizeof(fd_set) > (256/8)) ? 1 : ((256/8) / sizeof(fd_set))];
284 fd_set url_encode_map[(sizeof(fd_set) > (256/8)) ? 1 : ((256/8) / sizeof(fd_set))];
285 fd_set http_encode_map[(sizeof(fd_set) > (256/8)) ? 1 : ((256/8) / sizeof(fd_set))];
286 
287 #else
288 #error "Check if your OS uses bitfields for fd_sets"
289 #endif
290 
291 static int http_apply_redirect_rule(struct redirect_rule *rule, struct stream *s, struct http_txn *txn);
292 
293 static inline int http_msg_forward_body(struct stream *s, struct http_msg *msg);
294 static inline int http_msg_forward_chunked_body(struct stream *s, struct http_msg *msg);
295 
296 /* This function returns a reason associated with the HTTP status.
297  * This function never fails, a message is always returned.
298  */
get_reason(unsigned int status)299 const char *get_reason(unsigned int status)
300 {
301 	switch (status) {
302 	case 100: return "Continue";
303 	case 101: return "Switching Protocols";
304 	case 102: return "Processing";
305 	case 200: return "OK";
306 	case 201: return "Created";
307 	case 202: return "Accepted";
308 	case 203: return "Non-Authoritative Information";
309 	case 204: return "No Content";
310 	case 205: return "Reset Content";
311 	case 206: return "Partial Content";
312 	case 207: return "Multi-Status";
313 	case 210: return "Content Different";
314 	case 226: return "IM Used";
315 	case 300: return "Multiple Choices";
316 	case 301: return "Moved Permanently";
317 	case 302: return "Moved Temporarily";
318 	case 303: return "See Other";
319 	case 304: return "Not Modified";
320 	case 305: return "Use Proxy";
321 	case 307: return "Temporary Redirect";
322 	case 308: return "Permanent Redirect";
323 	case 310: return "Too many Redirects";
324 	case 400: return "Bad Request";
325 	case 401: return "Unauthorized";
326 	case 402: return "Payment Required";
327 	case 403: return "Forbidden";
328 	case 404: return "Not Found";
329 	case 405: return "Method Not Allowed";
330 	case 406: return "Not Acceptable";
331 	case 407: return "Proxy Authentication Required";
332 	case 408: return "Request Time-out";
333 	case 409: return "Conflict";
334 	case 410: return "Gone";
335 	case 411: return "Length Required";
336 	case 412: return "Precondition Failed";
337 	case 413: return "Request Entity Too Large";
338 	case 414: return "Request-URI Too Long";
339 	case 415: return "Unsupported Media Type";
340 	case 416: return "Requested range unsatisfiable";
341 	case 417: return "Expectation failed";
342 	case 418: return "I'm a teapot";
343 	case 422: return "Unprocessable entity";
344 	case 423: return "Locked";
345 	case 424: return "Method failure";
346 	case 425: return "Too Early";
347 	case 426: return "Upgrade Required";
348 	case 428: return "Precondition Required";
349 	case 429: return "Too Many Requests";
350 	case 431: return "Request Header Fields Too Large";
351 	case 449: return "Retry With";
352 	case 450: return "Blocked by Windows Parental Controls";
353 	case 451: return "Unavailable For Legal Reasons";
354 	case 456: return "Unrecoverable Error";
355 	case 499: return "client has closed connection";
356 	case 500: return "Internal Server Error";
357 	case 501: return "Not Implemented";
358 	case 502: return "Bad Gateway or Proxy Error";
359 	case 503: return "Service Unavailable";
360 	case 504: return "Gateway Time-out";
361 	case 505: return "HTTP Version not supported";
362 	case 506: return "Variant also negociate";
363 	case 507: return "Insufficient storage";
364 	case 508: return "Loop detected";
365 	case 509: return "Bandwidth Limit Exceeded";
366 	case 510: return "Not extended";
367 	case 511: return "Network authentication required";
368 	case 520: return "Web server is returning an unknown error";
369 	default:
370 		switch (status) {
371 		case 100 ... 199: return "Informational";
372 		case 200 ... 299: return "Success";
373 		case 300 ... 399: return "Redirection";
374 		case 400 ... 499: return "Client Error";
375 		case 500 ... 599: return "Server Error";
376 		default:          return "Other";
377 		}
378 	}
379 }
380 
381 /* This function returns HTTP_ERR_<num> (enum) matching http status code.
382  * Returned value should match codes from http_err_codes.
383  */
http_get_status_idx(unsigned int status)384 static const int http_get_status_idx(unsigned int status)
385 {
386 	switch (status) {
387 	case 200: return HTTP_ERR_200;
388 	case 400: return HTTP_ERR_400;
389 	case 403: return HTTP_ERR_403;
390 	case 405: return HTTP_ERR_405;
391 	case 408: return HTTP_ERR_408;
392 	case 425: return HTTP_ERR_425;
393 	case 429: return HTTP_ERR_429;
394 	case 500: return HTTP_ERR_500;
395 	case 502: return HTTP_ERR_502;
396 	case 503: return HTTP_ERR_503;
397 	case 504: return HTTP_ERR_504;
398 	default: return HTTP_ERR_500;
399 	}
400 }
401 
init_proto_http()402 void init_proto_http()
403 {
404 	int i;
405 	char *tmp;
406 	int msg;
407 
408 	for (msg = 0; msg < HTTP_ERR_SIZE; msg++) {
409 		if (!http_err_msgs[msg]) {
410 			ha_alert("Internal error: no message defined for HTTP return code %d. Aborting.\n", msg);
411 			abort();
412 		}
413 
414 		http_err_chunks[msg].str = (char *)http_err_msgs[msg];
415 		http_err_chunks[msg].len = strlen(http_err_msgs[msg]);
416 	}
417 
418 	/* initialize the log header encoding map : '{|}"#' should be encoded with
419 	 * '#' as prefix, as well as non-printable characters ( <32 or >= 127 ).
420 	 * URL encoding only requires '"', '#' to be encoded as well as non-
421 	 * printable characters above.
422 	 */
423 	memset(hdr_encode_map, 0, sizeof(hdr_encode_map));
424 	memset(url_encode_map, 0, sizeof(url_encode_map));
425 	memset(http_encode_map, 0, sizeof(url_encode_map));
426 	for (i = 0; i < 32; i++) {
427 		FD_SET(i, hdr_encode_map);
428 		FD_SET(i, url_encode_map);
429 	}
430 	for (i = 127; i < 256; i++) {
431 		FD_SET(i, hdr_encode_map);
432 		FD_SET(i, url_encode_map);
433 	}
434 
435 	tmp = "\"#{|}";
436 	while (*tmp) {
437 		FD_SET(*tmp, hdr_encode_map);
438 		tmp++;
439 	}
440 
441 	tmp = "\"#";
442 	while (*tmp) {
443 		FD_SET(*tmp, url_encode_map);
444 		tmp++;
445 	}
446 
447 	/* initialize the http header encoding map. The draft httpbis define the
448 	 * header content as:
449 	 *
450 	 *    HTTP-message   = start-line
451 	 *                     *( header-field CRLF )
452 	 *                     CRLF
453 	 *                     [ message-body ]
454 	 *    header-field   = field-name ":" OWS field-value OWS
455 	 *    field-value    = *( field-content / obs-fold )
456 	 *    field-content  = field-vchar [ 1*( SP / HTAB ) field-vchar ]
457 	 *    obs-fold       = CRLF 1*( SP / HTAB )
458 	 *    field-vchar    = VCHAR / obs-text
459 	 *    VCHAR          = %x21-7E
460 	 *    obs-text       = %x80-FF
461 	 *
462 	 * All the chars are encoded except "VCHAR", "obs-text", SP and HTAB.
463 	 * The encoded chars are form 0x00 to 0x08, 0x0a to 0x1f and 0x7f. The
464 	 * "obs-fold" is volontary forgotten because haproxy remove this.
465 	 */
466 	memset(http_encode_map, 0, sizeof(http_encode_map));
467 	for (i = 0x00; i <= 0x08; i++)
468 		FD_SET(i, http_encode_map);
469 	for (i = 0x0a; i <= 0x1f; i++)
470 		FD_SET(i, http_encode_map);
471 	FD_SET(0x7f, http_encode_map);
472 
473 	/* memory allocations */
474 	pool_head_http_txn = create_pool("http_txn", sizeof(struct http_txn), MEM_F_SHARED);
475 	pool_head_uniqueid = create_pool("uniqueid", UNIQUEID_LEN, MEM_F_SHARED);
476 }
477 
478 /*
479  * We have 26 list of methods (1 per first letter), each of which can have
480  * up to 3 entries (2 valid, 1 null).
481  */
482 struct http_method_desc {
483 	enum http_meth_t meth;
484 	int len;
485 	const char text[8];
486 };
487 
488 const struct http_method_desc http_methods[26][3] = {
489 	['C' - 'A'] = {
490 		[0] = {	.meth = HTTP_METH_CONNECT , .len=7, .text="CONNECT" },
491 	},
492 	['D' - 'A'] = {
493 		[0] = {	.meth = HTTP_METH_DELETE  , .len=6, .text="DELETE"  },
494 	},
495 	['G' - 'A'] = {
496 		[0] = {	.meth = HTTP_METH_GET     , .len=3, .text="GET"     },
497 	},
498 	['H' - 'A'] = {
499 		[0] = {	.meth = HTTP_METH_HEAD    , .len=4, .text="HEAD"    },
500 	},
501 	['O' - 'A'] = {
502 		[0] = {	.meth = HTTP_METH_OPTIONS , .len=7, .text="OPTIONS" },
503 	},
504 	['P' - 'A'] = {
505 		[0] = {	.meth = HTTP_METH_POST    , .len=4, .text="POST"    },
506 		[1] = {	.meth = HTTP_METH_PUT     , .len=3, .text="PUT"     },
507 	},
508 	['T' - 'A'] = {
509 		[0] = {	.meth = HTTP_METH_TRACE   , .len=5, .text="TRACE"   },
510 	},
511 	/* rest is empty like this :
512 	 *      [0] = {	.meth = HTTP_METH_OTHER   , .len=0, .text=""        },
513 	 */
514 };
515 
516 const struct http_method_name http_known_methods[HTTP_METH_OTHER] = {
517 	[HTTP_METH_OPTIONS] = { "OPTIONS",  7 },
518 	[HTTP_METH_GET]     = { "GET",      3 },
519 	[HTTP_METH_HEAD]    = { "HEAD",     4 },
520 	[HTTP_METH_POST]    = { "POST",     4 },
521 	[HTTP_METH_PUT]     = { "PUT",      3 },
522 	[HTTP_METH_DELETE]  = { "DELETE",   6 },
523 	[HTTP_METH_TRACE]   = { "TRACE",    5 },
524 	[HTTP_METH_CONNECT] = { "CONNECT",  7 },
525 };
526 
527 /*
528  * Adds a header and its CRLF at the tail of the message's buffer, just before
529  * the last CRLF. Text length is measured first, so it cannot be NULL.
530  * The header is also automatically added to the index <hdr_idx>, and the end
531  * of headers is automatically adjusted. The number of bytes added is returned
532  * on success, otherwise <0 is returned indicating an error.
533  */
http_header_add_tail(struct http_msg * msg,struct hdr_idx * hdr_idx,const char * text)534 int http_header_add_tail(struct http_msg *msg, struct hdr_idx *hdr_idx, const char *text)
535 {
536 	int bytes, len;
537 
538 	len = strlen(text);
539 	bytes = buffer_insert_line2(msg->chn->buf, msg->chn->buf->p + msg->eoh, text, len);
540 	if (!bytes)
541 		return -1;
542 	http_msg_move_end(msg, bytes);
543 	return hdr_idx_add(len, 1, hdr_idx, hdr_idx->tail);
544 }
545 
546 /*
547  * Adds a header and its CRLF at the tail of the message's buffer, just before
548  * the last CRLF. <len> bytes are copied, not counting the CRLF. If <text> is NULL, then
549  * the buffer is only opened and the space reserved, but nothing is copied.
550  * The header is also automatically added to the index <hdr_idx>, and the end
551  * of headers is automatically adjusted. The number of bytes added is returned
552  * on success, otherwise <0 is returned indicating an error.
553  */
http_header_add_tail2(struct http_msg * msg,struct hdr_idx * hdr_idx,const char * text,int len)554 int http_header_add_tail2(struct http_msg *msg,
555                           struct hdr_idx *hdr_idx, const char *text, int len)
556 {
557 	int bytes;
558 
559 	bytes = buffer_insert_line2(msg->chn->buf, msg->chn->buf->p + msg->eoh, text, len);
560 	if (!bytes)
561 		return -1;
562 	http_msg_move_end(msg, bytes);
563 	return hdr_idx_add(len, 1, hdr_idx, hdr_idx->tail);
564 }
565 
566 /*
567  * Checks if <hdr> is exactly <name> for <len> chars, and ends with a colon.
568  * If so, returns the position of the first non-space character relative to
569  * <hdr>, or <end>-<hdr> if not found before. If no value is found, it tries
570  * to return a pointer to the place after the first space. Returns 0 if the
571  * header name does not match. Checks are case-insensitive.
572  */
http_header_match2(const char * hdr,const char * end,const char * name,int len)573 int http_header_match2(const char *hdr, const char *end,
574 		       const char *name, int len)
575 {
576 	const char *val;
577 
578 	if (hdr + len >= end)
579 		return 0;
580 	if (hdr[len] != ':')
581 		return 0;
582 	if (strncasecmp(hdr, name, len) != 0)
583 		return 0;
584 	val = hdr + len + 1;
585 	while (val < end && HTTP_IS_SPHT(*val))
586 		val++;
587 	if ((val >= end) && (len + 2 <= end - hdr))
588 		return len + 2; /* we may replace starting from second space */
589 	return val - hdr;
590 }
591 
592 /* Find the first or next occurrence of header <name> in message buffer <sol>
593  * using headers index <idx>, and return it in the <ctx> structure. This
594  * structure holds everything necessary to use the header and find next
595  * occurrence. If its <idx> member is 0, the header is searched from the
596  * beginning. Otherwise, the next occurrence is returned. The function returns
597  * 1 when it finds a value, and 0 when there is no more. It is very similar to
598  * http_find_header2() except that it is designed to work with full-line headers
599  * whose comma is not a delimiter but is part of the syntax. As a special case,
600  * if ctx->val is NULL when searching for a new values of a header, the current
601  * header is rescanned. This allows rescanning after a header deletion.
602  */
http_find_full_header2(const char * name,int len,char * sol,struct hdr_idx * idx,struct hdr_ctx * ctx)603 int http_find_full_header2(const char *name, int len,
604                            char *sol, struct hdr_idx *idx,
605                            struct hdr_ctx *ctx)
606 {
607 	char *eol, *sov;
608 	int cur_idx, old_idx;
609 
610 	cur_idx = ctx->idx;
611 	if (cur_idx) {
612 		/* We have previously returned a header, let's search another one */
613 		sol = ctx->line;
614 		eol = sol + idx->v[cur_idx].len;
615 		goto next_hdr;
616 	}
617 
618 	/* first request for this header */
619 	sol += hdr_idx_first_pos(idx);
620 	old_idx = 0;
621 	cur_idx = hdr_idx_first_idx(idx);
622 	while (cur_idx) {
623 		eol = sol + idx->v[cur_idx].len;
624 
625 		if (len == 0) {
626 			/* No argument was passed, we want any header.
627 			 * To achieve this, we simply build a fake request. */
628 			while (sol + len < eol && sol[len] != ':')
629 				len++;
630 			name = sol;
631 		}
632 
633 		if ((len < eol - sol) &&
634 		    (sol[len] == ':') &&
635 		    (strncasecmp(sol, name, len) == 0)) {
636 			ctx->del = len;
637 			sov = sol + len + 1;
638 			while (sov < eol && HTTP_IS_LWS(*sov))
639 				sov++;
640 
641 			ctx->line = sol;
642 			ctx->prev = old_idx;
643 			ctx->idx  = cur_idx;
644 			ctx->val  = sov - sol;
645 			ctx->tws = 0;
646 			while (eol > sov && HTTP_IS_LWS(*(eol - 1))) {
647 				eol--;
648 				ctx->tws++;
649 			}
650 			ctx->vlen = eol - sov;
651 			return 1;
652 		}
653 	next_hdr:
654 		sol = eol + idx->v[cur_idx].cr + 1;
655 		old_idx = cur_idx;
656 		cur_idx = idx->v[cur_idx].next;
657 	}
658 	return 0;
659 }
660 
661 /* Find the first or next header field in message buffer <sol> using headers
662  * index <idx>, and return it in the <ctx> structure. This structure holds
663  * everything necessary to use the header and find next occurrence. If its
664  * <idx> member is 0, the first header is retrieved. Otherwise, the next
665  * occurrence is returned. The function returns 1 when it finds a value, and
666  * 0 when there is no more. It is equivalent to http_find_full_header2() with
667  * no header name.
668  */
http_find_next_header(char * sol,struct hdr_idx * idx,struct hdr_ctx * ctx)669 int http_find_next_header(char *sol, struct hdr_idx *idx, struct hdr_ctx *ctx)
670 {
671 	char *eol, *sov;
672 	int cur_idx, old_idx;
673 	int len;
674 
675 	cur_idx = ctx->idx;
676 	if (cur_idx) {
677 		/* We have previously returned a header, let's search another one */
678 		sol = ctx->line;
679 		eol = sol + idx->v[cur_idx].len;
680 		goto next_hdr;
681 	}
682 
683 	/* first request for this header */
684 	sol += hdr_idx_first_pos(idx);
685 	old_idx = 0;
686 	cur_idx = hdr_idx_first_idx(idx);
687 	while (cur_idx) {
688 		eol = sol + idx->v[cur_idx].len;
689 
690 		len = 0;
691 		while (1) {
692 			if (len >= eol - sol)
693 				goto next_hdr;
694 			if (sol[len] == ':')
695 				break;
696 			len++;
697 		}
698 
699 		ctx->del = len;
700 		sov = sol + len + 1;
701 		while (sov < eol && HTTP_IS_LWS(*sov))
702 			sov++;
703 
704 		ctx->line = sol;
705 		ctx->prev = old_idx;
706 		ctx->idx  = cur_idx;
707 		ctx->val  = sov - sol;
708 		ctx->tws = 0;
709 
710 		while (eol > sov && HTTP_IS_LWS(*(eol - 1))) {
711 			eol--;
712 			ctx->tws++;
713 		}
714 		ctx->vlen = eol - sov;
715 		return 1;
716 
717 	next_hdr:
718 		sol = eol + idx->v[cur_idx].cr + 1;
719 		old_idx = cur_idx;
720 		cur_idx = idx->v[cur_idx].next;
721 	}
722 	return 0;
723 }
724 
725 /* Find the end of the header value contained between <s> and <e>. See RFC7230,
726  * par 3.2 for more information. Note that it requires a valid header to return
727  * a valid result. This works for headers defined as comma-separated lists.
728  */
find_hdr_value_end(char * s,const char * e)729 char *find_hdr_value_end(char *s, const char *e)
730 {
731 	int quoted, qdpair;
732 
733 	quoted = qdpair = 0;
734 
735 #if defined(__x86_64__) ||						\
736     defined(__i386__) || defined(__i486__) || defined(__i586__) || defined(__i686__) || \
737     defined(__ARM_ARCH_7A__)
738 	/* speedup: skip everything not a comma nor a double quote */
739 	for (; s <= e - sizeof(int); s += sizeof(int)) {
740 		unsigned int c = *(int *)s; // comma
741 		unsigned int q = c;         // quote
742 
743 		c ^= 0x2c2c2c2c; // contains one zero on a comma
744 		q ^= 0x22222222; // contains one zero on a quote
745 
746 		c = (c - 0x01010101) & ~c; // contains 0x80 below a comma
747 		q = (q - 0x01010101) & ~q; // contains 0x80 below a quote
748 
749 		if ((c | q) & 0x80808080)
750 			break; // found a comma or a quote
751 	}
752 #endif
753 	for (; s < e; s++) {
754 		if (qdpair)                    qdpair = 0;
755 		else if (quoted) {
756 			if (*s == '\\')        qdpair = 1;
757 			else if (*s == '"')    quoted = 0;
758 		}
759 		else if (*s == '"')            quoted = 1;
760 		else if (*s == ',')            return s;
761 	}
762 	return s;
763 }
764 
765 /* Find the first or next occurrence of header <name> in message buffer <sol>
766  * using headers index <idx>, and return it in the <ctx> structure. This
767  * structure holds everything necessary to use the header and find next
768  * occurrence. If its <idx> member is 0, the header is searched from the
769  * beginning. Otherwise, the next occurrence is returned. The function returns
770  * 1 when it finds a value, and 0 when there is no more. It is designed to work
771  * with headers defined as comma-separated lists. As a special case, if ctx->val
772  * is NULL when searching for a new values of a header, the current header is
773  * rescanned. This allows rescanning after a header deletion.
774  */
http_find_header2(const char * name,int len,char * sol,struct hdr_idx * idx,struct hdr_ctx * ctx)775 int http_find_header2(const char *name, int len,
776 		      char *sol, struct hdr_idx *idx,
777 		      struct hdr_ctx *ctx)
778 {
779 	char *eol, *sov;
780 	int cur_idx, old_idx;
781 
782 	cur_idx = ctx->idx;
783 	if (cur_idx) {
784 		/* We have previously returned a value, let's search
785 		 * another one on the same line.
786 		 */
787 		sol = ctx->line;
788 		ctx->del = ctx->val + ctx->vlen + ctx->tws;
789 		sov = sol + ctx->del;
790 		eol = sol + idx->v[cur_idx].len;
791 
792 		if (sov >= eol)
793 			/* no more values in this header */
794 			goto next_hdr;
795 
796 		/* values remaining for this header, skip the comma but save it
797 		 * for later use (eg: for header deletion).
798 		 */
799 		sov++;
800 		while (sov < eol && HTTP_IS_LWS((*sov)))
801 			sov++;
802 
803 		goto return_hdr;
804 	}
805 
806 	/* first request for this header */
807 	sol += hdr_idx_first_pos(idx);
808 	old_idx = 0;
809 	cur_idx = hdr_idx_first_idx(idx);
810 	while (cur_idx) {
811 		eol = sol + idx->v[cur_idx].len;
812 
813 		if (len == 0) {
814 			/* No argument was passed, we want any header.
815 			 * To achieve this, we simply build a fake request. */
816 			while (sol + len < eol && sol[len] != ':')
817 				len++;
818 			name = sol;
819 		}
820 
821 		if ((len < eol - sol) &&
822 		    (sol[len] == ':') &&
823 		    (strncasecmp(sol, name, len) == 0)) {
824 			ctx->del = len;
825 			sov = sol + len + 1;
826 			while (sov < eol && HTTP_IS_LWS(*sov))
827 				sov++;
828 
829 			ctx->line = sol;
830 			ctx->prev = old_idx;
831 		return_hdr:
832 			ctx->idx  = cur_idx;
833 			ctx->val  = sov - sol;
834 
835 			eol = find_hdr_value_end(sov, eol);
836 			ctx->tws = 0;
837 			while (eol > sov && HTTP_IS_LWS(*(eol - 1))) {
838 				eol--;
839 				ctx->tws++;
840 			}
841 			ctx->vlen = eol - sov;
842 			return 1;
843 		}
844 	next_hdr:
845 		sol = eol + idx->v[cur_idx].cr + 1;
846 		old_idx = cur_idx;
847 		cur_idx = idx->v[cur_idx].next;
848 	}
849 	return 0;
850 }
851 
http_find_header(const char * name,char * sol,struct hdr_idx * idx,struct hdr_ctx * ctx)852 int http_find_header(const char *name,
853 		     char *sol, struct hdr_idx *idx,
854 		     struct hdr_ctx *ctx)
855 {
856 	return http_find_header2(name, strlen(name), sol, idx, ctx);
857 }
858 
859 /* Remove one value of a header. This only works on a <ctx> returned by one of
860  * the http_find_header functions. The value is removed, as well as surrounding
861  * commas if any. If the removed value was alone, the whole header is removed.
862  * The ctx is always updated accordingly, as well as the buffer and HTTP
863  * message <msg>. The new index is returned. If it is zero, it means there is
864  * no more header, so any processing may stop. The ctx is always left in a form
865  * that can be handled by http_find_header2() to find next occurrence.
866  */
http_remove_header2(struct http_msg * msg,struct hdr_idx * idx,struct hdr_ctx * ctx)867 int http_remove_header2(struct http_msg *msg, struct hdr_idx *idx, struct hdr_ctx *ctx)
868 {
869 	int cur_idx = ctx->idx;
870 	char *sol = ctx->line;
871 	struct hdr_idx_elem *hdr;
872 	int delta, skip_comma;
873 
874 	if (!cur_idx)
875 		return 0;
876 
877 	hdr = &idx->v[cur_idx];
878 	if (sol[ctx->del] == ':' && ctx->val + ctx->vlen + ctx->tws == hdr->len) {
879 		/* This was the only value of the header, we must now remove it entirely. */
880 		delta = buffer_replace2(msg->chn->buf, sol, sol + hdr->len + hdr->cr + 1, NULL, 0);
881 		http_msg_move_end(msg, delta);
882 		idx->used--;
883 		hdr->len = 0;   /* unused entry */
884 		idx->v[ctx->prev].next = idx->v[ctx->idx].next;
885 		if (idx->tail == ctx->idx)
886 			idx->tail = ctx->prev;
887 		ctx->idx = ctx->prev;    /* walk back to the end of previous header */
888 		ctx->line -= idx->v[ctx->idx].len + idx->v[ctx->idx].cr + 1;
889 		ctx->val = idx->v[ctx->idx].len; /* point to end of previous header */
890 		ctx->tws = ctx->vlen = 0;
891 		return ctx->idx;
892 	}
893 
894 	/* This was not the only value of this header. We have to remove between
895 	 * ctx->del+1 and ctx->val+ctx->vlen+ctx->tws+1 included. If it is the
896 	 * last entry of the list, we remove the last separator.
897 	 */
898 
899 	skip_comma = (ctx->val + ctx->vlen + ctx->tws == hdr->len) ? 0 : 1;
900 	delta = buffer_replace2(msg->chn->buf, sol + ctx->del + skip_comma,
901 				sol + ctx->val + ctx->vlen + ctx->tws + skip_comma,
902 				NULL, 0);
903 	hdr->len += delta;
904 	http_msg_move_end(msg, delta);
905 	ctx->val = ctx->del;
906 	ctx->tws = ctx->vlen = 0;
907 	return ctx->idx;
908 }
909 
910 /* This function handles a server error at the stream interface level. The
911  * stream interface is assumed to be already in a closed state. An optional
912  * message is copied into the input buffer.
913  * The error flags are set to the values in arguments. Any pending request
914  * in this buffer will be lost.
915  */
http_server_error(struct stream * s,struct stream_interface * si,int err,int finst,const struct chunk * msg)916 static void http_server_error(struct stream *s, struct stream_interface *si,
917 			      int err, int finst, const struct chunk *msg)
918 {
919 	FLT_STRM_CB(s, flt_http_reply(s, s->txn->status, msg));
920 	channel_auto_read(si_oc(si));
921 	channel_abort(si_oc(si));
922 	channel_auto_close(si_oc(si));
923 	channel_erase(si_oc(si));
924 	channel_auto_close(si_ic(si));
925 	channel_auto_read(si_ic(si));
926 	if (msg)
927 		co_inject(si_ic(si), msg->str, msg->len);
928 	if (!(s->flags & SF_ERR_MASK))
929 		s->flags |= err;
930 	if (!(s->flags & SF_FINST_MASK))
931 		s->flags |= finst;
932 }
933 
934 /* This function returns the appropriate error location for the given stream
935  * and message.
936  */
937 
http_error_message(struct stream * s)938 struct chunk *http_error_message(struct stream *s)
939 {
940 	const int msgnum = http_get_status_idx(s->txn->status);
941 
942 	if (s->be->errmsg[msgnum].str)
943 		return &s->be->errmsg[msgnum];
944 	else if (strm_fe(s)->errmsg[msgnum].str)
945 		return &strm_fe(s)->errmsg[msgnum];
946 	else
947 		return &http_err_chunks[msgnum];
948 }
949 
950 void
http_reply_and_close(struct stream * s,short status,struct chunk * msg)951 http_reply_and_close(struct stream *s, short status, struct chunk *msg)
952 {
953 	s->txn->flags &= ~TX_WAIT_NEXT_RQ;
954 	FLT_STRM_CB(s, flt_http_reply(s, status, msg));
955 	stream_int_retnclose(&s->si[0], msg);
956 }
957 
958 /*
959  * returns a known method among HTTP_METH_* or HTTP_METH_OTHER for all unknown
960  * ones.
961  */
find_http_meth(const char * str,const int len)962 enum http_meth_t find_http_meth(const char *str, const int len)
963 {
964 	unsigned char m;
965 	const struct http_method_desc *h;
966 
967 	m = ((unsigned)*str - 'A');
968 
969 	if (m < 26) {
970 		for (h = http_methods[m]; h->len > 0; h++) {
971 			if (unlikely(h->len != len))
972 				continue;
973 			if (likely(memcmp(str, h->text, h->len) == 0))
974 				return h->meth;
975 		};
976 	}
977 	return HTTP_METH_OTHER;
978 }
979 
980 /* Parse the URI from the given transaction (which is assumed to be in request
981  * phase) and look for the "/" beginning the PATH. If not found, return NULL.
982  * It is returned otherwise.
983  */
http_get_path(struct http_txn * txn)984 char *http_get_path(struct http_txn *txn)
985 {
986 	char *ptr, *end;
987 
988 	if (!txn->req.chn->buf->size)
989 		return NULL;
990 
991 	ptr = txn->req.chn->buf->p + txn->req.sl.rq.u;
992 	end = ptr + txn->req.sl.rq.u_l;
993 
994 	if (ptr >= end)
995 		return NULL;
996 
997 	/* RFC7230, par. 2.7 :
998 	 * Request-URI = "*" | absuri | abspath | authority
999 	 */
1000 
1001 	if (*ptr == '*')
1002 		return NULL;
1003 
1004 	if (isalpha((unsigned char)*ptr)) {
1005 		/* this is a scheme as described by RFC3986, par. 3.1 */
1006 		ptr++;
1007 		while (ptr < end &&
1008 		       (isalnum((unsigned char)*ptr) || *ptr == '+' || *ptr == '-' || *ptr == '.'))
1009 			ptr++;
1010 		/* skip '://' */
1011 		if (ptr == end || *ptr++ != ':')
1012 			return NULL;
1013 		if (ptr == end || *ptr++ != '/')
1014 			return NULL;
1015 		if (ptr == end || *ptr++ != '/')
1016 			return NULL;
1017 	}
1018 	/* skip [user[:passwd]@]host[:[port]] */
1019 
1020 	while (ptr < end && *ptr != '/')
1021 		ptr++;
1022 
1023 	if (ptr == end)
1024 		return NULL;
1025 
1026 	/* OK, we got the '/' ! */
1027 	return ptr;
1028 }
1029 
1030 /* Parse the URI from the given string and look for the "/" beginning the PATH.
1031  * If not found, return NULL. It is returned otherwise.
1032  */
1033 static char *
http_get_path_from_string(char * str)1034 http_get_path_from_string(char *str)
1035 {
1036 	char *ptr = str;
1037 
1038 	/* RFC2616, par. 5.1.2 :
1039 	 * Request-URI = "*" | absuri | abspath | authority
1040 	 */
1041 
1042 	if (*ptr == '*')
1043 		return NULL;
1044 
1045 	if (isalpha((unsigned char)*ptr)) {
1046 		/* this is a scheme as described by RFC3986, par. 3.1 */
1047 		ptr++;
1048 		while (isalnum((unsigned char)*ptr) || *ptr == '+' || *ptr == '-' || *ptr == '.')
1049 			ptr++;
1050 		/* skip '://' */
1051 		if (*ptr == '\0' || *ptr++ != ':')
1052 			return NULL;
1053 		if (*ptr == '\0' || *ptr++ != '/')
1054 			return NULL;
1055 		if (*ptr == '\0' || *ptr++ != '/')
1056 			return NULL;
1057 	}
1058 	/* skip [user[:passwd]@]host[:[port]] */
1059 
1060 	while (*ptr != '\0' && *ptr != ' ' && *ptr != '/')
1061 		ptr++;
1062 
1063 	if (*ptr == '\0' || *ptr == ' ')
1064 		return NULL;
1065 
1066 	/* OK, we got the '/' ! */
1067 	return ptr;
1068 }
1069 
1070 /* Returns a 302 for a redirectable request that reaches a server working in
1071  * in redirect mode. This may only be called just after the stream interface
1072  * has moved to SI_ST_ASS. Unprocessable requests are left unchanged and will
1073  * follow normal proxy processing. NOTE: this function is designed to support
1074  * being called once data are scheduled for forwarding.
1075  */
http_perform_server_redirect(struct stream * s,struct stream_interface * si)1076 void http_perform_server_redirect(struct stream *s, struct stream_interface *si)
1077 {
1078 	struct http_txn *txn;
1079 	struct server *srv;
1080 	char *path;
1081 	int len, rewind;
1082 
1083 	/* 1: create the response header */
1084 	trash.len = strlen(HTTP_302);
1085 	memcpy(trash.str, HTTP_302, trash.len);
1086 
1087 	srv = objt_server(s->target);
1088 
1089 	/* 2: add the server's prefix */
1090 	if (trash.len + srv->rdr_len > trash.size)
1091 		return;
1092 
1093 	/* special prefix "/" means don't change URL */
1094 	if (srv->rdr_len != 1 || *srv->rdr_pfx != '/') {
1095 		memcpy(trash.str + trash.len, srv->rdr_pfx, srv->rdr_len);
1096 		trash.len += srv->rdr_len;
1097 	}
1098 
1099 	/* 3: add the request URI. Since it was already forwarded, we need
1100 	 * to temporarily rewind the buffer.
1101 	 */
1102 	txn = s->txn;
1103 	b_rew(s->req.buf, rewind = http_hdr_rewind(&txn->req));
1104 
1105 	path = http_get_path(txn);
1106 	len = buffer_count(s->req.buf, path, b_ptr(s->req.buf, txn->req.sl.rq.u + txn->req.sl.rq.u_l));
1107 
1108 	b_adv(s->req.buf, rewind);
1109 
1110 	if (!path)
1111 		return;
1112 
1113 	if (trash.len + len > trash.size - 4) /* 4 for CRLF-CRLF */
1114 		return;
1115 
1116 	memcpy(trash.str + trash.len, path, len);
1117 	trash.len += len;
1118 
1119 	if (unlikely(txn->flags & TX_USE_PX_CONN)) {
1120 		memcpy(trash.str + trash.len, "\r\nProxy-Connection: close\r\n\r\n", 29);
1121 		trash.len += 29;
1122 	} else {
1123 		memcpy(trash.str + trash.len, "\r\nConnection: close\r\n\r\n", 23);
1124 		trash.len += 23;
1125 	}
1126 
1127 	/* prepare to return without error. */
1128 	si_shutr(si);
1129 	si_shutw(si);
1130 	si->err_type = SI_ET_NONE;
1131 	si->state    = SI_ST_CLO;
1132 
1133 	/* send the message */
1134 	txn->status = 302;
1135 	http_server_error(s, si, SF_ERR_LOCAL, SF_FINST_C, &trash);
1136 
1137 	/* FIXME: we should increase a counter of redirects per server and per backend. */
1138 	srv_inc_sess_ctr(srv);
1139 	srv_set_sess_last(srv);
1140 }
1141 
1142 /* Return the error message corresponding to si->err_type. It is assumed
1143  * that the server side is closed. Note that err_type is actually a
1144  * bitmask, where almost only aborts may be cumulated with other
1145  * values. We consider that aborted operations are more important
1146  * than timeouts or errors due to the fact that nobody else in the
1147  * logs might explain incomplete retries. All others should avoid
1148  * being cumulated. It should normally not be possible to have multiple
1149  * aborts at once, but just in case, the first one in sequence is reported.
1150  * Note that connection errors appearing on the second request of a keep-alive
1151  * connection are not reported since this allows the client to retry.
1152  */
http_return_srv_error(struct stream * s,struct stream_interface * si)1153 void http_return_srv_error(struct stream *s, struct stream_interface *si)
1154 {
1155 	int err_type = si->err_type;
1156 
1157 	/* set s->txn->status for http_error_message(s) */
1158 	s->txn->status = 503;
1159 
1160 	if (err_type & SI_ET_QUEUE_ABRT)
1161 		http_server_error(s, si, SF_ERR_CLICL, SF_FINST_Q,
1162 				  http_error_message(s));
1163 	else if (err_type & SI_ET_CONN_ABRT)
1164 		http_server_error(s, si, SF_ERR_CLICL, SF_FINST_C,
1165 				  (s->txn->flags & TX_NOT_FIRST) ? NULL :
1166 				  http_error_message(s));
1167 	else if (err_type & SI_ET_QUEUE_TO)
1168 		http_server_error(s, si, SF_ERR_SRVTO, SF_FINST_Q,
1169 				  http_error_message(s));
1170 	else if (err_type & SI_ET_QUEUE_ERR)
1171 		http_server_error(s, si, SF_ERR_SRVCL, SF_FINST_Q,
1172 				  http_error_message(s));
1173 	else if (err_type & SI_ET_CONN_TO)
1174 		http_server_error(s, si, SF_ERR_SRVTO, SF_FINST_C,
1175 				  (s->txn->flags & TX_NOT_FIRST) ? NULL :
1176 				  http_error_message(s));
1177 	else if (err_type & SI_ET_CONN_ERR)
1178 		http_server_error(s, si, SF_ERR_SRVCL, SF_FINST_C,
1179 				  (s->flags & SF_SRV_REUSED) ? NULL :
1180 				  http_error_message(s));
1181 	else if (err_type & SI_ET_CONN_RES)
1182 		http_server_error(s, si, SF_ERR_RESOURCE, SF_FINST_C,
1183 				  (s->txn->flags & TX_NOT_FIRST) ? NULL :
1184 				  http_error_message(s));
1185 	else { /* SI_ET_CONN_OTHER and others */
1186 		s->txn->status = 500;
1187 		http_server_error(s, si, SF_ERR_INTERNAL, SF_FINST_C,
1188 				  http_error_message(s));
1189 	}
1190 }
1191 
1192 extern const char sess_term_cond[8];
1193 extern const char sess_fin_state[8];
1194 extern const char *monthname[12];
1195 struct pool_head *pool_head_http_txn;
1196 struct pool_head *pool_head_requri;
1197 struct pool_head *pool_head_capture = NULL;
1198 struct pool_head *pool_head_uniqueid;
1199 
1200 /*
1201  * Capture headers from message starting at <som> according to header list
1202  * <cap_hdr>, and fill the <cap> pointers appropriately.
1203  */
capture_headers(char * som,struct hdr_idx * idx,char ** cap,struct cap_hdr * cap_hdr)1204 void capture_headers(char *som, struct hdr_idx *idx,
1205 		     char **cap, struct cap_hdr *cap_hdr)
1206 {
1207 	char *eol, *sol, *col, *sov;
1208 	int cur_idx;
1209 	struct cap_hdr *h;
1210 	int len;
1211 
1212 	sol = som + hdr_idx_first_pos(idx);
1213 	cur_idx = hdr_idx_first_idx(idx);
1214 
1215 	while (cur_idx) {
1216 		eol = sol + idx->v[cur_idx].len;
1217 
1218 		col = sol;
1219 		while (col < eol && *col != ':')
1220 			col++;
1221 
1222 		sov = col + 1;
1223 		while (sov < eol && HTTP_IS_LWS(*sov))
1224 			sov++;
1225 
1226 		for (h = cap_hdr; h; h = h->next) {
1227 			if (h->namelen && (h->namelen == col - sol) &&
1228 			    (strncasecmp(sol, h->name, h->namelen) == 0)) {
1229 				if (cap[h->index] == NULL)
1230 					cap[h->index] =
1231 						pool_alloc(h->pool);
1232 
1233 				if (cap[h->index] == NULL) {
1234 					ha_alert("HTTP capture : out of memory.\n");
1235 					continue;
1236 				}
1237 
1238 				len = eol - sov;
1239 				if (len > h->len)
1240 					len = h->len;
1241 
1242 				memcpy(cap[h->index], sov, len);
1243 				cap[h->index][len]=0;
1244 			}
1245 		}
1246 		sol = eol + idx->v[cur_idx].cr + 1;
1247 		cur_idx = idx->v[cur_idx].next;
1248 	}
1249 }
1250 
1251 /*
1252  * Returns the data from Authorization header. Function may be called more
1253  * than once so data is stored in txn->auth_data. When no header is found
1254  * or auth method is unknown auth_method is set to HTTP_AUTH_WRONG to avoid
1255  * searching again for something we are unable to find anyway. However, if
1256  * the result if valid, the cache is not reused because we would risk to
1257  * have the credentials overwritten by another stream in parallel.
1258  */
1259 
1260 int
get_http_auth(struct stream * s)1261 get_http_auth(struct stream *s)
1262 {
1263 
1264 	struct http_txn *txn = s->txn;
1265 	struct chunk auth_method;
1266 	struct hdr_ctx ctx;
1267 	char *h, *p;
1268 	int len;
1269 
1270 #ifdef DEBUG_AUTH
1271 	printf("Auth for stream %p: %d\n", s, txn->auth.method);
1272 #endif
1273 
1274 	if (txn->auth.method == HTTP_AUTH_WRONG)
1275 		return 0;
1276 
1277 	txn->auth.method = HTTP_AUTH_WRONG;
1278 
1279 	ctx.idx = 0;
1280 
1281 	if (txn->flags & TX_USE_PX_CONN) {
1282 		h = "Proxy-Authorization";
1283 		len = strlen(h);
1284 	} else {
1285 		h = "Authorization";
1286 		len = strlen(h);
1287 	}
1288 
1289 	if (!http_find_header2(h, len, s->req.buf->p, &txn->hdr_idx, &ctx))
1290 		return 0;
1291 
1292 	h = ctx.line + ctx.val;
1293 
1294 	p = memchr(h, ' ', ctx.vlen);
1295 	len = p - h;
1296 	if (!p || len <= 0)
1297 		return 0;
1298 
1299 	if (chunk_initlen(&auth_method, h, 0, len) != 1)
1300 		return 0;
1301 
1302 	chunk_initlen(&txn->auth.method_data, p + 1, 0, ctx.vlen - len - 1);
1303 
1304 	if (!strncasecmp("Basic", auth_method.str, auth_method.len)) {
1305 		struct chunk *http_auth = get_trash_chunk();
1306 
1307 		len = base64dec(txn->auth.method_data.str, txn->auth.method_data.len,
1308 				http_auth->str, global.tune.bufsize - 1);
1309 
1310 		if (len < 0)
1311 			return 0;
1312 
1313 
1314 		http_auth->str[len] = '\0';
1315 
1316 		p = strchr(http_auth->str, ':');
1317 
1318 		if (!p)
1319 			return 0;
1320 
1321 		txn->auth.user = http_auth->str;
1322 		*p = '\0';
1323 		txn->auth.pass = p+1;
1324 
1325 		txn->auth.method = HTTP_AUTH_BASIC;
1326 		return 1;
1327 	}
1328 
1329 	return 0;
1330 }
1331 
1332 
1333 /* convert an HTTP/0.9 request into an HTTP/1.0 request. Returns 1 if the
1334  * conversion succeeded, 0 in case of error. If the request was already 1.X,
1335  * nothing is done and 1 is returned.
1336  */
http_upgrade_v09_to_v10(struct http_txn * txn)1337 static int http_upgrade_v09_to_v10(struct http_txn *txn)
1338 {
1339 	int delta;
1340 	char *cur_end;
1341 	struct http_msg *msg = &txn->req;
1342 
1343 	if (msg->sl.rq.v_l != 0)
1344 		return 1;
1345 
1346 	/* RFC 1945 allows only GET for HTTP/0.9 requests */
1347 	if (txn->meth != HTTP_METH_GET)
1348 		return 0;
1349 
1350 	cur_end = msg->chn->buf->p + msg->sl.rq.l;
1351 
1352 	if (msg->sl.rq.u_l == 0) {
1353 		/* HTTP/0.9 requests *must* have a request URI, per RFC 1945 */
1354 		return 0;
1355 	}
1356 	/* add HTTP version */
1357 	delta = buffer_replace2(msg->chn->buf, cur_end, cur_end, " HTTP/1.0\r\n", 11);
1358 	http_msg_move_end(msg, delta);
1359 	cur_end += delta;
1360 	cur_end = (char *)http_parse_reqline(msg,
1361 					     HTTP_MSG_RQMETH,
1362 					     msg->chn->buf->p, cur_end + 1,
1363 					     NULL, NULL);
1364 	if (unlikely(!cur_end))
1365 		return 0;
1366 
1367 	/* we have a full HTTP/1.0 request now and we know that
1368 	 * we have either a CR or an LF at <ptr>.
1369 	 */
1370 	hdr_idx_set_start(&txn->hdr_idx, msg->sl.rq.l, *cur_end == '\r');
1371 	return 1;
1372 }
1373 
1374 /* Parse the Connection: header of an HTTP request, looking for both "close"
1375  * and "keep-alive" values. If we already know that some headers may safely
1376  * be removed, we remove them now. The <to_del> flags are used for that :
1377  *  - bit 0 means remove "close" headers (in HTTP/1.0 requests/responses)
1378  *  - bit 1 means remove "keep-alive" headers (in HTTP/1.1 reqs/resp to 1.1).
1379  * Presence of the "Upgrade" token is also checked and reported.
1380  * The TX_HDR_CONN_* flags are adjusted in txn->flags depending on what was
1381  * found, and TX_CON_*_SET is adjusted depending on what is left so only
1382  * harmless combinations may be removed. Do not call that after changes have
1383  * been processed.
1384  */
http_parse_connection_header(struct http_txn * txn,struct http_msg * msg,int to_del)1385 void http_parse_connection_header(struct http_txn *txn, struct http_msg *msg, int to_del)
1386 {
1387 	struct hdr_ctx ctx;
1388 	const char *hdr_val = "Connection";
1389 	int hdr_len = 10;
1390 
1391 	if (txn->flags & TX_HDR_CONN_PRS)
1392 		return;
1393 
1394 	if (unlikely(txn->flags & TX_USE_PX_CONN)) {
1395 		hdr_val = "Proxy-Connection";
1396 		hdr_len = 16;
1397 	}
1398 
1399 	ctx.idx = 0;
1400 	txn->flags &= ~(TX_CON_KAL_SET|TX_CON_CLO_SET);
1401 	while (http_find_header2(hdr_val, hdr_len, msg->chn->buf->p, &txn->hdr_idx, &ctx)) {
1402 		if (ctx.vlen >= 10 && word_match(ctx.line + ctx.val, ctx.vlen, "keep-alive", 10)) {
1403 			txn->flags |= TX_HDR_CONN_KAL;
1404 			if (to_del & 2)
1405 				http_remove_header2(msg, &txn->hdr_idx, &ctx);
1406 			else
1407 				txn->flags |= TX_CON_KAL_SET;
1408 		}
1409 		else if (ctx.vlen >= 5 && word_match(ctx.line + ctx.val, ctx.vlen, "close", 5)) {
1410 			txn->flags |= TX_HDR_CONN_CLO;
1411 			if (to_del & 1)
1412 				http_remove_header2(msg, &txn->hdr_idx, &ctx);
1413 			else
1414 				txn->flags |= TX_CON_CLO_SET;
1415 		}
1416 		else if (ctx.vlen >= 7 && word_match(ctx.line + ctx.val, ctx.vlen, "upgrade", 7)) {
1417 			txn->flags |= TX_HDR_CONN_UPG;
1418 		}
1419 	}
1420 
1421 	txn->flags |= TX_HDR_CONN_PRS;
1422 	return;
1423 }
1424 
1425 /* Apply desired changes on the Connection: header. Values may be removed and/or
1426  * added depending on the <wanted> flags, which are exclusively composed of
1427  * TX_CON_CLO_SET and TX_CON_KAL_SET, depending on what flags are desired. The
1428  * TX_CON_*_SET flags are adjusted in txn->flags depending on what is left.
1429  */
http_change_connection_header(struct http_txn * txn,struct http_msg * msg,int wanted)1430 void http_change_connection_header(struct http_txn *txn, struct http_msg *msg, int wanted)
1431 {
1432 	struct hdr_ctx ctx;
1433 	const char *hdr_val = "Connection";
1434 	int hdr_len = 10;
1435 
1436 	ctx.idx = 0;
1437 
1438 
1439 	if (unlikely(txn->flags & TX_USE_PX_CONN)) {
1440 		hdr_val = "Proxy-Connection";
1441 		hdr_len = 16;
1442 	}
1443 
1444 	txn->flags &= ~(TX_CON_CLO_SET | TX_CON_KAL_SET);
1445 	while (http_find_header2(hdr_val, hdr_len, msg->chn->buf->p, &txn->hdr_idx, &ctx)) {
1446 		if (ctx.vlen >= 10 && word_match(ctx.line + ctx.val, ctx.vlen, "keep-alive", 10)) {
1447 			if (wanted & TX_CON_KAL_SET)
1448 				txn->flags |= TX_CON_KAL_SET;
1449 			else
1450 				http_remove_header2(msg, &txn->hdr_idx, &ctx);
1451 		}
1452 		else if (ctx.vlen >= 5 && word_match(ctx.line + ctx.val, ctx.vlen, "close", 5)) {
1453 			if (wanted & TX_CON_CLO_SET)
1454 				txn->flags |= TX_CON_CLO_SET;
1455 			else
1456 				http_remove_header2(msg, &txn->hdr_idx, &ctx);
1457 		}
1458 	}
1459 
1460 	if (wanted == (txn->flags & (TX_CON_CLO_SET|TX_CON_KAL_SET)))
1461 		return;
1462 
1463 	if ((wanted & TX_CON_CLO_SET) && !(txn->flags & TX_CON_CLO_SET)) {
1464 		txn->flags |= TX_CON_CLO_SET;
1465 		hdr_val = "Connection: close";
1466 		hdr_len  = 17;
1467 		if (unlikely(txn->flags & TX_USE_PX_CONN)) {
1468 			hdr_val = "Proxy-Connection: close";
1469 			hdr_len = 23;
1470 		}
1471 		http_header_add_tail2(msg, &txn->hdr_idx, hdr_val, hdr_len);
1472 	}
1473 
1474 	if ((wanted & TX_CON_KAL_SET) && !(txn->flags & TX_CON_KAL_SET)) {
1475 		txn->flags |= TX_CON_KAL_SET;
1476 		hdr_val = "Connection: keep-alive";
1477 		hdr_len = 22;
1478 		if (unlikely(txn->flags & TX_USE_PX_CONN)) {
1479 			hdr_val = "Proxy-Connection: keep-alive";
1480 			hdr_len = 28;
1481 		}
1482 		http_header_add_tail2(msg, &txn->hdr_idx, hdr_val, hdr_len);
1483 	}
1484 	return;
1485 }
1486 
1487 /* Parses a qvalue and returns it multipled by 1000, from 0 to 1000. If the
1488  * value is larger than 1000, it is bound to 1000. The parser consumes up to
1489  * 1 digit, one dot and 3 digits and stops on the first invalid character.
1490  * Unparsable qvalues return 1000 as "q=1.000".
1491  */
parse_qvalue(const char * qvalue,const char ** end)1492 int parse_qvalue(const char *qvalue, const char **end)
1493 {
1494 	int q = 1000;
1495 
1496 	if (!isdigit((unsigned char)*qvalue))
1497 		goto out;
1498 	q = (*qvalue++ - '0') * 1000;
1499 
1500 	if (*qvalue++ != '.')
1501 		goto out;
1502 
1503 	if (!isdigit((unsigned char)*qvalue))
1504 		goto out;
1505 	q += (*qvalue++ - '0') * 100;
1506 
1507 	if (!isdigit((unsigned char)*qvalue))
1508 		goto out;
1509 	q += (*qvalue++ - '0') * 10;
1510 
1511 	if (!isdigit((unsigned char)*qvalue))
1512 		goto out;
1513 	q += (*qvalue++ - '0') * 1;
1514  out:
1515 	if (q > 1000)
1516 		q = 1000;
1517 	if (end)
1518 		*end = qvalue;
1519 	return q;
1520 }
1521 
http_adjust_conn_mode(struct stream * s,struct http_txn * txn,struct http_msg * msg)1522 void http_adjust_conn_mode(struct stream *s, struct http_txn *txn, struct http_msg *msg)
1523 {
1524 	struct proxy *fe = strm_fe(s);
1525 	int tmp = TX_CON_WANT_KAL;
1526 
1527 	if (!((fe->options2|s->be->options2) & PR_O2_FAKE_KA)) {
1528 		if ((fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_TUN ||
1529 		    (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_TUN)
1530 			tmp = TX_CON_WANT_TUN;
1531 
1532 		if ((fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL ||
1533 		    (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL)
1534 			tmp = TX_CON_WANT_TUN;
1535 	}
1536 
1537 	if ((fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_SCL ||
1538 	    (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_SCL) {
1539 		/* option httpclose + server_close => forceclose */
1540 		if ((fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL ||
1541 		    (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL)
1542 			tmp = TX_CON_WANT_CLO;
1543 		else
1544 			tmp = TX_CON_WANT_SCL;
1545 	}
1546 
1547 	if ((fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_FCL ||
1548 	    (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_FCL)
1549 		tmp = TX_CON_WANT_CLO;
1550 
1551 	if ((txn->flags & TX_CON_WANT_MSK) < tmp)
1552 		txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | tmp;
1553 
1554 	if (!(txn->flags & TX_HDR_CONN_PRS) &&
1555 	    (txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN) {
1556 		/* parse the Connection header and possibly clean it */
1557 		int to_del = 0;
1558 		if ((msg->flags & HTTP_MSGF_VER_11) ||
1559 		    ((txn->flags & TX_CON_WANT_MSK) >= TX_CON_WANT_SCL &&
1560 		     !((fe->options2|s->be->options2) & PR_O2_FAKE_KA)))
1561 			to_del |= 2; /* remove "keep-alive" */
1562 		if (!(msg->flags & HTTP_MSGF_VER_11))
1563 			to_del |= 1; /* remove "close" */
1564 		http_parse_connection_header(txn, msg, to_del);
1565 	}
1566 
1567 	/* check if client or config asks for explicit close in KAL/SCL */
1568 	if (((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL ||
1569 	     (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) &&
1570 	    ((txn->flags & TX_HDR_CONN_CLO) ||                         /* "connection: close" */
1571 	     (!(msg->flags & HTTP_MSGF_VER_11) && !(txn->flags & TX_HDR_CONN_KAL)) || /* no "connection: k-a" in 1.0 */
1572 	     !(msg->flags & HTTP_MSGF_XFER_LEN) ||                     /* no length known => close */
1573 	     fe->state == PR_STSTOPPED))                            /* frontend is stopping */
1574 		txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_CLO;
1575 }
1576 
1577 /* This stream analyser waits for a complete HTTP request. It returns 1 if the
1578  * processing can continue on next analysers, or zero if it either needs more
1579  * data or wants to immediately abort the request (eg: timeout, error, ...). It
1580  * is tied to AN_REQ_WAIT_HTTP and may may remove itself from s->req.analysers
1581  * when it has nothing left to do, and may remove any analyser when it wants to
1582  * abort.
1583  */
http_wait_for_request(struct stream * s,struct channel * req,int an_bit)1584 int http_wait_for_request(struct stream *s, struct channel *req, int an_bit)
1585 {
1586 	/*
1587 	 * We will parse the partial (or complete) lines.
1588 	 * We will check the request syntax, and also join multi-line
1589 	 * headers. An index of all the lines will be elaborated while
1590 	 * parsing.
1591 	 *
1592 	 * For the parsing, we use a 28 states FSM.
1593 	 *
1594 	 * Here is the information we currently have :
1595 	 *   req->buf->p             = beginning of request
1596 	 *   req->buf->p + msg->eoh  = end of processed headers / start of current one
1597 	 *   req->buf->p + req->buf->i    = end of input data
1598 	 *   msg->eol           = end of current header or line (LF or CRLF)
1599 	 *   msg->next          = first non-visited byte
1600 	 *
1601 	 * At end of parsing, we may perform a capture of the error (if any), and
1602 	 * we will set a few fields (txn->meth, sn->flags/SF_REDIRECTABLE).
1603 	 * We also check for monitor-uri, logging, HTTP/0.9 to 1.0 conversion, and
1604 	 * finally headers capture.
1605 	 */
1606 
1607 	int cur_idx;
1608 	struct session *sess = s->sess;
1609 	struct http_txn *txn = s->txn;
1610 	struct http_msg *msg = &txn->req;
1611 	struct hdr_ctx ctx;
1612 
1613 	DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
1614 		now_ms, __FUNCTION__,
1615 		s,
1616 		req,
1617 		req->rex, req->wex,
1618 		req->flags,
1619 		req->buf->i,
1620 		req->analysers);
1621 
1622 	/* we're speaking HTTP here, so let's speak HTTP to the client */
1623 	s->srv_error = http_return_srv_error;
1624 
1625 	/* If there is data available for analysis, log the end of the idle time. */
1626 	if (buffer_not_empty(req->buf) && s->logs.t_idle == -1)
1627 		s->logs.t_idle = tv_ms_elapsed(&s->logs.tv_accept, &now) - s->logs.t_handshake;
1628 
1629 	/* There's a protected area at the end of the buffer for rewriting
1630 	 * purposes. We don't want to start to parse the request if the
1631 	 * protected area is affected, because we may have to move processed
1632 	 * data later, which is much more complicated.
1633 	 */
1634 	if (buffer_not_empty(req->buf) && msg->msg_state < HTTP_MSG_ERROR) {
1635 		if (txn->flags & TX_NOT_FIRST) {
1636 			if (unlikely(!channel_is_rewritable(req) && req->buf->o)) {
1637 				if (req->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_WRITE_ERROR|CF_WRITE_TIMEOUT))
1638 					goto failed_keep_alive;
1639 				/* some data has still not left the buffer, wake us once that's done */
1640 				channel_dont_connect(req);
1641 				req->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */
1642 				req->flags |= CF_WAKE_WRITE;
1643 				return 0;
1644 			}
1645 			if (unlikely(bi_end(req->buf) < b_ptr(req->buf, msg->next) ||
1646 			             bi_end(req->buf) > req->buf->data + req->buf->size - global.tune.maxrewrite))
1647 				buffer_slow_realign(req->buf);
1648 		}
1649 
1650 		if (likely(msg->next < req->buf->i)) /* some unparsed data are available */
1651 			http_msg_analyzer(msg, &txn->hdr_idx);
1652 	}
1653 
1654 	/* 1: we might have to print this header in debug mode */
1655 	if (unlikely((global.mode & MODE_DEBUG) &&
1656 		     (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)) &&
1657 		     msg->msg_state >= HTTP_MSG_BODY)) {
1658 		char *eol, *sol;
1659 
1660 		sol = req->buf->p;
1661 		/* this is a bit complex : in case of error on the request line,
1662 		 * we know that rq.l is still zero, so we display only the part
1663 		 * up to the end of the line (truncated by debug_hdr).
1664 		 */
1665 		eol = sol + (msg->sl.rq.l ? msg->sl.rq.l : req->buf->i);
1666 		debug_hdr("clireq", s, sol, eol);
1667 
1668 		sol += hdr_idx_first_pos(&txn->hdr_idx);
1669 		cur_idx = hdr_idx_first_idx(&txn->hdr_idx);
1670 
1671 		while (cur_idx) {
1672 			eol = sol + txn->hdr_idx.v[cur_idx].len;
1673 			debug_hdr("clihdr", s, sol, eol);
1674 			sol = eol + txn->hdr_idx.v[cur_idx].cr + 1;
1675 			cur_idx = txn->hdr_idx.v[cur_idx].next;
1676 		}
1677 	}
1678 
1679 
1680 	/*
1681 	 * Now we quickly check if we have found a full valid request.
1682 	 * If not so, we check the FD and buffer states before leaving.
1683 	 * A full request is indicated by the fact that we have seen
1684 	 * the double LF/CRLF, so the state is >= HTTP_MSG_BODY. Invalid
1685 	 * requests are checked first. When waiting for a second request
1686 	 * on a keep-alive stream, if we encounter and error, close, t/o,
1687 	 * we note the error in the stream flags but don't set any state.
1688 	 * Since the error will be noted there, it will not be counted by
1689 	 * process_stream() as a frontend error.
1690 	 * Last, we may increase some tracked counters' http request errors on
1691 	 * the cases that are deliberately the client's fault. For instance,
1692 	 * a timeout or connection reset is not counted as an error. However
1693 	 * a bad request is.
1694 	 */
1695 
1696 	if (unlikely(msg->msg_state < HTTP_MSG_BODY)) {
1697 		/*
1698 		 * First, let's catch bad requests.
1699 		 */
1700 		if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) {
1701 			stream_inc_http_req_ctr(s);
1702 			stream_inc_http_err_ctr(s);
1703 			proxy_inc_fe_req_ctr(sess->fe);
1704 			goto return_bad_req;
1705 		}
1706 
1707 		/* 1: Since we are in header mode, if there's no space
1708 		 *    left for headers, we won't be able to free more
1709 		 *    later, so the stream will never terminate. We
1710 		 *    must terminate it now.
1711 		 */
1712 		if (unlikely(buffer_full(req->buf, global.tune.maxrewrite))) {
1713 			/* FIXME: check if URI is set and return Status
1714 			 * 414 Request URI too long instead.
1715 			 */
1716 			stream_inc_http_req_ctr(s);
1717 			stream_inc_http_err_ctr(s);
1718 			proxy_inc_fe_req_ctr(sess->fe);
1719 			if (msg->err_pos < 0)
1720 				msg->err_pos = req->buf->i;
1721 			goto return_bad_req;
1722 		}
1723 
1724 		/* 2: have we encountered a read error ? */
1725 		else if (req->flags & CF_READ_ERROR) {
1726 			if (!(s->flags & SF_ERR_MASK))
1727 				s->flags |= SF_ERR_CLICL;
1728 
1729 			if (txn->flags & TX_WAIT_NEXT_RQ)
1730 				goto failed_keep_alive;
1731 
1732 			if (sess->fe->options & PR_O_IGNORE_PRB)
1733 				goto failed_keep_alive;
1734 
1735 			/* we cannot return any message on error */
1736 			if (msg->err_pos >= 0) {
1737 				http_capture_bad_message(sess->fe, &sess->fe->invalid_req, s, msg, msg->err_state, sess->fe);
1738 				stream_inc_http_err_ctr(s);
1739 			}
1740 
1741 			txn->status = 400;
1742 			msg->err_state = msg->msg_state;
1743 			msg->msg_state = HTTP_MSG_ERROR;
1744 			http_reply_and_close(s, txn->status, NULL);
1745 			req->analysers &= AN_REQ_FLT_END;
1746 			stream_inc_http_req_ctr(s);
1747 			proxy_inc_fe_req_ctr(sess->fe);
1748 			HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1);
1749 			if (sess->listener && sess->listener->counters)
1750 				HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1);
1751 
1752 			if (!(s->flags & SF_FINST_MASK))
1753 				s->flags |= SF_FINST_R;
1754 			return 0;
1755 		}
1756 
1757 		/* 3: has the read timeout expired ? */
1758 		else if (req->flags & CF_READ_TIMEOUT || tick_is_expired(req->analyse_exp, now_ms)) {
1759 			if (!(s->flags & SF_ERR_MASK))
1760 				s->flags |= SF_ERR_CLITO;
1761 
1762 			if (txn->flags & TX_WAIT_NEXT_RQ)
1763 				goto failed_keep_alive;
1764 
1765 			if (sess->fe->options & PR_O_IGNORE_PRB)
1766 				goto failed_keep_alive;
1767 
1768 			/* read timeout : give up with an error message. */
1769 			if (msg->err_pos >= 0) {
1770 				http_capture_bad_message(sess->fe, &sess->fe->invalid_req, s, msg, msg->err_state, sess->fe);
1771 				stream_inc_http_err_ctr(s);
1772 			}
1773 			txn->status = 408;
1774 			msg->err_state = msg->msg_state;
1775 			msg->msg_state = HTTP_MSG_ERROR;
1776 			http_reply_and_close(s, txn->status, http_error_message(s));
1777 			req->analysers &= AN_REQ_FLT_END;
1778 
1779 			stream_inc_http_req_ctr(s);
1780 			proxy_inc_fe_req_ctr(sess->fe);
1781 			HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1);
1782 			if (sess->listener && sess->listener->counters)
1783 				HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1);
1784 
1785 			if (!(s->flags & SF_FINST_MASK))
1786 				s->flags |= SF_FINST_R;
1787 			return 0;
1788 		}
1789 
1790 		/* 4: have we encountered a close ? */
1791 		else if (req->flags & CF_SHUTR) {
1792 			if (!(s->flags & SF_ERR_MASK))
1793 				s->flags |= SF_ERR_CLICL;
1794 
1795 			if (txn->flags & TX_WAIT_NEXT_RQ)
1796 				goto failed_keep_alive;
1797 
1798 			if (sess->fe->options & PR_O_IGNORE_PRB)
1799 				goto failed_keep_alive;
1800 
1801 			if (msg->err_pos >= 0)
1802 				http_capture_bad_message(sess->fe, &sess->fe->invalid_req, s, msg, msg->err_state, sess->fe);
1803 			txn->status = 400;
1804 			msg->err_state = msg->msg_state;
1805 			msg->msg_state = HTTP_MSG_ERROR;
1806 			http_reply_and_close(s, txn->status, http_error_message(s));
1807 			req->analysers &= AN_REQ_FLT_END;
1808 			stream_inc_http_err_ctr(s);
1809 			stream_inc_http_req_ctr(s);
1810 			proxy_inc_fe_req_ctr(sess->fe);
1811 			HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1);
1812 			if (sess->listener && sess->listener->counters)
1813 				HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1);
1814 
1815 			if (!(s->flags & SF_FINST_MASK))
1816 				s->flags |= SF_FINST_R;
1817 			return 0;
1818 		}
1819 
1820 		channel_dont_connect(req);
1821 		req->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */
1822 		s->res.flags &= ~CF_EXPECT_MORE; /* speed up sending a previous response */
1823 #ifdef TCP_QUICKACK
1824 		if (sess->listener->options & LI_O_NOQUICKACK && req->buf->i &&
1825 		    objt_conn(sess->origin) && conn_ctrl_ready(__objt_conn(sess->origin))) {
1826 			/* We need more data, we have to re-enable quick-ack in case we
1827 			 * previously disabled it, otherwise we might cause the client
1828 			 * to delay next data.
1829 			 */
1830 			setsockopt(__objt_conn(sess->origin)->handle.fd, IPPROTO_TCP, TCP_QUICKACK, &one, sizeof(one));
1831 		}
1832 #endif
1833 
1834 		if ((msg->msg_state != HTTP_MSG_RQBEFORE) && (txn->flags & TX_WAIT_NEXT_RQ)) {
1835 			/* If the client starts to talk, let's fall back to
1836 			 * request timeout processing.
1837 			 */
1838 			txn->flags &= ~TX_WAIT_NEXT_RQ;
1839 			req->analyse_exp = TICK_ETERNITY;
1840 		}
1841 
1842 		/* just set the request timeout once at the beginning of the request */
1843 		if (!tick_isset(req->analyse_exp)) {
1844 			if ((msg->msg_state == HTTP_MSG_RQBEFORE) &&
1845 			    (txn->flags & TX_WAIT_NEXT_RQ) &&
1846 			    tick_isset(s->be->timeout.httpka))
1847 				req->analyse_exp = tick_add(now_ms, s->be->timeout.httpka);
1848 			else
1849 				req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.httpreq);
1850 		}
1851 
1852 		/* we're not ready yet */
1853 		return 0;
1854 
1855 	failed_keep_alive:
1856 		/* Here we process low-level errors for keep-alive requests. In
1857 		 * short, if the request is not the first one and it experiences
1858 		 * a timeout, read error or shutdown, we just silently close so
1859 		 * that the client can try again.
1860 		 */
1861 		txn->status = 0;
1862 		msg->msg_state = HTTP_MSG_RQBEFORE;
1863 		req->analysers &= AN_REQ_FLT_END;
1864 		s->logs.logwait = 0;
1865 		s->logs.level = 0;
1866 		s->res.flags &= ~CF_EXPECT_MORE; /* speed up sending a previous response */
1867 		http_reply_and_close(s, txn->status, NULL);
1868 		return 0;
1869 	}
1870 
1871 	/* OK now we have a complete HTTP request with indexed headers. Let's
1872 	 * complete the request parsing by setting a few fields we will need
1873 	 * later. At this point, we have the last CRLF at req->buf->data + msg->eoh.
1874 	 * If the request is in HTTP/0.9 form, the rule is still true, and eoh
1875 	 * points to the CRLF of the request line. msg->next points to the first
1876 	 * byte after the last LF. msg->sov points to the first byte of data.
1877 	 * msg->eol cannot be trusted because it may have been left uninitialized
1878 	 * (for instance in the absence of headers).
1879 	 */
1880 
1881 	stream_inc_http_req_ctr(s);
1882 	proxy_inc_fe_req_ctr(sess->fe); /* one more valid request for this FE */
1883 
1884 	if (txn->flags & TX_WAIT_NEXT_RQ) {
1885 		/* kill the pending keep-alive timeout */
1886 		txn->flags &= ~TX_WAIT_NEXT_RQ;
1887 		req->analyse_exp = TICK_ETERNITY;
1888 	}
1889 
1890 
1891 	/* Maybe we found in invalid header name while we were configured not
1892 	 * to block on that, so we have to capture it now.
1893 	 */
1894 	if (unlikely(msg->err_pos >= 0))
1895 		http_capture_bad_message(sess->fe, &sess->fe->invalid_req, s, msg, msg->err_state, sess->fe);
1896 
1897 	/*
1898 	 * 1: identify the method
1899 	 */
1900 	txn->meth = find_http_meth(req->buf->p, msg->sl.rq.m_l);
1901 
1902 	/* we can make use of server redirect on GET and HEAD */
1903 	if (txn->meth == HTTP_METH_GET || txn->meth == HTTP_METH_HEAD)
1904 		s->flags |= SF_REDIRECTABLE;
1905 	else if (txn->meth == HTTP_METH_OTHER &&
1906 		 msg->sl.rq.m_l == 3 && memcmp(req->buf->p, "PRI", 3) == 0) {
1907 		/* PRI is reserved for the HTTP/2 preface */
1908 		msg->err_pos = 0;
1909 		goto return_bad_req;
1910 	}
1911 
1912 	/*
1913 	 * 2: check if the URI matches the monitor_uri.
1914 	 * We have to do this for every request which gets in, because
1915 	 * the monitor-uri is defined by the frontend.
1916 	 */
1917 	if (unlikely((sess->fe->monitor_uri_len != 0) &&
1918 		     (sess->fe->monitor_uri_len == msg->sl.rq.u_l) &&
1919 		     !memcmp(req->buf->p + msg->sl.rq.u,
1920 			     sess->fe->monitor_uri,
1921 			     sess->fe->monitor_uri_len))) {
1922 		/*
1923 		 * We have found the monitor URI
1924 		 */
1925 		struct acl_cond *cond;
1926 
1927 		s->flags |= SF_MONITOR;
1928 		HA_ATOMIC_ADD(&sess->fe->fe_counters.intercepted_req, 1);
1929 
1930 		/* Check if we want to fail this monitor request or not */
1931 		list_for_each_entry(cond, &sess->fe->mon_fail_cond, list) {
1932 			int ret = acl_exec_cond(cond, sess->fe, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
1933 
1934 			ret = acl_pass(ret);
1935 			if (cond->pol == ACL_COND_UNLESS)
1936 				ret = !ret;
1937 
1938 			if (ret) {
1939 				/* we fail this request, let's return 503 service unavail */
1940 				txn->status = 503;
1941 				http_reply_and_close(s, txn->status, http_error_message(s));
1942 				if (!(s->flags & SF_ERR_MASK))
1943 					s->flags |= SF_ERR_LOCAL; /* we don't want a real error here */
1944 				goto return_prx_cond;
1945 			}
1946 		}
1947 
1948 		/* nothing to fail, let's reply normaly */
1949 		txn->status = 200;
1950 		http_reply_and_close(s, txn->status, http_error_message(s));
1951 		if (!(s->flags & SF_ERR_MASK))
1952 			s->flags |= SF_ERR_LOCAL; /* we don't want a real error here */
1953 		goto return_prx_cond;
1954 	}
1955 
1956 	/*
1957 	 * 3: Maybe we have to copy the original REQURI for the logs ?
1958 	 * Note: we cannot log anymore if the request has been
1959 	 * classified as invalid.
1960 	 */
1961 	if (unlikely(s->logs.logwait & LW_REQ)) {
1962 		/* we have a complete HTTP request that we must log */
1963 		if ((txn->uri = pool_alloc(pool_head_requri)) != NULL) {
1964 			int urilen = msg->sl.rq.l;
1965 
1966 			if (urilen >= global.tune.requri_len )
1967 				urilen = global.tune.requri_len - 1;
1968 			memcpy(txn->uri, req->buf->p, urilen);
1969 			txn->uri[urilen] = 0;
1970 
1971 			if (!(s->logs.logwait &= ~(LW_REQ|LW_INIT)))
1972 				s->do_log(s);
1973 		} else {
1974 			ha_alert("HTTP logging : out of memory.\n");
1975 		}
1976 	}
1977 
1978 	/* RFC7230#2.6 has enforced the format of the HTTP version string to be
1979 	 * exactly one digit "." one digit. This check may be disabled using
1980 	 * option accept-invalid-http-request.
1981 	 */
1982 	if (!(sess->fe->options2 & PR_O2_REQBUG_OK)) {
1983 		if (msg->sl.rq.v_l != 8) {
1984 			msg->err_pos = msg->sl.rq.v;
1985 			goto return_bad_req;
1986 		}
1987 
1988 		if (req->buf->p[msg->sl.rq.v + 4] != '/' ||
1989 		    !isdigit((unsigned char)req->buf->p[msg->sl.rq.v + 5]) ||
1990 		    req->buf->p[msg->sl.rq.v + 6] != '.' ||
1991 		    !isdigit((unsigned char)req->buf->p[msg->sl.rq.v + 7])) {
1992 			msg->err_pos = msg->sl.rq.v + 4;
1993 			goto return_bad_req;
1994 		}
1995 	}
1996 	else {
1997 		/* 4. We may have to convert HTTP/0.9 requests to HTTP/1.0 */
1998 		if (unlikely(msg->sl.rq.v_l == 0) && !http_upgrade_v09_to_v10(txn))
1999 			goto return_bad_req;
2000 	}
2001 
2002 	/* ... and check if the request is HTTP/1.1 or above */
2003 	if ((msg->sl.rq.v_l == 8) &&
2004 	    ((req->buf->p[msg->sl.rq.v + 5] > '1') ||
2005 	     ((req->buf->p[msg->sl.rq.v + 5] == '1') &&
2006 	      (req->buf->p[msg->sl.rq.v + 7] >= '1'))))
2007 		msg->flags |= HTTP_MSGF_VER_11;
2008 
2009 	/* "connection" has not been parsed yet */
2010 	txn->flags &= ~(TX_HDR_CONN_PRS | TX_HDR_CONN_CLO | TX_HDR_CONN_KAL | TX_HDR_CONN_UPG);
2011 
2012 	/* if the frontend has "option http-use-proxy-header", we'll check if
2013 	 * we have what looks like a proxied connection instead of a connection,
2014 	 * and in this case set the TX_USE_PX_CONN flag to use Proxy-connection.
2015 	 * Note that this is *not* RFC-compliant, however browsers and proxies
2016 	 * happen to do that despite being non-standard :-(
2017 	 * We consider that a request not beginning with either '/' or '*' is
2018 	 * a proxied connection, which covers both "scheme://location" and
2019 	 * CONNECT ip:port.
2020 	 */
2021 	if ((sess->fe->options2 & PR_O2_USE_PXHDR) &&
2022 	    req->buf->p[msg->sl.rq.u] != '/' && req->buf->p[msg->sl.rq.u] != '*')
2023 		txn->flags |= TX_USE_PX_CONN;
2024 
2025 	/* transfer length unknown*/
2026 	msg->flags &= ~HTTP_MSGF_XFER_LEN;
2027 
2028 	/* 5: we may need to capture headers */
2029 	if (unlikely((s->logs.logwait & LW_REQHDR) && s->req_cap))
2030 		capture_headers(req->buf->p, &txn->hdr_idx,
2031 				s->req_cap, sess->fe->req_cap);
2032 
2033 	/* 6: determine the transfer-length according to RFC2616 #4.4, updated
2034 	 * by RFC7230#3.3.3 :
2035 	 *
2036 	 * The length of a message body is determined by one of the following
2037 	 *   (in order of precedence):
2038 	 *
2039 	 *   1.  Any response to a HEAD request and any response with a 1xx
2040 	 *       (Informational), 204 (No Content), or 304 (Not Modified) status
2041 	 *       code is always terminated by the first empty line after the
2042 	 *       header fields, regardless of the header fields present in the
2043 	 *       message, and thus cannot contain a message body.
2044 	 *
2045 	 *   2.  Any 2xx (Successful) response to a CONNECT request implies that
2046 	 *       the connection will become a tunnel immediately after the empty
2047 	 *       line that concludes the header fields.  A client MUST ignore any
2048 	 *       Content-Length or Transfer-Encoding header fields received in
2049 	 *       such a message.
2050 	 *
2051 	 *   3.  If a Transfer-Encoding header field is present and the chunked
2052 	 *       transfer coding (Section 4.1) is the final encoding, the message
2053 	 *       body length is determined by reading and decoding the chunked
2054 	 *       data until the transfer coding indicates the data is complete.
2055 	 *
2056 	 *       If a Transfer-Encoding header field is present in a response and
2057 	 *       the chunked transfer coding is not the final encoding, the
2058 	 *       message body length is determined by reading the connection until
2059 	 *       it is closed by the server.  If a Transfer-Encoding header field
2060 	 *       is present in a request and the chunked transfer coding is not
2061 	 *       the final encoding, the message body length cannot be determined
2062 	 *       reliably; the server MUST respond with the 400 (Bad Request)
2063 	 *       status code and then close the connection.
2064 	 *
2065 	 *       If a message is received with both a Transfer-Encoding and a
2066 	 *       Content-Length header field, the Transfer-Encoding overrides the
2067 	 *       Content-Length.  Such a message might indicate an attempt to
2068 	 *       perform request smuggling (Section 9.5) or response splitting
2069 	 *       (Section 9.4) and ought to be handled as an error.  A sender MUST
2070 	 *       remove the received Content-Length field prior to forwarding such
2071 	 *       a message downstream.
2072 	 *
2073 	 *   4.  If a message is received without Transfer-Encoding and with
2074 	 *       either multiple Content-Length header fields having differing
2075 	 *       field-values or a single Content-Length header field having an
2076 	 *       invalid value, then the message framing is invalid and the
2077 	 *       recipient MUST treat it as an unrecoverable error.  If this is a
2078 	 *       request message, the server MUST respond with a 400 (Bad Request)
2079 	 *       status code and then close the connection.  If this is a response
2080 	 *       message received by a proxy, the proxy MUST close the connection
2081 	 *       to the server, discard the received response, and send a 502 (Bad
2082 	 *       Gateway) response to the client.  If this is a response message
2083 	 *       received by a user agent, the user agent MUST close the
2084 	 *       connection to the server and discard the received response.
2085 	 *
2086 	 *   5.  If a valid Content-Length header field is present without
2087 	 *       Transfer-Encoding, its decimal value defines the expected message
2088 	 *       body length in octets.  If the sender closes the connection or
2089 	 *       the recipient times out before the indicated number of octets are
2090 	 *       received, the recipient MUST consider the message to be
2091 	 *       incomplete and close the connection.
2092 	 *
2093 	 *   6.  If this is a request message and none of the above are true, then
2094 	 *       the message body length is zero (no message body is present).
2095 	 *
2096 	 *   7.  Otherwise, this is a response message without a declared message
2097 	 *       body length, so the message body length is determined by the
2098 	 *       number of octets received prior to the server closing the
2099 	 *       connection.
2100 	 */
2101 
2102 	ctx.idx = 0;
2103 	/* set TE_CHNK and XFER_LEN only if "chunked" is seen last */
2104 	while (http_find_header2("Transfer-Encoding", 17, req->buf->p, &txn->hdr_idx, &ctx)) {
2105 		if (ctx.vlen == 7 && strncasecmp(ctx.line + ctx.val, "chunked", 7) == 0)
2106 			msg->flags |= HTTP_MSGF_TE_CHNK;
2107 		else if (msg->flags & HTTP_MSGF_TE_CHNK) {
2108 			/* chunked not last, return badreq */
2109 			goto return_bad_req;
2110 		}
2111 	}
2112 
2113 	/* "chunked" mandatory if transfer-encoding is used */
2114 	if (ctx.idx && !(msg->flags & HTTP_MSGF_TE_CHNK))
2115 		goto return_bad_req;
2116 
2117 	/* Chunked requests must have their content-length removed */
2118 	ctx.idx = 0;
2119 	if (msg->flags & HTTP_MSGF_TE_CHNK) {
2120 		while (http_find_header2("Content-Length", 14, req->buf->p, &txn->hdr_idx, &ctx))
2121 			http_remove_header2(msg, &txn->hdr_idx, &ctx);
2122 	}
2123 	else while (http_find_header2("Content-Length", 14, req->buf->p, &txn->hdr_idx, &ctx)) {
2124 		signed long long cl;
2125 
2126 		if (!ctx.vlen) {
2127 			msg->err_pos = ctx.line + ctx.val - req->buf->p;
2128 			goto return_bad_req;
2129 		}
2130 
2131 		if (strl2llrc(ctx.line + ctx.val, ctx.vlen, &cl)) {
2132 			msg->err_pos = ctx.line + ctx.val - req->buf->p;
2133 			goto return_bad_req; /* parse failure */
2134 		}
2135 
2136 		if (cl < 0) {
2137 			msg->err_pos = ctx.line + ctx.val - req->buf->p;
2138 			goto return_bad_req;
2139 		}
2140 
2141 		if ((msg->flags & HTTP_MSGF_CNT_LEN) && (msg->chunk_len != cl)) {
2142 			msg->err_pos = ctx.line + ctx.val - req->buf->p;
2143 			goto return_bad_req; /* already specified, was different */
2144 		}
2145 
2146 		msg->flags |= HTTP_MSGF_CNT_LEN;
2147 		msg->body_len = msg->chunk_len = cl;
2148 	}
2149 
2150 	/* even bodyless requests have a known length */
2151 	msg->flags |= HTTP_MSGF_XFER_LEN;
2152 
2153 	/* Until set to anything else, the connection mode is set as Keep-Alive. It will
2154 	 * only change if both the request and the config reference something else.
2155 	 * Option httpclose by itself sets tunnel mode where headers are mangled.
2156 	 * However, if another mode is set, it will affect it (eg: server-close/
2157 	 * keep-alive + httpclose = close). Note that we avoid to redo the same work
2158 	 * if FE and BE have the same settings (common). The method consists in
2159 	 * checking if options changed between the two calls (implying that either
2160 	 * one is non-null, or one of them is non-null and we are there for the first
2161 	 * time.
2162 	 */
2163 	if (!(txn->flags & TX_HDR_CONN_PRS) ||
2164 	    ((sess->fe->options & PR_O_HTTP_MODE) != (s->be->options & PR_O_HTTP_MODE)))
2165 		http_adjust_conn_mode(s, txn, msg);
2166 
2167 	/* we may have to wait for the request's body */
2168 	if ((s->be->options & PR_O_WREQ_BODY) &&
2169 	    (msg->body_len || (msg->flags & HTTP_MSGF_TE_CHNK)))
2170 		req->analysers |= AN_REQ_HTTP_BODY;
2171 
2172 	/*
2173 	 * RFC7234#4:
2174 	 *   A cache MUST write through requests with methods
2175 	 *   that are unsafe (Section 4.2.1 of [RFC7231]) to
2176 	 *   the origin server; i.e., a cache is not allowed
2177 	 *   to generate a reply to such a request before
2178 	 *   having forwarded the request and having received
2179 	 *   a corresponding response.
2180 	 *
2181 	 * RFC7231#4.2.1:
2182 	 *   Of the request methods defined by this
2183 	 *   specification, the GET, HEAD, OPTIONS, and TRACE
2184 	 *   methods are defined to be safe.
2185 	 */
2186 	if (likely(txn->meth == HTTP_METH_GET ||
2187 		   txn->meth == HTTP_METH_HEAD ||
2188 		   txn->meth == HTTP_METH_OPTIONS ||
2189 		   txn->meth == HTTP_METH_TRACE))
2190 		txn->flags |= TX_CACHEABLE | TX_CACHE_COOK;
2191 
2192 	/* end of job, return OK */
2193 	req->analysers &= ~an_bit;
2194 	req->analyse_exp = TICK_ETERNITY;
2195 	return 1;
2196 
2197  return_bad_req:
2198 	/* We centralize bad requests processing here */
2199 	if (unlikely(msg->msg_state == HTTP_MSG_ERROR) || msg->err_pos >= 0) {
2200 		/* we detected a parsing error. We want to archive this request
2201 		 * in the dedicated proxy area for later troubleshooting.
2202 		 */
2203 		http_capture_bad_message(sess->fe, &sess->fe->invalid_req, s, msg, msg->err_state, sess->fe);
2204 	}
2205 
2206 	txn->req.err_state = txn->req.msg_state;
2207 	txn->req.msg_state = HTTP_MSG_ERROR;
2208 	txn->status = 400;
2209 	http_reply_and_close(s, txn->status, http_error_message(s));
2210 
2211 	HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1);
2212 	if (sess->listener && sess->listener->counters)
2213 		HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1);
2214 
2215  return_prx_cond:
2216 	if (!(s->flags & SF_ERR_MASK))
2217 		s->flags |= SF_ERR_PRXCOND;
2218 	if (!(s->flags & SF_FINST_MASK))
2219 		s->flags |= SF_FINST_R;
2220 
2221 	req->analysers &= AN_REQ_FLT_END;
2222 	req->analyse_exp = TICK_ETERNITY;
2223 	return 0;
2224 }
2225 
2226 
2227 /* This function prepares an applet to handle the stats. It can deal with the
2228  * "100-continue" expectation, check that admin rules are met for POST requests,
2229  * and program a response message if something was unexpected. It cannot fail
2230  * and always relies on the stats applet to complete the job. It does not touch
2231  * analysers nor counters, which are left to the caller. It does not touch
2232  * s->target which is supposed to already point to the stats applet. The caller
2233  * is expected to have already assigned an appctx to the stream.
2234  */
http_handle_stats(struct stream * s,struct channel * req)2235 int http_handle_stats(struct stream *s, struct channel *req)
2236 {
2237 	struct stats_admin_rule *stats_admin_rule;
2238 	struct stream_interface *si = &s->si[1];
2239 	struct session *sess = s->sess;
2240 	struct http_txn *txn = s->txn;
2241 	struct http_msg *msg = &txn->req;
2242 	struct uri_auth *uri_auth = s->be->uri_auth;
2243 	const char *uri, *h, *lookup;
2244 	struct appctx *appctx;
2245 
2246 	appctx = si_appctx(si);
2247 	memset(&appctx->ctx.stats, 0, sizeof(appctx->ctx.stats));
2248 	appctx->st1 = appctx->st2 = 0;
2249 	appctx->ctx.stats.st_code = STAT_STATUS_INIT;
2250 	appctx->ctx.stats.flags |= STAT_FMT_HTML; /* assume HTML mode by default */
2251 	if ((msg->flags & HTTP_MSGF_VER_11) && (s->txn->meth != HTTP_METH_HEAD))
2252 		appctx->ctx.stats.flags |= STAT_CHUNKED;
2253 
2254 	uri = msg->chn->buf->p + msg->sl.rq.u;
2255 	lookup = uri + uri_auth->uri_len;
2256 
2257 	for (h = lookup; h <= uri + msg->sl.rq.u_l - 3; h++) {
2258 		if (memcmp(h, ";up", 3) == 0) {
2259 			appctx->ctx.stats.flags |= STAT_HIDE_DOWN;
2260 			break;
2261 		}
2262 	}
2263 
2264 	if (uri_auth->refresh) {
2265 		for (h = lookup; h <= uri + msg->sl.rq.u_l - 10; h++) {
2266 			if (memcmp(h, ";norefresh", 10) == 0) {
2267 				appctx->ctx.stats.flags |= STAT_NO_REFRESH;
2268 				break;
2269 			}
2270 		}
2271 	}
2272 
2273 	for (h = lookup; h <= uri + msg->sl.rq.u_l - 4; h++) {
2274 		if (memcmp(h, ";csv", 4) == 0) {
2275 			appctx->ctx.stats.flags &= ~STAT_FMT_HTML;
2276 			break;
2277 		}
2278 	}
2279 
2280 	for (h = lookup; h <= uri + msg->sl.rq.u_l - 6; h++) {
2281 		if (memcmp(h, ";typed", 6) == 0) {
2282 			appctx->ctx.stats.flags &= ~STAT_FMT_HTML;
2283 			appctx->ctx.stats.flags |= STAT_FMT_TYPED;
2284 			break;
2285 		}
2286 	}
2287 
2288 	for (h = lookup; h <= uri + msg->sl.rq.u_l - 8; h++) {
2289 		if (memcmp(h, ";st=", 4) == 0) {
2290 			int i;
2291 			h += 4;
2292 			appctx->ctx.stats.st_code = STAT_STATUS_UNKN;
2293 			for (i = STAT_STATUS_INIT + 1; i < STAT_STATUS_SIZE; i++) {
2294 				if (strncmp(stat_status_codes[i], h, 4) == 0) {
2295 					appctx->ctx.stats.st_code = i;
2296 					break;
2297 				}
2298 			}
2299 			break;
2300 		}
2301 	}
2302 
2303 	appctx->ctx.stats.scope_str = 0;
2304 	appctx->ctx.stats.scope_len = 0;
2305 	for (h = lookup; h <= uri + msg->sl.rq.u_l - 8; h++) {
2306 		if (memcmp(h, STAT_SCOPE_INPUT_NAME "=", strlen(STAT_SCOPE_INPUT_NAME) + 1) == 0) {
2307 			int itx = 0;
2308 			const char *h2;
2309 			char scope_txt[STAT_SCOPE_TXT_MAXLEN + 1];
2310 			const char *err;
2311 
2312 			h += strlen(STAT_SCOPE_INPUT_NAME) + 1;
2313 			h2 = h;
2314 			appctx->ctx.stats.scope_str = h2 - msg->chn->buf->p;
2315 			while (*h != ';' && *h != '\0' && *h != '&' && *h != ' ' && *h != '\n') {
2316 				itx++;
2317 				h++;
2318 			}
2319 
2320 			if (itx > STAT_SCOPE_TXT_MAXLEN)
2321 				itx = STAT_SCOPE_TXT_MAXLEN;
2322 			appctx->ctx.stats.scope_len = itx;
2323 
2324 			/* scope_txt = search query, appctx->ctx.stats.scope_len is always <= STAT_SCOPE_TXT_MAXLEN */
2325 			memcpy(scope_txt, h2, itx);
2326 			scope_txt[itx] = '\0';
2327 			err = invalid_char(scope_txt);
2328 			if (err) {
2329 				/* bad char in search text => clear scope */
2330 				appctx->ctx.stats.scope_str = 0;
2331 				appctx->ctx.stats.scope_len = 0;
2332 			}
2333 			break;
2334 		}
2335 	}
2336 
2337 	/* now check whether we have some admin rules for this request */
2338 	list_for_each_entry(stats_admin_rule, &uri_auth->admin_rules, list) {
2339 		int ret = 1;
2340 
2341 		if (stats_admin_rule->cond) {
2342 			ret = acl_exec_cond(stats_admin_rule->cond, s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
2343 			ret = acl_pass(ret);
2344 			if (stats_admin_rule->cond->pol == ACL_COND_UNLESS)
2345 				ret = !ret;
2346 		}
2347 
2348 		if (ret) {
2349 			/* no rule, or the rule matches */
2350 			appctx->ctx.stats.flags |= STAT_ADMIN;
2351 			break;
2352 		}
2353 	}
2354 
2355 	/* Was the status page requested with a POST ? */
2356 	if (unlikely(txn->meth == HTTP_METH_POST && txn->req.body_len > 0)) {
2357 		if (appctx->ctx.stats.flags & STAT_ADMIN) {
2358 			/* we'll need the request body, possibly after sending 100-continue */
2359 			if (msg->msg_state < HTTP_MSG_CHUNK_SIZE)
2360 				req->analysers |= AN_REQ_HTTP_BODY;
2361 			appctx->st0 = STAT_HTTP_POST;
2362 		}
2363 		else {
2364 			appctx->ctx.stats.st_code = STAT_STATUS_DENY;
2365 			appctx->st0 = STAT_HTTP_LAST;
2366 		}
2367 	}
2368 	else {
2369 		/* So it was another method (GET/HEAD) */
2370 		appctx->st0 = STAT_HTTP_HEAD;
2371 	}
2372 
2373 	s->task->nice = -32; /* small boost for HTTP statistics */
2374 	return 1;
2375 }
2376 
2377 /* Sets the TOS header in IPv4 and the traffic class header in IPv6 packets
2378  * (as per RFC3260 #4 and BCP37 #4.2 and #5.2).
2379  */
inet_set_tos(int fd,const struct sockaddr_storage * from,int tos)2380 void inet_set_tos(int fd, const struct sockaddr_storage *from, int tos)
2381 {
2382 #ifdef IP_TOS
2383 	if (from->ss_family == AF_INET)
2384 		setsockopt(fd, IPPROTO_IP, IP_TOS, &tos, sizeof(tos));
2385 #endif
2386 #ifdef IPV6_TCLASS
2387 	if (from->ss_family == AF_INET6) {
2388 		if (IN6_IS_ADDR_V4MAPPED(&((struct sockaddr_in6 *)from)->sin6_addr))
2389 			/* v4-mapped addresses need IP_TOS */
2390 			setsockopt(fd, IPPROTO_IP, IP_TOS, &tos, sizeof(tos));
2391 		else
2392 			setsockopt(fd, IPPROTO_IPV6, IPV6_TCLASS, &tos, sizeof(tos));
2393 	}
2394 #endif
2395 }
2396 
http_transform_header_str(struct stream * s,struct http_msg * msg,const char * name,unsigned int name_len,const char * str,struct my_regex * re,int action)2397 int http_transform_header_str(struct stream* s, struct http_msg *msg,
2398                               const char* name, unsigned int name_len,
2399                               const char *str, struct my_regex *re,
2400                               int action)
2401 {
2402 	struct hdr_ctx ctx;
2403 	char *buf = msg->chn->buf->p;
2404 	struct hdr_idx *idx = &s->txn->hdr_idx;
2405 	int (*http_find_hdr_func)(const char *name, int len, char *sol,
2406 	                          struct hdr_idx *idx, struct hdr_ctx *ctx);
2407 	struct chunk *output = get_trash_chunk();
2408 
2409 	ctx.idx = 0;
2410 
2411 	/* Choose the header browsing function. */
2412 	switch (action) {
2413 	case ACT_HTTP_REPLACE_VAL:
2414 		http_find_hdr_func = http_find_header2;
2415 		break;
2416 	case ACT_HTTP_REPLACE_HDR:
2417 		http_find_hdr_func = http_find_full_header2;
2418 		break;
2419 	default: /* impossible */
2420 		return -1;
2421 	}
2422 
2423 	while (http_find_hdr_func(name, name_len, buf, idx, &ctx)) {
2424 		struct hdr_idx_elem *hdr = idx->v + ctx.idx;
2425 		int delta;
2426 		char *val = ctx.line + ctx.val;
2427 		char* val_end = val + ctx.vlen;
2428 
2429 		if (!regex_exec_match2(re, val, val_end-val, MAX_MATCH, pmatch, 0))
2430 			continue;
2431 
2432 		output->len = exp_replace(output->str, output->size, val, str, pmatch);
2433 		if (output->len == -1)
2434 			return -1;
2435 
2436 		delta = buffer_replace2(msg->chn->buf, val, val_end, output->str, output->len);
2437 
2438 		hdr->len += delta;
2439 		http_msg_move_end(msg, delta);
2440 
2441 		/* Adjust the length of the current value of the index. */
2442 		ctx.vlen += delta;
2443 	}
2444 
2445 	return 0;
2446 }
2447 
http_transform_header(struct stream * s,struct http_msg * msg,const char * name,unsigned int name_len,struct list * fmt,struct my_regex * re,int action)2448 static int http_transform_header(struct stream* s, struct http_msg *msg,
2449                                  const char* name, unsigned int name_len,
2450                                  struct list *fmt, struct my_regex *re,
2451                                  int action)
2452 {
2453 	struct chunk *replace;
2454 	int ret = -1;
2455 
2456 	replace = alloc_trash_chunk();
2457 	if (!replace)
2458 		goto leave;
2459 
2460 	replace->len = build_logline(s, replace->str, replace->size, fmt);
2461 	if (replace->len >= replace->size - 1)
2462 		goto leave;
2463 
2464 	ret = http_transform_header_str(s, msg, name, name_len, replace->str, re, action);
2465 
2466   leave:
2467 	free_trash_chunk(replace);
2468 	return ret;
2469 }
2470 
2471 /* Executes the http-request rules <rules> for stream <s>, proxy <px> and
2472  * transaction <txn>. Returns the verdict of the first rule that prevents
2473  * further processing of the request (auth, deny, ...), and defaults to
2474  * HTTP_RULE_RES_STOP if it executed all rules or stopped on an allow, or
2475  * HTTP_RULE_RES_CONT if the last rule was reached. It may set the TX_CLTARPIT
2476  * on txn->flags if it encounters a tarpit rule. If <deny_status> is not NULL
2477  * and a deny/tarpit rule is matched, it will be filled with this rule's deny
2478  * status.
2479  */
2480 enum rule_result
http_req_get_intercept_rule(struct proxy * px,struct list * rules,struct stream * s,int * deny_status)2481 http_req_get_intercept_rule(struct proxy *px, struct list *rules, struct stream *s, int *deny_status)
2482 {
2483 	struct session *sess = strm_sess(s);
2484 	struct http_txn *txn = s->txn;
2485 	struct connection *cli_conn;
2486 	struct act_rule *rule;
2487 	struct hdr_ctx ctx;
2488 	const char *auth_realm;
2489 	int act_flags = 0;
2490 	int len;
2491 
2492 	/* If "the current_rule_list" match the executed rule list, we are in
2493 	 * resume condition. If a resume is needed it is always in the action
2494 	 * and never in the ACL or converters. In this case, we initialise the
2495 	 * current rule, and go to the action execution point.
2496 	 */
2497 	if (s->current_rule) {
2498 		rule = s->current_rule;
2499 		s->current_rule = NULL;
2500 		if (s->current_rule_list == rules)
2501 			goto resume_execution;
2502 	}
2503 	s->current_rule_list = rules;
2504 
2505 	list_for_each_entry(rule, rules, list) {
2506 
2507 		/* check optional condition */
2508 		if (rule->cond) {
2509 			int ret;
2510 
2511 			ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
2512 			ret = acl_pass(ret);
2513 
2514 			if (rule->cond->pol == ACL_COND_UNLESS)
2515 				ret = !ret;
2516 
2517 			if (!ret) /* condition not matched */
2518 				continue;
2519 		}
2520 
2521 		act_flags |= ACT_FLAG_FIRST;
2522 resume_execution:
2523 		switch (rule->action) {
2524 		case ACT_ACTION_ALLOW:
2525 			return HTTP_RULE_RES_STOP;
2526 
2527 		case ACT_ACTION_DENY:
2528 			if (deny_status)
2529 				*deny_status = rule->deny_status;
2530 			return HTTP_RULE_RES_DENY;
2531 
2532 		case ACT_HTTP_REQ_TARPIT:
2533 			txn->flags |= TX_CLTARPIT;
2534 			if (deny_status)
2535 				*deny_status = rule->deny_status;
2536 			return HTTP_RULE_RES_DENY;
2537 
2538 		case ACT_HTTP_REQ_AUTH:
2539 			/* Auth might be performed on regular http-req rules as well as on stats */
2540 			auth_realm = rule->arg.auth.realm;
2541 			if (!auth_realm) {
2542 				if (px->uri_auth && rules == &px->uri_auth->http_req_rules)
2543 					auth_realm = STATS_DEFAULT_REALM;
2544 				else
2545 					auth_realm = px->id;
2546 			}
2547 			/* send 401/407 depending on whether we use a proxy or not. We still
2548 			 * count one error, because normal browsing won't significantly
2549 			 * increase the counter but brute force attempts will.
2550 			 */
2551 			chunk_printf(&trash, (txn->flags & TX_USE_PX_CONN) ? HTTP_407_fmt : HTTP_401_fmt, auth_realm);
2552 			txn->status = (txn->flags & TX_USE_PX_CONN) ? 407 : 401;
2553 			http_reply_and_close(s, txn->status, &trash);
2554 			stream_inc_http_err_ctr(s);
2555 			return HTTP_RULE_RES_ABRT;
2556 
2557 		case ACT_HTTP_REDIR:
2558 			if (!http_apply_redirect_rule(rule->arg.redir, s, txn))
2559 				return HTTP_RULE_RES_BADREQ;
2560 			return HTTP_RULE_RES_DONE;
2561 
2562 		case ACT_HTTP_SET_NICE:
2563 			s->task->nice = rule->arg.nice;
2564 			break;
2565 
2566 		case ACT_HTTP_SET_TOS:
2567 			if ((cli_conn = objt_conn(sess->origin)) && conn_ctrl_ready(cli_conn))
2568 				inet_set_tos(cli_conn->handle.fd, &cli_conn->addr.from, rule->arg.tos);
2569 			break;
2570 
2571 		case ACT_HTTP_SET_MARK:
2572 #ifdef SO_MARK
2573 			if ((cli_conn = objt_conn(sess->origin)) && conn_ctrl_ready(cli_conn))
2574 				setsockopt(cli_conn->handle.fd, SOL_SOCKET, SO_MARK, &rule->arg.mark, sizeof(rule->arg.mark));
2575 #endif
2576 			break;
2577 
2578 		case ACT_HTTP_SET_LOGL:
2579 			s->logs.level = rule->arg.loglevel;
2580 			break;
2581 
2582 		case ACT_HTTP_REPLACE_HDR:
2583 		case ACT_HTTP_REPLACE_VAL:
2584 			if (http_transform_header(s, &txn->req, rule->arg.hdr_add.name,
2585 			                          rule->arg.hdr_add.name_len,
2586 			                          &rule->arg.hdr_add.fmt,
2587 			                          &rule->arg.hdr_add.re, rule->action))
2588 				return HTTP_RULE_RES_BADREQ;
2589 			break;
2590 
2591 		case ACT_HTTP_DEL_HDR:
2592 			ctx.idx = 0;
2593 			/* remove all occurrences of the header */
2594 			while (http_find_header2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len,
2595 						 txn->req.chn->buf->p, &txn->hdr_idx, &ctx)) {
2596 				http_remove_header2(&txn->req, &txn->hdr_idx, &ctx);
2597 			}
2598 			break;
2599 
2600 		case ACT_HTTP_SET_HDR:
2601 		case ACT_HTTP_ADD_HDR: {
2602 			/* The scope of the trash buffer must be limited to this function. The
2603 			 * build_logline() function can execute a lot of other function which
2604 			 * can use the trash buffer. So for limiting the scope of this global
2605 			 * buffer, we build first the header value using build_logline, and
2606 			 * after we store the header name.
2607 			 */
2608 			struct chunk *replace;
2609 
2610 			replace = alloc_trash_chunk();
2611 			if (!replace)
2612 				return HTTP_RULE_RES_BADREQ;
2613 
2614 			len = rule->arg.hdr_add.name_len + 2,
2615 			len += build_logline(s, replace->str + len, replace->size - len, &rule->arg.hdr_add.fmt);
2616 			memcpy(replace->str, rule->arg.hdr_add.name, rule->arg.hdr_add.name_len);
2617 			replace->str[rule->arg.hdr_add.name_len] = ':';
2618 			replace->str[rule->arg.hdr_add.name_len + 1] = ' ';
2619 			replace->len = len;
2620 
2621 			if (rule->action == ACT_HTTP_SET_HDR) {
2622 				/* remove all occurrences of the header */
2623 				ctx.idx = 0;
2624 				while (http_find_header2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len,
2625 							 txn->req.chn->buf->p, &txn->hdr_idx, &ctx)) {
2626 					http_remove_header2(&txn->req, &txn->hdr_idx, &ctx);
2627 				}
2628 			}
2629 
2630 			http_header_add_tail2(&txn->req, &txn->hdr_idx, replace->str, replace->len);
2631 
2632 			free_trash_chunk(replace);
2633 			break;
2634 			}
2635 
2636 		case ACT_HTTP_DEL_ACL:
2637 		case ACT_HTTP_DEL_MAP: {
2638 			struct pat_ref *ref;
2639 			struct chunk *key;
2640 
2641 			/* collect reference */
2642 			ref = pat_ref_lookup(rule->arg.map.ref);
2643 			if (!ref)
2644 				continue;
2645 
2646 			/* allocate key */
2647 			key = alloc_trash_chunk();
2648 			if (!key)
2649 				return HTTP_RULE_RES_BADREQ;
2650 
2651 			/* collect key */
2652 			key->len = build_logline(s, key->str, key->size, &rule->arg.map.key);
2653 			key->str[key->len] = '\0';
2654 
2655 			/* perform update */
2656 			/* returned code: 1=ok, 0=ko */
2657 			HA_SPIN_LOCK(PATREF_LOCK, &ref->lock);
2658 			pat_ref_delete(ref, key->str);
2659 			HA_SPIN_UNLOCK(PATREF_LOCK, &ref->lock);
2660 
2661 			free_trash_chunk(key);
2662 			break;
2663 			}
2664 
2665 		case ACT_HTTP_ADD_ACL: {
2666 			struct pat_ref *ref;
2667 			struct chunk *key;
2668 
2669 			/* collect reference */
2670 			ref = pat_ref_lookup(rule->arg.map.ref);
2671 			if (!ref)
2672 				continue;
2673 
2674 			/* allocate key */
2675 			key = alloc_trash_chunk();
2676 			if (!key)
2677 				return HTTP_RULE_RES_BADREQ;
2678 
2679 			/* collect key */
2680 			key->len = build_logline(s, key->str, key->size, &rule->arg.map.key);
2681 			key->str[key->len] = '\0';
2682 
2683 			/* perform update */
2684 			/* add entry only if it does not already exist */
2685 			HA_SPIN_LOCK(PATREF_LOCK, &ref->lock);
2686 			if (pat_ref_find_elt(ref, key->str) == NULL)
2687 				pat_ref_add(ref, key->str, NULL, NULL);
2688 			HA_SPIN_UNLOCK(PATREF_LOCK, &ref->lock);
2689 
2690 			free_trash_chunk(key);
2691 			break;
2692 			}
2693 
2694 		case ACT_HTTP_SET_MAP: {
2695 			struct pat_ref *ref;
2696 			struct chunk *key, *value;
2697 
2698 			/* collect reference */
2699 			ref = pat_ref_lookup(rule->arg.map.ref);
2700 			if (!ref)
2701 				continue;
2702 
2703 			/* allocate key */
2704 			key = alloc_trash_chunk();
2705 			if (!key)
2706 				return HTTP_RULE_RES_BADREQ;
2707 
2708 			/* allocate value */
2709 			value = alloc_trash_chunk();
2710 			if (!value) {
2711 				free_trash_chunk(key);
2712 				return HTTP_RULE_RES_BADREQ;
2713 			}
2714 
2715 			/* collect key */
2716 			key->len = build_logline(s, key->str, key->size, &rule->arg.map.key);
2717 			key->str[key->len] = '\0';
2718 
2719 			/* collect value */
2720 			value->len = build_logline(s, value->str, value->size, &rule->arg.map.value);
2721 			value->str[value->len] = '\0';
2722 
2723 			/* perform update */
2724 			HA_SPIN_LOCK(PATREF_LOCK, &ref->lock);
2725 			if (pat_ref_find_elt(ref, key->str) != NULL)
2726 				/* update entry if it exists */
2727 				pat_ref_set(ref, key->str, value->str, NULL);
2728 			else
2729 				/* insert a new entry */
2730 				pat_ref_add(ref, key->str, value->str, NULL);
2731 			HA_SPIN_UNLOCK(PATREF_LOCK, &ref->lock);
2732 
2733 			free_trash_chunk(key);
2734 			free_trash_chunk(value);
2735 			break;
2736 			}
2737 
2738 		case ACT_CUSTOM:
2739 			if ((s->req.flags & CF_READ_ERROR) ||
2740 			    ((s->req.flags & (CF_SHUTR|CF_READ_NULL)) &&
2741 			     !(s->si[0].flags & SI_FL_CLEAN_ABRT) &&
2742 			     (px->options & PR_O_ABRT_CLOSE)))
2743 				act_flags |= ACT_FLAG_FINAL;
2744 
2745 			switch (rule->action_ptr(rule, px, s->sess, s, act_flags)) {
2746 			case ACT_RET_ERR:
2747 			case ACT_RET_CONT:
2748 				break;
2749 			case ACT_RET_STOP:
2750 				return HTTP_RULE_RES_DONE;
2751 			case ACT_RET_YIELD:
2752 				s->current_rule = rule;
2753 				return HTTP_RULE_RES_YIELD;
2754 			}
2755 			break;
2756 
2757 		case ACT_ACTION_TRK_SC0 ... ACT_ACTION_TRK_SCMAX:
2758 			/* Note: only the first valid tracking parameter of each
2759 			 * applies.
2760 			 */
2761 
2762 			if (stkctr_entry(&s->stkctr[trk_idx(rule->action)]) == NULL) {
2763 				struct stktable *t;
2764 				struct stksess *ts;
2765 				struct stktable_key *key;
2766 				void *ptr1, *ptr2;
2767 
2768 				t = rule->arg.trk_ctr.table.t;
2769 				key = stktable_fetch_key(t, s->be, sess, s, SMP_OPT_DIR_REQ | SMP_OPT_FINAL, rule->arg.trk_ctr.expr, NULL);
2770 
2771 				if (key && (ts = stktable_get_entry(t, key))) {
2772 					stream_track_stkctr(&s->stkctr[trk_idx(rule->action)], t, ts);
2773 
2774 					/* let's count a new HTTP request as it's the first time we do it */
2775 					ptr1 = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_REQ_CNT);
2776 					ptr2 = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_REQ_RATE);
2777 					if (ptr1 || ptr2) {
2778 						HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock);
2779 
2780 						if (ptr1)
2781 							stktable_data_cast(ptr1, http_req_cnt)++;
2782 
2783 						if (ptr2)
2784 							update_freq_ctr_period(&stktable_data_cast(ptr2, http_req_rate),
2785 							                       t->data_arg[STKTABLE_DT_HTTP_REQ_RATE].u, 1);
2786 
2787 						HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock);
2788 
2789 						/* If data was modified, we need to touch to re-schedule sync */
2790 						stktable_touch_local(t, ts, 0);
2791 					}
2792 
2793 					stkctr_set_flags(&s->stkctr[trk_idx(rule->action)], STKCTR_TRACK_CONTENT);
2794 					if (sess->fe != s->be)
2795 						stkctr_set_flags(&s->stkctr[trk_idx(rule->action)], STKCTR_TRACK_BACKEND);
2796 				}
2797 			}
2798 			break;
2799 
2800 		/* other flags exists, but normaly, they never be matched. */
2801 		default:
2802 			break;
2803 		}
2804 	}
2805 
2806 	/* we reached the end of the rules, nothing to report */
2807 	return HTTP_RULE_RES_CONT;
2808 }
2809 
2810 
2811 /* Executes the http-response rules <rules> for stream <s> and proxy <px>. It
2812  * returns one of 5 possible statuses: HTTP_RULE_RES_CONT, HTTP_RULE_RES_STOP,
2813  * HTTP_RULE_RES_DONE, HTTP_RULE_RES_YIELD, or HTTP_RULE_RES_BADREQ. If *CONT
2814  * is returned, the process can continue the evaluation of next rule list. If
2815  * *STOP or *DONE is returned, the process must stop the evaluation. If *BADREQ
2816  * is returned, it means the operation could not be processed and a server error
2817  * must be returned. It may set the TX_SVDENY on txn->flags if it encounters a
2818  * deny rule. If *YIELD is returned, the caller must call again the function
2819  * with the same context.
2820  */
2821 static enum rule_result
http_res_get_intercept_rule(struct proxy * px,struct list * rules,struct stream * s)2822 http_res_get_intercept_rule(struct proxy *px, struct list *rules, struct stream *s)
2823 {
2824 	struct session *sess = strm_sess(s);
2825 	struct http_txn *txn = s->txn;
2826 	struct connection *cli_conn;
2827 	struct act_rule *rule;
2828 	struct hdr_ctx ctx;
2829 	int act_flags = 0;
2830 
2831 	/* If "the current_rule_list" match the executed rule list, we are in
2832 	 * resume condition. If a resume is needed it is always in the action
2833 	 * and never in the ACL or converters. In this case, we initialise the
2834 	 * current rule, and go to the action execution point.
2835 	 */
2836 	if (s->current_rule) {
2837 		rule = s->current_rule;
2838 		s->current_rule = NULL;
2839 		if (s->current_rule_list == rules)
2840 			goto resume_execution;
2841 	}
2842 	s->current_rule_list = rules;
2843 
2844 	list_for_each_entry(rule, rules, list) {
2845 
2846 		/* check optional condition */
2847 		if (rule->cond) {
2848 			int ret;
2849 
2850 			ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL);
2851 			ret = acl_pass(ret);
2852 
2853 			if (rule->cond->pol == ACL_COND_UNLESS)
2854 				ret = !ret;
2855 
2856 			if (!ret) /* condition not matched */
2857 				continue;
2858 		}
2859 
2860 		act_flags |= ACT_FLAG_FIRST;
2861 resume_execution:
2862 		switch (rule->action) {
2863 		case ACT_ACTION_ALLOW:
2864 			return HTTP_RULE_RES_STOP; /* "allow" rules are OK */
2865 
2866 		case ACT_ACTION_DENY:
2867 			txn->flags |= TX_SVDENY;
2868 			return HTTP_RULE_RES_STOP;
2869 
2870 		case ACT_HTTP_SET_NICE:
2871 			s->task->nice = rule->arg.nice;
2872 			break;
2873 
2874 		case ACT_HTTP_SET_TOS:
2875 			if ((cli_conn = objt_conn(sess->origin)) && conn_ctrl_ready(cli_conn))
2876 				inet_set_tos(cli_conn->handle.fd, &cli_conn->addr.from, rule->arg.tos);
2877 			break;
2878 
2879 		case ACT_HTTP_SET_MARK:
2880 #ifdef SO_MARK
2881 			if ((cli_conn = objt_conn(sess->origin)) && conn_ctrl_ready(cli_conn))
2882 				setsockopt(cli_conn->handle.fd, SOL_SOCKET, SO_MARK, &rule->arg.mark, sizeof(rule->arg.mark));
2883 #endif
2884 			break;
2885 
2886 		case ACT_HTTP_SET_LOGL:
2887 			s->logs.level = rule->arg.loglevel;
2888 			break;
2889 
2890 		case ACT_HTTP_REPLACE_HDR:
2891 		case ACT_HTTP_REPLACE_VAL:
2892 			if (http_transform_header(s, &txn->rsp, rule->arg.hdr_add.name,
2893 			                          rule->arg.hdr_add.name_len,
2894 			                          &rule->arg.hdr_add.fmt,
2895 			                          &rule->arg.hdr_add.re, rule->action))
2896 				return HTTP_RULE_RES_BADREQ;
2897 			break;
2898 
2899 		case ACT_HTTP_DEL_HDR:
2900 			ctx.idx = 0;
2901 			/* remove all occurrences of the header */
2902 			while (http_find_header2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len,
2903 						 txn->rsp.chn->buf->p, &txn->hdr_idx, &ctx)) {
2904 				http_remove_header2(&txn->rsp, &txn->hdr_idx, &ctx);
2905 			}
2906 			break;
2907 
2908 		case ACT_HTTP_SET_HDR:
2909 		case ACT_HTTP_ADD_HDR: {
2910 			struct chunk *replace;
2911 
2912 			replace = alloc_trash_chunk();
2913 			if (!replace)
2914 				return HTTP_RULE_RES_BADREQ;
2915 
2916 			chunk_printf(replace, "%s: ", rule->arg.hdr_add.name);
2917 			memcpy(replace->str, rule->arg.hdr_add.name, rule->arg.hdr_add.name_len);
2918 			replace->len = rule->arg.hdr_add.name_len;
2919 			replace->str[replace->len++] = ':';
2920 			replace->str[replace->len++] = ' ';
2921 			replace->len += build_logline(s, replace->str + replace->len, replace->size - replace->len,
2922 			                              &rule->arg.hdr_add.fmt);
2923 
2924 			if (rule->action == ACT_HTTP_SET_HDR) {
2925 				/* remove all occurrences of the header */
2926 				ctx.idx = 0;
2927 				while (http_find_header2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len,
2928 							 txn->rsp.chn->buf->p, &txn->hdr_idx, &ctx)) {
2929 					http_remove_header2(&txn->rsp, &txn->hdr_idx, &ctx);
2930 				}
2931 			}
2932 			http_header_add_tail2(&txn->rsp, &txn->hdr_idx, replace->str, replace->len);
2933 
2934 			free_trash_chunk(replace);
2935 			break;
2936 			}
2937 
2938 		case ACT_HTTP_DEL_ACL:
2939 		case ACT_HTTP_DEL_MAP: {
2940 			struct pat_ref *ref;
2941 			struct chunk *key;
2942 
2943 			/* collect reference */
2944 			ref = pat_ref_lookup(rule->arg.map.ref);
2945 			if (!ref)
2946 				continue;
2947 
2948 			/* allocate key */
2949 			key = alloc_trash_chunk();
2950 			if (!key)
2951 				return HTTP_RULE_RES_BADREQ;
2952 
2953 			/* collect key */
2954 			key->len = build_logline(s, key->str, key->size, &rule->arg.map.key);
2955 			key->str[key->len] = '\0';
2956 
2957 			/* perform update */
2958 			/* returned code: 1=ok, 0=ko */
2959 			HA_SPIN_LOCK(PATREF_LOCK, &ref->lock);
2960 			pat_ref_delete(ref, key->str);
2961 			HA_SPIN_UNLOCK(PATREF_LOCK, &ref->lock);
2962 
2963 			free_trash_chunk(key);
2964 			break;
2965 			}
2966 
2967 		case ACT_HTTP_ADD_ACL: {
2968 			struct pat_ref *ref;
2969 			struct chunk *key;
2970 
2971 			/* collect reference */
2972 			ref = pat_ref_lookup(rule->arg.map.ref);
2973 			if (!ref)
2974 				continue;
2975 
2976 			/* allocate key */
2977 			key = alloc_trash_chunk();
2978 			if (!key)
2979 				return HTTP_RULE_RES_BADREQ;
2980 
2981 			/* collect key */
2982 			key->len = build_logline(s, key->str, key->size, &rule->arg.map.key);
2983 			key->str[key->len] = '\0';
2984 
2985 			/* perform update */
2986 			/* check if the entry already exists */
2987 			HA_SPIN_LOCK(PATREF_LOCK, &ref->lock);
2988 			if (pat_ref_find_elt(ref, key->str) == NULL)
2989 				pat_ref_add(ref, key->str, NULL, NULL);
2990 			HA_SPIN_UNLOCK(PATREF_LOCK, &ref->lock);
2991 
2992 			free_trash_chunk(key);
2993 			break;
2994 			}
2995 
2996 		case ACT_HTTP_SET_MAP: {
2997 			struct pat_ref *ref;
2998 			struct chunk *key, *value;
2999 
3000 			/* collect reference */
3001 			ref = pat_ref_lookup(rule->arg.map.ref);
3002 			if (!ref)
3003 				continue;
3004 
3005 			/* allocate key */
3006 			key = alloc_trash_chunk();
3007 			if (!key)
3008 				return HTTP_RULE_RES_BADREQ;
3009 
3010 			/* allocate value */
3011 			value = alloc_trash_chunk();
3012 			if (!value) {
3013 				free_trash_chunk(key);
3014 				return HTTP_RULE_RES_BADREQ;
3015 			}
3016 
3017 			/* collect key */
3018 			key->len = build_logline(s, key->str, key->size, &rule->arg.map.key);
3019 			key->str[key->len] = '\0';
3020 
3021 			/* collect value */
3022 			value->len = build_logline(s, value->str, value->size, &rule->arg.map.value);
3023 			value->str[value->len] = '\0';
3024 
3025 			/* perform update */
3026 			HA_SPIN_LOCK(PATREF_LOCK, &ref->lock);
3027 			if (pat_ref_find_elt(ref, key->str) != NULL)
3028 				/* update entry if it exists */
3029 				pat_ref_set(ref, key->str, value->str, NULL);
3030 			else
3031 				/* insert a new entry */
3032 				pat_ref_add(ref, key->str, value->str, NULL);
3033 			HA_SPIN_UNLOCK(PATREF_LOCK, &ref->lock);
3034 			free_trash_chunk(key);
3035 			free_trash_chunk(value);
3036 			break;
3037 			}
3038 
3039 		case ACT_HTTP_REDIR:
3040 			if (!http_apply_redirect_rule(rule->arg.redir, s, txn))
3041 				return HTTP_RULE_RES_BADREQ;
3042 			return HTTP_RULE_RES_DONE;
3043 
3044 		case ACT_ACTION_TRK_SC0 ... ACT_ACTION_TRK_SCMAX:
3045 			/* Note: only the first valid tracking parameter of each
3046 			 * applies.
3047 			 */
3048 
3049 			if (stkctr_entry(&s->stkctr[trk_idx(rule->action)]) == NULL) {
3050 				struct stktable *t;
3051 				struct stksess *ts;
3052 				struct stktable_key *key;
3053 				void *ptr;
3054 
3055 				t = rule->arg.trk_ctr.table.t;
3056 				key = stktable_fetch_key(t, s->be, sess, s, SMP_OPT_DIR_RES | SMP_OPT_FINAL, rule->arg.trk_ctr.expr, NULL);
3057 
3058 				if (key && (ts = stktable_get_entry(t, key))) {
3059 					stream_track_stkctr(&s->stkctr[trk_idx(rule->action)], t, ts);
3060 
3061 					HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock);
3062 
3063 					/* let's count a new HTTP request as it's the first time we do it */
3064 					ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_REQ_CNT);
3065 					if (ptr)
3066 						stktable_data_cast(ptr, http_req_cnt)++;
3067 
3068 					ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_REQ_RATE);
3069 					if (ptr)
3070 						update_freq_ctr_period(&stktable_data_cast(ptr, http_req_rate),
3071 											   t->data_arg[STKTABLE_DT_HTTP_REQ_RATE].u, 1);
3072 
3073 					/* When the client triggers a 4xx from the server, it's most often due
3074 					 * to a missing object or permission. These events should be tracked
3075 					 * because if they happen often, it may indicate a brute force or a
3076 					 * vulnerability scan. Normally this is done when receiving the response
3077 					 * but here we're tracking after this ought to have been done so we have
3078 					 * to do it on purpose.
3079 					 */
3080 					if ((unsigned)(txn->status - 400) < 100) {
3081 						ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_ERR_CNT);
3082 						if (ptr)
3083 							stktable_data_cast(ptr, http_err_cnt)++;
3084 
3085 						ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_ERR_RATE);
3086 						if (ptr)
3087 							update_freq_ctr_period(&stktable_data_cast(ptr, http_err_rate),
3088 									       t->data_arg[STKTABLE_DT_HTTP_ERR_RATE].u, 1);
3089 					}
3090 
3091 					HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock);
3092 
3093 					/* If data was modified, we need to touch to re-schedule sync */
3094 					stktable_touch_local(t, ts, 0);
3095 
3096 					stkctr_set_flags(&s->stkctr[trk_idx(rule->action)], STKCTR_TRACK_CONTENT);
3097 					if (sess->fe != s->be)
3098 						stkctr_set_flags(&s->stkctr[trk_idx(rule->action)], STKCTR_TRACK_BACKEND);
3099 
3100 				}
3101 			}
3102 			break;
3103 
3104 		case ACT_CUSTOM:
3105 			if ((s->req.flags & CF_READ_ERROR) ||
3106 			    ((s->req.flags & (CF_SHUTR|CF_READ_NULL)) &&
3107 			     !(s->si[0].flags & SI_FL_CLEAN_ABRT) &&
3108 			     (px->options & PR_O_ABRT_CLOSE)))
3109 				act_flags |= ACT_FLAG_FINAL;
3110 
3111 			switch (rule->action_ptr(rule, px, s->sess, s, act_flags)) {
3112 			case ACT_RET_ERR:
3113 			case ACT_RET_CONT:
3114 				break;
3115 			case ACT_RET_STOP:
3116 				return HTTP_RULE_RES_STOP;
3117 			case ACT_RET_YIELD:
3118 				s->current_rule = rule;
3119 				return HTTP_RULE_RES_YIELD;
3120 			}
3121 			break;
3122 
3123 		/* other flags exists, but normaly, they never be matched. */
3124 		default:
3125 			break;
3126 		}
3127 	}
3128 
3129 	/* we reached the end of the rules, nothing to report */
3130 	return HTTP_RULE_RES_CONT;
3131 }
3132 
3133 
3134 /* Perform an HTTP redirect based on the information in <rule>. The function
3135  * returns non-zero on success, or zero in case of a, irrecoverable error such
3136  * as too large a request to build a valid response.
3137  */
http_apply_redirect_rule(struct redirect_rule * rule,struct stream * s,struct http_txn * txn)3138 static int http_apply_redirect_rule(struct redirect_rule *rule, struct stream *s, struct http_txn *txn)
3139 {
3140 	struct http_msg *req = &txn->req;
3141 	struct http_msg *res = &txn->rsp;
3142 	const char *msg_fmt;
3143 	struct chunk *chunk;
3144 	int ret = 0;
3145 
3146 	chunk = alloc_trash_chunk();
3147 	if (!chunk)
3148 		goto leave;
3149 
3150 	/* build redirect message */
3151 	switch(rule->code) {
3152 	case 308:
3153 		msg_fmt = HTTP_308;
3154 		break;
3155 	case 307:
3156 		msg_fmt = HTTP_307;
3157 		break;
3158 	case 303:
3159 		msg_fmt = HTTP_303;
3160 		break;
3161 	case 301:
3162 		msg_fmt = HTTP_301;
3163 		break;
3164 	case 302:
3165 	default:
3166 		msg_fmt = HTTP_302;
3167 		break;
3168 	}
3169 
3170 	if (unlikely(!chunk_strcpy(chunk, msg_fmt)))
3171 		goto leave;
3172 
3173 	switch(rule->type) {
3174 	case REDIRECT_TYPE_SCHEME: {
3175 		const char *path;
3176 		const char *host;
3177 		struct hdr_ctx ctx;
3178 		int pathlen;
3179 		int hostlen;
3180 
3181 		host = "";
3182 		hostlen = 0;
3183 		ctx.idx = 0;
3184 		if (http_find_header2("Host", 4, req->chn->buf->p, &txn->hdr_idx, &ctx)) {
3185 			host = ctx.line + ctx.val;
3186 			hostlen = ctx.vlen;
3187 		}
3188 
3189 		path = http_get_path(txn);
3190 		/* build message using path */
3191 		if (path) {
3192 			pathlen = req->sl.rq.u_l + (req->chn->buf->p + req->sl.rq.u) - path;
3193 			if (rule->flags & REDIRECT_FLAG_DROP_QS) {
3194 				int qs = 0;
3195 				while (qs < pathlen) {
3196 					if (path[qs] == '?') {
3197 						pathlen = qs;
3198 						break;
3199 					}
3200 					qs++;
3201 				}
3202 			}
3203 		} else {
3204 			path = "/";
3205 			pathlen = 1;
3206 		}
3207 
3208 		if (rule->rdr_str) { /* this is an old "redirect" rule */
3209 			/* check if we can add scheme + "://" + host + path */
3210 			if (chunk->len + rule->rdr_len + 3 + hostlen + pathlen > chunk->size - 4)
3211 				goto leave;
3212 
3213 			/* add scheme */
3214 			memcpy(chunk->str + chunk->len, rule->rdr_str, rule->rdr_len);
3215 			chunk->len += rule->rdr_len;
3216 		}
3217 		else {
3218 			/* add scheme with executing log format */
3219 			chunk->len += build_logline(s, chunk->str + chunk->len, chunk->size - chunk->len, &rule->rdr_fmt);
3220 
3221 			/* check if we can add scheme + "://" + host + path */
3222 			if (chunk->len + 3 + hostlen + pathlen > chunk->size - 4)
3223 				goto leave;
3224 		}
3225 		/* add "://" */
3226 		memcpy(chunk->str + chunk->len, "://", 3);
3227 		chunk->len += 3;
3228 
3229 		/* add host */
3230 		memcpy(chunk->str + chunk->len, host, hostlen);
3231 		chunk->len += hostlen;
3232 
3233 		/* add path */
3234 		memcpy(chunk->str + chunk->len, path, pathlen);
3235 		chunk->len += pathlen;
3236 
3237 		/* append a slash at the end of the location if needed and missing */
3238 		if (chunk->len && chunk->str[chunk->len - 1] != '/' &&
3239 		    (rule->flags & REDIRECT_FLAG_APPEND_SLASH)) {
3240 			if (chunk->len > chunk->size - 5)
3241 				goto leave;
3242 			chunk->str[chunk->len] = '/';
3243 			chunk->len++;
3244 		}
3245 
3246 		break;
3247 	}
3248 	case REDIRECT_TYPE_PREFIX: {
3249 		const char *path;
3250 		int pathlen;
3251 
3252 		path = http_get_path(txn);
3253 		/* build message using path */
3254 		if (path) {
3255 			pathlen = req->sl.rq.u_l + (req->chn->buf->p + req->sl.rq.u) - path;
3256 			if (rule->flags & REDIRECT_FLAG_DROP_QS) {
3257 				int qs = 0;
3258 				while (qs < pathlen) {
3259 					if (path[qs] == '?') {
3260 						pathlen = qs;
3261 						break;
3262 					}
3263 					qs++;
3264 				}
3265 			}
3266 		} else {
3267 			path = "/";
3268 			pathlen = 1;
3269 		}
3270 
3271 		if (rule->rdr_str) { /* this is an old "redirect" rule */
3272 			if (chunk->len + rule->rdr_len + pathlen > chunk->size - 4)
3273 				goto leave;
3274 
3275 			/* add prefix. Note that if prefix == "/", we don't want to
3276 			 * add anything, otherwise it makes it hard for the user to
3277 			 * configure a self-redirection.
3278 			 */
3279 			if (rule->rdr_len != 1 || *rule->rdr_str != '/') {
3280 				memcpy(chunk->str + chunk->len, rule->rdr_str, rule->rdr_len);
3281 				chunk->len += rule->rdr_len;
3282 			}
3283 		}
3284 		else {
3285 			/* add prefix with executing log format */
3286 			chunk->len += build_logline(s, chunk->str + chunk->len, chunk->size - chunk->len, &rule->rdr_fmt);
3287 
3288 			/* Check length */
3289 			if (chunk->len + pathlen > chunk->size - 4)
3290 				goto leave;
3291 		}
3292 
3293 		/* add path */
3294 		memcpy(chunk->str + chunk->len, path, pathlen);
3295 		chunk->len += pathlen;
3296 
3297 		/* append a slash at the end of the location if needed and missing */
3298 		if (chunk->len && chunk->str[chunk->len - 1] != '/' &&
3299 		    (rule->flags & REDIRECT_FLAG_APPEND_SLASH)) {
3300 			if (chunk->len > chunk->size - 5)
3301 				goto leave;
3302 			chunk->str[chunk->len] = '/';
3303 			chunk->len++;
3304 		}
3305 
3306 		break;
3307 	}
3308 	case REDIRECT_TYPE_LOCATION:
3309 	default:
3310 		if (rule->rdr_str) { /* this is an old "redirect" rule */
3311 			if (chunk->len + rule->rdr_len > chunk->size - 4)
3312 				goto leave;
3313 
3314 			/* add location */
3315 			memcpy(chunk->str + chunk->len, rule->rdr_str, rule->rdr_len);
3316 			chunk->len += rule->rdr_len;
3317 		}
3318 		else {
3319 			/* add location with executing log format */
3320 			chunk->len += build_logline(s, chunk->str + chunk->len, chunk->size - chunk->len, &rule->rdr_fmt);
3321 
3322 			/* Check left length */
3323 			if (chunk->len > chunk->size - 4)
3324 				goto leave;
3325 		}
3326 		break;
3327 	}
3328 
3329 	if (rule->cookie_len) {
3330 		memcpy(chunk->str + chunk->len, "\r\nSet-Cookie: ", 14);
3331 		chunk->len += 14;
3332 		memcpy(chunk->str + chunk->len, rule->cookie_str, rule->cookie_len);
3333 		chunk->len += rule->cookie_len;
3334 	}
3335 
3336 	/* add end of headers and the keep-alive/close status. */
3337 	txn->status = rule->code;
3338 
3339 	if (((!(req->flags & HTTP_MSGF_TE_CHNK) && !req->body_len) || (req->msg_state == HTTP_MSG_DONE)) &&
3340 	    ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL ||
3341 	     (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL)) {
3342 		/* keep-alive possible */
3343 		if (!(req->flags & HTTP_MSGF_VER_11)) {
3344 			if (unlikely(txn->flags & TX_USE_PX_CONN)) {
3345 				memcpy(chunk->str + chunk->len, "\r\nProxy-Connection: keep-alive", 30);
3346 				chunk->len += 30;
3347 			} else {
3348 				memcpy(chunk->str + chunk->len, "\r\nConnection: keep-alive", 24);
3349 				chunk->len += 24;
3350 			}
3351 		}
3352 		memcpy(chunk->str + chunk->len, "\r\n\r\n", 4);
3353 		chunk->len += 4;
3354 		FLT_STRM_CB(s, flt_http_reply(s, txn->status, chunk));
3355 		co_inject(res->chn, chunk->str, chunk->len);
3356 		/* "eat" the request */
3357 		bi_fast_delete(req->chn->buf, req->sov);
3358 		req->next -= req->sov;
3359 		req->sov = 0;
3360 		s->req.analysers = AN_REQ_HTTP_XFER_BODY | (s->req.analysers & AN_REQ_FLT_END);
3361 		s->res.analysers = AN_RES_HTTP_XFER_BODY | (s->res.analysers & AN_RES_FLT_END);
3362 		req->msg_state = HTTP_MSG_CLOSED;
3363 		res->msg_state = HTTP_MSG_DONE;
3364 		/* Trim any possible response */
3365 		res->chn->buf->i = 0;
3366 		res->next = res->sov = 0;
3367 		/* let the server side turn to SI_ST_CLO */
3368 		channel_shutw_now(req->chn);
3369 		channel_dont_connect(req->chn);
3370 
3371 		if (rule->flags & REDIRECT_FLAG_FROM_REQ) {
3372 			/* let's log the request time */
3373 			s->logs.tv_request = now;
3374 		}
3375 	} else {
3376 		/* keep-alive not possible */
3377 		if (unlikely(txn->flags & TX_USE_PX_CONN)) {
3378 			memcpy(chunk->str + chunk->len, "\r\nProxy-Connection: close\r\n\r\n", 29);
3379 			chunk->len += 29;
3380 		} else {
3381 			memcpy(chunk->str + chunk->len, "\r\nConnection: close\r\n\r\n", 23);
3382 			chunk->len += 23;
3383 		}
3384 		http_reply_and_close(s, txn->status, chunk);
3385 
3386 		if (rule->flags & REDIRECT_FLAG_FROM_REQ) {
3387 			/* let's log the request time */
3388 			s->logs.tv_request = now;
3389 			req->chn->analysers &= AN_REQ_FLT_END;
3390 			if (s->sess->fe == s->be) /* report it if the request was intercepted by the frontend */
3391 				HA_ATOMIC_ADD(&s->sess->fe->fe_counters.intercepted_req, 1);
3392 
3393 		}
3394 	}
3395 
3396 	if (!(s->flags & SF_ERR_MASK))
3397 		s->flags |= SF_ERR_LOCAL;
3398 	if (!(s->flags & SF_FINST_MASK))
3399 		s->flags |= ((rule->flags & REDIRECT_FLAG_FROM_REQ) ? SF_FINST_R : SF_FINST_H);
3400 
3401 	ret = 1;
3402  leave:
3403 	free_trash_chunk(chunk);
3404 	return ret;
3405 }
3406 
3407 /* This stream analyser runs all HTTP request processing which is common to
3408  * frontends and backends, which means blocking ACLs, filters, connection-close,
3409  * reqadd, stats and redirects. This is performed for the designated proxy.
3410  * It returns 1 if the processing can continue on next analysers, or zero if it
3411  * either needs more data or wants to immediately abort the request (eg: deny,
3412  * error, ...).
3413  */
http_process_req_common(struct stream * s,struct channel * req,int an_bit,struct proxy * px)3414 int http_process_req_common(struct stream *s, struct channel *req, int an_bit, struct proxy *px)
3415 {
3416 	struct session *sess = s->sess;
3417 	struct http_txn *txn = s->txn;
3418 	struct http_msg *msg = &txn->req;
3419 	struct redirect_rule *rule;
3420 	struct cond_wordlist *wl;
3421 	enum rule_result verdict;
3422 	int deny_status = HTTP_ERR_403;
3423 	struct connection *conn = objt_conn(sess->origin);
3424 
3425 	if (unlikely(msg->msg_state < HTTP_MSG_BODY)) {
3426 		/* we need more data */
3427 		goto return_prx_yield;
3428 	}
3429 
3430 	DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
3431 		now_ms, __FUNCTION__,
3432 		s,
3433 		req,
3434 		req->rex, req->wex,
3435 		req->flags,
3436 		req->buf->i,
3437 		req->analysers);
3438 
3439 	/* just in case we have some per-backend tracking. Only called the first
3440 	 * execution of the analyser. */
3441 	if (!s->current_rule || s->current_rule_list != &px->http_req_rules)
3442 		stream_inc_be_http_req_ctr(s);
3443 
3444 	/* evaluate http-request rules */
3445 	if (!LIST_ISEMPTY(&px->http_req_rules)) {
3446 		verdict = http_req_get_intercept_rule(px, &px->http_req_rules, s, &deny_status);
3447 
3448 		switch (verdict) {
3449 		case HTTP_RULE_RES_YIELD: /* some data miss, call the function later. */
3450 			goto return_prx_yield;
3451 
3452 		case HTTP_RULE_RES_CONT:
3453 		case HTTP_RULE_RES_STOP: /* nothing to do */
3454 			break;
3455 
3456 		case HTTP_RULE_RES_DENY: /* deny or tarpit */
3457 			if (txn->flags & TX_CLTARPIT)
3458 				goto tarpit;
3459 			goto deny;
3460 
3461 		case HTTP_RULE_RES_ABRT: /* abort request, response already sent. Eg: auth */
3462 			goto return_prx_cond;
3463 
3464 		case HTTP_RULE_RES_DONE: /* OK, but terminate request processing (eg: redirect) */
3465 			goto done;
3466 
3467 		case HTTP_RULE_RES_BADREQ: /* failed with a bad request */
3468 			goto return_bad_req;
3469 		}
3470 	}
3471 
3472 	if (conn && conn->flags & CO_FL_EARLY_DATA) {
3473 		struct hdr_ctx ctx;
3474 
3475 		ctx.idx = 0;
3476 		if (!http_find_header2("Early-Data", strlen("Early-Data"),
3477 		    s->req.buf->p, &txn->hdr_idx, &ctx)) {
3478 			if (unlikely(http_header_add_tail2(&txn->req,
3479 			    &txn->hdr_idx, "Early-Data: 1",
3480 			    strlen("Early-Data: 1")) < 0)) {
3481 				goto return_bad_req;
3482 			 }
3483 		}
3484 
3485 	}
3486 
3487 	/* OK at this stage, we know that the request was accepted according to
3488 	 * the http-request rules, we can check for the stats. Note that the
3489 	 * URI is detected *before* the req* rules in order not to be affected
3490 	 * by a possible reqrep, while they are processed *after* so that a
3491 	 * reqdeny can still block them. This clearly needs to change in 1.6!
3492 	 */
3493 	if (stats_check_uri(&s->si[1], txn, px)) {
3494 		s->target = &http_stats_applet.obj_type;
3495 		if (unlikely(!stream_int_register_handler(&s->si[1], objt_applet(s->target)))) {
3496 			txn->status = 500;
3497 			s->logs.tv_request = now;
3498 			http_reply_and_close(s, txn->status, http_error_message(s));
3499 
3500 			if (!(s->flags & SF_ERR_MASK))
3501 				s->flags |= SF_ERR_RESOURCE;
3502 			goto return_prx_cond;
3503 		}
3504 
3505 		/* parse the whole stats request and extract the relevant information */
3506 		http_handle_stats(s, req);
3507 		verdict = http_req_get_intercept_rule(px, &px->uri_auth->http_req_rules, s, &deny_status);
3508 		/* not all actions implemented: deny, allow, auth */
3509 
3510 		if (verdict == HTTP_RULE_RES_DENY) /* stats http-request deny */
3511 			goto deny;
3512 
3513 		if (verdict == HTTP_RULE_RES_ABRT) /* stats auth / stats http-request auth */
3514 			goto return_prx_cond;
3515 	}
3516 
3517 	/* evaluate the req* rules except reqadd */
3518 	if (px->req_exp != NULL) {
3519 		if (apply_filters_to_request(s, req, px) < 0)
3520 			goto return_bad_req;
3521 
3522 		if (txn->flags & TX_CLDENY)
3523 			goto deny;
3524 
3525 		if (txn->flags & TX_CLTARPIT) {
3526 			deny_status = HTTP_ERR_500;
3527 			goto tarpit;
3528 		}
3529 	}
3530 
3531 	/* add request headers from the rule sets in the same order */
3532 	list_for_each_entry(wl, &px->req_add, list) {
3533 		if (wl->cond) {
3534 			int ret = acl_exec_cond(wl->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
3535 			ret = acl_pass(ret);
3536 			if (((struct acl_cond *)wl->cond)->pol == ACL_COND_UNLESS)
3537 				ret = !ret;
3538 			if (!ret)
3539 				continue;
3540 		}
3541 
3542 		if (unlikely(http_header_add_tail(&txn->req, &txn->hdr_idx, wl->s) < 0))
3543 			goto return_bad_req;
3544 	}
3545 
3546 
3547 	/* Proceed with the stats now. */
3548 	if (unlikely(objt_applet(s->target) == &http_stats_applet) ||
3549 	    unlikely(objt_applet(s->target) == &http_cache_applet)) {
3550 		/* process the stats request now */
3551 		if (sess->fe == s->be) /* report it if the request was intercepted by the frontend */
3552 			HA_ATOMIC_ADD(&sess->fe->fe_counters.intercepted_req, 1);
3553 
3554 		if (!(s->flags & SF_ERR_MASK))      // this is not really an error but it is
3555 			s->flags |= SF_ERR_LOCAL;   // to mark that it comes from the proxy
3556 		if (!(s->flags & SF_FINST_MASK))
3557 			s->flags |= SF_FINST_R;
3558 
3559 		/* enable the minimally required analyzers to handle keep-alive and compression on the HTTP response */
3560 		req->analysers &= (AN_REQ_HTTP_BODY | AN_REQ_FLT_HTTP_HDRS | AN_REQ_FLT_END);
3561 		req->analysers &= ~AN_REQ_FLT_XFER_DATA;
3562 		req->analysers |= AN_REQ_HTTP_XFER_BODY;
3563 		goto done;
3564 	}
3565 
3566 	/* check whether we have some ACLs set to redirect this request */
3567 	list_for_each_entry(rule, &px->redirect_rules, list) {
3568 		if (rule->cond) {
3569 			int ret;
3570 
3571 			ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
3572 			ret = acl_pass(ret);
3573 			if (rule->cond->pol == ACL_COND_UNLESS)
3574 				ret = !ret;
3575 			if (!ret)
3576 				continue;
3577 		}
3578 		if (!http_apply_redirect_rule(rule, s, txn))
3579 			goto return_bad_req;
3580 		goto done;
3581 	}
3582 
3583 	/* POST requests may be accompanied with an "Expect: 100-Continue" header.
3584 	 * If this happens, then the data will not come immediately, so we must
3585 	 * send all what we have without waiting. Note that due to the small gain
3586 	 * in waiting for the body of the request, it's easier to simply put the
3587 	 * CF_SEND_DONTWAIT flag any time. It's a one-shot flag so it will remove
3588 	 * itself once used.
3589 	 */
3590 	req->flags |= CF_SEND_DONTWAIT;
3591 
3592  done:	/* done with this analyser, continue with next ones that the calling
3593 	 * points will have set, if any.
3594 	 */
3595 	req->analyse_exp = TICK_ETERNITY;
3596  done_without_exp: /* done with this analyser, but dont reset the analyse_exp. */
3597 	req->analysers &= ~an_bit;
3598 	return 1;
3599 
3600  tarpit:
3601 	/* Allow cookie logging
3602 	 */
3603 	if (s->be->cookie_name || sess->fe->capture_name)
3604 		manage_client_side_cookies(s, req);
3605 
3606 	/* When a connection is tarpitted, we use the tarpit timeout,
3607 	 * which may be the same as the connect timeout if unspecified.
3608 	 * If unset, then set it to zero because we really want it to
3609 	 * eventually expire. We build the tarpit as an analyser.
3610 	 */
3611 	channel_erase(&s->req);
3612 
3613 	/* wipe the request out so that we can drop the connection early
3614 	 * if the client closes first.
3615 	 */
3616 	channel_dont_connect(req);
3617 
3618 	txn->status = http_err_codes[deny_status];
3619 
3620 	req->analysers &= AN_REQ_FLT_END; /* remove switching rules etc... */
3621 	req->analysers |= AN_REQ_HTTP_TARPIT;
3622 	req->analyse_exp = tick_add_ifset(now_ms,  s->be->timeout.tarpit);
3623 	if (!req->analyse_exp)
3624 		req->analyse_exp = tick_add(now_ms, 0);
3625 	stream_inc_http_err_ctr(s);
3626 	HA_ATOMIC_ADD(&sess->fe->fe_counters.denied_req, 1);
3627 	if (sess->fe != s->be)
3628 		HA_ATOMIC_ADD(&s->be->be_counters.denied_req, 1);
3629 	if (sess->listener && sess->listener->counters)
3630 		HA_ATOMIC_ADD(&sess->listener->counters->denied_req, 1);
3631 	goto done_without_exp;
3632 
3633  deny:	/* this request was blocked (denied) */
3634 
3635 	/* Allow cookie logging
3636 	 */
3637 	if (s->be->cookie_name || sess->fe->capture_name)
3638 		manage_client_side_cookies(s, req);
3639 
3640 	txn->flags |= TX_CLDENY;
3641 	txn->status = http_err_codes[deny_status];
3642 	s->logs.tv_request = now;
3643 	http_reply_and_close(s, txn->status, http_error_message(s));
3644 	stream_inc_http_err_ctr(s);
3645 	HA_ATOMIC_ADD(&sess->fe->fe_counters.denied_req, 1);
3646 	if (sess->fe != s->be)
3647 		HA_ATOMIC_ADD(&s->be->be_counters.denied_req, 1);
3648 	if (sess->listener && sess->listener->counters)
3649 		HA_ATOMIC_ADD(&sess->listener->counters->denied_req, 1);
3650 	goto return_prx_cond;
3651 
3652  return_bad_req:
3653 	/* We centralize bad requests processing here */
3654 	if (unlikely(msg->msg_state == HTTP_MSG_ERROR) || msg->err_pos >= 0) {
3655 		/* we detected a parsing error. We want to archive this request
3656 		 * in the dedicated proxy area for later troubleshooting.
3657 		 */
3658 		http_capture_bad_message(sess->fe, &sess->fe->invalid_req, s, msg, msg->err_state, sess->fe);
3659 	}
3660 
3661 	txn->req.err_state = txn->req.msg_state;
3662 	txn->req.msg_state = HTTP_MSG_ERROR;
3663 	txn->status = 400;
3664 	http_reply_and_close(s, txn->status, http_error_message(s));
3665 
3666 	HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1);
3667 	if (sess->listener && sess->listener->counters)
3668 		HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1);
3669 
3670  return_prx_cond:
3671 	if (!(s->flags & SF_ERR_MASK))
3672 		s->flags |= SF_ERR_PRXCOND;
3673 	if (!(s->flags & SF_FINST_MASK))
3674 		s->flags |= SF_FINST_R;
3675 
3676 	req->analysers &= AN_REQ_FLT_END;
3677 	req->analyse_exp = TICK_ETERNITY;
3678 	return 0;
3679 
3680  return_prx_yield:
3681 	channel_dont_connect(req);
3682 	return 0;
3683 }
3684 
3685 /* This function performs all the processing enabled for the current request.
3686  * It returns 1 if the processing can continue on next analysers, or zero if it
3687  * needs more data, encounters an error, or wants to immediately abort the
3688  * request. It relies on buffers flags, and updates s->req.analysers.
3689  */
http_process_request(struct stream * s,struct channel * req,int an_bit)3690 int http_process_request(struct stream *s, struct channel *req, int an_bit)
3691 {
3692 	struct session *sess = s->sess;
3693 	struct http_txn *txn = s->txn;
3694 	struct http_msg *msg = &txn->req;
3695 	struct connection *cli_conn = objt_conn(strm_sess(s)->origin);
3696 
3697 	if (unlikely(msg->msg_state < HTTP_MSG_BODY)) {
3698 		/* we need more data */
3699 		channel_dont_connect(req);
3700 		return 0;
3701 	}
3702 
3703 	DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
3704 		now_ms, __FUNCTION__,
3705 		s,
3706 		req,
3707 		req->rex, req->wex,
3708 		req->flags,
3709 		req->buf->i,
3710 		req->analysers);
3711 
3712 	/*
3713 	 * Right now, we know that we have processed the entire headers
3714 	 * and that unwanted requests have been filtered out. We can do
3715 	 * whatever we want with the remaining request. Also, now we
3716 	 * may have separate values for ->fe, ->be.
3717 	 */
3718 
3719 	/*
3720 	 * If HTTP PROXY is set we simply get remote server address parsing
3721 	 * incoming request. Note that this requires that a connection is
3722 	 * allocated on the server side.
3723 	 */
3724 	if ((s->be->options & PR_O_HTTP_PROXY) && !(s->flags & SF_ADDR_SET)) {
3725 		struct connection *conn;
3726 		char *path;
3727 
3728 		/* Note that for now we don't reuse existing proxy connections */
3729 		if (unlikely((conn = cs_conn(si_alloc_cs(&s->si[1], NULL))) == NULL)) {
3730 			txn->req.err_state = txn->req.msg_state;
3731 			txn->req.msg_state = HTTP_MSG_ERROR;
3732 			txn->status = 500;
3733 			req->analysers &= AN_REQ_FLT_END;
3734 			http_reply_and_close(s, txn->status, http_error_message(s));
3735 
3736 			if (!(s->flags & SF_ERR_MASK))
3737 				s->flags |= SF_ERR_RESOURCE;
3738 			if (!(s->flags & SF_FINST_MASK))
3739 				s->flags |= SF_FINST_R;
3740 
3741 			return 0;
3742 		}
3743 
3744 		path = http_get_path(txn);
3745 		if (url2sa(req->buf->p + msg->sl.rq.u,
3746 			   path ? path - (req->buf->p + msg->sl.rq.u) : msg->sl.rq.u_l,
3747 			   &conn->addr.to, NULL) == -1)
3748 			goto return_bad_req;
3749 
3750 		/* if the path was found, we have to remove everything between
3751 		 * req->buf->p + msg->sl.rq.u and path (excluded). If it was not
3752 		 * found, we need to replace from req->buf->p + msg->sl.rq.u for
3753 		 * u_l characters by a single "/".
3754 		 */
3755 		if (path) {
3756 			char *cur_ptr = req->buf->p;
3757 			char *cur_end = cur_ptr + txn->req.sl.rq.l;
3758 			int delta;
3759 
3760 			delta = buffer_replace2(req->buf, req->buf->p + msg->sl.rq.u, path, NULL, 0);
3761 			http_msg_move_end(&txn->req, delta);
3762 			cur_end += delta;
3763 			if (http_parse_reqline(&txn->req, HTTP_MSG_RQMETH,  cur_ptr, cur_end + 1, NULL, NULL) == NULL)
3764 				goto return_bad_req;
3765 		}
3766 		else {
3767 			char *cur_ptr = req->buf->p;
3768 			char *cur_end = cur_ptr + txn->req.sl.rq.l;
3769 			int delta;
3770 
3771 			delta = buffer_replace2(req->buf, req->buf->p + msg->sl.rq.u,
3772 						req->buf->p + msg->sl.rq.u + msg->sl.rq.u_l, "/", 1);
3773 			http_msg_move_end(&txn->req, delta);
3774 			cur_end += delta;
3775 			if (http_parse_reqline(&txn->req, HTTP_MSG_RQMETH,  cur_ptr, cur_end + 1, NULL, NULL) == NULL)
3776 				goto return_bad_req;
3777 		}
3778 		conn->target = &s->be->obj_type;
3779 	}
3780 
3781 	/*
3782 	 * 7: Now we can work with the cookies.
3783 	 * Note that doing so might move headers in the request, but
3784 	 * the fields will stay coherent and the URI will not move.
3785 	 * This should only be performed in the backend.
3786 	 */
3787 	if (s->be->cookie_name || sess->fe->capture_name)
3788 		manage_client_side_cookies(s, req);
3789 
3790 	/* add unique-id if "header-unique-id" is specified */
3791 
3792 	if (!LIST_ISEMPTY(&sess->fe->format_unique_id) && !s->unique_id) {
3793 		if ((s->unique_id = pool_alloc(pool_head_uniqueid)) == NULL)
3794 			goto return_bad_req;
3795 		s->unique_id[0] = '\0';
3796 		build_logline(s, s->unique_id, UNIQUEID_LEN, &sess->fe->format_unique_id);
3797 	}
3798 
3799 	if (sess->fe->header_unique_id && s->unique_id) {
3800 		chunk_printf(&trash, "%s: %s", sess->fe->header_unique_id, s->unique_id);
3801 		if (trash.len < 0)
3802 			goto return_bad_req;
3803 		if (unlikely(http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.str, trash.len) < 0))
3804 		   goto return_bad_req;
3805 	}
3806 
3807 	/*
3808 	 * 9: add X-Forwarded-For if either the frontend or the backend
3809 	 * asks for it.
3810 	 */
3811 	if ((sess->fe->options | s->be->options) & PR_O_FWDFOR) {
3812 		struct hdr_ctx ctx = { .idx = 0 };
3813 		if (!((sess->fe->options | s->be->options) & PR_O_FF_ALWAYS) &&
3814 			http_find_header2(s->be->fwdfor_hdr_len ? s->be->fwdfor_hdr_name : sess->fe->fwdfor_hdr_name,
3815 			                  s->be->fwdfor_hdr_len ? s->be->fwdfor_hdr_len : sess->fe->fwdfor_hdr_len,
3816 			                  req->buf->p, &txn->hdr_idx, &ctx)) {
3817 			/* The header is set to be added only if none is present
3818 			 * and we found it, so don't do anything.
3819 			 */
3820 		}
3821 		else if (cli_conn && cli_conn->addr.from.ss_family == AF_INET) {
3822 			/* Add an X-Forwarded-For header unless the source IP is
3823 			 * in the 'except' network range.
3824 			 */
3825 			if ((!sess->fe->except_mask.s_addr ||
3826 			     (((struct sockaddr_in *)&cli_conn->addr.from)->sin_addr.s_addr & sess->fe->except_mask.s_addr)
3827 			     != sess->fe->except_net.s_addr) &&
3828 			    (!s->be->except_mask.s_addr ||
3829 			     (((struct sockaddr_in *)&cli_conn->addr.from)->sin_addr.s_addr & s->be->except_mask.s_addr)
3830 			     != s->be->except_net.s_addr)) {
3831 				int len;
3832 				unsigned char *pn;
3833 				pn = (unsigned char *)&((struct sockaddr_in *)&cli_conn->addr.from)->sin_addr;
3834 
3835 				/* Note: we rely on the backend to get the header name to be used for
3836 				 * x-forwarded-for, because the header is really meant for the backends.
3837 				 * However, if the backend did not specify any option, we have to rely
3838 				 * on the frontend's header name.
3839 				 */
3840 				if (s->be->fwdfor_hdr_len) {
3841 					len = s->be->fwdfor_hdr_len;
3842 					memcpy(trash.str, s->be->fwdfor_hdr_name, len);
3843 				} else {
3844 					len = sess->fe->fwdfor_hdr_len;
3845 					memcpy(trash.str, sess->fe->fwdfor_hdr_name, len);
3846 				}
3847 				len += snprintf(trash.str + len, trash.size - len, ": %d.%d.%d.%d", pn[0], pn[1], pn[2], pn[3]);
3848 
3849 				if (unlikely(http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.str, len) < 0))
3850 					goto return_bad_req;
3851 			}
3852 		}
3853 		else if (cli_conn && cli_conn->addr.from.ss_family == AF_INET6) {
3854 			/* FIXME: for the sake of completeness, we should also support
3855 			 * 'except' here, although it is mostly useless in this case.
3856 			 */
3857 			int len;
3858 			char pn[INET6_ADDRSTRLEN];
3859 			inet_ntop(AF_INET6,
3860 				  (const void *)&((struct sockaddr_in6 *)(&cli_conn->addr.from))->sin6_addr,
3861 				  pn, sizeof(pn));
3862 
3863 			/* Note: we rely on the backend to get the header name to be used for
3864 			 * x-forwarded-for, because the header is really meant for the backends.
3865 			 * However, if the backend did not specify any option, we have to rely
3866 			 * on the frontend's header name.
3867 			 */
3868 			if (s->be->fwdfor_hdr_len) {
3869 				len = s->be->fwdfor_hdr_len;
3870 				memcpy(trash.str, s->be->fwdfor_hdr_name, len);
3871 			} else {
3872 				len = sess->fe->fwdfor_hdr_len;
3873 				memcpy(trash.str, sess->fe->fwdfor_hdr_name, len);
3874 			}
3875 			len += snprintf(trash.str + len, trash.size - len, ": %s", pn);
3876 
3877 			if (unlikely(http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.str, len) < 0))
3878 				goto return_bad_req;
3879 		}
3880 	}
3881 
3882 	/*
3883 	 * 10: add X-Original-To if either the frontend or the backend
3884 	 * asks for it.
3885 	 */
3886 	if ((sess->fe->options | s->be->options) & PR_O_ORGTO) {
3887 
3888 		/* FIXME: don't know if IPv6 can handle that case too. */
3889 		if (cli_conn && cli_conn->addr.to.ss_family == AF_INET) {
3890 			/* Add an X-Original-To header unless the destination IP is
3891 			 * in the 'except' network range.
3892 			 */
3893 			conn_get_to_addr(cli_conn);
3894 
3895 			if (cli_conn->addr.to.ss_family == AF_INET &&
3896 			    ((!sess->fe->except_mask_to.s_addr ||
3897 			      (((struct sockaddr_in *)&cli_conn->addr.to)->sin_addr.s_addr & sess->fe->except_mask_to.s_addr)
3898 			      != sess->fe->except_to.s_addr) &&
3899 			     (!s->be->except_mask_to.s_addr ||
3900 			      (((struct sockaddr_in *)&cli_conn->addr.to)->sin_addr.s_addr & s->be->except_mask_to.s_addr)
3901 			      != s->be->except_to.s_addr))) {
3902 				int len;
3903 				unsigned char *pn;
3904 				pn = (unsigned char *)&((struct sockaddr_in *)&cli_conn->addr.to)->sin_addr;
3905 
3906 				/* Note: we rely on the backend to get the header name to be used for
3907 				 * x-original-to, because the header is really meant for the backends.
3908 				 * However, if the backend did not specify any option, we have to rely
3909 				 * on the frontend's header name.
3910 				 */
3911 				if (s->be->orgto_hdr_len) {
3912 					len = s->be->orgto_hdr_len;
3913 					memcpy(trash.str, s->be->orgto_hdr_name, len);
3914 				} else {
3915 					len = sess->fe->orgto_hdr_len;
3916 					memcpy(trash.str, sess->fe->orgto_hdr_name, len);
3917 				}
3918 				len += snprintf(trash.str + len, trash.size - len, ": %d.%d.%d.%d", pn[0], pn[1], pn[2], pn[3]);
3919 
3920 				if (unlikely(http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.str, len) < 0))
3921 					goto return_bad_req;
3922 			}
3923 		}
3924 	}
3925 
3926 	/* 11: add "Connection: close" or "Connection: keep-alive" if needed and not yet set.
3927 	 * If an "Upgrade" token is found, the header is left untouched in order not to have
3928 	 * to deal with some servers bugs : some of them fail an Upgrade if anything but
3929 	 * "Upgrade" is present in the Connection header.
3930 	 */
3931 	if (!(txn->flags & TX_HDR_CONN_UPG) &&
3932 	    (((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN) ||
3933 	     ((sess->fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL ||
3934 	      (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL))) {
3935 		unsigned int want_flags = 0;
3936 
3937 		if (msg->flags & HTTP_MSGF_VER_11) {
3938 			if (((txn->flags & TX_CON_WANT_MSK) >= TX_CON_WANT_SCL ||
3939 			     ((sess->fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL ||
3940 			      (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL)) &&
3941 			    !((sess->fe->options2|s->be->options2) & PR_O2_FAKE_KA))
3942 				want_flags |= TX_CON_CLO_SET;
3943 		} else {
3944 			if (((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL &&
3945 			     ((sess->fe->options & PR_O_HTTP_MODE) != PR_O_HTTP_PCL &&
3946 			      (s->be->options & PR_O_HTTP_MODE) != PR_O_HTTP_PCL)) ||
3947 			    ((sess->fe->options2|s->be->options2) & PR_O2_FAKE_KA))
3948 				want_flags |= TX_CON_KAL_SET;
3949 		}
3950 
3951 		if (want_flags != (txn->flags & (TX_CON_CLO_SET|TX_CON_KAL_SET)))
3952 			http_change_connection_header(txn, msg, want_flags);
3953 	}
3954 
3955 
3956 	/* If we have no server assigned yet and we're balancing on url_param
3957 	 * with a POST request, we may be interested in checking the body for
3958 	 * that parameter. This will be done in another analyser.
3959 	 */
3960 	if (!(s->flags & (SF_ASSIGNED|SF_DIRECT)) &&
3961 	    s->txn->meth == HTTP_METH_POST &&
3962 	    (s->be->lbprm.algo & BE_LB_ALGO) == BE_LB_ALGO_PH &&
3963 	    (msg->flags & (HTTP_MSGF_CNT_LEN|HTTP_MSGF_TE_CHNK))) {
3964 		channel_dont_connect(req);
3965 		req->analysers |= AN_REQ_HTTP_BODY;
3966 	}
3967 
3968 	req->analysers &= ~AN_REQ_FLT_XFER_DATA;
3969 	req->analysers |= AN_REQ_HTTP_XFER_BODY;
3970 #ifdef TCP_QUICKACK
3971 	/* We expect some data from the client. Unless we know for sure
3972 	 * we already have a full request, we have to re-enable quick-ack
3973 	 * in case we previously disabled it, otherwise we might cause
3974 	 * the client to delay further data.
3975 	 */
3976 	if ((sess->listener->options & LI_O_NOQUICKACK) &&
3977 	    cli_conn && conn_ctrl_ready(cli_conn) &&
3978 	    ((msg->flags & HTTP_MSGF_TE_CHNK) ||
3979 	     (msg->body_len > req->buf->i - txn->req.eoh - 2)))
3980 		setsockopt(cli_conn->handle.fd, IPPROTO_TCP, TCP_QUICKACK, &one, sizeof(one));
3981 #endif
3982 
3983 	/*************************************************************
3984 	 * OK, that's finished for the headers. We have done what we *
3985 	 * could. Let's switch to the DATA state.                    *
3986 	 ************************************************************/
3987 	req->analyse_exp = TICK_ETERNITY;
3988 	req->analysers &= ~an_bit;
3989 
3990 	s->logs.tv_request = now;
3991 	/* OK let's go on with the BODY now */
3992 	return 1;
3993 
3994  return_bad_req: /* let's centralize all bad requests */
3995 	if (unlikely(msg->msg_state == HTTP_MSG_ERROR) || msg->err_pos >= 0) {
3996 		/* we detected a parsing error. We want to archive this request
3997 		 * in the dedicated proxy area for later troubleshooting.
3998 		 */
3999 		http_capture_bad_message(sess->fe, &sess->fe->invalid_req, s, msg, msg->err_state, sess->fe);
4000 	}
4001 
4002 	txn->req.err_state = txn->req.msg_state;
4003 	txn->req.msg_state = HTTP_MSG_ERROR;
4004 	txn->status = 400;
4005 	req->analysers &= AN_REQ_FLT_END;
4006 	http_reply_and_close(s, txn->status, http_error_message(s));
4007 
4008 	HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1);
4009 	if (sess->listener && sess->listener->counters)
4010 		HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1);
4011 
4012 	if (!(s->flags & SF_ERR_MASK))
4013 		s->flags |= SF_ERR_PRXCOND;
4014 	if (!(s->flags & SF_FINST_MASK))
4015 		s->flags |= SF_FINST_R;
4016 	return 0;
4017 }
4018 
4019 /* This function is an analyser which processes the HTTP tarpit. It always
4020  * returns zero, at the beginning because it prevents any other processing
4021  * from occurring, and at the end because it terminates the request.
4022  */
http_process_tarpit(struct stream * s,struct channel * req,int an_bit)4023 int http_process_tarpit(struct stream *s, struct channel *req, int an_bit)
4024 {
4025 	struct http_txn *txn = s->txn;
4026 
4027 	/* This connection is being tarpitted. The CLIENT side has
4028 	 * already set the connect expiration date to the right
4029 	 * timeout. We just have to check that the client is still
4030 	 * there and that the timeout has not expired.
4031 	 */
4032 	channel_dont_connect(req);
4033 	if ((req->flags & (CF_SHUTR|CF_READ_ERROR)) == 0 &&
4034 	    !tick_is_expired(req->analyse_exp, now_ms))
4035 		return 0;
4036 
4037 	/* We will set the queue timer to the time spent, just for
4038 	 * logging purposes. We fake a 500 server error, so that the
4039 	 * attacker will not suspect his connection has been tarpitted.
4040 	 * It will not cause trouble to the logs because we can exclude
4041 	 * the tarpitted connections by filtering on the 'PT' status flags.
4042 	 */
4043 	s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
4044 
4045 	if (!(req->flags & CF_READ_ERROR))
4046 		http_reply_and_close(s, txn->status, http_error_message(s));
4047 
4048 	req->analysers &= AN_REQ_FLT_END;
4049 	req->analyse_exp = TICK_ETERNITY;
4050 
4051 	if (!(s->flags & SF_ERR_MASK))
4052 		s->flags |= SF_ERR_PRXCOND;
4053 	if (!(s->flags & SF_FINST_MASK))
4054 		s->flags |= SF_FINST_T;
4055 	return 0;
4056 }
4057 
4058 /* This function is an analyser which waits for the HTTP request body. It waits
4059  * for either the buffer to be full, or the full advertised contents to have
4060  * reached the buffer. It must only be called after the standard HTTP request
4061  * processing has occurred, because it expects the request to be parsed and will
4062  * look for the Expect header. It may send a 100-Continue interim response. It
4063  * takes in input any state starting from HTTP_MSG_BODY and leaves with one of
4064  * HTTP_MSG_CHK_SIZE, HTTP_MSG_DATA or HTTP_MSG_TRAILERS. It returns zero if it
4065  * needs to read more data, or 1 once it has completed its analysis.
4066  */
http_wait_for_request_body(struct stream * s,struct channel * req,int an_bit)4067 int http_wait_for_request_body(struct stream *s, struct channel *req, int an_bit)
4068 {
4069 	struct session *sess = s->sess;
4070 	struct http_txn *txn = s->txn;
4071 	struct http_msg *msg = &s->txn->req;
4072 
4073 	/* We have to parse the HTTP request body to find any required data.
4074 	 * "balance url_param check_post" should have been the only way to get
4075 	 * into this. We were brought here after HTTP header analysis, so all
4076 	 * related structures are ready.
4077 	 */
4078 
4079 	if (msg->msg_state < HTTP_MSG_CHUNK_SIZE) {
4080 		/* This is the first call */
4081 		if (msg->msg_state < HTTP_MSG_BODY)
4082 			goto missing_data;
4083 
4084 		if (msg->msg_state < HTTP_MSG_100_SENT) {
4085 			/* If we have HTTP/1.1 and Expect: 100-continue, then we must
4086 			 * send an HTTP/1.1 100 Continue intermediate response.
4087 			 */
4088 			if (msg->flags & HTTP_MSGF_VER_11) {
4089 				struct hdr_ctx ctx;
4090 				ctx.idx = 0;
4091 				/* Expect is allowed in 1.1, look for it */
4092 				if (http_find_header2("Expect", 6, req->buf->p, &txn->hdr_idx, &ctx) &&
4093 				    unlikely(ctx.vlen == 12 && strncasecmp(ctx.line+ctx.val, "100-continue", 12) == 0)) {
4094 					co_inject(&s->res, http_100_chunk.str, http_100_chunk.len);
4095 					http_remove_header2(&txn->req, &txn->hdr_idx, &ctx);
4096 				}
4097 			}
4098 			msg->msg_state = HTTP_MSG_100_SENT;
4099 		}
4100 
4101 		/* we have msg->sov which points to the first byte of message body.
4102 		 * req->buf->p still points to the beginning of the message. We
4103 		 * must save the body in msg->next because it survives buffer
4104 		 * re-alignments.
4105 		 */
4106 		msg->next = msg->sov;
4107 
4108 		if (msg->flags & HTTP_MSGF_TE_CHNK)
4109 			msg->msg_state = HTTP_MSG_CHUNK_SIZE;
4110 		else
4111 			msg->msg_state = HTTP_MSG_DATA;
4112 	}
4113 
4114 	if (!(msg->flags & HTTP_MSGF_TE_CHNK)) {
4115 		/* We're in content-length mode, we just have to wait for enough data. */
4116 		if (http_body_bytes(msg) < msg->body_len)
4117 			goto missing_data;
4118 
4119 		/* OK we have everything we need now */
4120 		goto http_end;
4121 	}
4122 
4123 	/* OK here we're parsing a chunked-encoded message */
4124 
4125 	if (msg->msg_state == HTTP_MSG_CHUNK_SIZE) {
4126 		/* read the chunk size and assign it to ->chunk_len, then
4127 		 * set ->sov and ->next to point to the body and switch to DATA or
4128 		 * TRAILERS state.
4129 		 */
4130 		unsigned int chunk;
4131 		int ret = h1_parse_chunk_size(req->buf, msg->next, req->buf->i, &chunk);
4132 
4133 		if (!ret)
4134 			goto missing_data;
4135 		else if (ret < 0) {
4136 			msg->err_pos = req->buf->i + ret;
4137 			if (msg->err_pos < 0)
4138 				msg->err_pos += req->buf->size;
4139 			stream_inc_http_err_ctr(s);
4140 			goto return_bad_req;
4141 		}
4142 
4143 		msg->chunk_len = chunk;
4144 		msg->body_len += chunk;
4145 
4146 		msg->sol = ret;
4147 		msg->next += ret;
4148 		msg->msg_state = msg->chunk_len ? HTTP_MSG_DATA : HTTP_MSG_TRAILERS;
4149 	}
4150 
4151 	/* Now we're in HTTP_MSG_DATA or HTTP_MSG_TRAILERS state.
4152 	 * We have the first data byte is in msg->sov + msg->sol. We're waiting
4153 	 * for at least a whole chunk or the whole content length bytes after
4154 	 * msg->sov + msg->sol.
4155 	 */
4156 	if (msg->msg_state == HTTP_MSG_TRAILERS)
4157 		goto http_end;
4158 
4159 	if (http_body_bytes(msg) >= msg->body_len)   /* we have enough bytes now */
4160 		goto http_end;
4161 
4162  missing_data:
4163 	/* we get here if we need to wait for more data. If the buffer is full,
4164 	 * we have the maximum we can expect.
4165 	 */
4166 	if (buffer_full(req->buf, global.tune.maxrewrite))
4167 		goto http_end;
4168 
4169 	if ((req->flags & CF_READ_TIMEOUT) || tick_is_expired(req->analyse_exp, now_ms)) {
4170 		txn->status = 408;
4171 		http_reply_and_close(s, txn->status, http_error_message(s));
4172 
4173 		if (!(s->flags & SF_ERR_MASK))
4174 			s->flags |= SF_ERR_CLITO;
4175 		if (!(s->flags & SF_FINST_MASK))
4176 			s->flags |= SF_FINST_D;
4177 		goto return_err_msg;
4178 	}
4179 
4180 	/* we get here if we need to wait for more data */
4181 	if (!(req->flags & (CF_SHUTR | CF_READ_ERROR))) {
4182 		/* Not enough data. We'll re-use the http-request
4183 		 * timeout here. Ideally, we should set the timeout
4184 		 * relative to the accept() date. We just set the
4185 		 * request timeout once at the beginning of the
4186 		 * request.
4187 		 */
4188 		channel_dont_connect(req);
4189 		if (!tick_isset(req->analyse_exp))
4190 			req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.httpreq);
4191 		return 0;
4192 	}
4193 
4194  http_end:
4195 	/* The situation will not evolve, so let's give up on the analysis. */
4196 	s->logs.tv_request = now;  /* update the request timer to reflect full request */
4197 	req->analysers &= ~an_bit;
4198 	req->analyse_exp = TICK_ETERNITY;
4199 	return 1;
4200 
4201  return_bad_req: /* let's centralize all bad requests */
4202 	txn->req.err_state = txn->req.msg_state;
4203 	txn->req.msg_state = HTTP_MSG_ERROR;
4204 	txn->status = 400;
4205 	http_reply_and_close(s, txn->status, http_error_message(s));
4206 
4207 	if (!(s->flags & SF_ERR_MASK))
4208 		s->flags |= SF_ERR_PRXCOND;
4209 	if (!(s->flags & SF_FINST_MASK))
4210 		s->flags |= SF_FINST_R;
4211 
4212  return_err_msg:
4213 	req->analysers &= AN_REQ_FLT_END;
4214 	HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1);
4215 	if (sess->listener && sess->listener->counters)
4216 		HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1);
4217 	return 0;
4218 }
4219 
4220 /* send a server's name with an outgoing request over an established connection.
4221  * Note: this function is designed to be called once the request has been scheduled
4222  * for being forwarded. This is the reason why it rewinds the buffer before
4223  * proceeding.
4224  */
http_send_name_header(struct http_txn * txn,struct proxy * be,const char * srv_name)4225 int http_send_name_header(struct http_txn *txn, struct proxy* be, const char* srv_name) {
4226 
4227 	struct hdr_ctx ctx;
4228 
4229 	char *hdr_name = be->server_id_hdr_name;
4230 	int hdr_name_len = be->server_id_hdr_len;
4231 	struct channel *chn = txn->req.chn;
4232 	char *hdr_val;
4233 	unsigned int old_o, old_i;
4234 
4235 	ctx.idx = 0;
4236 
4237 	old_o = http_hdr_rewind(&txn->req);
4238 	if (old_o) {
4239 		/* The request was already skipped, let's restore it */
4240 		b_rew(chn->buf, old_o);
4241 		txn->req.next += old_o;
4242 		txn->req.sov += old_o;
4243 	}
4244 
4245 	old_i = chn->buf->i;
4246 	while (http_find_header2(hdr_name, hdr_name_len, txn->req.chn->buf->p, &txn->hdr_idx, &ctx)) {
4247 		/* remove any existing values from the header */
4248 	        http_remove_header2(&txn->req, &txn->hdr_idx, &ctx);
4249 	}
4250 
4251 	/* Add the new header requested with the server value */
4252 	hdr_val = trash.str;
4253 	memcpy(hdr_val, hdr_name, hdr_name_len);
4254 	hdr_val += hdr_name_len;
4255 	*hdr_val++ = ':';
4256 	*hdr_val++ = ' ';
4257 	hdr_val += strlcpy2(hdr_val, srv_name, trash.str + trash.size - hdr_val);
4258 	http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.str, hdr_val - trash.str);
4259 
4260 	if (old_o) {
4261 		/* If this was a forwarded request, we must readjust the amount of
4262 		 * data to be forwarded in order to take into account the size
4263 		 * variations. Note that the current state is >= HTTP_MSG_BODY,
4264 		 * so we don't have to adjust ->sol.
4265 		 */
4266 		old_o += chn->buf->i - old_i;
4267 		b_adv(chn->buf, old_o);
4268 		txn->req.next -= old_o;
4269 		txn->req.sov  -= old_o;
4270 	}
4271 
4272 	return 0;
4273 }
4274 
4275 /* Terminate current transaction and prepare a new one. This is very tricky
4276  * right now but it works.
4277  */
http_end_txn_clean_session(struct stream * s)4278 void http_end_txn_clean_session(struct stream *s)
4279 {
4280 	int prev_status = s->txn->status;
4281 	struct proxy *fe = strm_fe(s);
4282 	struct proxy *be = s->be;
4283 	struct conn_stream *cs;
4284 	struct connection *srv_conn;
4285 	struct server *srv;
4286 	unsigned int prev_flags = s->txn->flags;
4287 
4288 	/* FIXME: We need a more portable way of releasing a backend's and a
4289 	 * server's connections. We need a safer way to reinitialize buffer
4290 	 * flags. We also need a more accurate method for computing per-request
4291 	 * data.
4292 	 */
4293 	/*
4294 	 * XXX cognet: This is probably wrong, this is killing a whole
4295 	 * connection, in the new world order, we probably want to just kill
4296 	 * the stream, this is to be revisited the day we handle multiple
4297 	 * streams in one server connection.
4298 	 */
4299 	cs = objt_cs(s->si[1].end);
4300 	srv_conn = cs_conn(cs);
4301 
4302 	/* unless we're doing keep-alive, we want to quickly close the connection
4303 	 * to the server.
4304 	 */
4305 	if (((s->txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_KAL) ||
4306 	    !si_conn_ready(&s->si[1])) {
4307 		s->si[1].flags |= SI_FL_NOLINGER | SI_FL_NOHALF;
4308 		si_shutr(&s->si[1]);
4309 		si_shutw(&s->si[1]);
4310 	}
4311 
4312 	if (s->flags & SF_BE_ASSIGNED) {
4313 		HA_ATOMIC_SUB(&be->beconn, 1);
4314 		if (unlikely(s->srv_conn))
4315 			sess_change_server(s, NULL);
4316 	}
4317 
4318 	s->logs.t_close = tv_ms_elapsed(&s->logs.tv_accept, &now);
4319 	stream_process_counters(s);
4320 
4321 	if (s->txn->status) {
4322 		int n;
4323 
4324 		n = s->txn->status / 100;
4325 		if (n < 1 || n > 5)
4326 			n = 0;
4327 
4328 		if (fe->mode == PR_MODE_HTTP) {
4329 			HA_ATOMIC_ADD(&fe->fe_counters.p.http.rsp[n], 1);
4330 		}
4331 		if ((s->flags & SF_BE_ASSIGNED) &&
4332 		    (be->mode == PR_MODE_HTTP)) {
4333 			HA_ATOMIC_ADD(&be->be_counters.p.http.rsp[n], 1);
4334 			HA_ATOMIC_ADD(&be->be_counters.p.http.cum_req, 1);
4335 		}
4336 	}
4337 
4338 	/* don't count other requests' data */
4339 	s->logs.bytes_in  -= s->req.buf->i;
4340 	s->logs.bytes_out -= s->res.buf->i;
4341 
4342 	/* let's do a final log if we need it */
4343 	if (!LIST_ISEMPTY(&fe->logformat) && s->logs.logwait &&
4344 	    !(s->flags & SF_MONITOR) &&
4345 	    (!(fe->options & PR_O_NULLNOLOG) || s->req.total)) {
4346 		s->do_log(s);
4347 	}
4348 
4349 	/* stop tracking content-based counters */
4350 	stream_stop_content_counters(s);
4351 	stream_update_time_stats(s);
4352 
4353 	s->logs.accept_date = date; /* user-visible date for logging */
4354 	s->logs.tv_accept = now;  /* corrected date for internal use */
4355 	s->logs.t_handshake = 0; /* There are no handshake in keep alive connection. */
4356 	s->logs.t_idle = -1;
4357 	tv_zero(&s->logs.tv_request);
4358 	s->logs.t_queue = -1;
4359 	s->logs.t_connect = -1;
4360 	s->logs.t_data = -1;
4361 	s->logs.t_close = 0;
4362 	s->logs.prx_queue_size = 0;  /* we get the number of pending conns before us */
4363 	s->logs.srv_queue_size = 0; /* we will get this number soon */
4364 
4365 	s->logs.bytes_in = s->req.total = s->req.buf->i;
4366 	s->logs.bytes_out = s->res.total = s->res.buf->i;
4367 
4368 	if (s->pend_pos)
4369 		pendconn_free(s->pend_pos);
4370 
4371 	if (objt_server(s->target)) {
4372 		if (s->flags & SF_CURR_SESS) {
4373 			s->flags &= ~SF_CURR_SESS;
4374 			HA_ATOMIC_SUB(&__objt_server(s->target)->cur_sess, 1);
4375 		}
4376 		if (may_dequeue_tasks(objt_server(s->target), be))
4377 			process_srv_queue(objt_server(s->target));
4378 	}
4379 
4380 	s->target = NULL;
4381 
4382 	/* only release our endpoint if we don't intend to reuse the
4383 	 * connection.
4384 	 */
4385 	if (((s->txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_KAL) ||
4386 	    !si_conn_ready(&s->si[1])) {
4387 		si_release_endpoint(&s->si[1]);
4388 		srv_conn = NULL;
4389 	}
4390 
4391 	s->si[1].state     = s->si[1].prev_state = SI_ST_INI;
4392 	s->si[1].err_type  = SI_ET_NONE;
4393 	s->si[1].conn_retries = 0;  /* used for logging too */
4394 	s->si[1].exp       = TICK_ETERNITY;
4395 	s->si[1].flags    &= SI_FL_ISBACK | SI_FL_DONT_WAKE; /* we're in the context of process_stream */
4396 	s->req.flags &= ~(CF_SHUTW|CF_SHUTW_NOW|CF_AUTO_CONNECT|CF_WRITE_ERROR|CF_STREAMER|CF_STREAMER_FAST|CF_NEVER_WAIT|CF_WAKE_CONNECT|CF_WROTE_DATA);
4397 	s->res.flags &= ~(CF_SHUTR|CF_SHUTR_NOW|CF_READ_ATTACHED|CF_READ_ERROR|CF_READ_NOEXP|CF_STREAMER|CF_STREAMER_FAST|CF_WRITE_PARTIAL|CF_NEVER_WAIT|CF_WROTE_DATA|CF_WRITE_EVENT);
4398 	s->flags &= ~(SF_DIRECT|SF_ASSIGNED|SF_ADDR_SET|SF_BE_ASSIGNED|SF_FORCE_PRST|SF_IGNORE_PRST);
4399 	s->flags &= ~(SF_CURR_SESS|SF_REDIRECTABLE|SF_SRV_REUSED);
4400 	s->flags &= ~(SF_ERR_MASK|SF_FINST_MASK|SF_REDISP);
4401 
4402 	hlua_ctx_destroy(s->hlua);
4403 	s->hlua = NULL;
4404 
4405 	/* cleanup and reinit capture arrays, if any */
4406 	if (s->req_cap) {
4407 		struct cap_hdr *h;
4408 		for (h = fe->req_cap; h; h = h->next)
4409 			pool_free(h->pool, s->req_cap[h->index]);
4410 		memset(s->req_cap, 0, fe->nb_req_cap * sizeof(void *));
4411 	}
4412 
4413 	if (s->res_cap) {
4414 		struct cap_hdr *h;
4415 		for (h = fe->rsp_cap; h; h = h->next)
4416 			pool_free(h->pool, s->res_cap[h->index]);
4417 		memset(s->res_cap, 0, fe->nb_rsp_cap * sizeof(void *));
4418 	}
4419 
4420 	s->txn->meth = 0;
4421 	http_reset_txn(s);
4422 	s->txn->flags |= TX_NOT_FIRST | TX_WAIT_NEXT_RQ;
4423 
4424 	if (prev_status == 401 || prev_status == 407) {
4425 		/* In HTTP keep-alive mode, if we receive a 401, we still have
4426 		 * a chance of being able to send the visitor again to the same
4427 		 * server over the same connection. This is required by some
4428 		 * broken protocols such as NTLM, and anyway whenever there is
4429 		 * an opportunity for sending the challenge to the proper place,
4430 		 * it's better to do it (at least it helps with debugging), at
4431 		 * least for non-deterministic load balancing algorithms.
4432 		 */
4433 		s->txn->flags |= TX_PREFER_LAST;
4434 	}
4435 
4436 	/* Never ever allow to reuse a connection from a non-reuse backend */
4437 	if (srv_conn && (be->options & PR_O_REUSE_MASK) == PR_O_REUSE_NEVR)
4438 		srv_conn->flags |= CO_FL_PRIVATE;
4439 
4440 	if (fe->options2 & PR_O2_INDEPSTR)
4441 		s->si[1].flags |= SI_FL_INDEP_STR;
4442 
4443 	if (fe->options2 & PR_O2_NODELAY) {
4444 		s->req.flags |= CF_NEVER_WAIT;
4445 		s->res.flags |= CF_NEVER_WAIT;
4446 	}
4447 
4448 	/* we're removing the analysers, we MUST re-enable events detection.
4449 	 * We don't enable close on the response channel since it's either
4450 	 * already closed, or in keep-alive with an idle connection handler.
4451 	 */
4452 	channel_auto_read(&s->req);
4453 	channel_auto_close(&s->req);
4454 	channel_auto_read(&s->res);
4455 
4456 	/* we're in keep-alive with an idle connection, monitor it if not already done */
4457 	if (srv_conn && LIST_ISEMPTY(&srv_conn->list)) {
4458 		srv = objt_server(srv_conn->target);
4459 		if (!srv)
4460 			si_idle_cs(&s->si[1], NULL);
4461 		else if (srv_conn->flags & CO_FL_PRIVATE)
4462 			si_idle_cs(&s->si[1], (srv->priv_conns ? &srv->priv_conns[tid] : NULL));
4463 		else if (prev_flags & TX_NOT_FIRST)
4464 			/* note: we check the request, not the connection, but
4465 			 * this is valid for strategies SAFE and AGGR, and in
4466 			 * case of ALWS, we don't care anyway.
4467 			 */
4468 			si_idle_cs(&s->si[1], (srv->safe_conns ? &srv->safe_conns[tid] : NULL));
4469 		else
4470 			si_idle_cs(&s->si[1], (srv->idle_conns ? &srv->idle_conns[tid] : NULL));
4471 	}
4472 	s->req.analysers = strm_li(s) ? strm_li(s)->analysers : 0;
4473 	s->res.analysers = 0;
4474 }
4475 
4476 
4477 /* This function updates the request state machine according to the response
4478  * state machine and buffer flags. It returns 1 if it changes anything (flag
4479  * or state), otherwise zero. It ignores any state before HTTP_MSG_DONE, as
4480  * it is only used to find when a request/response couple is complete. Both
4481  * this function and its equivalent should loop until both return zero. It
4482  * can set its own state to DONE, CLOSING, CLOSED, TUNNEL, ERROR.
4483  */
http_sync_req_state(struct stream * s)4484 int http_sync_req_state(struct stream *s)
4485 {
4486 	struct channel *chn = &s->req;
4487 	struct http_txn *txn = s->txn;
4488 	unsigned int old_flags = chn->flags;
4489 	unsigned int old_state = txn->req.msg_state;
4490 
4491 	if (unlikely(txn->req.msg_state < HTTP_MSG_DONE))
4492 		return 0;
4493 
4494 	if (txn->req.msg_state == HTTP_MSG_DONE) {
4495 		/* No need to read anymore, the request was completely parsed.
4496 		 * We can shut the read side unless we want to abort_on_close,
4497 		 * or we have a POST request. The issue with POST requests is
4498 		 * that some browsers still send a CRLF after the request, and
4499 		 * this CRLF must be read so that it does not remain in the kernel
4500 		 * buffers, otherwise a close could cause an RST on some systems
4501 		 * (eg: Linux).
4502 		 * Note that if we're using keep-alive on the client side, we'd
4503 		 * rather poll now and keep the polling enabled for the whole
4504 		 * stream's life than enabling/disabling it between each
4505 		 * response and next request.
4506 		 */
4507 		if (((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_SCL) &&
4508 		    ((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_KAL) &&
4509 		    (!(s->be->options & PR_O_ABRT_CLOSE) ||
4510 		     (s->si[0].flags & SI_FL_CLEAN_ABRT)) &&
4511 		    txn->meth != HTTP_METH_POST)
4512 			channel_dont_read(chn);
4513 
4514 		/* if the server closes the connection, we want to immediately react
4515 		 * and close the socket to save packets and syscalls.
4516 		 */
4517 		s->si[1].flags |= SI_FL_NOHALF;
4518 
4519 		/* In any case we've finished parsing the request so we must
4520 		 * disable Nagle when sending data because 1) we're not going
4521 		 * to shut this side, and 2) the server is waiting for us to
4522 		 * send pending data.
4523 		 */
4524 		chn->flags |= CF_NEVER_WAIT;
4525 
4526 		if (txn->rsp.msg_state == HTTP_MSG_ERROR)
4527 			goto wait_other_side;
4528 
4529 		if (txn->rsp.msg_state < HTTP_MSG_DONE) {
4530 			/* The server has not finished to respond, so we
4531 			 * don't want to move in order not to upset it.
4532 			 */
4533 			goto wait_other_side;
4534 		}
4535 
4536 		/* When we get here, it means that both the request and the
4537 		 * response have finished receiving. Depending on the connection
4538 		 * mode, we'll have to wait for the last bytes to leave in either
4539 		 * direction, and sometimes for a close to be effective.
4540 		 */
4541 
4542 		if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) {
4543 			/* Server-close mode : queue a connection close to the server */
4544 			if (!(chn->flags & (CF_SHUTW|CF_SHUTW_NOW)))
4545 				channel_shutw_now(chn);
4546 		}
4547 		else if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_CLO) {
4548 			/* Option forceclose is set, or either side wants to close,
4549 			 * let's enforce it now that we're not expecting any new
4550 			 * data to come. The caller knows the stream is complete
4551 			 * once both states are CLOSED.
4552 			 *
4553 			 *  However, there is an exception if the response
4554 			 *  length is undefined. In this case, we need to wait
4555 			 *  the close from the server. The response will be
4556 			 *  switched in TUNNEL mode until the end.
4557 			 */
4558 			if (!(txn->rsp.flags & HTTP_MSGF_XFER_LEN) &&
4559 			    txn->rsp.msg_state != HTTP_MSG_CLOSED)
4560 				goto check_channel_flags;
4561 
4562 			if (!(chn->flags & (CF_SHUTW|CF_SHUTW_NOW))) {
4563 				channel_shutr_now(chn);
4564 				channel_shutw_now(chn);
4565 			}
4566 		}
4567 		else {
4568 			/* The last possible modes are keep-alive and tunnel. Tunnel mode
4569 			 * will not have any analyser so it needs to poll for reads.
4570 			 */
4571 			if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_TUN) {
4572 				channel_auto_read(chn);
4573 				txn->req.msg_state = HTTP_MSG_TUNNEL;
4574 			}
4575 		}
4576 
4577 		goto check_channel_flags;
4578 	}
4579 
4580 	if (txn->req.msg_state == HTTP_MSG_CLOSING) {
4581 	http_msg_closing:
4582 		/* nothing else to forward, just waiting for the output buffer
4583 		 * to be empty and for the shutw_now to take effect.
4584 		 */
4585 		if (channel_is_empty(chn)) {
4586 			txn->req.msg_state = HTTP_MSG_CLOSED;
4587 			goto http_msg_closed;
4588 		}
4589 		else if (chn->flags & CF_SHUTW) {
4590 			txn->req.err_state = txn->req.msg_state;
4591 			txn->req.msg_state = HTTP_MSG_ERROR;
4592 		}
4593 		goto wait_other_side;
4594 	}
4595 
4596 	if (txn->req.msg_state == HTTP_MSG_CLOSED) {
4597 	http_msg_closed:
4598 		/* if we don't know whether the server will close, we need to hard close */
4599 		if (txn->rsp.flags & HTTP_MSGF_XFER_LEN)
4600 			s->si[1].flags |= SI_FL_NOLINGER;  /* we want to close ASAP */
4601 
4602 		/* see above in MSG_DONE why we only do this in these states */
4603 		if (((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_SCL) &&
4604 		    ((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_KAL) &&
4605 		    (!(s->be->options & PR_O_ABRT_CLOSE) ||
4606 		     (s->si[0].flags & SI_FL_CLEAN_ABRT)))
4607 			channel_dont_read(chn);
4608 		goto wait_other_side;
4609 	}
4610 
4611  check_channel_flags:
4612 	/* Here, we are in HTTP_MSG_DONE or HTTP_MSG_TUNNEL */
4613 	if (chn->flags & (CF_SHUTW|CF_SHUTW_NOW)) {
4614 		/* if we've just closed an output, let's switch */
4615 		txn->req.msg_state = HTTP_MSG_CLOSING;
4616 		goto http_msg_closing;
4617 	}
4618 
4619 
4620  wait_other_side:
4621 	return txn->req.msg_state != old_state || chn->flags != old_flags;
4622 }
4623 
4624 
4625 /* This function updates the response state machine according to the request
4626  * state machine and buffer flags. It returns 1 if it changes anything (flag
4627  * or state), otherwise zero. It ignores any state before HTTP_MSG_DONE, as
4628  * it is only used to find when a request/response couple is complete. Both
4629  * this function and its equivalent should loop until both return zero. It
4630  * can set its own state to DONE, CLOSING, CLOSED, TUNNEL, ERROR.
4631  */
http_sync_res_state(struct stream * s)4632 int http_sync_res_state(struct stream *s)
4633 {
4634 	struct channel *chn = &s->res;
4635 	struct http_txn *txn = s->txn;
4636 	unsigned int old_flags = chn->flags;
4637 	unsigned int old_state = txn->rsp.msg_state;
4638 
4639 	if (unlikely(txn->rsp.msg_state < HTTP_MSG_DONE))
4640 		return 0;
4641 
4642 	if (txn->rsp.msg_state == HTTP_MSG_DONE) {
4643 		/* In theory, we don't need to read anymore, but we must
4644 		 * still monitor the server connection for a possible close
4645 		 * while the request is being uploaded, so we don't disable
4646 		 * reading.
4647 		 */
4648 		/* channel_dont_read(chn); */
4649 
4650 		if (txn->req.msg_state == HTTP_MSG_ERROR)
4651 			goto wait_other_side;
4652 
4653 		if (txn->req.msg_state < HTTP_MSG_DONE) {
4654 			/* The client seems to still be sending data, probably
4655 			 * because we got an error response during an upload.
4656 			 * We have the choice of either breaking the connection
4657 			 * or letting it pass through. Let's do the later.
4658 			 */
4659 			goto wait_other_side;
4660 		}
4661 
4662 		/* When we get here, it means that both the request and the
4663 		 * response have finished receiving. Depending on the connection
4664 		 * mode, we'll have to wait for the last bytes to leave in either
4665 		 * direction, and sometimes for a close to be effective.
4666 		 */
4667 
4668 		if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) {
4669 			/* Server-close mode : shut read and wait for the request
4670 			 * side to close its output buffer. The caller will detect
4671 			 * when we're in DONE and the other is in CLOSED and will
4672 			 * catch that for the final cleanup.
4673 			 */
4674 			if (!(chn->flags & (CF_SHUTR|CF_SHUTR_NOW)))
4675 				channel_shutr_now(chn);
4676 		}
4677 		else if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_CLO) {
4678 			/* Option forceclose is set, or either side wants to close,
4679 			 * let's enforce it now that we're not expecting any new
4680 			 * data to come. The caller knows the stream is complete
4681 			 * once both states are CLOSED.
4682 			 */
4683 			if (!(chn->flags & (CF_SHUTW|CF_SHUTW_NOW))) {
4684 				channel_shutr_now(chn);
4685 				channel_shutw_now(chn);
4686 			}
4687 		}
4688 		else {
4689 			/* The last possible modes are keep-alive and tunnel. Tunnel will
4690 			 * need to forward remaining data. Keep-alive will need to monitor
4691 			 * for connection closing.
4692 			 */
4693 			channel_auto_read(chn);
4694 			chn->flags |= CF_NEVER_WAIT;
4695 			if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_TUN)
4696 				txn->rsp.msg_state = HTTP_MSG_TUNNEL;
4697 		}
4698 
4699 		goto check_channel_flags;
4700 	}
4701 
4702 	if (txn->rsp.msg_state == HTTP_MSG_CLOSING) {
4703 	http_msg_closing:
4704 		/* nothing else to forward, just waiting for the output buffer
4705 		 * to be empty and for the shutw_now to take effect.
4706 		 */
4707 		if (channel_is_empty(chn)) {
4708 			txn->rsp.msg_state = HTTP_MSG_CLOSED;
4709 			goto http_msg_closed;
4710 		}
4711 		else if (chn->flags & CF_SHUTW) {
4712 			txn->rsp.err_state = txn->rsp.msg_state;
4713 			txn->rsp.msg_state = HTTP_MSG_ERROR;
4714 			HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1);
4715 			if (objt_server(s->target))
4716 				HA_ATOMIC_ADD(&objt_server(s->target)->counters.cli_aborts, 1);
4717 		}
4718 		goto wait_other_side;
4719 	}
4720 
4721 	if (txn->rsp.msg_state == HTTP_MSG_CLOSED) {
4722 	http_msg_closed:
4723 		/* drop any pending data */
4724 		channel_truncate(chn);
4725 		channel_auto_close(chn);
4726 		channel_auto_read(chn);
4727 		goto wait_other_side;
4728 	}
4729 
4730  check_channel_flags:
4731 	/* Here, we are in HTTP_MSG_DONE or HTTP_MSG_TUNNEL */
4732 	if (chn->flags & (CF_SHUTW|CF_SHUTW_NOW)) {
4733 		/* if we've just closed an output, let's switch */
4734 		txn->rsp.msg_state = HTTP_MSG_CLOSING;
4735 		goto http_msg_closing;
4736 	}
4737 
4738  wait_other_side:
4739 	/* We force the response to leave immediately if we're waiting for the
4740 	 * other side, since there is no pending shutdown to push it out.
4741 	 */
4742 	if (!channel_is_empty(chn))
4743 		chn->flags |= CF_SEND_DONTWAIT;
4744 	return txn->rsp.msg_state != old_state || chn->flags != old_flags;
4745 }
4746 
4747 
4748 /* Resync the request and response state machines. */
http_resync_states(struct stream * s)4749 void http_resync_states(struct stream *s)
4750 {
4751 	struct http_txn *txn = s->txn;
4752 #ifdef DEBUG_FULL
4753 	int old_req_state = txn->req.msg_state;
4754 	int old_res_state = txn->rsp.msg_state;
4755 #endif
4756 
4757 	http_sync_req_state(s);
4758 	while (1) {
4759 		if (!http_sync_res_state(s))
4760 			break;
4761 		if (!http_sync_req_state(s))
4762 			break;
4763 	}
4764 
4765 	DPRINTF(stderr,"[%u] %s: stream=%p old=%s,%s cur=%s,%s "
4766 		"req->analysers=0x%08x res->analysers=0x%08x\n",
4767 		now_ms, __FUNCTION__, s,
4768 		h1_msg_state_str(old_req_state), h1_msg_state_str(old_res_state),
4769 		h1_msg_state_str(txn->req.msg_state), h1_msg_state_str(txn->rsp.msg_state),
4770 		s->req.analysers, s->res.analysers);
4771 
4772 
4773 	/* OK, both state machines agree on a compatible state.
4774 	 * There are a few cases we're interested in :
4775 	 *  - HTTP_MSG_CLOSED on both sides means we've reached the end in both
4776 	 *    directions, so let's simply disable both analysers.
4777 	 *  - HTTP_MSG_CLOSED on the response only or HTTP_MSG_ERROR on either
4778 	 *    means we must abort the request.
4779 	 *  - HTTP_MSG_TUNNEL on either means we have to disable analyser on
4780 	 *    corresponding channel.
4781 	 *  - HTTP_MSG_DONE or HTTP_MSG_CLOSED on the request and HTTP_MSG_DONE
4782 	 *    on the response with server-close mode means we've completed one
4783 	 *    request and we must re-initialize the server connection.
4784 	 */
4785 	if (txn->req.msg_state == HTTP_MSG_CLOSED &&
4786 	    txn->rsp.msg_state == HTTP_MSG_CLOSED) {
4787 		s->req.analysers &= AN_REQ_FLT_END;
4788 		channel_auto_close(&s->req);
4789 		channel_auto_read(&s->req);
4790 		s->res.analysers &= AN_RES_FLT_END;
4791 		channel_auto_close(&s->res);
4792 		channel_auto_read(&s->res);
4793 	}
4794 	else if (txn->rsp.msg_state == HTTP_MSG_CLOSED ||
4795 		 txn->rsp.msg_state == HTTP_MSG_ERROR  ||
4796 		 txn->req.msg_state == HTTP_MSG_ERROR) {
4797 		s->res.analysers &= AN_RES_FLT_END;
4798 		channel_auto_close(&s->res);
4799 		channel_auto_read(&s->res);
4800 		s->req.analysers &= AN_REQ_FLT_END;
4801 		channel_abort(&s->req);
4802 		channel_auto_close(&s->req);
4803 		channel_auto_read(&s->req);
4804 		channel_truncate(&s->req);
4805 	}
4806 	else if (txn->req.msg_state == HTTP_MSG_TUNNEL ||
4807 		 txn->rsp.msg_state == HTTP_MSG_TUNNEL) {
4808 		if (txn->req.msg_state == HTTP_MSG_TUNNEL) {
4809 			s->req.analysers &= AN_REQ_FLT_END;
4810 			if (HAS_REQ_DATA_FILTERS(s))
4811 				s->req.analysers |= AN_REQ_FLT_XFER_DATA;
4812 		}
4813 		if (txn->rsp.msg_state == HTTP_MSG_TUNNEL) {
4814 			s->res.analysers &= AN_RES_FLT_END;
4815 			if (HAS_RSP_DATA_FILTERS(s))
4816 				s->res.analysers |= AN_RES_FLT_XFER_DATA;
4817 		}
4818 		channel_auto_close(&s->req);
4819 		channel_auto_read(&s->req);
4820 		channel_auto_close(&s->res);
4821 		channel_auto_read(&s->res);
4822 	}
4823 	else if ((txn->req.msg_state == HTTP_MSG_DONE ||
4824 		  txn->req.msg_state == HTTP_MSG_CLOSED) &&
4825 		 txn->rsp.msg_state == HTTP_MSG_DONE &&
4826 		 ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL ||
4827 		  (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL)) {
4828 		/* server-close/keep-alive: terminate this transaction,
4829 		 * possibly killing the server connection and reinitialize
4830 		 * a fresh-new transaction, but only once we're sure there's
4831 		 * enough room in the request and response buffer to process
4832 		 * another request. They must not hold any pending output data
4833 		 * and the response buffer must realigned
4834 		 * (realign is done is http_end_txn_clean_session).
4835 		 */
4836 		if (s->req.buf->o)
4837 			s->req.flags |= CF_WAKE_WRITE;
4838 		else if (s->res.buf->o)
4839 			s->res.flags |= CF_WAKE_WRITE;
4840 		else {
4841 			s->req.analysers = AN_REQ_FLT_END;
4842 			s->res.analysers = AN_RES_FLT_END;
4843 			txn->flags |= TX_WAIT_CLEANUP;
4844 		}
4845 	}
4846 }
4847 
4848 /* This function is an analyser which forwards request body (including chunk
4849  * sizes if any). It is called as soon as we must forward, even if we forward
4850  * zero byte. The only situation where it must not be called is when we're in
4851  * tunnel mode and we want to forward till the close. It's used both to forward
4852  * remaining data and to resync after end of body. It expects the msg_state to
4853  * be between MSG_BODY and MSG_DONE (inclusive). It returns zero if it needs to
4854  * read more data, or 1 once we can go on with next request or end the stream.
4855  * When in MSG_DATA or MSG_TRAILERS, it will automatically forward chunk_len
4856  * bytes of pending data + the headers if not already done.
4857  */
http_request_forward_body(struct stream * s,struct channel * req,int an_bit)4858 int http_request_forward_body(struct stream *s, struct channel *req, int an_bit)
4859 {
4860 	struct session *sess = s->sess;
4861 	struct http_txn *txn = s->txn;
4862 	struct http_msg *msg = &s->txn->req;
4863 	int ret;
4864 
4865 	DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
4866 		now_ms, __FUNCTION__,
4867 		s,
4868 		req,
4869 		req->rex, req->wex,
4870 		req->flags,
4871 		req->buf->i,
4872 		req->analysers);
4873 
4874 	if (unlikely(msg->msg_state < HTTP_MSG_BODY))
4875 		return 0;
4876 
4877 	if ((req->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) ||
4878 	    ((req->flags & CF_SHUTW) && (req->to_forward || req->buf->o))) {
4879 		/* Output closed while we were sending data. We must abort and
4880 		 * wake the other side up.
4881 		 */
4882 		msg->err_state = msg->msg_state;
4883 		msg->msg_state = HTTP_MSG_ERROR;
4884 		http_resync_states(s);
4885 		return 1;
4886 	}
4887 
4888 	/* Note that we don't have to send 100-continue back because we don't
4889 	 * need the data to complete our job, and it's up to the server to
4890 	 * decide whether to return 100, 417 or anything else in return of
4891 	 * an "Expect: 100-continue" header.
4892 	 */
4893 	if (msg->msg_state == HTTP_MSG_BODY) {
4894 		msg->msg_state = ((msg->flags & HTTP_MSGF_TE_CHNK)
4895 				  ? HTTP_MSG_CHUNK_SIZE
4896 				  : HTTP_MSG_DATA);
4897 
4898 		/* TODO/filters: when http-buffer-request option is set or if a
4899 		 * rule on url_param exists, the first chunk size could be
4900 		 * already parsed. In that case, msg->next is after the chunk
4901 		 * size (including the CRLF after the size). So this case should
4902 		 * be handled to */
4903 	}
4904 
4905 	/* Some post-connect processing might want us to refrain from starting to
4906 	 * forward data. Currently, the only reason for this is "balance url_param"
4907 	 * whichs need to parse/process the request after we've enabled forwarding.
4908 	 */
4909 	if (unlikely(msg->flags & HTTP_MSGF_WAIT_CONN)) {
4910 		if (!(s->res.flags & CF_READ_ATTACHED)) {
4911 			channel_auto_connect(req);
4912 			req->flags |= CF_WAKE_CONNECT;
4913 			channel_dont_close(req); /* don't fail on early shutr */
4914 			goto waiting;
4915 		}
4916 		msg->flags &= ~HTTP_MSGF_WAIT_CONN;
4917 	}
4918 
4919 	/* in most states, we should abort in case of early close */
4920 	channel_auto_close(req);
4921 
4922 	if (req->to_forward) {
4923 		/* We can't process the buffer's contents yet */
4924 		req->flags |= CF_WAKE_WRITE;
4925 		goto missing_data_or_waiting;
4926 	}
4927 
4928 	if (msg->msg_state < HTTP_MSG_DONE) {
4929 		ret = ((msg->flags & HTTP_MSGF_TE_CHNK)
4930 		       ? http_msg_forward_chunked_body(s, msg)
4931 		       : http_msg_forward_body(s, msg));
4932 		if (!ret)
4933 			goto missing_data_or_waiting;
4934 		if (ret < 0)
4935 			goto return_bad_req;
4936 	}
4937 
4938 	/* other states, DONE...TUNNEL */
4939 	/* we don't want to forward closes on DONE except in tunnel mode. */
4940 	if ((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN)
4941 		channel_dont_close(req);
4942 
4943 	http_resync_states(s);
4944 	if (!(req->analysers & an_bit)) {
4945 		if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) {
4946 			if (req->flags & CF_SHUTW) {
4947 				/* request errors are most likely due to the
4948 				 * server aborting the transfer. */
4949 				goto aborted_xfer;
4950 			}
4951 			if (msg->err_pos >= 0)
4952 				http_capture_bad_message(sess->fe, &sess->fe->invalid_req, s, msg, msg->err_state, s->be);
4953 			goto return_bad_req;
4954 		}
4955 		return 1;
4956 	}
4957 
4958 	/* If "option abortonclose" is set on the backend, we want to monitor
4959 	 * the client's connection and forward any shutdown notification to the
4960 	 * server, which will decide whether to close or to go on processing the
4961 	 * request. We only do that in tunnel mode, and not in other modes since
4962 	 * it can be abused to exhaust source ports. */
4963 	if ((s->be->options & PR_O_ABRT_CLOSE) && !(s->si[0].flags & SI_FL_CLEAN_ABRT)) {
4964 		channel_auto_read(req);
4965 		if ((req->flags & (CF_SHUTR|CF_READ_NULL)) &&
4966 		    ((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN))
4967 			s->si[1].flags |= SI_FL_NOLINGER;
4968 		channel_auto_close(req);
4969 	}
4970 	else if (s->txn->meth == HTTP_METH_POST) {
4971 		/* POST requests may require to read extra CRLF sent by broken
4972 		 * browsers and which could cause an RST to be sent upon close
4973 		 * on some systems (eg: Linux). */
4974 		channel_auto_read(req);
4975 	}
4976 	return 0;
4977 
4978  missing_data_or_waiting:
4979 	/* stop waiting for data if the input is closed before the end */
4980 	if (msg->msg_state < HTTP_MSG_ENDING && req->flags & CF_SHUTR) {
4981 		if (!(s->flags & SF_ERR_MASK))
4982 			s->flags |= SF_ERR_CLICL;
4983 		if (!(s->flags & SF_FINST_MASK)) {
4984 			if (txn->rsp.msg_state < HTTP_MSG_ERROR)
4985 				s->flags |= SF_FINST_H;
4986 			else
4987 				s->flags |= SF_FINST_D;
4988 		}
4989 
4990 		HA_ATOMIC_ADD(&sess->fe->fe_counters.cli_aborts, 1);
4991 		HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1);
4992 		if (objt_server(s->target))
4993 			HA_ATOMIC_ADD(&objt_server(s->target)->counters.cli_aborts, 1);
4994 
4995 		goto return_bad_req_stats_ok;
4996 	}
4997 
4998  waiting:
4999 	/* waiting for the last bits to leave the buffer */
5000 	if (req->flags & CF_SHUTW)
5001 		goto aborted_xfer;
5002 
5003 	/* When TE: chunked is used, we need to get there again to parse remaining
5004 	 * chunks even if the client has closed, so we don't want to set CF_DONTCLOSE.
5005 	 * And when content-length is used, we never want to let the possible
5006 	 * shutdown be forwarded to the other side, as the state machine will
5007 	 * take care of it once the client responds. It's also important to
5008 	 * prevent TIME_WAITs from accumulating on the backend side, and for
5009 	 * HTTP/2 where the last frame comes with a shutdown.
5010 	 */
5011 	if (msg->flags & (HTTP_MSGF_TE_CHNK|HTTP_MSGF_CNT_LEN))
5012 		channel_dont_close(req);
5013 
5014 	/* We know that more data are expected, but we couldn't send more that
5015 	 * what we did. So we always set the CF_EXPECT_MORE flag so that the
5016 	 * system knows it must not set a PUSH on this first part. Interactive
5017 	 * modes are already handled by the stream sock layer. We must not do
5018 	 * this in content-length mode because it could present the MSG_MORE
5019 	 * flag with the last block of forwarded data, which would cause an
5020 	 * additional delay to be observed by the receiver.
5021 	 */
5022 	if (msg->flags & HTTP_MSGF_TE_CHNK)
5023 		req->flags |= CF_EXPECT_MORE;
5024 
5025 	return 0;
5026 
5027  return_bad_req: /* let's centralize all bad requests */
5028 	HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1);
5029 	if (sess->listener && sess->listener->counters)
5030 		HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1);
5031 
5032  return_bad_req_stats_ok:
5033 	txn->req.err_state = txn->req.msg_state;
5034 	txn->req.msg_state = HTTP_MSG_ERROR;
5035 	if (txn->status) {
5036 		/* Note: we don't send any error if some data were already sent */
5037 		http_reply_and_close(s, txn->status, NULL);
5038 	} else {
5039 		txn->status = 400;
5040 		http_reply_and_close(s, txn->status, http_error_message(s));
5041 	}
5042 	req->analysers   &= AN_REQ_FLT_END;
5043 	s->res.analysers &= AN_RES_FLT_END; /* we're in data phase, we want to abort both directions */
5044 
5045 	if (!(s->flags & SF_ERR_MASK))
5046 		s->flags |= SF_ERR_PRXCOND;
5047 	if (!(s->flags & SF_FINST_MASK)) {
5048 		if (txn->rsp.msg_state < HTTP_MSG_ERROR)
5049 			s->flags |= SF_FINST_H;
5050 		else
5051 			s->flags |= SF_FINST_D;
5052 	}
5053 	return 0;
5054 
5055  aborted_xfer:
5056 	txn->req.err_state = txn->req.msg_state;
5057 	txn->req.msg_state = HTTP_MSG_ERROR;
5058 	if (txn->status) {
5059 		/* Note: we don't send any error if some data were already sent */
5060 		http_reply_and_close(s, txn->status, NULL);
5061 	} else {
5062 		txn->status = 502;
5063 		http_reply_and_close(s, txn->status, http_error_message(s));
5064 	}
5065 	req->analysers   &= AN_REQ_FLT_END;
5066 	s->res.analysers &= AN_RES_FLT_END; /* we're in data phase, we want to abort both directions */
5067 
5068 	HA_ATOMIC_ADD(&sess->fe->fe_counters.srv_aborts, 1);
5069 	HA_ATOMIC_ADD(&s->be->be_counters.srv_aborts, 1);
5070 	if (objt_server(s->target))
5071 		HA_ATOMIC_ADD(&objt_server(s->target)->counters.srv_aborts, 1);
5072 
5073 	if (!(s->flags & SF_ERR_MASK))
5074 		s->flags |= SF_ERR_SRVCL;
5075 	if (!(s->flags & SF_FINST_MASK)) {
5076 		if (txn->rsp.msg_state < HTTP_MSG_ERROR)
5077 			s->flags |= SF_FINST_H;
5078 		else
5079 			s->flags |= SF_FINST_D;
5080 	}
5081 	return 0;
5082 }
5083 
5084 /* This stream analyser waits for a complete HTTP response. It returns 1 if the
5085  * processing can continue on next analysers, or zero if it either needs more
5086  * data or wants to immediately abort the response (eg: timeout, error, ...). It
5087  * is tied to AN_RES_WAIT_HTTP and may may remove itself from s->res.analysers
5088  * when it has nothing left to do, and may remove any analyser when it wants to
5089  * abort.
5090  */
http_wait_for_response(struct stream * s,struct channel * rep,int an_bit)5091 int http_wait_for_response(struct stream *s, struct channel *rep, int an_bit)
5092 {
5093 	struct session *sess = s->sess;
5094 	struct http_txn *txn = s->txn;
5095 	struct http_msg *msg = &txn->rsp;
5096 	struct hdr_ctx ctx;
5097 	struct connection *srv_conn;
5098 	int use_close_only;
5099 	int cur_idx;
5100 	int n;
5101 
5102 	srv_conn = cs_conn(objt_cs(s->si[1].end));
5103 
5104 	DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
5105 		now_ms, __FUNCTION__,
5106 		s,
5107 		rep,
5108 		rep->rex, rep->wex,
5109 		rep->flags,
5110 		rep->buf->i,
5111 		rep->analysers);
5112 
5113 	/*
5114 	 * Now parse the partial (or complete) lines.
5115 	 * We will check the response syntax, and also join multi-line
5116 	 * headers. An index of all the lines will be elaborated while
5117 	 * parsing.
5118 	 *
5119 	 * For the parsing, we use a 28 states FSM.
5120 	 *
5121 	 * Here is the information we currently have :
5122 	 *   rep->buf->p             = beginning of response
5123 	 *   rep->buf->p + msg->eoh  = end of processed headers / start of current one
5124 	 *   rep->buf->p + rep->buf->i    = end of input data
5125 	 *   msg->eol           = end of current header or line (LF or CRLF)
5126 	 *   msg->next          = first non-visited byte
5127 	 */
5128 
5129  next_one:
5130 	/* There's a protected area at the end of the buffer for rewriting
5131 	 * purposes. We don't want to start to parse the request if the
5132 	 * protected area is affected, because we may have to move processed
5133 	 * data later, which is much more complicated.
5134 	 */
5135 	if (buffer_not_empty(rep->buf) && msg->msg_state < HTTP_MSG_ERROR) {
5136 		if (unlikely(!channel_is_rewritable(rep) && rep->buf->o)) {
5137 			/* some data has still not left the buffer, wake us once that's done */
5138 			if (rep->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_WRITE_ERROR|CF_WRITE_TIMEOUT))
5139 				goto abort_response;
5140 			channel_dont_close(rep);
5141 			rep->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */
5142 			rep->flags |= CF_WAKE_WRITE;
5143 			return 0;
5144 		}
5145 
5146 		if (unlikely(bi_end(rep->buf) < b_ptr(rep->buf, msg->next) ||
5147 		             bi_end(rep->buf) > rep->buf->data + rep->buf->size - global.tune.maxrewrite))
5148 			buffer_slow_realign(rep->buf);
5149 
5150 		if (likely(msg->next < rep->buf->i))
5151 			http_msg_analyzer(msg, &txn->hdr_idx);
5152 	}
5153 
5154 	/* 1: we might have to print this header in debug mode */
5155 	if (unlikely((global.mode & MODE_DEBUG) &&
5156 		     (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)) &&
5157 		     msg->msg_state >= HTTP_MSG_BODY)) {
5158 		char *eol, *sol;
5159 
5160 		sol = rep->buf->p;
5161 		eol = sol + (msg->sl.st.l ? msg->sl.st.l : rep->buf->i);
5162 		debug_hdr("srvrep", s, sol, eol);
5163 
5164 		sol += hdr_idx_first_pos(&txn->hdr_idx);
5165 		cur_idx = hdr_idx_first_idx(&txn->hdr_idx);
5166 
5167 		while (cur_idx) {
5168 			eol = sol + txn->hdr_idx.v[cur_idx].len;
5169 			debug_hdr("srvhdr", s, sol, eol);
5170 			sol = eol + txn->hdr_idx.v[cur_idx].cr + 1;
5171 			cur_idx = txn->hdr_idx.v[cur_idx].next;
5172 		}
5173 	}
5174 
5175 	/*
5176 	 * Now we quickly check if we have found a full valid response.
5177 	 * If not so, we check the FD and buffer states before leaving.
5178 	 * A full response is indicated by the fact that we have seen
5179 	 * the double LF/CRLF, so the state is >= HTTP_MSG_BODY. Invalid
5180 	 * responses are checked first.
5181 	 *
5182 	 * Depending on whether the client is still there or not, we
5183 	 * may send an error response back or not. Note that normally
5184 	 * we should only check for HTTP status there, and check I/O
5185 	 * errors somewhere else.
5186 	 */
5187 
5188 	if (unlikely(msg->msg_state < HTTP_MSG_BODY)) {
5189 		/* Invalid response */
5190 		if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) {
5191 			/* we detected a parsing error. We want to archive this response
5192 			 * in the dedicated proxy area for later troubleshooting.
5193 			 */
5194 		hdr_response_bad:
5195 			if (msg->msg_state == HTTP_MSG_ERROR || msg->err_pos >= 0)
5196 				http_capture_bad_message(s->be, &s->be->invalid_rep, s, msg, msg->err_state, sess->fe);
5197 
5198 			HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1);
5199 			if (objt_server(s->target)) {
5200 				HA_ATOMIC_ADD(&__objt_server(s->target)->counters.failed_resp, 1);
5201 				health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_HDRRSP);
5202 			}
5203 		abort_response:
5204 			channel_auto_close(rep);
5205 			rep->analysers &= AN_RES_FLT_END;
5206 			s->req.analysers &= AN_REQ_FLT_END;
5207 			rep->analyse_exp = TICK_ETERNITY;
5208 			txn->status = 502;
5209 			s->si[1].flags |= SI_FL_NOLINGER;
5210 			channel_truncate(rep);
5211 			http_reply_and_close(s, txn->status, http_error_message(s));
5212 
5213 			if (!(s->flags & SF_ERR_MASK))
5214 				s->flags |= SF_ERR_PRXCOND;
5215 			if (!(s->flags & SF_FINST_MASK))
5216 				s->flags |= SF_FINST_H;
5217 
5218 			return 0;
5219 		}
5220 
5221 		/* too large response does not fit in buffer. */
5222 		else if (buffer_full(rep->buf, global.tune.maxrewrite)) {
5223 			if (msg->err_pos < 0)
5224 				msg->err_pos = rep->buf->i;
5225 			goto hdr_response_bad;
5226 		}
5227 
5228 		/* read error */
5229 		else if (rep->flags & CF_READ_ERROR) {
5230 			if (msg->err_pos >= 0)
5231 				http_capture_bad_message(s->be, &s->be->invalid_rep, s, msg, msg->err_state, sess->fe);
5232 			else if (txn->flags & TX_NOT_FIRST)
5233 				goto abort_keep_alive;
5234 
5235 			HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1);
5236 			if (objt_server(s->target)) {
5237 				HA_ATOMIC_ADD(&__objt_server(s->target)->counters.failed_resp, 1);
5238 				health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_READ_ERROR);
5239 			}
5240 
5241 			channel_auto_close(rep);
5242 			rep->analysers &= AN_RES_FLT_END;
5243 			s->req.analysers &= AN_REQ_FLT_END;
5244 			rep->analyse_exp = TICK_ETERNITY;
5245 			txn->status = 502;
5246 
5247 			/* Check to see if the server refused the early data.
5248 			 * If so, just send a 425
5249 			 */
5250 			if (objt_cs(s->si[1].end)) {
5251 				struct connection *conn = objt_cs(s->si[1].end)->conn;
5252 
5253 				if (conn->err_code == CO_ER_SSL_EARLY_FAILED)
5254 					txn->status = 425;
5255 			}
5256 
5257 			s->si[1].flags |= SI_FL_NOLINGER;
5258 			channel_truncate(rep);
5259 			http_reply_and_close(s, txn->status, http_error_message(s));
5260 
5261 			if (!(s->flags & SF_ERR_MASK))
5262 				s->flags |= SF_ERR_SRVCL;
5263 			if (!(s->flags & SF_FINST_MASK))
5264 				s->flags |= SF_FINST_H;
5265 			return 0;
5266 		}
5267 
5268 		/* read timeout : return a 504 to the client. */
5269 		else if (rep->flags & CF_READ_TIMEOUT) {
5270 			if (msg->err_pos >= 0)
5271 				http_capture_bad_message(s->be, &s->be->invalid_rep, s, msg, msg->err_state, sess->fe);
5272 
5273 			HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1);
5274 			if (objt_server(s->target)) {
5275 				HA_ATOMIC_ADD(&__objt_server(s->target)->counters.failed_resp, 1);
5276 				health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_READ_TIMEOUT);
5277 			}
5278 
5279 			channel_auto_close(rep);
5280 			rep->analysers &= AN_RES_FLT_END;
5281 			s->req.analysers &= AN_REQ_FLT_END;
5282 			rep->analyse_exp = TICK_ETERNITY;
5283 			txn->status = 504;
5284 			s->si[1].flags |= SI_FL_NOLINGER;
5285 			channel_truncate(rep);
5286 			http_reply_and_close(s, txn->status, http_error_message(s));
5287 
5288 			if (!(s->flags & SF_ERR_MASK))
5289 				s->flags |= SF_ERR_SRVTO;
5290 			if (!(s->flags & SF_FINST_MASK))
5291 				s->flags |= SF_FINST_H;
5292 			return 0;
5293 		}
5294 
5295 		/* client abort with an abortonclose */
5296 		else if ((rep->flags & CF_SHUTR) && ((s->req.flags & (CF_SHUTR|CF_SHUTW)) == (CF_SHUTR|CF_SHUTW))) {
5297 			HA_ATOMIC_ADD(&sess->fe->fe_counters.cli_aborts, 1);
5298 			HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1);
5299 			if (objt_server(s->target))
5300 				HA_ATOMIC_ADD(&objt_server(s->target)->counters.cli_aborts, 1);
5301 
5302 			rep->analysers &= AN_RES_FLT_END;
5303 			s->req.analysers &= AN_REQ_FLT_END;
5304 			rep->analyse_exp = TICK_ETERNITY;
5305 			channel_auto_close(rep);
5306 
5307 			txn->status = 400;
5308 			channel_truncate(rep);
5309 			http_reply_and_close(s, txn->status, http_error_message(s));
5310 
5311 			if (!(s->flags & SF_ERR_MASK))
5312 				s->flags |= SF_ERR_CLICL;
5313 			if (!(s->flags & SF_FINST_MASK))
5314 				s->flags |= SF_FINST_H;
5315 
5316 			/* process_stream() will take care of the error */
5317 			return 0;
5318 		}
5319 
5320 		/* close from server, capture the response if the server has started to respond */
5321 		else if (rep->flags & CF_SHUTR) {
5322 			if (msg->msg_state >= HTTP_MSG_RPVER || msg->err_pos >= 0)
5323 				http_capture_bad_message(s->be, &s->be->invalid_rep, s, msg, msg->err_state, sess->fe);
5324 			else if (txn->flags & TX_NOT_FIRST)
5325 				goto abort_keep_alive;
5326 
5327 			HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1);
5328 			if (objt_server(s->target)) {
5329 				HA_ATOMIC_ADD(&__objt_server(s->target)->counters.failed_resp, 1);
5330 				health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_BROKEN_PIPE);
5331 			}
5332 
5333 			channel_auto_close(rep);
5334 			rep->analysers &= AN_RES_FLT_END;
5335 			s->req.analysers &= AN_REQ_FLT_END;
5336 			rep->analyse_exp = TICK_ETERNITY;
5337 			txn->status = 502;
5338 			s->si[1].flags |= SI_FL_NOLINGER;
5339 			channel_truncate(rep);
5340 			http_reply_and_close(s, txn->status, http_error_message(s));
5341 
5342 			if (!(s->flags & SF_ERR_MASK))
5343 				s->flags |= SF_ERR_SRVCL;
5344 			if (!(s->flags & SF_FINST_MASK))
5345 				s->flags |= SF_FINST_H;
5346 			return 0;
5347 		}
5348 
5349 		/* write error to client (we don't send any message then) */
5350 		else if (rep->flags & CF_WRITE_ERROR) {
5351 			if (msg->err_pos >= 0)
5352 				http_capture_bad_message(s->be, &s->be->invalid_rep, s, msg, msg->err_state, sess->fe);
5353 			else if (txn->flags & TX_NOT_FIRST)
5354 				goto abort_keep_alive;
5355 
5356 			HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1);
5357 			rep->analysers &= AN_RES_FLT_END;
5358 			s->req.analysers &= AN_REQ_FLT_END;
5359 			rep->analyse_exp = TICK_ETERNITY;
5360 			channel_auto_close(rep);
5361 
5362 			if (!(s->flags & SF_ERR_MASK))
5363 				s->flags |= SF_ERR_CLICL;
5364 			if (!(s->flags & SF_FINST_MASK))
5365 				s->flags |= SF_FINST_H;
5366 
5367 			/* process_stream() will take care of the error */
5368 			return 0;
5369 		}
5370 
5371 		channel_dont_close(rep);
5372 		rep->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */
5373 		return 0;
5374 	}
5375 
5376 	/* More interesting part now : we know that we have a complete
5377 	 * response which at least looks like HTTP. We have an indicator
5378 	 * of each header's length, so we can parse them quickly.
5379 	 */
5380 
5381 	if (unlikely(msg->err_pos >= 0))
5382 		http_capture_bad_message(s->be, &s->be->invalid_rep, s, msg, msg->err_state, sess->fe);
5383 
5384 	/*
5385 	 * 1: get the status code
5386 	 */
5387 	n = rep->buf->p[msg->sl.st.c] - '0';
5388 	if (n < 1 || n > 5)
5389 		n = 0;
5390 	/* when the client triggers a 4xx from the server, it's most often due
5391 	 * to a missing object or permission. These events should be tracked
5392 	 * because if they happen often, it may indicate a brute force or a
5393 	 * vulnerability scan.
5394 	 */
5395 	if (n == 4)
5396 		stream_inc_http_err_ctr(s);
5397 
5398 	if (objt_server(s->target))
5399 		HA_ATOMIC_ADD(&objt_server(s->target)->counters.p.http.rsp[n], 1);
5400 
5401 	/* RFC7230#2.6 has enforced the format of the HTTP version string to be
5402 	 * exactly one digit "." one digit. This check may be disabled using
5403 	 * option accept-invalid-http-response.
5404 	 */
5405 	if (!(s->be->options2 & PR_O2_RSPBUG_OK)) {
5406 		if (msg->sl.st.v_l != 8) {
5407 			msg->err_pos = 0;
5408 			goto hdr_response_bad;
5409 		}
5410 
5411 		if (rep->buf->p[4] != '/' ||
5412 		    !isdigit((unsigned char)rep->buf->p[5]) ||
5413 		    rep->buf->p[6] != '.' ||
5414 		    !isdigit((unsigned char)rep->buf->p[7])) {
5415 			msg->err_pos = 4;
5416 			goto hdr_response_bad;
5417 		}
5418 	}
5419 
5420 	/* check if the response is HTTP/1.1 or above */
5421 	if ((msg->sl.st.v_l == 8) &&
5422 	    ((rep->buf->p[5] > '1') ||
5423 	     ((rep->buf->p[5] == '1') && (rep->buf->p[7] >= '1'))))
5424 		msg->flags |= HTTP_MSGF_VER_11;
5425 
5426 	/* "connection" has not been parsed yet */
5427 	txn->flags &= ~(TX_HDR_CONN_PRS|TX_HDR_CONN_CLO|TX_HDR_CONN_KAL|TX_HDR_CONN_UPG|TX_CON_CLO_SET|TX_CON_KAL_SET);
5428 
5429 	/* transfer length unknown*/
5430 	msg->flags &= ~HTTP_MSGF_XFER_LEN;
5431 
5432 	txn->status = strl2ui(rep->buf->p + msg->sl.st.c, msg->sl.st.c_l);
5433 
5434 	/* Adjust server's health based on status code. Note: status codes 501
5435 	 * and 505 are triggered on demand by client request, so we must not
5436 	 * count them as server failures.
5437 	 */
5438 	if (objt_server(s->target)) {
5439 		if (txn->status >= 100 && (txn->status < 500 || txn->status == 501 || txn->status == 505))
5440 			health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_OK);
5441 		else
5442 			health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_STS);
5443 	}
5444 
5445 	/*
5446 	 * We may be facing a 100-continue response, or any other informational
5447 	 * 1xx response which is non-final, in which case this is not the right
5448 	 * response, and we're waiting for the next one. Let's allow this response
5449 	 * to go to the client and wait for the next one. There's an exception for
5450 	 * 101 which is used later in the code to switch protocols.
5451 	 */
5452 	if (txn->status < 200 &&
5453 	    (txn->status == 100 || txn->status >= 102)) {
5454 		hdr_idx_init(&txn->hdr_idx);
5455 		msg->next -= channel_forward(rep, msg->next);
5456 		msg->msg_state = HTTP_MSG_RPBEFORE;
5457 		txn->status = 0;
5458 		s->logs.t_data = -1; /* was not a response yet */
5459 		FLT_STRM_CB(s, flt_http_reset(s, msg));
5460 		goto next_one;
5461 	}
5462 
5463 	/*
5464 	 * 2: check for cacheability.
5465 	 */
5466 
5467 	switch (txn->status) {
5468 	case 200:
5469 	case 203:
5470 	case 204:
5471 	case 206:
5472 	case 300:
5473 	case 301:
5474 	case 404:
5475 	case 405:
5476 	case 410:
5477 	case 414:
5478 	case 501:
5479 		break;
5480 	default:
5481 		/* RFC7231#6.1:
5482 		 *   Responses with status codes that are defined as
5483 		 *   cacheable by default (e.g., 200, 203, 204, 206,
5484 		 *   300, 301, 404, 405, 410, 414, and 501 in this
5485 		 *   specification) can be reused by a cache with
5486 		 *   heuristic expiration unless otherwise indicated
5487 		 *   by the method definition or explicit cache
5488 		 *   controls [RFC7234]; all other status codes are
5489 		 *   not cacheable by default.
5490 		 */
5491 		txn->flags &= ~(TX_CACHEABLE | TX_CACHE_COOK);
5492 		break;
5493 	}
5494 
5495 	/*
5496 	 * 3: we may need to capture headers
5497 	 */
5498 	s->logs.logwait &= ~LW_RESP;
5499 	if (unlikely((s->logs.logwait & LW_RSPHDR) && s->res_cap))
5500 		capture_headers(rep->buf->p, &txn->hdr_idx,
5501 				s->res_cap, sess->fe->rsp_cap);
5502 
5503 	/* 4: determine the transfer-length according to RFC2616 #4.4, updated
5504 	 * by RFC7230#3.3.3 :
5505 	 *
5506 	 * The length of a message body is determined by one of the following
5507 	 *   (in order of precedence):
5508 	 *
5509 	 *   1.  Any 2xx (Successful) response to a CONNECT request implies that
5510 	 *       the connection will become a tunnel immediately after the empty
5511 	 *       line that concludes the header fields.  A client MUST ignore
5512 	 *       any Content-Length or Transfer-Encoding header fields received
5513 	 *       in such a message. Any 101 response (Switching Protocols) is
5514 	 *       managed in the same manner.
5515 	 *
5516 	 *   2.  Any response to a HEAD request and any response with a 1xx
5517 	 *       (Informational), 204 (No Content), or 304 (Not Modified) status
5518 	 *       code is always terminated by the first empty line after the
5519 	 *       header fields, regardless of the header fields present in the
5520 	 *       message, and thus cannot contain a message body.
5521 	 *
5522 	 *   3.  If a Transfer-Encoding header field is present and the chunked
5523 	 *       transfer coding (Section 4.1) is the final encoding, the message
5524 	 *       body length is determined by reading and decoding the chunked
5525 	 *       data until the transfer coding indicates the data is complete.
5526 	 *
5527 	 *       If a Transfer-Encoding header field is present in a response and
5528 	 *       the chunked transfer coding is not the final encoding, the
5529 	 *       message body length is determined by reading the connection until
5530 	 *       it is closed by the server.  If a Transfer-Encoding header field
5531 	 *       is present in a request and the chunked transfer coding is not
5532 	 *       the final encoding, the message body length cannot be determined
5533 	 *       reliably; the server MUST respond with the 400 (Bad Request)
5534 	 *       status code and then close the connection.
5535 	 *
5536 	 *       If a message is received with both a Transfer-Encoding and a
5537 	 *       Content-Length header field, the Transfer-Encoding overrides the
5538 	 *       Content-Length.  Such a message might indicate an attempt to
5539 	 *       perform request smuggling (Section 9.5) or response splitting
5540 	 *       (Section 9.4) and ought to be handled as an error.  A sender MUST
5541 	 *       remove the received Content-Length field prior to forwarding such
5542 	 *       a message downstream.
5543 	 *
5544 	 *   4.  If a message is received without Transfer-Encoding and with
5545 	 *       either multiple Content-Length header fields having differing
5546 	 *       field-values or a single Content-Length header field having an
5547 	 *       invalid value, then the message framing is invalid and the
5548 	 *       recipient MUST treat it as an unrecoverable error.  If this is a
5549 	 *       request message, the server MUST respond with a 400 (Bad Request)
5550 	 *       status code and then close the connection.  If this is a response
5551 	 *       message received by a proxy, the proxy MUST close the connection
5552 	 *       to the server, discard the received response, and send a 502 (Bad
5553 	 *       Gateway) response to the client.  If this is a response message
5554 	 *       received by a user agent, the user agent MUST close the
5555 	 *       connection to the server and discard the received response.
5556 	 *
5557 	 *   5.  If a valid Content-Length header field is present without
5558 	 *       Transfer-Encoding, its decimal value defines the expected message
5559 	 *       body length in octets.  If the sender closes the connection or
5560 	 *       the recipient times out before the indicated number of octets are
5561 	 *       received, the recipient MUST consider the message to be
5562 	 *       incomplete and close the connection.
5563 	 *
5564 	 *   6.  If this is a request message and none of the above are true, then
5565 	 *       the message body length is zero (no message body is present).
5566 	 *
5567 	 *   7.  Otherwise, this is a response message without a declared message
5568 	 *       body length, so the message body length is determined by the
5569 	 *       number of octets received prior to the server closing the
5570 	 *       connection.
5571 	 */
5572 
5573 	/* Skip parsing if no content length is possible. The response flags
5574 	 * remain 0 as well as the chunk_len, which may or may not mirror
5575 	 * the real header value, and we note that we know the response's length.
5576 	 * FIXME: should we parse anyway and return an error on chunked encoding ?
5577 	 */
5578 	if (unlikely((txn->meth == HTTP_METH_CONNECT && txn->status == 200) ||
5579 		     txn->status == 101)) {
5580 		/* Either we've established an explicit tunnel, or we're
5581 		 * switching the protocol. In both cases, we're very unlikely
5582 		 * to understand the next protocols. We have to switch to tunnel
5583 		 * mode, so that we transfer the request and responses then let
5584 		 * this protocol pass unmodified. When we later implement specific
5585 		 * parsers for such protocols, we'll want to check the Upgrade
5586 		 * header which contains information about that protocol for
5587 		 * responses with status 101 (eg: see RFC2817 about TLS).
5588 		 */
5589 		txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_TUN;
5590 		msg->flags |= HTTP_MSGF_XFER_LEN;
5591 		goto end;
5592 	}
5593 
5594 	if (txn->meth == HTTP_METH_HEAD ||
5595 	    (txn->status >= 100 && txn->status < 200) ||
5596 	    txn->status == 204 || txn->status == 304) {
5597 		msg->flags |= HTTP_MSGF_XFER_LEN;
5598 		goto skip_content_length;
5599 	}
5600 
5601 	use_close_only = 0;
5602 	ctx.idx = 0;
5603 	while (http_find_header2("Transfer-Encoding", 17, rep->buf->p, &txn->hdr_idx, &ctx)) {
5604 		if (ctx.vlen == 7 && strncasecmp(ctx.line + ctx.val, "chunked", 7) == 0)
5605 			msg->flags |= (HTTP_MSGF_TE_CHNK | HTTP_MSGF_XFER_LEN);
5606 		else if (msg->flags & HTTP_MSGF_TE_CHNK) {
5607 			/* bad transfer-encoding (chunked followed by something else) */
5608 			use_close_only = 1;
5609 			msg->flags &= ~(HTTP_MSGF_TE_CHNK | HTTP_MSGF_XFER_LEN);
5610 			break;
5611 		}
5612 	}
5613 
5614 	/* "chunked" mandatory if transfer-encoding is used */
5615 	if (ctx.idx && !(msg->flags & HTTP_MSGF_TE_CHNK)) {
5616 		use_close_only = 1;
5617 		msg->flags &= ~(HTTP_MSGF_TE_CHNK | HTTP_MSGF_XFER_LEN);
5618 	}
5619 
5620 	/* Chunked responses must have their content-length removed */
5621 	ctx.idx = 0;
5622 	if (use_close_only || (msg->flags & HTTP_MSGF_TE_CHNK)) {
5623 		while (http_find_header2("Content-Length", 14, rep->buf->p, &txn->hdr_idx, &ctx))
5624 			http_remove_header2(msg, &txn->hdr_idx, &ctx);
5625 	}
5626 	else while (http_find_header2("Content-Length", 14, rep->buf->p, &txn->hdr_idx, &ctx)) {
5627 		signed long long cl;
5628 
5629 		if (!ctx.vlen) {
5630 			msg->err_pos = ctx.line + ctx.val - rep->buf->p;
5631 			goto hdr_response_bad;
5632 		}
5633 
5634 		if (strl2llrc(ctx.line + ctx.val, ctx.vlen, &cl)) {
5635 			msg->err_pos = ctx.line + ctx.val - rep->buf->p;
5636 			goto hdr_response_bad; /* parse failure */
5637 		}
5638 
5639 		if (cl < 0) {
5640 			msg->err_pos = ctx.line + ctx.val - rep->buf->p;
5641 			goto hdr_response_bad;
5642 		}
5643 
5644 		if ((msg->flags & HTTP_MSGF_CNT_LEN) && (msg->chunk_len != cl)) {
5645 			msg->err_pos = ctx.line + ctx.val - rep->buf->p;
5646 			goto hdr_response_bad; /* already specified, was different */
5647 		}
5648 
5649 		msg->flags |= HTTP_MSGF_CNT_LEN | HTTP_MSGF_XFER_LEN;
5650 		msg->body_len = msg->chunk_len = cl;
5651 	}
5652 
5653 	/* check for NTML authentication headers in 401 (WWW-Authenticate) and
5654 	 * 407 (Proxy-Authenticate) responses and set the connection to private
5655 	 */
5656 	if (srv_conn && txn->status == 401) {
5657 	    /* check for Negotiate/NTLM WWW-Authenticate headers */
5658 	    ctx.idx = 0;
5659 	    while (http_find_header2("WWW-Authenticate", 16, rep->buf->p, &txn->hdr_idx, &ctx)) {
5660 		    /* If www-authenticate contains "Negotiate", "Nego2", or "NTLM",
5661 		     * possibly followed by blanks and a base64 string, the connection
5662 		     * is private. Since it's a mess to deal with, we only check for
5663 		     * values starting with "NTLM" or "Nego". Note that often multiple
5664 		     * headers are sent by the server there.
5665 		     */
5666 	            if ((ctx.vlen >= 4 && strncasecmp(ctx.line + ctx.val, "Nego", 4)) ||
5667 	                  (ctx.vlen >= 4 && strncasecmp(ctx.line + ctx.val, "NTLM", 4)))
5668 				srv_conn->flags |= CO_FL_PRIVATE;
5669 	    }
5670 	} else if (srv_conn && txn->status == 407) {
5671 	    /* check for Negotiate/NTLM Proxy-Authenticate headers */
5672 	    ctx.idx = 0;
5673 	    while (http_find_header2("Proxy-Authenticate", 18, rep->buf->p, &txn->hdr_idx, &ctx)) {
5674 	            if ((ctx.vlen >= 4 && strncasecmp(ctx.line + ctx.val, "Nego", 4)) ||
5675 	                  (ctx.vlen >= 4 && strncasecmp(ctx.line + ctx.val, "NTLM", 4)))
5676 				srv_conn->flags |= CO_FL_PRIVATE;
5677 	    }
5678 	}
5679 
5680  skip_content_length:
5681 	/* Now we have to check if we need to modify the Connection header.
5682 	 * This is more difficult on the response than it is on the request,
5683 	 * because we can have two different HTTP versions and we don't know
5684 	 * how the client will interprete a response. For instance, let's say
5685 	 * that the client sends a keep-alive request in HTTP/1.0 and gets an
5686 	 * HTTP/1.1 response without any header. Maybe it will bound itself to
5687 	 * HTTP/1.0 because it only knows about it, and will consider the lack
5688 	 * of header as a close, or maybe it knows HTTP/1.1 and can consider
5689 	 * the lack of header as a keep-alive. Thus we will use two flags
5690 	 * indicating how a request MAY be understood by the client. In case
5691 	 * of multiple possibilities, we'll fix the header to be explicit. If
5692 	 * ambiguous cases such as both close and keepalive are seen, then we
5693 	 * will fall back to explicit close. Note that we won't take risks with
5694 	 * HTTP/1.0 clients which may not necessarily understand keep-alive.
5695 	 * See doc/internals/connection-header.txt for the complete matrix.
5696 	 */
5697 	if ((txn->status >= 200) && !(txn->flags & TX_HDR_CONN_PRS) &&
5698 	    ((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN ||
5699 	     ((sess->fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL ||
5700 	      (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL))) {
5701 		int to_del = 0;
5702 
5703 		/* this situation happens when combining pretend-keepalive with httpclose. */
5704 		if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL &&
5705 		    ((sess->fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL ||
5706 		     (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL))
5707 			txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_CLO;
5708 
5709 		/* on unknown transfer length, we must close */
5710 		if (!(msg->flags & HTTP_MSGF_XFER_LEN) &&
5711 		    (txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN)
5712 			txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_CLO;
5713 
5714 		/* now adjust header transformations depending on current state */
5715 		if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_TUN ||
5716 		    (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_CLO) {
5717 			to_del |= 2; /* remove "keep-alive" on any response */
5718 			if (!(msg->flags & HTTP_MSGF_VER_11))
5719 				to_del |= 1; /* remove "close" for HTTP/1.0 responses */
5720 		}
5721 		else { /* SCL / KAL */
5722 			to_del |= 1; /* remove "close" on any response */
5723 			if (txn->req.flags & msg->flags & HTTP_MSGF_VER_11)
5724 				to_del |= 2; /* remove "keep-alive" on pure 1.1 responses */
5725 		}
5726 
5727 		/* Parse and remove some headers from the connection header */
5728 		http_parse_connection_header(txn, msg, to_del);
5729 
5730 		/* Some keep-alive responses are converted to Server-close if
5731 		 * the server wants to close.
5732 		 */
5733 		if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL) {
5734 			if ((txn->flags & TX_HDR_CONN_CLO) ||
5735 			    (!(txn->flags & TX_HDR_CONN_KAL) && !(msg->flags & HTTP_MSGF_VER_11)))
5736 				txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_SCL;
5737 		}
5738 	}
5739 
5740  end:
5741 	/* we want to have the response time before we start processing it */
5742 	s->logs.t_data = tv_ms_elapsed(&s->logs.tv_accept, &now);
5743 
5744 	/* end of job, return OK */
5745 	rep->analysers &= ~an_bit;
5746 	rep->analyse_exp = TICK_ETERNITY;
5747 	channel_auto_close(rep);
5748 	return 1;
5749 
5750  abort_keep_alive:
5751 	/* A keep-alive request to the server failed on a network error.
5752 	 * The client is required to retry. We need to close without returning
5753 	 * any other information so that the client retries.
5754 	 */
5755 	txn->status = 0;
5756 	rep->analysers   &= AN_RES_FLT_END;
5757 	s->req.analysers &= AN_REQ_FLT_END;
5758 	rep->analyse_exp = TICK_ETERNITY;
5759 	channel_auto_close(rep);
5760 	s->logs.logwait = 0;
5761 	s->logs.level = 0;
5762 	s->res.flags &= ~CF_EXPECT_MORE; /* speed up sending a previous response */
5763 	channel_truncate(rep);
5764 	http_reply_and_close(s, txn->status, NULL);
5765 	return 0;
5766 }
5767 
5768 /* This function performs all the processing enabled for the current response.
5769  * It normally returns 1 unless it wants to break. It relies on buffers flags,
5770  * and updates s->res.analysers. It might make sense to explode it into several
5771  * other functions. It works like process_request (see indications above).
5772  */
http_process_res_common(struct stream * s,struct channel * rep,int an_bit,struct proxy * px)5773 int http_process_res_common(struct stream *s, struct channel *rep, int an_bit, struct proxy *px)
5774 {
5775 	struct session *sess = s->sess;
5776 	struct http_txn *txn = s->txn;
5777 	struct http_msg *msg = &txn->rsp;
5778 	struct proxy *cur_proxy;
5779 	struct cond_wordlist *wl;
5780 	enum rule_result ret = HTTP_RULE_RES_CONT;
5781 
5782 	DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
5783 		now_ms, __FUNCTION__,
5784 		s,
5785 		rep,
5786 		rep->rex, rep->wex,
5787 		rep->flags,
5788 		rep->buf->i,
5789 		rep->analysers);
5790 
5791 	if (unlikely(msg->msg_state < HTTP_MSG_BODY))	/* we need more data */
5792 		return 0;
5793 
5794 	/* The stats applet needs to adjust the Connection header but we don't
5795 	 * apply any filter there.
5796 	 */
5797 	if (unlikely(objt_applet(s->target) == &http_stats_applet)) {
5798 		rep->analysers &= ~an_bit;
5799 		rep->analyse_exp = TICK_ETERNITY;
5800 		goto skip_filters;
5801 	}
5802 
5803 	/*
5804 	 * We will have to evaluate the filters.
5805 	 * As opposed to version 1.2, now they will be evaluated in the
5806 	 * filters order and not in the header order. This means that
5807 	 * each filter has to be validated among all headers.
5808 	 *
5809 	 * Filters are tried with ->be first, then with ->fe if it is
5810 	 * different from ->be.
5811 	 *
5812 	 * Maybe we are in resume condiion. In this case I choose the
5813 	 * "struct proxy" which contains the rule list matching the resume
5814 	 * pointer. If none of theses "struct proxy" match, I initialise
5815 	 * the process with the first one.
5816 	 *
5817 	 * In fact, I check only correspondance betwwen the current list
5818 	 * pointer and the ->fe rule list. If it doesn't match, I initialize
5819 	 * the loop with the ->be.
5820 	 */
5821 	if (s->current_rule_list == &sess->fe->http_res_rules)
5822 		cur_proxy = sess->fe;
5823 	else
5824 		cur_proxy = s->be;
5825 	while (1) {
5826 		struct proxy *rule_set = cur_proxy;
5827 
5828 		/* evaluate http-response rules */
5829 		if (ret == HTTP_RULE_RES_CONT) {
5830 			ret = http_res_get_intercept_rule(cur_proxy, &cur_proxy->http_res_rules, s);
5831 
5832 			if (ret == HTTP_RULE_RES_BADREQ)
5833 				goto return_srv_prx_502;
5834 
5835 			if (ret == HTTP_RULE_RES_DONE) {
5836 				rep->analysers &= ~an_bit;
5837 				rep->analyse_exp = TICK_ETERNITY;
5838 				return 1;
5839 			}
5840 		}
5841 
5842 		/* we need to be called again. */
5843 		if (ret == HTTP_RULE_RES_YIELD) {
5844 			channel_dont_close(rep);
5845 			return 0;
5846 		}
5847 
5848 		/* try headers filters */
5849 		if (rule_set->rsp_exp != NULL) {
5850 			if (apply_filters_to_response(s, rep, rule_set) < 0) {
5851 			return_bad_resp:
5852 				if (objt_server(s->target)) {
5853 					HA_ATOMIC_ADD(&__objt_server(s->target)->counters.failed_resp, 1);
5854 					health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_RSP);
5855 				}
5856 				HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1);
5857 			return_srv_prx_502:
5858 				rep->analysers &= AN_RES_FLT_END;
5859 				s->req.analysers &= AN_REQ_FLT_END;
5860 				rep->analyse_exp = TICK_ETERNITY;
5861 				txn->status = 502;
5862 				s->logs.t_data = -1; /* was not a valid response */
5863 				s->si[1].flags |= SI_FL_NOLINGER;
5864 				channel_truncate(rep);
5865 				http_reply_and_close(s, txn->status, http_error_message(s));
5866 				if (!(s->flags & SF_ERR_MASK))
5867 					s->flags |= SF_ERR_PRXCOND;
5868 				if (!(s->flags & SF_FINST_MASK))
5869 					s->flags |= SF_FINST_H;
5870 				return 0;
5871 			}
5872 		}
5873 
5874 		/* has the response been denied ? */
5875 		if (txn->flags & TX_SVDENY) {
5876 			if (objt_server(s->target))
5877 				HA_ATOMIC_ADD(&objt_server(s->target)->counters.failed_secu, 1);
5878 
5879 			HA_ATOMIC_ADD(&s->be->be_counters.denied_resp, 1);
5880 			HA_ATOMIC_ADD(&sess->fe->fe_counters.denied_resp, 1);
5881 			if (sess->listener && sess->listener->counters)
5882 				HA_ATOMIC_ADD(&sess->listener->counters->denied_resp, 1);
5883 
5884 			goto return_srv_prx_502;
5885 		}
5886 
5887 		/* add response headers from the rule sets in the same order */
5888 		list_for_each_entry(wl, &rule_set->rsp_add, list) {
5889 			if (txn->status < 200 && txn->status != 101)
5890 				break;
5891 			if (wl->cond) {
5892 				int ret = acl_exec_cond(wl->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL);
5893 				ret = acl_pass(ret);
5894 				if (((struct acl_cond *)wl->cond)->pol == ACL_COND_UNLESS)
5895 					ret = !ret;
5896 				if (!ret)
5897 					continue;
5898 			}
5899 			if (unlikely(http_header_add_tail(&txn->rsp, &txn->hdr_idx, wl->s) < 0))
5900 				goto return_bad_resp;
5901 		}
5902 
5903 		/* check whether we're already working on the frontend */
5904 		if (cur_proxy == sess->fe)
5905 			break;
5906 		cur_proxy = sess->fe;
5907 	}
5908 
5909 	/* After this point, this anayzer can't return yield, so we can
5910 	 * remove the bit corresponding to this analyzer from the list.
5911 	 *
5912 	 * Note that the intermediate returns and goto found previously
5913 	 * reset the analyzers.
5914 	 */
5915 	rep->analysers &= ~an_bit;
5916 	rep->analyse_exp = TICK_ETERNITY;
5917 
5918 	/* OK that's all we can do for 1xx responses */
5919 	if (unlikely(txn->status < 200 && txn->status != 101))
5920 		goto skip_header_mangling;
5921 
5922 	/*
5923 	 * Now check for a server cookie.
5924 	 */
5925 	if (s->be->cookie_name || sess->fe->capture_name || (s->be->options & PR_O_CHK_CACHE))
5926 		manage_server_side_cookies(s, rep);
5927 
5928 	/*
5929 	 * Check for cache-control or pragma headers if required.
5930 	 */
5931 	if ((s->be->options & PR_O_CHK_CACHE) || (s->be->ck_opts & PR_CK_NOC))
5932 		check_response_for_cacheability(s, rep);
5933 
5934 	/*
5935 	 * Add server cookie in the response if needed
5936 	 */
5937 	if (objt_server(s->target) && (s->be->ck_opts & PR_CK_INS) &&
5938 	    !((txn->flags & TX_SCK_FOUND) && (s->be->ck_opts & PR_CK_PSV)) &&
5939 	    (!(s->flags & SF_DIRECT) ||
5940 	     ((s->be->cookie_maxidle || txn->cookie_last_date) &&
5941 	      (!txn->cookie_last_date || (txn->cookie_last_date - date.tv_sec) < 0)) ||
5942 	     (s->be->cookie_maxlife && !txn->cookie_first_date) ||  // set the first_date
5943 	     (!s->be->cookie_maxlife && txn->cookie_first_date)) && // remove the first_date
5944 	    (!(s->be->ck_opts & PR_CK_POST) || (txn->meth == HTTP_METH_POST)) &&
5945 	    !(s->flags & SF_IGNORE_PRST)) {
5946 		/* the server is known, it's not the one the client requested, or the
5947 		 * cookie's last seen date needs to be refreshed. We have to
5948 		 * insert a set-cookie here, except if we want to insert only on POST
5949 		 * requests and this one isn't. Note that servers which don't have cookies
5950 		 * (eg: some backup servers) will return a full cookie removal request.
5951 		 */
5952 		if (!objt_server(s->target)->cookie) {
5953 			chunk_printf(&trash,
5954 				     "Set-Cookie: %s=; Expires=Thu, 01-Jan-1970 00:00:01 GMT; path=/",
5955 				     s->be->cookie_name);
5956 		}
5957 		else {
5958 			chunk_printf(&trash, "Set-Cookie: %s=%s", s->be->cookie_name, objt_server(s->target)->cookie);
5959 
5960 			if (s->be->cookie_maxidle || s->be->cookie_maxlife) {
5961 				/* emit last_date, which is mandatory */
5962 				trash.str[trash.len++] = COOKIE_DELIM_DATE;
5963 				s30tob64((date.tv_sec+3) >> 2, trash.str + trash.len);
5964 				trash.len += 5;
5965 
5966 				if (s->be->cookie_maxlife) {
5967 					/* emit first_date, which is either the original one or
5968 					 * the current date.
5969 					 */
5970 					trash.str[trash.len++] = COOKIE_DELIM_DATE;
5971 					s30tob64(txn->cookie_first_date ?
5972 						 txn->cookie_first_date >> 2 :
5973 						 (date.tv_sec+3) >> 2, trash.str + trash.len);
5974 					trash.len += 5;
5975 				}
5976 			}
5977 			chunk_appendf(&trash, "; path=/");
5978 		}
5979 
5980 		if (s->be->cookie_domain)
5981 			chunk_appendf(&trash, "; domain=%s", s->be->cookie_domain);
5982 
5983 		if (s->be->ck_opts & PR_CK_HTTPONLY)
5984 			chunk_appendf(&trash, "; HttpOnly");
5985 
5986 		if (s->be->ck_opts & PR_CK_SECURE)
5987 			chunk_appendf(&trash, "; Secure");
5988 
5989 		if (s->be->cookie_attrs)
5990 			chunk_appendf(&trash, "; %s", s->be->cookie_attrs);
5991 
5992 		if (unlikely(http_header_add_tail2(&txn->rsp, &txn->hdr_idx, trash.str, trash.len) < 0))
5993 			goto return_bad_resp;
5994 
5995 		txn->flags &= ~TX_SCK_MASK;
5996 		if (objt_server(s->target)->cookie && (s->flags & SF_DIRECT))
5997 			/* the server did not change, only the date was updated */
5998 			txn->flags |= TX_SCK_UPDATED;
5999 		else
6000 			txn->flags |= TX_SCK_INSERTED;
6001 
6002 		/* Here, we will tell an eventual cache on the client side that we don't
6003 		 * want it to cache this reply because HTTP/1.0 caches also cache cookies !
6004 		 * Some caches understand the correct form: 'no-cache="set-cookie"', but
6005 		 * others don't (eg: apache <= 1.3.26). So we use 'private' instead.
6006 		 */
6007 		if ((s->be->ck_opts & PR_CK_NOC) && (txn->flags & TX_CACHEABLE)) {
6008 
6009 			txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK;
6010 
6011 			if (unlikely(http_header_add_tail2(&txn->rsp, &txn->hdr_idx,
6012 			                                   "Cache-control: private", 22) < 0))
6013 				goto return_bad_resp;
6014 		}
6015 	}
6016 
6017 	/*
6018 	 * Check if result will be cacheable with a cookie.
6019 	 * We'll block the response if security checks have caught
6020 	 * nasty things such as a cacheable cookie.
6021 	 */
6022 	if (((txn->flags & (TX_CACHEABLE | TX_CACHE_COOK | TX_SCK_PRESENT)) ==
6023 	     (TX_CACHEABLE | TX_CACHE_COOK | TX_SCK_PRESENT)) &&
6024 	    (s->be->options & PR_O_CHK_CACHE)) {
6025 		/* we're in presence of a cacheable response containing
6026 		 * a set-cookie header. We'll block it as requested by
6027 		 * the 'checkcache' option, and send an alert.
6028 		 */
6029 		if (objt_server(s->target))
6030 			HA_ATOMIC_ADD(&objt_server(s->target)->counters.failed_secu, 1);
6031 
6032 		HA_ATOMIC_ADD(&s->be->be_counters.denied_resp, 1);
6033 		HA_ATOMIC_ADD(&sess->fe->fe_counters.denied_resp, 1);
6034 		if (sess->listener && sess->listener->counters)
6035 			HA_ATOMIC_ADD(&sess->listener->counters->denied_resp, 1);
6036 
6037 		ha_alert("Blocking cacheable cookie in response from instance %s, server %s.\n",
6038 			 s->be->id, objt_server(s->target) ? objt_server(s->target)->id : "<dispatch>");
6039 		send_log(s->be, LOG_ALERT,
6040 			 "Blocking cacheable cookie in response from instance %s, server %s.\n",
6041 			 s->be->id, objt_server(s->target) ? objt_server(s->target)->id : "<dispatch>");
6042 		goto return_srv_prx_502;
6043 	}
6044 
6045  skip_filters:
6046 	/*
6047 	 * Adjust "Connection: close" or "Connection: keep-alive" if needed.
6048 	 * If an "Upgrade" token is found, the header is left untouched in order
6049 	 * not to have to deal with some client bugs : some of them fail an upgrade
6050 	 * if anything but "Upgrade" is present in the Connection header. We don't
6051 	 * want to touch any 101 response either since it's switching to another
6052 	 * protocol.
6053 	 */
6054 	if ((txn->status != 101) && !(txn->flags & TX_HDR_CONN_UPG) &&
6055 	    (((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN) ||
6056 	     ((sess->fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL ||
6057 	      (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL))) {
6058 		unsigned int want_flags = 0;
6059 
6060 		if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL ||
6061 		    (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) {
6062 			/* we want a keep-alive response here. Keep-alive header
6063 			 * required if either side is not 1.1.
6064 			 */
6065 			if (!(txn->req.flags & msg->flags & HTTP_MSGF_VER_11))
6066 				want_flags |= TX_CON_KAL_SET;
6067 		}
6068 		else {
6069 			/* we want a close response here. Close header required if
6070 			 * the server is 1.1, regardless of the client.
6071 			 */
6072 			if (msg->flags & HTTP_MSGF_VER_11)
6073 				want_flags |= TX_CON_CLO_SET;
6074 		}
6075 
6076 		if (want_flags != (txn->flags & (TX_CON_CLO_SET|TX_CON_KAL_SET)))
6077 			http_change_connection_header(txn, msg, want_flags);
6078 	}
6079 
6080  skip_header_mangling:
6081 	/* Always enter in the body analyzer */
6082 	rep->analysers &= ~AN_RES_FLT_XFER_DATA;
6083 	rep->analysers |= AN_RES_HTTP_XFER_BODY;
6084 
6085 	/* if the user wants to log as soon as possible, without counting
6086 	 * bytes from the server, then this is the right moment. We have
6087 	 * to temporarily assign bytes_out to log what we currently have.
6088 	 */
6089 	if (!LIST_ISEMPTY(&sess->fe->logformat) && !(s->logs.logwait & LW_BYTES)) {
6090 		s->logs.t_close = s->logs.t_data; /* to get a valid end date */
6091 		s->logs.bytes_out = txn->rsp.eoh;
6092 		s->do_log(s);
6093 		s->logs.bytes_out = 0;
6094 	}
6095 	return 1;
6096 }
6097 
6098 /* This function is an analyser which forwards response body (including chunk
6099  * sizes if any). It is called as soon as we must forward, even if we forward
6100  * zero byte. The only situation where it must not be called is when we're in
6101  * tunnel mode and we want to forward till the close. It's used both to forward
6102  * remaining data and to resync after end of body. It expects the msg_state to
6103  * be between MSG_BODY and MSG_DONE (inclusive). It returns zero if it needs to
6104  * read more data, or 1 once we can go on with next request or end the stream.
6105  *
6106  * It is capable of compressing response data both in content-length mode and
6107  * in chunked mode. The state machines follows different flows depending on
6108  * whether content-length and chunked modes are used, since there are no
6109  * trailers in content-length :
6110  *
6111  *       chk-mode        cl-mode
6112  *          ,----- BODY -----.
6113  *         /                  \
6114  *        V     size > 0       V    chk-mode
6115  *  .--> SIZE -------------> DATA -------------> CRLF
6116  *  |     | size == 0          | last byte         |
6117  *  |     v      final crlf    v inspected         |
6118  *  |  TRAILERS -----------> DONE                  |
6119  *  |                                              |
6120  *  `----------------------------------------------'
6121  *
6122  * Compression only happens in the DATA state, and must be flushed in final
6123  * states (TRAILERS/DONE) or when leaving on missing data. Normal forwarding
6124  * is performed at once on final states for all bytes parsed, or when leaving
6125  * on missing data.
6126  */
http_response_forward_body(struct stream * s,struct channel * res,int an_bit)6127 int http_response_forward_body(struct stream *s, struct channel *res, int an_bit)
6128 {
6129 	struct session *sess = s->sess;
6130 	struct http_txn *txn = s->txn;
6131 	struct http_msg *msg = &s->txn->rsp;
6132 	int ret;
6133 
6134 	DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
6135 		now_ms, __FUNCTION__,
6136 		s,
6137 		res,
6138 		res->rex, res->wex,
6139 		res->flags,
6140 		res->buf->i,
6141 		res->analysers);
6142 
6143 	if (unlikely(msg->msg_state < HTTP_MSG_BODY))
6144 		return 0;
6145 
6146 	if ((res->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) ||
6147 	    ((res->flags & CF_SHUTW) && (res->to_forward || res->buf->o)) ||
6148 	     !s->req.analysers) {
6149 		/* Output closed while we were sending data. We must abort and
6150 		 * wake the other side up.
6151 		 */
6152 		msg->err_state = msg->msg_state;
6153 		msg->msg_state = HTTP_MSG_ERROR;
6154 		http_resync_states(s);
6155 		return 1;
6156 	}
6157 
6158 	/* in most states, we should abort in case of early close */
6159 	channel_auto_close(res);
6160 
6161 	if (msg->msg_state == HTTP_MSG_BODY) {
6162 		msg->msg_state = ((msg->flags & HTTP_MSGF_TE_CHNK)
6163 				  ? HTTP_MSG_CHUNK_SIZE
6164 				  : HTTP_MSG_DATA);
6165 	}
6166 
6167 	if (res->to_forward) {
6168                 /* We can't process the buffer's contents yet */
6169 		res->flags |= CF_WAKE_WRITE;
6170 		goto missing_data_or_waiting;
6171 	}
6172 
6173 	if (msg->msg_state < HTTP_MSG_DONE) {
6174 		ret = ((msg->flags & HTTP_MSGF_TE_CHNK)
6175 		       ? http_msg_forward_chunked_body(s, msg)
6176 		       : http_msg_forward_body(s, msg));
6177 		if (!ret)
6178 			goto missing_data_or_waiting;
6179 		if (ret < 0)
6180 			goto return_bad_res;
6181 	}
6182 
6183 	/* other states, DONE...TUNNEL */
6184 	/* for keep-alive we don't want to forward closes on DONE */
6185 	if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL ||
6186 	    (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL)
6187 		channel_dont_close(res);
6188 
6189 	http_resync_states(s);
6190 	if (!(res->analysers & an_bit)) {
6191 		if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) {
6192 			if (res->flags & CF_SHUTW) {
6193 				/* response errors are most likely due to the
6194 				 * client aborting the transfer. */
6195 				goto aborted_xfer;
6196 			}
6197 			if (msg->err_pos >= 0)
6198 				http_capture_bad_message(s->be, &s->be->invalid_rep, s, msg, msg->err_state, strm_fe(s));
6199 			goto return_bad_res;
6200 		}
6201 		return 1;
6202 	}
6203 	return 0;
6204 
6205   missing_data_or_waiting:
6206 	if (res->flags & CF_SHUTW)
6207 		goto aborted_xfer;
6208 
6209 	/* stop waiting for data if the input is closed before the end. If the
6210 	 * client side was already closed, it means that the client has aborted,
6211 	 * so we don't want to count this as a server abort. Otherwise it's a
6212 	 * server abort.
6213 	 */
6214 	if (msg->msg_state < HTTP_MSG_ENDING && res->flags & CF_SHUTR) {
6215 		if ((s->req.flags & (CF_SHUTR|CF_SHUTW)) == (CF_SHUTR|CF_SHUTW))
6216 			goto aborted_xfer;
6217 		/* If we have some pending data, we continue the processing */
6218 		if (!buffer_pending(res->buf)) {
6219 			if (!(s->flags & SF_ERR_MASK))
6220 				s->flags |= SF_ERR_SRVCL;
6221 			HA_ATOMIC_ADD(&sess->fe->fe_counters.srv_aborts, 1);
6222 			HA_ATOMIC_ADD(&s->be->be_counters.srv_aborts, 1);
6223 			if (objt_server(s->target))
6224 				HA_ATOMIC_ADD(&objt_server(s->target)->counters.srv_aborts, 1);
6225 			goto return_bad_res_stats_ok;
6226 		}
6227 	}
6228 
6229 	/* we need to obey the req analyser, so if it leaves, we must too */
6230 	if (!s->req.analysers)
6231 		goto return_bad_res;
6232 
6233 	/* When TE: chunked is used, we need to get there again to parse
6234 	 * remaining chunks even if the server has closed, so we don't want to
6235 	 * set CF_DONTCLOSE. Similarly, if keep-alive is set on the client side
6236 	 * or if there are filters registered on the stream, we don't want to
6237 	 * forward a close
6238 	 */
6239 	if ((msg->flags & HTTP_MSGF_TE_CHNK) ||
6240 	    HAS_DATA_FILTERS(s, res) ||
6241 	    (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL ||
6242 	    (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL)
6243 		channel_dont_close(res);
6244 
6245 	/* We know that more data are expected, but we couldn't send more that
6246 	 * what we did. So we always set the CF_EXPECT_MORE flag so that the
6247 	 * system knows it must not set a PUSH on this first part. Interactive
6248 	 * modes are already handled by the stream sock layer. We must not do
6249 	 * this in content-length mode because it could present the MSG_MORE
6250 	 * flag with the last block of forwarded data, which would cause an
6251 	 * additional delay to be observed by the receiver.
6252 	 */
6253 	if ((msg->flags & HTTP_MSGF_TE_CHNK) || (msg->flags & HTTP_MSGF_COMPRESSING))
6254 		res->flags |= CF_EXPECT_MORE;
6255 
6256 	/* the stream handler will take care of timeouts and errors */
6257 	return 0;
6258 
6259  return_bad_res: /* let's centralize all bad responses */
6260 	HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1);
6261 	if (objt_server(s->target))
6262 		HA_ATOMIC_ADD(&objt_server(s->target)->counters.failed_resp, 1);
6263 
6264  return_bad_res_stats_ok:
6265 	txn->rsp.err_state = txn->rsp.msg_state;
6266 	txn->rsp.msg_state = HTTP_MSG_ERROR;
6267 	/* don't send any error message as we're in the body */
6268 	http_reply_and_close(s, txn->status, NULL);
6269 	res->analysers   &= AN_RES_FLT_END;
6270 	s->req.analysers &= AN_REQ_FLT_END; /* we're in data phase, we want to abort both directions */
6271 	if (objt_server(s->target))
6272 		health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_HDRRSP);
6273 
6274 	if (!(s->flags & SF_ERR_MASK))
6275 		s->flags |= SF_ERR_PRXCOND;
6276 	if (!(s->flags & SF_FINST_MASK))
6277 		s->flags |= SF_FINST_D;
6278 	return 0;
6279 
6280  aborted_xfer:
6281 	txn->rsp.err_state = txn->rsp.msg_state;
6282 	txn->rsp.msg_state = HTTP_MSG_ERROR;
6283 	/* don't send any error message as we're in the body */
6284 	http_reply_and_close(s, txn->status, NULL);
6285 	res->analysers   &= AN_RES_FLT_END;
6286 	s->req.analysers &= AN_REQ_FLT_END; /* we're in data phase, we want to abort both directions */
6287 
6288 	HA_ATOMIC_ADD(&sess->fe->fe_counters.cli_aborts, 1);
6289 	HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1);
6290 	if (objt_server(s->target))
6291 		HA_ATOMIC_ADD(&objt_server(s->target)->counters.cli_aborts, 1);
6292 
6293 	if (!(s->flags & SF_ERR_MASK))
6294 		s->flags |= SF_ERR_CLICL;
6295 	if (!(s->flags & SF_FINST_MASK))
6296 		s->flags |= SF_FINST_D;
6297 	return 0;
6298 }
6299 
6300 
6301 static inline int
http_msg_forward_body(struct stream * s,struct http_msg * msg)6302 http_msg_forward_body(struct stream *s, struct http_msg *msg)
6303 {
6304 	struct channel *chn = msg->chn;
6305 	int ret;
6306 
6307 	/* Here we have the guarantee to be in HTTP_MSG_DATA or HTTP_MSG_ENDING state */
6308 
6309 	if (msg->msg_state == HTTP_MSG_ENDING)
6310 		goto ending;
6311 
6312 	/* Neither content-length, nor transfer-encoding was found, so we must
6313 	 * read the body until the server connection is closed. In that case, we
6314 	 * eat data as they come. Of course, this happens for response only. */
6315 	if (!(msg->flags & HTTP_MSGF_XFER_LEN)) {
6316 		unsigned long long len = (chn->buf->i - msg->next);
6317 		msg->chunk_len += len;
6318 		msg->body_len  += len;
6319 	}
6320 	ret = FLT_STRM_DATA_CB(s, chn, flt_http_data(s, msg),
6321 			       /* default_ret */ MIN(msg->chunk_len, chn->buf->i - msg->next),
6322 			       /* on_error    */ goto error);
6323 	msg->next     += ret;
6324 	msg->chunk_len -= ret;
6325 	if (msg->chunk_len) {
6326 		/* input empty or output full */
6327 		if (chn->buf->i > msg->next)
6328 			chn->flags |= CF_WAKE_WRITE;
6329 		goto missing_data_or_waiting;
6330 	}
6331 
6332 	/* This check can only be true for a response. HTTP_MSGF_XFER_LEN is
6333 	 * always set for a request. */
6334 	if (!(msg->flags & HTTP_MSGF_XFER_LEN)) {
6335 		/* The server still sending data that should be filtered */
6336 		if (!(chn->flags & CF_SHUTR) && HAS_DATA_FILTERS(s, chn))
6337 			goto missing_data_or_waiting;
6338 		msg->msg_state = HTTP_MSG_TUNNEL;
6339 		goto ending;
6340 	}
6341 
6342 	msg->msg_state = HTTP_MSG_ENDING;
6343 
6344   ending:
6345 	/* we may have some pending data starting at res->buf->p such as a last
6346 	 * chunk of data or trailers. */
6347 	ret = FLT_STRM_DATA_CB(s, chn, flt_http_forward_data(s, msg, msg->next),
6348 			       /* default_ret */ msg->next,
6349 			       /* on_error    */ goto error);
6350 	b_adv(chn->buf, ret);
6351 	msg->next -= ret;
6352 	if (unlikely(!(chn->flags & CF_WROTE_DATA) || msg->sov > 0))
6353 		msg->sov -= ret;
6354 	if (msg->next)
6355 		goto waiting;
6356 
6357 	FLT_STRM_DATA_CB(s, chn, flt_http_end(s, msg),
6358 			 /* default_ret */ 1,
6359 			 /* on_error    */ goto error,
6360 			 /* on_wait     */ goto waiting);
6361 	if (msg->msg_state == HTTP_MSG_ENDING)
6362 		msg->msg_state = HTTP_MSG_DONE;
6363 	return 1;
6364 
6365   missing_data_or_waiting:
6366 	/* we may have some pending data starting at chn->buf->p */
6367 	ret = FLT_STRM_DATA_CB(s, chn, flt_http_forward_data(s, msg, msg->next),
6368 			       /* default_ret */ msg->next,
6369 			       /* on_error    */ goto error);
6370 	b_adv(chn->buf, ret);
6371 	msg->next -= ret;
6372 	if (!(chn->flags & CF_WROTE_DATA) || msg->sov > 0)
6373 		msg->sov -= ret;
6374 	if (!HAS_DATA_FILTERS(s, chn))
6375 		msg->chunk_len -= channel_forward(chn, msg->chunk_len);
6376   waiting:
6377 	return 0;
6378   error:
6379 	return -1;
6380 }
6381 
6382 static inline int
http_msg_forward_chunked_body(struct stream * s,struct http_msg * msg)6383 http_msg_forward_chunked_body(struct stream *s, struct http_msg *msg)
6384 {
6385 	struct channel *chn = msg->chn;
6386 	unsigned int chunk;
6387 	int ret;
6388 
6389 	/* Here we have the guarantee to be in one of the following state:
6390 	 * HTTP_MSG_DATA, HTTP_MSG_CHUNK_SIZE, HTTP_MSG_CHUNK_CRLF,
6391 	 * HTTP_MSG_TRAILERS or HTTP_MSG_ENDING. */
6392 
6393   switch_states:
6394 	switch (msg->msg_state) {
6395 		case HTTP_MSG_DATA:
6396 			ret = FLT_STRM_DATA_CB(s, chn, flt_http_data(s, msg),
6397 					       /* default_ret */ MIN(msg->chunk_len, chn->buf->i - msg->next),
6398 					       /* on_error    */ goto error);
6399 			msg->next      += ret;
6400 			msg->chunk_len -= ret;
6401 			if (msg->chunk_len) {
6402 				/* input empty or output full */
6403 				if (chn->buf->i > msg->next)
6404 					chn->flags |= CF_WAKE_WRITE;
6405 				goto missing_data_or_waiting;
6406 			}
6407 
6408 			/* nothing left to forward for this chunk*/
6409 			msg->msg_state = HTTP_MSG_CHUNK_CRLF;
6410 			/* fall through for HTTP_MSG_CHUNK_CRLF */
6411 
6412 		case HTTP_MSG_CHUNK_CRLF:
6413 			/* we want the CRLF after the data */
6414 			ret = h1_skip_chunk_crlf(chn->buf, msg->next, chn->buf->i);
6415 			if (ret == 0)
6416 				goto missing_data_or_waiting;
6417 			if (ret < 0) {
6418 				msg->err_pos = chn->buf->i + ret;
6419 				if (msg->err_pos < 0)
6420 					msg->err_pos += chn->buf->size;
6421 				goto chunk_parsing_error;
6422 			}
6423 			msg->next += ret;
6424 			msg->msg_state = HTTP_MSG_CHUNK_SIZE;
6425 			/* fall through for HTTP_MSG_CHUNK_SIZE */
6426 
6427 		case HTTP_MSG_CHUNK_SIZE:
6428 			/* read the chunk size and assign it to ->chunk_len,
6429 			 * then set ->next to point to the body and switch to
6430 			 * DATA or TRAILERS state.
6431 			 */
6432 			ret = h1_parse_chunk_size(chn->buf, msg->next, chn->buf->i, &chunk);
6433 			if (ret == 0)
6434 				goto missing_data_or_waiting;
6435 			if (ret < 0) {
6436 				msg->err_pos = chn->buf->i + ret;
6437 				if (msg->err_pos < 0)
6438 					msg->err_pos += chn->buf->size;
6439 				goto chunk_parsing_error;
6440 			}
6441 
6442 			msg->sol = ret;
6443 			msg->next += ret;
6444 			msg->chunk_len = chunk;
6445 			msg->body_len += chunk;
6446 
6447 			if (msg->chunk_len) {
6448 				msg->msg_state = HTTP_MSG_DATA;
6449 				goto switch_states;
6450 			}
6451 			msg->msg_state = HTTP_MSG_TRAILERS;
6452 			/* fall through for HTTP_MSG_TRAILERS */
6453 
6454 		case HTTP_MSG_TRAILERS:
6455 			ret = http_forward_trailers(msg);
6456 			if (ret < 0)
6457 				goto chunk_parsing_error;
6458 			FLT_STRM_DATA_CB(s, chn, flt_http_chunk_trailers(s, msg),
6459 					 /* default_ret */ 1,
6460 					 /* on_error    */ goto error);
6461 			msg->next += msg->sol;
6462 			if (!ret)
6463 				goto missing_data_or_waiting;
6464 			break;
6465 
6466 		case HTTP_MSG_ENDING:
6467 			goto ending;
6468 
6469 		default:
6470 			/* This should no happen in this function */
6471 			goto error;
6472 	}
6473 
6474 	msg->msg_state = HTTP_MSG_ENDING;
6475   ending:
6476 	/* we may have some pending data starting at res->buf->p such as a last
6477 	 * chunk of data or trailers. */
6478 	ret = FLT_STRM_DATA_CB(s, chn, flt_http_forward_data(s, msg, msg->next),
6479 			  /* default_ret */ msg->next,
6480 			  /* on_error    */ goto error);
6481 	b_adv(chn->buf, ret);
6482 	msg->next -= ret;
6483 	if (unlikely(!(chn->flags & CF_WROTE_DATA) || msg->sov > 0))
6484 		msg->sov -= ret;
6485 	if (msg->next)
6486 		goto waiting;
6487 
6488 	FLT_STRM_DATA_CB(s, chn, flt_http_end(s, msg),
6489 		    /* default_ret */ 1,
6490 		    /* on_error    */ goto error,
6491 		    /* on_wait     */ goto waiting);
6492 	msg->msg_state = HTTP_MSG_DONE;
6493 	return 1;
6494 
6495   missing_data_or_waiting:
6496 	/* we may have some pending data starting at chn->buf->p */
6497 	ret = FLT_STRM_DATA_CB(s, chn, flt_http_forward_data(s, msg, msg->next),
6498 			  /* default_ret */ msg->next,
6499 			  /* on_error    */ goto error);
6500 	b_adv(chn->buf, ret);
6501 	msg->next -= ret;
6502 	if (!(chn->flags & CF_WROTE_DATA) || msg->sov > 0)
6503 		msg->sov -= ret;
6504 	if (!HAS_DATA_FILTERS(s, chn))
6505 		msg->chunk_len -= channel_forward(chn, msg->chunk_len);
6506   waiting:
6507 	return 0;
6508 
6509   chunk_parsing_error:
6510 	if (msg->err_pos >= 0) {
6511 		if (chn->flags & CF_ISRESP)
6512 			http_capture_bad_message(s->be, &s->be->invalid_rep, s, msg,
6513 						 msg->msg_state, strm_fe(s));
6514 		else
6515 			http_capture_bad_message(strm_fe(s), &strm_fe(s)->invalid_req, s,
6516 						 msg, msg->msg_state, s->be);
6517 	}
6518   error:
6519 	return -1;
6520 }
6521 
6522 
6523 /* Iterate the same filter through all request headers.
6524  * Returns 1 if this filter can be stopped upon return, otherwise 0.
6525  * Since it can manage the switch to another backend, it updates the per-proxy
6526  * DENY stats.
6527  */
apply_filter_to_req_headers(struct stream * s,struct channel * req,struct hdr_exp * exp)6528 int apply_filter_to_req_headers(struct stream *s, struct channel *req, struct hdr_exp *exp)
6529 {
6530 	char *cur_ptr, *cur_end, *cur_next;
6531 	int cur_idx, old_idx, last_hdr;
6532 	struct http_txn *txn = s->txn;
6533 	struct hdr_idx_elem *cur_hdr;
6534 	int delta;
6535 
6536 	last_hdr = 0;
6537 
6538 	cur_next = req->buf->p + hdr_idx_first_pos(&txn->hdr_idx);
6539 	old_idx = 0;
6540 
6541 	while (!last_hdr) {
6542 		if (unlikely(txn->flags & (TX_CLDENY | TX_CLTARPIT)))
6543 			return 1;
6544 		else if (unlikely(txn->flags & TX_CLALLOW) &&
6545 			 (exp->action == ACT_ALLOW ||
6546 			  exp->action == ACT_DENY ||
6547 			  exp->action == ACT_TARPIT))
6548 			return 0;
6549 
6550 		cur_idx = txn->hdr_idx.v[old_idx].next;
6551 		if (!cur_idx)
6552 			break;
6553 
6554 		cur_hdr  = &txn->hdr_idx.v[cur_idx];
6555 		cur_ptr  = cur_next;
6556 		cur_end  = cur_ptr + cur_hdr->len;
6557 		cur_next = cur_end + cur_hdr->cr + 1;
6558 
6559 		/* Now we have one header between cur_ptr and cur_end,
6560 		 * and the next header starts at cur_next.
6561 		 */
6562 
6563 		if (regex_exec_match2(exp->preg, cur_ptr, cur_end-cur_ptr, MAX_MATCH, pmatch, 0)) {
6564 			switch (exp->action) {
6565 			case ACT_ALLOW:
6566 				txn->flags |= TX_CLALLOW;
6567 				last_hdr = 1;
6568 				break;
6569 
6570 			case ACT_DENY:
6571 				txn->flags |= TX_CLDENY;
6572 				last_hdr = 1;
6573 				break;
6574 
6575 			case ACT_TARPIT:
6576 				txn->flags |= TX_CLTARPIT;
6577 				last_hdr = 1;
6578 				break;
6579 
6580 			case ACT_REPLACE:
6581 				trash.len = exp_replace(trash.str, trash.size, cur_ptr, exp->replace, pmatch);
6582 				if (trash.len < 0)
6583 					return -1;
6584 
6585 				delta = buffer_replace2(req->buf, cur_ptr, cur_end, trash.str, trash.len);
6586 				/* FIXME: if the user adds a newline in the replacement, the
6587 				 * index will not be recalculated for now, and the new line
6588 				 * will not be counted as a new header.
6589 				 */
6590 
6591 				cur_end += delta;
6592 				cur_next += delta;
6593 				cur_hdr->len += delta;
6594 				http_msg_move_end(&txn->req, delta);
6595 				break;
6596 
6597 			case ACT_REMOVE:
6598 				delta = buffer_replace2(req->buf, cur_ptr, cur_next, NULL, 0);
6599 				cur_next += delta;
6600 
6601 				http_msg_move_end(&txn->req, delta);
6602 				txn->hdr_idx.v[old_idx].next = cur_hdr->next;
6603 				txn->hdr_idx.used--;
6604 				cur_hdr->len = 0;
6605 				cur_end = NULL; /* null-term has been rewritten */
6606 				cur_idx = old_idx;
6607 				break;
6608 
6609 			}
6610 		}
6611 
6612 		/* keep the link from this header to next one in case of later
6613 		 * removal of next header.
6614 		 */
6615 		old_idx = cur_idx;
6616 	}
6617 	return 0;
6618 }
6619 
6620 
6621 /* Apply the filter to the request line.
6622  * Returns 0 if nothing has been done, 1 if the filter has been applied,
6623  * or -1 if a replacement resulted in an invalid request line.
6624  * Since it can manage the switch to another backend, it updates the per-proxy
6625  * DENY stats.
6626  */
apply_filter_to_req_line(struct stream * s,struct channel * req,struct hdr_exp * exp)6627 int apply_filter_to_req_line(struct stream *s, struct channel *req, struct hdr_exp *exp)
6628 {
6629 	char *cur_ptr, *cur_end;
6630 	int done;
6631 	struct http_txn *txn = s->txn;
6632 	int delta;
6633 
6634 	if (unlikely(txn->flags & (TX_CLDENY | TX_CLTARPIT)))
6635 		return 1;
6636 	else if (unlikely(txn->flags & TX_CLALLOW) &&
6637 		 (exp->action == ACT_ALLOW ||
6638 		  exp->action == ACT_DENY ||
6639 		  exp->action == ACT_TARPIT))
6640 		return 0;
6641 	else if (exp->action == ACT_REMOVE)
6642 		return 0;
6643 
6644 	done = 0;
6645 
6646 	cur_ptr = req->buf->p;
6647 	cur_end = cur_ptr + txn->req.sl.rq.l;
6648 
6649 	/* Now we have the request line between cur_ptr and cur_end */
6650 
6651 	if (regex_exec_match2(exp->preg, cur_ptr, cur_end-cur_ptr, MAX_MATCH, pmatch, 0)) {
6652 		switch (exp->action) {
6653 		case ACT_ALLOW:
6654 			txn->flags |= TX_CLALLOW;
6655 			done = 1;
6656 			break;
6657 
6658 		case ACT_DENY:
6659 			txn->flags |= TX_CLDENY;
6660 			done = 1;
6661 			break;
6662 
6663 		case ACT_TARPIT:
6664 			txn->flags |= TX_CLTARPIT;
6665 			done = 1;
6666 			break;
6667 
6668 		case ACT_REPLACE:
6669 			trash.len = exp_replace(trash.str, trash.size, cur_ptr, exp->replace, pmatch);
6670 			if (trash.len < 0)
6671 				return -1;
6672 
6673 			delta = buffer_replace2(req->buf, cur_ptr, cur_end, trash.str, trash.len);
6674 			/* FIXME: if the user adds a newline in the replacement, the
6675 			 * index will not be recalculated for now, and the new line
6676 			 * will not be counted as a new header.
6677 			 */
6678 
6679 			http_msg_move_end(&txn->req, delta);
6680 			cur_end += delta;
6681 			cur_end = (char *)http_parse_reqline(&txn->req,
6682 							     HTTP_MSG_RQMETH,
6683 							     cur_ptr, cur_end + 1,
6684 							     NULL, NULL);
6685 			if (unlikely(!cur_end))
6686 				return -1;
6687 
6688 			/* we have a full request and we know that we have either a CR
6689 			 * or an LF at <ptr>.
6690 			 */
6691 			txn->meth = find_http_meth(cur_ptr, txn->req.sl.rq.m_l);
6692 			hdr_idx_set_start(&txn->hdr_idx, txn->req.sl.rq.l, *cur_end == '\r');
6693 			/* there is no point trying this regex on headers */
6694 			return 1;
6695 		}
6696 	}
6697 	return done;
6698 }
6699 
6700 
6701 
6702 /*
6703  * Apply all the req filters of proxy <px> to all headers in buffer <req> of stream <s>.
6704  * Returns 0 if everything is alright, or -1 in case a replacement lead to an
6705  * unparsable request. Since it can manage the switch to another backend, it
6706  * updates the per-proxy DENY stats.
6707  */
apply_filters_to_request(struct stream * s,struct channel * req,struct proxy * px)6708 int apply_filters_to_request(struct stream *s, struct channel *req, struct proxy *px)
6709 {
6710 	struct session *sess = s->sess;
6711 	struct http_txn *txn = s->txn;
6712 	struct hdr_exp *exp;
6713 
6714 	for (exp = px->req_exp; exp; exp = exp->next) {
6715 		int ret;
6716 
6717 		/*
6718 		 * The interleaving of transformations and verdicts
6719 		 * makes it difficult to decide to continue or stop
6720 		 * the evaluation.
6721 		 */
6722 
6723 		if (txn->flags & (TX_CLDENY|TX_CLTARPIT))
6724 			break;
6725 
6726 		if ((txn->flags & TX_CLALLOW) &&
6727 		    (exp->action == ACT_ALLOW || exp->action == ACT_DENY ||
6728 		     exp->action == ACT_TARPIT || exp->action == ACT_PASS))
6729 			continue;
6730 
6731 		/* if this filter had a condition, evaluate it now and skip to
6732 		 * next filter if the condition does not match.
6733 		 */
6734 		if (exp->cond) {
6735 			ret = acl_exec_cond(exp->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
6736 			ret = acl_pass(ret);
6737 			if (((struct acl_cond *)exp->cond)->pol == ACL_COND_UNLESS)
6738 				ret = !ret;
6739 
6740 			if (!ret)
6741 				continue;
6742 		}
6743 
6744 		/* Apply the filter to the request line. */
6745 		ret = apply_filter_to_req_line(s, req, exp);
6746 		if (unlikely(ret < 0))
6747 			return -1;
6748 
6749 		if (likely(ret == 0)) {
6750 			/* The filter did not match the request, it can be
6751 			 * iterated through all headers.
6752 			 */
6753 			if (unlikely(apply_filter_to_req_headers(s, req, exp) < 0))
6754 				return -1;
6755 		}
6756 	}
6757 	return 0;
6758 }
6759 
6760 
6761 /* Find the end of a cookie value contained between <s> and <e>. It works the
6762  * same way as with headers above except that the semi-colon also ends a token.
6763  * See RFC2965 for more information. Note that it requires a valid header to
6764  * return a valid result.
6765  */
find_cookie_value_end(char * s,const char * e)6766 char *find_cookie_value_end(char *s, const char *e)
6767 {
6768 	int quoted, qdpair;
6769 
6770 	quoted = qdpair = 0;
6771 	for (; s < e; s++) {
6772 		if (qdpair)                    qdpair = 0;
6773 		else if (quoted) {
6774 			if (*s == '\\')        qdpair = 1;
6775 			else if (*s == '"')    quoted = 0;
6776 		}
6777 		else if (*s == '"')            quoted = 1;
6778 		else if (*s == ',' || *s == ';') return s;
6779 	}
6780 	return s;
6781 }
6782 
6783 /* Delete a value in a header between delimiters <from> and <next> in buffer
6784  * <buf>. The number of characters displaced is returned, and the pointer to
6785  * the first delimiter is updated if required. The function tries as much as
6786  * possible to respect the following principles :
6787  *  - replace <from> delimiter by the <next> one unless <from> points to a
6788  *    colon, in which case <next> is simply removed
6789  *  - set exactly one space character after the new first delimiter, unless
6790  *    there are not enough characters in the block being moved to do so.
6791  *  - remove unneeded spaces before the previous delimiter and after the new
6792  *    one.
6793  *
6794  * It is the caller's responsibility to ensure that :
6795  *   - <from> points to a valid delimiter or the colon ;
6796  *   - <next> points to a valid delimiter or the final CR/LF ;
6797  *   - there are non-space chars before <from> ;
6798  *   - there is a CR/LF at or after <next>.
6799  */
del_hdr_value(struct buffer * buf,char ** from,char * next)6800 int del_hdr_value(struct buffer *buf, char **from, char *next)
6801 {
6802 	char *prev = *from;
6803 
6804 	if (*prev == ':') {
6805 		/* We're removing the first value, preserve the colon and add a
6806 		 * space if possible.
6807 		 */
6808 		if (!HTTP_IS_CRLF(*next))
6809 			next++;
6810 		prev++;
6811 		if (prev < next)
6812 			*prev++ = ' ';
6813 
6814 		while (HTTP_IS_SPHT(*next))
6815 			next++;
6816 	} else {
6817 		/* Remove useless spaces before the old delimiter. */
6818 		while (HTTP_IS_SPHT(*(prev-1)))
6819 			prev--;
6820 		*from = prev;
6821 
6822 		/* copy the delimiter and if possible a space if we're
6823 		 * not at the end of the line.
6824 		 */
6825 		if (!HTTP_IS_CRLF(*next)) {
6826 			*prev++ = *next++;
6827 			if (prev + 1 < next)
6828 				*prev++ = ' ';
6829 			while (HTTP_IS_SPHT(*next))
6830 				next++;
6831 		}
6832 	}
6833 	return buffer_replace2(buf, prev, next, NULL, 0);
6834 }
6835 
6836 /*
6837  * Manage client-side cookie. It can impact performance by about 2% so it is
6838  * desirable to call it only when needed. This code is quite complex because
6839  * of the multiple very crappy and ambiguous syntaxes we have to support. it
6840  * highly recommended not to touch this part without a good reason !
6841  */
manage_client_side_cookies(struct stream * s,struct channel * req)6842 void manage_client_side_cookies(struct stream *s, struct channel *req)
6843 {
6844 	struct http_txn *txn = s->txn;
6845 	struct session *sess = s->sess;
6846 	int preserve_hdr;
6847 	int cur_idx, old_idx;
6848 	char *hdr_beg, *hdr_end, *hdr_next, *del_from;
6849 	char *prev, *att_beg, *att_end, *equal, *val_beg, *val_end, *next;
6850 
6851 	/* Iterate through the headers, we start with the start line. */
6852 	old_idx = 0;
6853 	hdr_next = req->buf->p + hdr_idx_first_pos(&txn->hdr_idx);
6854 
6855 	while ((cur_idx = txn->hdr_idx.v[old_idx].next)) {
6856 		struct hdr_idx_elem *cur_hdr;
6857 		int val;
6858 
6859 		cur_hdr  = &txn->hdr_idx.v[cur_idx];
6860 		hdr_beg  = hdr_next;
6861 		hdr_end  = hdr_beg + cur_hdr->len;
6862 		hdr_next = hdr_end + cur_hdr->cr + 1;
6863 
6864 		/* We have one full header between hdr_beg and hdr_end, and the
6865 		 * next header starts at hdr_next. We're only interested in
6866 		 * "Cookie:" headers.
6867 		 */
6868 
6869 		val = http_header_match2(hdr_beg, hdr_end, "Cookie", 6);
6870 		if (!val) {
6871 			old_idx = cur_idx;
6872 			continue;
6873 		}
6874 
6875 		del_from = NULL;  /* nothing to be deleted */
6876 		preserve_hdr = 0; /* assume we may kill the whole header */
6877 
6878 		/* Now look for cookies. Conforming to RFC2109, we have to support
6879 		 * attributes whose name begin with a '$', and associate them with
6880 		 * the right cookie, if we want to delete this cookie.
6881 		 * So there are 3 cases for each cookie read :
6882 		 * 1) it's a special attribute, beginning with a '$' : ignore it.
6883 		 * 2) it's a server id cookie that we *MAY* want to delete : save
6884 		 *    some pointers on it (last semi-colon, beginning of cookie...)
6885 		 * 3) it's an application cookie : we *MAY* have to delete a previous
6886 		 *    "special" cookie.
6887 		 * At the end of loop, if a "special" cookie remains, we may have to
6888 		 * remove it. If no application cookie persists in the header, we
6889 		 * *MUST* delete it.
6890 		 *
6891 		 * Note: RFC2965 is unclear about the processing of spaces around
6892 		 * the equal sign in the ATTR=VALUE form. A careful inspection of
6893 		 * the RFC explicitly allows spaces before it, and not within the
6894 		 * tokens (attrs or values). An inspection of RFC2109 allows that
6895 		 * too but section 10.1.3 lets one think that spaces may be allowed
6896 		 * after the equal sign too, resulting in some (rare) buggy
6897 		 * implementations trying to do that. So let's do what servers do.
6898 		 * Latest ietf draft forbids spaces all around. Also, earlier RFCs
6899 		 * allowed quoted strings in values, with any possible character
6900 		 * after a backslash, including control chars and delimitors, which
6901 		 * causes parsing to become ambiguous. Browsers also allow spaces
6902 		 * within values even without quotes.
6903 		 *
6904 		 * We have to keep multiple pointers in order to support cookie
6905 		 * removal at the beginning, middle or end of header without
6906 		 * corrupting the header. All of these headers are valid :
6907 		 *
6908 		 * Cookie:NAME1=VALUE1;NAME2=VALUE2;NAME3=VALUE3\r\n
6909 		 * Cookie:NAME1=VALUE1;NAME2_ONLY ;NAME3=VALUE3\r\n
6910 		 * Cookie:    NAME1  =  VALUE 1  ; NAME2 = VALUE2 ; NAME3 = VALUE3\r\n
6911 		 * |     |    |    | |  |      | |                                |
6912 		 * |     |    |    | |  |      | |                     hdr_end <--+
6913 		 * |     |    |    | |  |      | +--> next
6914 		 * |     |    |    | |  |      +----> val_end
6915 		 * |     |    |    | |  +-----------> val_beg
6916 		 * |     |    |    | +--------------> equal
6917 		 * |     |    |    +----------------> att_end
6918 		 * |     |    +---------------------> att_beg
6919 		 * |     +--------------------------> prev
6920 		 * +--------------------------------> hdr_beg
6921 		 */
6922 
6923 		for (prev = hdr_beg + 6; prev < hdr_end; prev = next) {
6924 			/* Iterate through all cookies on this line */
6925 
6926 			/* find att_beg */
6927 			att_beg = prev + 1;
6928 			while (att_beg < hdr_end && HTTP_IS_SPHT(*att_beg))
6929 				att_beg++;
6930 
6931 			/* find att_end : this is the first character after the last non
6932 			 * space before the equal. It may be equal to hdr_end.
6933 			 */
6934 			equal = att_end = att_beg;
6935 
6936 			while (equal < hdr_end) {
6937 				if (*equal == '=' || *equal == ',' || *equal == ';')
6938 					break;
6939 				if (HTTP_IS_SPHT(*equal++))
6940 					continue;
6941 				att_end = equal;
6942 			}
6943 
6944 			/* here, <equal> points to '=', a delimitor or the end. <att_end>
6945 			 * is between <att_beg> and <equal>, both may be identical.
6946 			 */
6947 
6948 			/* look for end of cookie if there is an equal sign */
6949 			if (equal < hdr_end && *equal == '=') {
6950 				/* look for the beginning of the value */
6951 				val_beg = equal + 1;
6952 				while (val_beg < hdr_end && HTTP_IS_SPHT(*val_beg))
6953 					val_beg++;
6954 
6955 				/* find the end of the value, respecting quotes */
6956 				next = find_cookie_value_end(val_beg, hdr_end);
6957 
6958 				/* make val_end point to the first white space or delimitor after the value */
6959 				val_end = next;
6960 				while (val_end > val_beg && HTTP_IS_SPHT(*(val_end - 1)))
6961 					val_end--;
6962 			} else {
6963 				val_beg = val_end = next = equal;
6964 			}
6965 
6966 			/* We have nothing to do with attributes beginning with '$'. However,
6967 			 * they will automatically be removed if a header before them is removed,
6968 			 * since they're supposed to be linked together.
6969 			 */
6970 			if (*att_beg == '$')
6971 				continue;
6972 
6973 			/* Ignore cookies with no equal sign */
6974 			if (equal == next) {
6975 				/* This is not our cookie, so we must preserve it. But if we already
6976 				 * scheduled another cookie for removal, we cannot remove the
6977 				 * complete header, but we can remove the previous block itself.
6978 				 */
6979 				preserve_hdr = 1;
6980 				if (del_from != NULL) {
6981 					int delta = del_hdr_value(req->buf, &del_from, prev);
6982 					val_end  += delta;
6983 					next     += delta;
6984 					hdr_end  += delta;
6985 					hdr_next += delta;
6986 					cur_hdr->len += delta;
6987 					http_msg_move_end(&txn->req, delta);
6988 					prev     = del_from;
6989 					del_from = NULL;
6990 				}
6991 				continue;
6992 			}
6993 
6994 			/* if there are spaces around the equal sign, we need to
6995 			 * strip them otherwise we'll get trouble for cookie captures,
6996 			 * or even for rewrites. Since this happens extremely rarely,
6997 			 * it does not hurt performance.
6998 			 */
6999 			if (unlikely(att_end != equal || val_beg > equal + 1)) {
7000 				int stripped_before = 0;
7001 				int stripped_after = 0;
7002 
7003 				if (att_end != equal) {
7004 					stripped_before = buffer_replace2(req->buf, att_end, equal, NULL, 0);
7005 					equal   += stripped_before;
7006 					val_beg += stripped_before;
7007 				}
7008 
7009 				if (val_beg > equal + 1) {
7010 					stripped_after = buffer_replace2(req->buf, equal + 1, val_beg, NULL, 0);
7011 					val_beg += stripped_after;
7012 					stripped_before += stripped_after;
7013 				}
7014 
7015 				val_end      += stripped_before;
7016 				next         += stripped_before;
7017 				hdr_end      += stripped_before;
7018 				hdr_next     += stripped_before;
7019 				cur_hdr->len += stripped_before;
7020 				http_msg_move_end(&txn->req, stripped_before);
7021 			}
7022 			/* now everything is as on the diagram above */
7023 
7024 			/* First, let's see if we want to capture this cookie. We check
7025 			 * that we don't already have a client side cookie, because we
7026 			 * can only capture one. Also as an optimisation, we ignore
7027 			 * cookies shorter than the declared name.
7028 			 */
7029 			if (sess->fe->capture_name != NULL && txn->cli_cookie == NULL &&
7030 			    (val_end - att_beg >= sess->fe->capture_namelen) &&
7031 			    memcmp(att_beg, sess->fe->capture_name, sess->fe->capture_namelen) == 0) {
7032 				int log_len = val_end - att_beg;
7033 
7034 				if ((txn->cli_cookie = pool_alloc(pool_head_capture)) == NULL) {
7035 					ha_alert("HTTP logging : out of memory.\n");
7036 				} else {
7037 					if (log_len > sess->fe->capture_len)
7038 						log_len = sess->fe->capture_len;
7039 					memcpy(txn->cli_cookie, att_beg, log_len);
7040 					txn->cli_cookie[log_len] = 0;
7041 				}
7042 			}
7043 
7044 			/* Persistence cookies in passive, rewrite or insert mode have the
7045 			 * following form :
7046 			 *
7047 			 *    Cookie: NAME=SRV[|<lastseen>[|<firstseen>]]
7048 			 *
7049 			 * For cookies in prefix mode, the form is :
7050 			 *
7051 			 *    Cookie: NAME=SRV~VALUE
7052 			 */
7053 			if ((att_end - att_beg == s->be->cookie_len) && (s->be->cookie_name != NULL) &&
7054 			    (memcmp(att_beg, s->be->cookie_name, att_end - att_beg) == 0)) {
7055 				struct server *srv = s->be->srv;
7056 				char *delim;
7057 
7058 				/* if we're in cookie prefix mode, we'll search the delimitor so that we
7059 				 * have the server ID between val_beg and delim, and the original cookie between
7060 				 * delim+1 and val_end. Otherwise, delim==val_end :
7061 				 *
7062 				 * Cookie: NAME=SRV;          # in all but prefix modes
7063 				 * Cookie: NAME=SRV~OPAQUE ;  # in prefix mode
7064 				 * |      ||   ||  |      |+-> next
7065 				 * |      ||   ||  |      +--> val_end
7066 				 * |      ||   ||  +---------> delim
7067 				 * |      ||   |+------------> val_beg
7068 				 * |      ||   +-------------> att_end = equal
7069 				 * |      |+-----------------> att_beg
7070 				 * |      +------------------> prev
7071 				 * +-------------------------> hdr_beg
7072 				 */
7073 
7074 				if (s->be->ck_opts & PR_CK_PFX) {
7075 					for (delim = val_beg; delim < val_end; delim++)
7076 						if (*delim == COOKIE_DELIM)
7077 							break;
7078 				} else {
7079 					char *vbar1;
7080 					delim = val_end;
7081 					/* Now check if the cookie contains a date field, which would
7082 					 * appear after a vertical bar ('|') just after the server name
7083 					 * and before the delimiter.
7084 					 */
7085 					vbar1 = memchr(val_beg, COOKIE_DELIM_DATE, val_end - val_beg);
7086 					if (vbar1) {
7087 						/* OK, so left of the bar is the server's cookie and
7088 						 * right is the last seen date. It is a base64 encoded
7089 						 * 30-bit value representing the UNIX date since the
7090 						 * epoch in 4-second quantities.
7091 						 */
7092 						int val;
7093 						delim = vbar1++;
7094 						if (val_end - vbar1 >= 5) {
7095 							val = b64tos30(vbar1);
7096 							if (val > 0)
7097 								txn->cookie_last_date = val << 2;
7098 						}
7099 						/* look for a second vertical bar */
7100 						vbar1 = memchr(vbar1, COOKIE_DELIM_DATE, val_end - vbar1);
7101 						if (vbar1 && (val_end - vbar1 > 5)) {
7102 							val = b64tos30(vbar1 + 1);
7103 							if (val > 0)
7104 								txn->cookie_first_date = val << 2;
7105 						}
7106 					}
7107 				}
7108 
7109 				/* if the cookie has an expiration date and the proxy wants to check
7110 				 * it, then we do that now. We first check if the cookie is too old,
7111 				 * then only if it has expired. We detect strict overflow because the
7112 				 * time resolution here is not great (4 seconds). Cookies with dates
7113 				 * in the future are ignored if their offset is beyond one day. This
7114 				 * allows an admin to fix timezone issues without expiring everyone
7115 				 * and at the same time avoids keeping unwanted side effects for too
7116 				 * long.
7117 				 */
7118 				if (txn->cookie_first_date && s->be->cookie_maxlife &&
7119 				    (((signed)(date.tv_sec - txn->cookie_first_date) > (signed)s->be->cookie_maxlife) ||
7120 				     ((signed)(txn->cookie_first_date - date.tv_sec) > 86400))) {
7121 					txn->flags &= ~TX_CK_MASK;
7122 					txn->flags |= TX_CK_OLD;
7123 					delim = val_beg; // let's pretend we have not found the cookie
7124 					txn->cookie_first_date = 0;
7125 					txn->cookie_last_date = 0;
7126 				}
7127 				else if (txn->cookie_last_date && s->be->cookie_maxidle &&
7128 					 (((signed)(date.tv_sec - txn->cookie_last_date) > (signed)s->be->cookie_maxidle) ||
7129 					  ((signed)(txn->cookie_last_date - date.tv_sec) > 86400))) {
7130 					txn->flags &= ~TX_CK_MASK;
7131 					txn->flags |= TX_CK_EXPIRED;
7132 					delim = val_beg; // let's pretend we have not found the cookie
7133 					txn->cookie_first_date = 0;
7134 					txn->cookie_last_date = 0;
7135 				}
7136 
7137 				/* Here, we'll look for the first running server which supports the cookie.
7138 				 * This allows to share a same cookie between several servers, for example
7139 				 * to dedicate backup servers to specific servers only.
7140 				 * However, to prevent clients from sticking to cookie-less backup server
7141 				 * when they have incidentely learned an empty cookie, we simply ignore
7142 				 * empty cookies and mark them as invalid.
7143 				 * The same behaviour is applied when persistence must be ignored.
7144 				 */
7145 				if ((delim == val_beg) || (s->flags & (SF_IGNORE_PRST | SF_ASSIGNED)))
7146 					srv = NULL;
7147 
7148 				while (srv) {
7149 					if (srv->cookie && (srv->cklen == delim - val_beg) &&
7150 					    !memcmp(val_beg, srv->cookie, delim - val_beg)) {
7151 						if ((srv->cur_state != SRV_ST_STOPPED) ||
7152 						    (s->be->options & PR_O_PERSIST) ||
7153 						    (s->flags & SF_FORCE_PRST)) {
7154 							/* we found the server and we can use it */
7155 							txn->flags &= ~TX_CK_MASK;
7156 							txn->flags |= (srv->cur_state != SRV_ST_STOPPED) ? TX_CK_VALID : TX_CK_DOWN;
7157 							s->flags |= SF_DIRECT | SF_ASSIGNED;
7158 							s->target = &srv->obj_type;
7159 							break;
7160 						} else {
7161 							/* we found a server, but it's down,
7162 							 * mark it as such and go on in case
7163 							 * another one is available.
7164 							 */
7165 							txn->flags &= ~TX_CK_MASK;
7166 							txn->flags |= TX_CK_DOWN;
7167 						}
7168 					}
7169 					srv = srv->next;
7170 				}
7171 
7172 				if (!srv && !(txn->flags & (TX_CK_DOWN|TX_CK_EXPIRED|TX_CK_OLD))) {
7173 					/* no server matched this cookie or we deliberately skipped it */
7174 					txn->flags &= ~TX_CK_MASK;
7175 					if ((s->flags & (SF_IGNORE_PRST | SF_ASSIGNED)))
7176 						txn->flags |= TX_CK_UNUSED;
7177 					else
7178 						txn->flags |= TX_CK_INVALID;
7179 				}
7180 
7181 				/* depending on the cookie mode, we may have to either :
7182 				 * - delete the complete cookie if we're in insert+indirect mode, so that
7183 				 *   the server never sees it ;
7184 				 * - remove the server id from the cookie value, and tag the cookie as an
7185 				 *   application cookie so that it does not get accidentely removed later,
7186 				 *   if we're in cookie prefix mode
7187 				 */
7188 				if ((s->be->ck_opts & PR_CK_PFX) && (delim != val_end)) {
7189 					int delta; /* negative */
7190 
7191 					delta = buffer_replace2(req->buf, val_beg, delim + 1, NULL, 0);
7192 					val_end  += delta;
7193 					next     += delta;
7194 					hdr_end  += delta;
7195 					hdr_next += delta;
7196 					cur_hdr->len += delta;
7197 					http_msg_move_end(&txn->req, delta);
7198 
7199 					del_from = NULL;
7200 					preserve_hdr = 1; /* we want to keep this cookie */
7201 				}
7202 				else if (del_from == NULL &&
7203 					 (s->be->ck_opts & (PR_CK_INS | PR_CK_IND)) == (PR_CK_INS | PR_CK_IND)) {
7204 					del_from = prev;
7205 				}
7206 			} else {
7207 				/* This is not our cookie, so we must preserve it. But if we already
7208 				 * scheduled another cookie for removal, we cannot remove the
7209 				 * complete header, but we can remove the previous block itself.
7210 				 */
7211 				preserve_hdr = 1;
7212 
7213 				if (del_from != NULL) {
7214 					int delta = del_hdr_value(req->buf, &del_from, prev);
7215 					if (att_beg >= del_from)
7216 						att_beg += delta;
7217 					if (att_end >= del_from)
7218 						att_end += delta;
7219 					val_beg  += delta;
7220 					val_end  += delta;
7221 					next     += delta;
7222 					hdr_end  += delta;
7223 					hdr_next += delta;
7224 					cur_hdr->len += delta;
7225 					http_msg_move_end(&txn->req, delta);
7226 					prev     = del_from;
7227 					del_from = NULL;
7228 				}
7229 			}
7230 
7231 			/* continue with next cookie on this header line */
7232 			att_beg = next;
7233 		} /* for each cookie */
7234 
7235 		/* There are no more cookies on this line.
7236 		 * We may still have one (or several) marked for deletion at the
7237 		 * end of the line. We must do this now in two ways :
7238 		 *  - if some cookies must be preserved, we only delete from the
7239 		 *    mark to the end of line ;
7240 		 *  - if nothing needs to be preserved, simply delete the whole header
7241 		 */
7242 		if (del_from) {
7243 			int delta;
7244 			if (preserve_hdr) {
7245 				delta = del_hdr_value(req->buf, &del_from, hdr_end);
7246 				hdr_end = del_from;
7247 				cur_hdr->len += delta;
7248 			} else {
7249 				delta = buffer_replace2(req->buf, hdr_beg, hdr_next, NULL, 0);
7250 
7251 				/* FIXME: this should be a separate function */
7252 				txn->hdr_idx.v[old_idx].next = cur_hdr->next;
7253 				txn->hdr_idx.used--;
7254 				cur_hdr->len = 0;
7255 				cur_idx = old_idx;
7256 			}
7257 			hdr_next += delta;
7258 			http_msg_move_end(&txn->req, delta);
7259 		}
7260 
7261 		/* check next header */
7262 		old_idx = cur_idx;
7263 	}
7264 }
7265 
7266 
7267 /* Iterate the same filter through all response headers contained in <rtr>.
7268  * Returns 1 if this filter can be stopped upon return, otherwise 0.
7269  */
apply_filter_to_resp_headers(struct stream * s,struct channel * rtr,struct hdr_exp * exp)7270 int apply_filter_to_resp_headers(struct stream *s, struct channel *rtr, struct hdr_exp *exp)
7271 {
7272 	char *cur_ptr, *cur_end, *cur_next;
7273 	int cur_idx, old_idx, last_hdr;
7274 	struct http_txn *txn = s->txn;
7275 	struct hdr_idx_elem *cur_hdr;
7276 	int delta;
7277 
7278 	last_hdr = 0;
7279 
7280 	cur_next = rtr->buf->p + hdr_idx_first_pos(&txn->hdr_idx);
7281 	old_idx = 0;
7282 
7283 	while (!last_hdr) {
7284 		if (unlikely(txn->flags & TX_SVDENY))
7285 			return 1;
7286 		else if (unlikely(txn->flags & TX_SVALLOW) &&
7287 			 (exp->action == ACT_ALLOW ||
7288 			  exp->action == ACT_DENY))
7289 			return 0;
7290 
7291 		cur_idx = txn->hdr_idx.v[old_idx].next;
7292 		if (!cur_idx)
7293 			break;
7294 
7295 		cur_hdr  = &txn->hdr_idx.v[cur_idx];
7296 		cur_ptr  = cur_next;
7297 		cur_end  = cur_ptr + cur_hdr->len;
7298 		cur_next = cur_end + cur_hdr->cr + 1;
7299 
7300 		/* Now we have one header between cur_ptr and cur_end,
7301 		 * and the next header starts at cur_next.
7302 		 */
7303 
7304 		if (regex_exec_match2(exp->preg, cur_ptr, cur_end-cur_ptr, MAX_MATCH, pmatch, 0)) {
7305 			switch (exp->action) {
7306 			case ACT_ALLOW:
7307 				txn->flags |= TX_SVALLOW;
7308 				last_hdr = 1;
7309 				break;
7310 
7311 			case ACT_DENY:
7312 				txn->flags |= TX_SVDENY;
7313 				last_hdr = 1;
7314 				break;
7315 
7316 			case ACT_REPLACE:
7317 				trash.len = exp_replace(trash.str, trash.size, cur_ptr, exp->replace, pmatch);
7318 				if (trash.len < 0)
7319 					return -1;
7320 
7321 				delta = buffer_replace2(rtr->buf, cur_ptr, cur_end, trash.str, trash.len);
7322 				/* FIXME: if the user adds a newline in the replacement, the
7323 				 * index will not be recalculated for now, and the new line
7324 				 * will not be counted as a new header.
7325 				 */
7326 
7327 				cur_end += delta;
7328 				cur_next += delta;
7329 				cur_hdr->len += delta;
7330 				http_msg_move_end(&txn->rsp, delta);
7331 				break;
7332 
7333 			case ACT_REMOVE:
7334 				delta = buffer_replace2(rtr->buf, cur_ptr, cur_next, NULL, 0);
7335 				cur_next += delta;
7336 
7337 				http_msg_move_end(&txn->rsp, delta);
7338 				txn->hdr_idx.v[old_idx].next = cur_hdr->next;
7339 				txn->hdr_idx.used--;
7340 				cur_hdr->len = 0;
7341 				cur_end = NULL; /* null-term has been rewritten */
7342 				cur_idx = old_idx;
7343 				break;
7344 
7345 			}
7346 		}
7347 
7348 		/* keep the link from this header to next one in case of later
7349 		 * removal of next header.
7350 		 */
7351 		old_idx = cur_idx;
7352 	}
7353 	return 0;
7354 }
7355 
7356 
7357 /* Apply the filter to the status line in the response buffer <rtr>.
7358  * Returns 0 if nothing has been done, 1 if the filter has been applied,
7359  * or -1 if a replacement resulted in an invalid status line.
7360  */
apply_filter_to_sts_line(struct stream * s,struct channel * rtr,struct hdr_exp * exp)7361 int apply_filter_to_sts_line(struct stream *s, struct channel *rtr, struct hdr_exp *exp)
7362 {
7363 	char *cur_ptr, *cur_end;
7364 	int done;
7365 	struct http_txn *txn = s->txn;
7366 	int delta;
7367 
7368 
7369 	if (unlikely(txn->flags & TX_SVDENY))
7370 		return 1;
7371 	else if (unlikely(txn->flags & TX_SVALLOW) &&
7372 		 (exp->action == ACT_ALLOW ||
7373 		  exp->action == ACT_DENY))
7374 		return 0;
7375 	else if (exp->action == ACT_REMOVE)
7376 		return 0;
7377 
7378 	done = 0;
7379 
7380 	cur_ptr = rtr->buf->p;
7381 	cur_end = cur_ptr + txn->rsp.sl.st.l;
7382 
7383 	/* Now we have the status line between cur_ptr and cur_end */
7384 
7385 	if (regex_exec_match2(exp->preg, cur_ptr, cur_end-cur_ptr, MAX_MATCH, pmatch, 0)) {
7386 		switch (exp->action) {
7387 		case ACT_ALLOW:
7388 			txn->flags |= TX_SVALLOW;
7389 			done = 1;
7390 			break;
7391 
7392 		case ACT_DENY:
7393 			txn->flags |= TX_SVDENY;
7394 			done = 1;
7395 			break;
7396 
7397 		case ACT_REPLACE:
7398 			trash.len = exp_replace(trash.str, trash.size, cur_ptr, exp->replace, pmatch);
7399 			if (trash.len < 0)
7400 				return -1;
7401 
7402 			delta = buffer_replace2(rtr->buf, cur_ptr, cur_end, trash.str, trash.len);
7403 			/* FIXME: if the user adds a newline in the replacement, the
7404 			 * index will not be recalculated for now, and the new line
7405 			 * will not be counted as a new header.
7406 			 */
7407 
7408 			http_msg_move_end(&txn->rsp, delta);
7409 			cur_end += delta;
7410 			cur_end = (char *)http_parse_stsline(&txn->rsp,
7411 							     HTTP_MSG_RPVER,
7412 							     cur_ptr, cur_end + 1,
7413 							     NULL, NULL);
7414 			if (unlikely(!cur_end))
7415 				return -1;
7416 
7417 			/* we have a full respnse and we know that we have either a CR
7418 			 * or an LF at <ptr>.
7419 			 */
7420 			txn->status = strl2ui(rtr->buf->p + txn->rsp.sl.st.c, txn->rsp.sl.st.c_l);
7421 			hdr_idx_set_start(&txn->hdr_idx, txn->rsp.sl.st.l, *cur_end == '\r');
7422 			/* there is no point trying this regex on headers */
7423 			return 1;
7424 		}
7425 	}
7426 	return done;
7427 }
7428 
7429 
7430 
7431 /*
7432  * Apply all the resp filters of proxy <px> to all headers in buffer <rtr> of stream <s>.
7433  * Returns 0 if everything is alright, or -1 in case a replacement lead to an
7434  * unparsable response.
7435  */
apply_filters_to_response(struct stream * s,struct channel * rtr,struct proxy * px)7436 int apply_filters_to_response(struct stream *s, struct channel *rtr, struct proxy *px)
7437 {
7438 	struct session *sess = s->sess;
7439 	struct http_txn *txn = s->txn;
7440 	struct hdr_exp *exp;
7441 
7442 	for (exp = px->rsp_exp; exp; exp = exp->next) {
7443 		int ret;
7444 
7445 		/*
7446 		 * The interleaving of transformations and verdicts
7447 		 * makes it difficult to decide to continue or stop
7448 		 * the evaluation.
7449 		 */
7450 
7451 		if (txn->flags & TX_SVDENY)
7452 			break;
7453 
7454 		if ((txn->flags & TX_SVALLOW) &&
7455 		    (exp->action == ACT_ALLOW || exp->action == ACT_DENY ||
7456 		     exp->action == ACT_PASS)) {
7457 			exp = exp->next;
7458 			continue;
7459 		}
7460 
7461 		/* if this filter had a condition, evaluate it now and skip to
7462 		 * next filter if the condition does not match.
7463 		 */
7464 		if (exp->cond) {
7465 			ret = acl_exec_cond(exp->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL);
7466 			ret = acl_pass(ret);
7467 			if (((struct acl_cond *)exp->cond)->pol == ACL_COND_UNLESS)
7468 				ret = !ret;
7469 			if (!ret)
7470 				continue;
7471 		}
7472 
7473 		/* Apply the filter to the status line. */
7474 		ret = apply_filter_to_sts_line(s, rtr, exp);
7475 		if (unlikely(ret < 0))
7476 			return -1;
7477 
7478 		if (likely(ret == 0)) {
7479 			/* The filter did not match the response, it can be
7480 			 * iterated through all headers.
7481 			 */
7482 			if (unlikely(apply_filter_to_resp_headers(s, rtr, exp) < 0))
7483 				return -1;
7484 		}
7485 	}
7486 	return 0;
7487 }
7488 
7489 
7490 /*
7491  * Manage server-side cookies. It can impact performance by about 2% so it is
7492  * desirable to call it only when needed. This function is also used when we
7493  * just need to know if there is a cookie (eg: for check-cache).
7494  */
manage_server_side_cookies(struct stream * s,struct channel * res)7495 void manage_server_side_cookies(struct stream *s, struct channel *res)
7496 {
7497 	struct http_txn *txn = s->txn;
7498 	struct session *sess = s->sess;
7499 	struct server *srv;
7500 	int is_cookie2;
7501 	int cur_idx, old_idx, delta;
7502 	char *hdr_beg, *hdr_end, *hdr_next;
7503 	char *prev, *att_beg, *att_end, *equal, *val_beg, *val_end, *next;
7504 
7505 	/* Iterate through the headers.
7506 	 * we start with the start line.
7507 	 */
7508 	old_idx = 0;
7509 	hdr_next = res->buf->p + hdr_idx_first_pos(&txn->hdr_idx);
7510 
7511 	while ((cur_idx = txn->hdr_idx.v[old_idx].next)) {
7512 		struct hdr_idx_elem *cur_hdr;
7513 		int val;
7514 
7515 		cur_hdr  = &txn->hdr_idx.v[cur_idx];
7516 		hdr_beg  = hdr_next;
7517 		hdr_end  = hdr_beg + cur_hdr->len;
7518 		hdr_next = hdr_end + cur_hdr->cr + 1;
7519 
7520 		/* We have one full header between hdr_beg and hdr_end, and the
7521 		 * next header starts at hdr_next. We're only interested in
7522 		 * "Set-Cookie" and "Set-Cookie2" headers.
7523 		 */
7524 
7525 		is_cookie2 = 0;
7526 		prev = hdr_beg + 10;
7527 		val = http_header_match2(hdr_beg, hdr_end, "Set-Cookie", 10);
7528 		if (!val) {
7529 			val = http_header_match2(hdr_beg, hdr_end, "Set-Cookie2", 11);
7530 			if (!val) {
7531 				old_idx = cur_idx;
7532 				continue;
7533 			}
7534 			is_cookie2 = 1;
7535 			prev = hdr_beg + 11;
7536 		}
7537 
7538 		/* OK, right now we know we have a Set-Cookie* at hdr_beg, and
7539 		 * <prev> points to the colon.
7540 		 */
7541 		txn->flags |= TX_SCK_PRESENT;
7542 
7543 		/* Maybe we only wanted to see if there was a Set-Cookie (eg:
7544 		 * check-cache is enabled) and we are not interested in checking
7545 		 * them. Warning, the cookie capture is declared in the frontend.
7546 		 */
7547 		if (s->be->cookie_name == NULL && sess->fe->capture_name == NULL)
7548 			return;
7549 
7550 		/* OK so now we know we have to process this response cookie.
7551 		 * The format of the Set-Cookie header is slightly different
7552 		 * from the format of the Cookie header in that it does not
7553 		 * support the comma as a cookie delimiter (thus the header
7554 		 * cannot be folded) because the Expires attribute described in
7555 		 * the original Netscape's spec may contain an unquoted date
7556 		 * with a comma inside. We have to live with this because
7557 		 * many browsers don't support Max-Age and some browsers don't
7558 		 * support quoted strings. However the Set-Cookie2 header is
7559 		 * clean.
7560 		 *
7561 		 * We have to keep multiple pointers in order to support cookie
7562 		 * removal at the beginning, middle or end of header without
7563 		 * corrupting the header (in case of set-cookie2). A special
7564 		 * pointer, <scav> points to the beginning of the set-cookie-av
7565 		 * fields after the first semi-colon. The <next> pointer points
7566 		 * either to the end of line (set-cookie) or next unquoted comma
7567 		 * (set-cookie2). All of these headers are valid :
7568 		 *
7569 		 * Set-Cookie:    NAME1  =  VALUE 1  ; Secure; Path="/"\r\n
7570 		 * Set-Cookie:NAME=VALUE; Secure; Expires=Thu, 01-Jan-1970 00:00:01 GMT\r\n
7571 		 * Set-Cookie: NAME = VALUE ; Secure; Expires=Thu, 01-Jan-1970 00:00:01 GMT\r\n
7572 		 * Set-Cookie2: NAME1 = VALUE 1 ; Max-Age=0, NAME2=VALUE2; Discard\r\n
7573 		 * |          | |   | | |     | |          |                      |
7574 		 * |          | |   | | |     | |          +-> next    hdr_end <--+
7575 		 * |          | |   | | |     | +------------> scav
7576 		 * |          | |   | | |     +--------------> val_end
7577 		 * |          | |   | | +--------------------> val_beg
7578 		 * |          | |   | +----------------------> equal
7579 		 * |          | |   +------------------------> att_end
7580 		 * |          | +----------------------------> att_beg
7581 		 * |          +------------------------------> prev
7582 		 * +-----------------------------------------> hdr_beg
7583 		 */
7584 
7585 		for (; prev < hdr_end; prev = next) {
7586 			/* Iterate through all cookies on this line */
7587 
7588 			/* find att_beg */
7589 			att_beg = prev + 1;
7590 			while (att_beg < hdr_end && HTTP_IS_SPHT(*att_beg))
7591 				att_beg++;
7592 
7593 			/* find att_end : this is the first character after the last non
7594 			 * space before the equal. It may be equal to hdr_end.
7595 			 */
7596 			equal = att_end = att_beg;
7597 
7598 			while (equal < hdr_end) {
7599 				if (*equal == '=' || *equal == ';' || (is_cookie2 && *equal == ','))
7600 					break;
7601 				if (HTTP_IS_SPHT(*equal++))
7602 					continue;
7603 				att_end = equal;
7604 			}
7605 
7606 			/* here, <equal> points to '=', a delimitor or the end. <att_end>
7607 			 * is between <att_beg> and <equal>, both may be identical.
7608 			 */
7609 
7610 			/* look for end of cookie if there is an equal sign */
7611 			if (equal < hdr_end && *equal == '=') {
7612 				/* look for the beginning of the value */
7613 				val_beg = equal + 1;
7614 				while (val_beg < hdr_end && HTTP_IS_SPHT(*val_beg))
7615 					val_beg++;
7616 
7617 				/* find the end of the value, respecting quotes */
7618 				next = find_cookie_value_end(val_beg, hdr_end);
7619 
7620 				/* make val_end point to the first white space or delimitor after the value */
7621 				val_end = next;
7622 				while (val_end > val_beg && HTTP_IS_SPHT(*(val_end - 1)))
7623 					val_end--;
7624 			} else {
7625 				/* <equal> points to next comma, semi-colon or EOL */
7626 				val_beg = val_end = next = equal;
7627 			}
7628 
7629 			if (next < hdr_end) {
7630 				/* Set-Cookie2 supports multiple cookies, and <next> points to
7631 				 * a colon or semi-colon before the end. So skip all attr-value
7632 				 * pairs and look for the next comma. For Set-Cookie, since
7633 				 * commas are permitted in values, skip to the end.
7634 				 */
7635 				if (is_cookie2)
7636 					next = find_hdr_value_end(next, hdr_end);
7637 				else
7638 					next = hdr_end;
7639 			}
7640 
7641 			/* Now everything is as on the diagram above */
7642 
7643 			/* Ignore cookies with no equal sign */
7644 			if (equal == val_end)
7645 				continue;
7646 
7647 			/* If there are spaces around the equal sign, we need to
7648 			 * strip them otherwise we'll get trouble for cookie captures,
7649 			 * or even for rewrites. Since this happens extremely rarely,
7650 			 * it does not hurt performance.
7651 			 */
7652 			if (unlikely(att_end != equal || val_beg > equal + 1)) {
7653 				int stripped_before = 0;
7654 				int stripped_after = 0;
7655 
7656 				if (att_end != equal) {
7657 					stripped_before = buffer_replace2(res->buf, att_end, equal, NULL, 0);
7658 					equal   += stripped_before;
7659 					val_beg += stripped_before;
7660 				}
7661 
7662 				if (val_beg > equal + 1) {
7663 					stripped_after = buffer_replace2(res->buf, equal + 1, val_beg, NULL, 0);
7664 					val_beg += stripped_after;
7665 					stripped_before += stripped_after;
7666 				}
7667 
7668 				val_end      += stripped_before;
7669 				next         += stripped_before;
7670 				hdr_end      += stripped_before;
7671 				hdr_next     += stripped_before;
7672 				cur_hdr->len += stripped_before;
7673 				http_msg_move_end(&txn->rsp, stripped_before);
7674 			}
7675 
7676 			/* First, let's see if we want to capture this cookie. We check
7677 			 * that we don't already have a server side cookie, because we
7678 			 * can only capture one. Also as an optimisation, we ignore
7679 			 * cookies shorter than the declared name.
7680 			 */
7681 			if (sess->fe->capture_name != NULL &&
7682 			    txn->srv_cookie == NULL &&
7683 			    (val_end - att_beg >= sess->fe->capture_namelen) &&
7684 			    memcmp(att_beg, sess->fe->capture_name, sess->fe->capture_namelen) == 0) {
7685 				int log_len = val_end - att_beg;
7686 				if ((txn->srv_cookie = pool_alloc(pool_head_capture)) == NULL) {
7687 					ha_alert("HTTP logging : out of memory.\n");
7688 				}
7689 				else {
7690 					if (log_len > sess->fe->capture_len)
7691 						log_len = sess->fe->capture_len;
7692 					memcpy(txn->srv_cookie, att_beg, log_len);
7693 					txn->srv_cookie[log_len] = 0;
7694 				}
7695 			}
7696 
7697 			srv = objt_server(s->target);
7698 			/* now check if we need to process it for persistence */
7699 			if (!(s->flags & SF_IGNORE_PRST) &&
7700 			    (att_end - att_beg == s->be->cookie_len) && (s->be->cookie_name != NULL) &&
7701 			    (memcmp(att_beg, s->be->cookie_name, att_end - att_beg) == 0)) {
7702 				/* assume passive cookie by default */
7703 				txn->flags &= ~TX_SCK_MASK;
7704 				txn->flags |= TX_SCK_FOUND;
7705 
7706 				/* If the cookie is in insert mode on a known server, we'll delete
7707 				 * this occurrence because we'll insert another one later.
7708 				 * We'll delete it too if the "indirect" option is set and we're in
7709 				 * a direct access.
7710 				 */
7711 				if (s->be->ck_opts & PR_CK_PSV) {
7712 					/* The "preserve" flag was set, we don't want to touch the
7713 					 * server's cookie.
7714 					 */
7715 				}
7716 				else if ((srv && (s->be->ck_opts & PR_CK_INS)) ||
7717 				    ((s->flags & SF_DIRECT) && (s->be->ck_opts & PR_CK_IND))) {
7718 					/* this cookie must be deleted */
7719 					if (*prev == ':' && next == hdr_end) {
7720 						/* whole header */
7721 						delta = buffer_replace2(res->buf, hdr_beg, hdr_next, NULL, 0);
7722 						txn->hdr_idx.v[old_idx].next = cur_hdr->next;
7723 						txn->hdr_idx.used--;
7724 						cur_hdr->len = 0;
7725 						cur_idx = old_idx;
7726 						hdr_next += delta;
7727 						http_msg_move_end(&txn->rsp, delta);
7728 						/* note: while both invalid now, <next> and <hdr_end>
7729 						 * are still equal, so the for() will stop as expected.
7730 						 */
7731 					} else {
7732 						/* just remove the value */
7733 						int delta = del_hdr_value(res->buf, &prev, next);
7734 						next      = prev;
7735 						hdr_end  += delta;
7736 						hdr_next += delta;
7737 						cur_hdr->len += delta;
7738 						http_msg_move_end(&txn->rsp, delta);
7739 					}
7740 					txn->flags &= ~TX_SCK_MASK;
7741 					txn->flags |= TX_SCK_DELETED;
7742 					/* and go on with next cookie */
7743 				}
7744 				else if (srv && srv->cookie && (s->be->ck_opts & PR_CK_RW)) {
7745 					/* replace bytes val_beg->val_end with the cookie name associated
7746 					 * with this server since we know it.
7747 					 */
7748 					delta = buffer_replace2(res->buf, val_beg, val_end, srv->cookie, srv->cklen);
7749 					next     += delta;
7750 					hdr_end  += delta;
7751 					hdr_next += delta;
7752 					cur_hdr->len += delta;
7753 					http_msg_move_end(&txn->rsp, delta);
7754 
7755 					txn->flags &= ~TX_SCK_MASK;
7756 					txn->flags |= TX_SCK_REPLACED;
7757 				}
7758 				else if (srv && srv->cookie && (s->be->ck_opts & PR_CK_PFX)) {
7759 					/* insert the cookie name associated with this server
7760 					 * before existing cookie, and insert a delimiter between them..
7761 					 */
7762 					delta = buffer_replace2(res->buf, val_beg, val_beg, srv->cookie, srv->cklen + 1);
7763 					next     += delta;
7764 					hdr_end  += delta;
7765 					hdr_next += delta;
7766 					cur_hdr->len += delta;
7767 					http_msg_move_end(&txn->rsp, delta);
7768 
7769 					val_beg[srv->cklen] = COOKIE_DELIM;
7770 					txn->flags &= ~TX_SCK_MASK;
7771 					txn->flags |= TX_SCK_REPLACED;
7772 				}
7773 			}
7774 			/* that's done for this cookie, check the next one on the same
7775 			 * line when next != hdr_end (only if is_cookie2).
7776 			 */
7777 		}
7778 		/* check next header */
7779 		old_idx = cur_idx;
7780 	}
7781 }
7782 
7783 
7784 /*
7785  * Parses the Cache-Control and Pragma request header fields to determine if
7786  * the request may be served from the cache and/or if it is cacheable. Updates
7787  * s->txn->flags.
7788  */
check_request_for_cacheability(struct stream * s,struct channel * chn)7789 void check_request_for_cacheability(struct stream *s, struct channel *chn)
7790 {
7791 	struct http_txn *txn = s->txn;
7792 	char *p1, *p2;
7793 	char *cur_ptr, *cur_end, *cur_next;
7794 	int pragma_found;
7795 	int cc_found;
7796 	int cur_idx;
7797 
7798 	if ((txn->flags & (TX_CACHEABLE|TX_CACHE_IGNORE)) == TX_CACHE_IGNORE)
7799 		return; /* nothing more to do here */
7800 
7801 	cur_idx = 0;
7802 	pragma_found = cc_found = 0;
7803 	cur_next = chn->buf->p + hdr_idx_first_pos(&txn->hdr_idx);
7804 
7805 	while ((cur_idx = txn->hdr_idx.v[cur_idx].next)) {
7806 		struct hdr_idx_elem *cur_hdr;
7807 		int val;
7808 
7809 		cur_hdr  = &txn->hdr_idx.v[cur_idx];
7810 		cur_ptr  = cur_next;
7811 		cur_end  = cur_ptr + cur_hdr->len;
7812 		cur_next = cur_end + cur_hdr->cr + 1;
7813 
7814 		/* We have one full header between cur_ptr and cur_end, and the
7815 		 * next header starts at cur_next.
7816 		 */
7817 
7818 		val = http_header_match2(cur_ptr, cur_end, "Pragma", 6);
7819 		if (val) {
7820 			if ((cur_end - (cur_ptr + val) >= 8) &&
7821 			    strncasecmp(cur_ptr + val, "no-cache", 8) == 0) {
7822 				pragma_found = 1;
7823 				continue;
7824 			}
7825 		}
7826 
7827 		/* Don't use the cache and don't try to store if we found the
7828 		 * Authorization header */
7829 		val = http_header_match2(cur_ptr, cur_end, "Authorization", 13);
7830 		if (val) {
7831 			txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK;
7832 			txn->flags |= TX_CACHE_IGNORE;
7833 			continue;
7834 		}
7835 
7836 		val = http_header_match2(cur_ptr, cur_end, "Cache-control", 13);
7837 		if (!val)
7838 			continue;
7839 
7840 		/* OK, right now we know we have a cache-control header at cur_ptr */
7841 		cc_found = 1;
7842 		p1 = cur_ptr + val; /* first non-space char after 'cache-control:' */
7843 
7844 		if (p1 >= cur_end)	/* no more info */
7845 			continue;
7846 
7847 		/* p1 is at the beginning of the value */
7848 		p2 = p1;
7849 		while (p2 < cur_end && *p2 != '=' && *p2 != ',' && !isspace((unsigned char)*p2))
7850 			p2++;
7851 
7852 		/* we have a complete value between p1 and p2. We don't check the
7853 		 * values after max-age, max-stale nor min-fresh, we simply don't
7854 		 * use the cache when they're specified.
7855 		 */
7856 		if (((p2 - p1 == 7) && strncasecmp(p1, "max-age",   7) == 0) ||
7857 		    ((p2 - p1 == 8) && strncasecmp(p1, "no-cache",  8) == 0) ||
7858 		    ((p2 - p1 == 9) && strncasecmp(p1, "max-stale", 9) == 0) ||
7859 		    ((p2 - p1 == 9) && strncasecmp(p1, "min-fresh", 9) == 0)) {
7860 			txn->flags |= TX_CACHE_IGNORE;
7861 			continue;
7862 		}
7863 
7864 		if ((p2 - p1 == 8) && strncasecmp(p1, "no-store", 8) == 0) {
7865 			txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK;
7866 			continue;
7867 		}
7868 	}
7869 
7870 	/* RFC7234#5.4:
7871 	 *   When the Cache-Control header field is also present and
7872 	 *   understood in a request, Pragma is ignored.
7873 	 *   When the Cache-Control header field is not present in a
7874 	 *   request, caches MUST consider the no-cache request
7875 	 *   pragma-directive as having the same effect as if
7876 	 *   "Cache-Control: no-cache" were present.
7877 	 */
7878 	if (!cc_found && pragma_found)
7879 		txn->flags |= TX_CACHE_IGNORE;
7880 }
7881 
7882 /*
7883  * Check if response is cacheable or not. Updates s->txn->flags.
7884  */
check_response_for_cacheability(struct stream * s,struct channel * rtr)7885 void check_response_for_cacheability(struct stream *s, struct channel *rtr)
7886 {
7887 	struct http_txn *txn = s->txn;
7888 	char *p1, *p2;
7889 
7890 	char *cur_ptr, *cur_end, *cur_next;
7891 	int cur_idx;
7892 
7893 	if (txn->status < 200) {
7894 		/* do not try to cache interim responses! */
7895 		txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK;
7896 		return;
7897 	}
7898 
7899 	/* Iterate through the headers.
7900 	 * we start with the start line.
7901 	 */
7902 	cur_idx = 0;
7903 	cur_next = rtr->buf->p + hdr_idx_first_pos(&txn->hdr_idx);
7904 
7905 	while ((cur_idx = txn->hdr_idx.v[cur_idx].next)) {
7906 		struct hdr_idx_elem *cur_hdr;
7907 		int val;
7908 
7909 		cur_hdr  = &txn->hdr_idx.v[cur_idx];
7910 		cur_ptr  = cur_next;
7911 		cur_end  = cur_ptr + cur_hdr->len;
7912 		cur_next = cur_end + cur_hdr->cr + 1;
7913 
7914 		/* We have one full header between cur_ptr and cur_end, and the
7915 		 * next header starts at cur_next.
7916 		 */
7917 
7918 		val = http_header_match2(cur_ptr, cur_end, "Pragma", 6);
7919 		if (val) {
7920 			if ((cur_end - (cur_ptr + val) >= 8) &&
7921 			    strncasecmp(cur_ptr + val, "no-cache", 8) == 0) {
7922 				txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK;
7923 				return;
7924 			}
7925 		}
7926 
7927 		val = http_header_match2(cur_ptr, cur_end, "Cache-control", 13);
7928 		if (!val)
7929 			continue;
7930 
7931 		/* OK, right now we know we have a cache-control header at cur_ptr */
7932 
7933 		p1 = cur_ptr + val; /* first non-space char after 'cache-control:' */
7934 
7935 		if (p1 >= cur_end)	/* no more info */
7936 			continue;
7937 
7938 		/* p1 is at the beginning of the value */
7939 		p2 = p1;
7940 
7941 		while (p2 < cur_end && *p2 != '=' && *p2 != ',' && !isspace((unsigned char)*p2))
7942 			p2++;
7943 
7944 		/* we have a complete value between p1 and p2 */
7945 		if (p2 < cur_end && *p2 == '=') {
7946 			if (((cur_end - p2) > 1 && (p2 - p1 == 7) && strncasecmp(p1, "max-age=0", 9) == 0) ||
7947 			    ((cur_end - p2) > 1 && (p2 - p1 == 8) && strncasecmp(p1, "s-maxage=0", 10) == 0)) {
7948 				txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK;
7949 				continue;
7950 			}
7951 
7952 			/* we have something of the form no-cache="set-cookie" */
7953 			if ((cur_end - p1 >= 21) &&
7954 			    strncasecmp(p1, "no-cache=\"set-cookie", 20) == 0
7955 			    && (p1[20] == '"' || p1[20] == ','))
7956 				txn->flags &= ~TX_CACHE_COOK;
7957 			continue;
7958 		}
7959 
7960 		/* OK, so we know that either p2 points to the end of string or to a comma */
7961 		if (((p2 - p1 ==  7) && strncasecmp(p1, "private", 7) == 0) ||
7962 		    ((p2 - p1 ==  8) && strncasecmp(p1, "no-cache", 8) == 0) ||
7963 		    ((p2 - p1 ==  8) && strncasecmp(p1, "no-store", 8) == 0)) {
7964 			txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK;
7965 			return;
7966 		}
7967 
7968 		if ((p2 - p1 ==  6) && strncasecmp(p1, "public", 6) == 0) {
7969 			txn->flags |= TX_CACHEABLE | TX_CACHE_COOK;
7970 			continue;
7971 		}
7972 	}
7973 }
7974 
7975 
7976 /*
7977  * In a GET, HEAD or POST request, check if the requested URI matches the stats uri
7978  * for the current backend.
7979  *
7980  * It is assumed that the request is either a HEAD, GET, or POST and that the
7981  * uri_auth field is valid.
7982  *
7983  * Returns 1 if stats should be provided, otherwise 0.
7984  */
stats_check_uri(struct stream_interface * si,struct http_txn * txn,struct proxy * backend)7985 int stats_check_uri(struct stream_interface *si, struct http_txn *txn, struct proxy *backend)
7986 {
7987 	struct uri_auth *uri_auth = backend->uri_auth;
7988 	struct http_msg *msg = &txn->req;
7989 	const char *uri = msg->chn->buf->p+ msg->sl.rq.u;
7990 
7991 	if (!uri_auth)
7992 		return 0;
7993 
7994 	if (txn->meth != HTTP_METH_GET && txn->meth != HTTP_METH_HEAD && txn->meth != HTTP_METH_POST)
7995 		return 0;
7996 
7997 	/* check URI size */
7998 	if (uri_auth->uri_len > msg->sl.rq.u_l)
7999 		return 0;
8000 
8001 	if (memcmp(uri, uri_auth->uri_prefix, uri_auth->uri_len) != 0)
8002 		return 0;
8003 
8004 	return 1;
8005 }
8006 
8007 /*
8008  * Capture a bad request or response and archive it in the proxy's structure.
8009  * By default it tries to report the error position as msg->err_pos. However if
8010  * this one is not set, it will then report msg->next, which is the last known
8011  * parsing point. The function is able to deal with wrapping buffers. It always
8012  * displays buffers as a contiguous area starting at buf->p.
8013  */
http_capture_bad_message(struct proxy * proxy,struct error_snapshot * es,struct stream * s,struct http_msg * msg,enum h1_state state,struct proxy * other_end)8014 void http_capture_bad_message(struct proxy *proxy, struct error_snapshot *es, struct stream *s,
8015                               struct http_msg *msg,
8016 			      enum h1_state state, struct proxy *other_end)
8017 {
8018 	struct session *sess = strm_sess(s);
8019 	struct channel *chn = msg->chn;
8020 	int len1, len2;
8021 
8022 	HA_SPIN_LOCK(PROXY_LOCK, &proxy->lock);
8023 	es->len = MIN(chn->buf->i, global.tune.bufsize);
8024 	len1 = chn->buf->data + chn->buf->size - chn->buf->p;
8025 	len1 = MIN(len1, es->len);
8026 	len2 = es->len - len1; /* remaining data if buffer wraps */
8027 
8028 	if (!es->buf)
8029 		es->buf = malloc(global.tune.bufsize);
8030 
8031 	if (es->buf) {
8032 		memcpy(es->buf, chn->buf->p, len1);
8033 		if (len2)
8034 			memcpy(es->buf + len1, chn->buf->data, len2);
8035 	}
8036 
8037 	if (msg->err_pos >= 0)
8038 		es->pos = msg->err_pos;
8039 	else
8040 		es->pos = msg->next;
8041 
8042 	es->when = date; // user-visible date
8043 	es->sid  = s->uniq_id;
8044 	es->srv  = objt_server(s->target);
8045 	es->oe   = other_end;
8046 	if (objt_conn(sess->origin))
8047 		es->src  = __objt_conn(sess->origin)->addr.from;
8048 	else
8049 		memset(&es->src, 0, sizeof(es->src));
8050 
8051 	es->state = state;
8052 	es->ev_id = HA_ATOMIC_XADD(&error_snapshot_id, 1);
8053 	es->b_flags = chn->flags;
8054 	es->s_flags = s->flags;
8055 	es->t_flags = s->txn->flags;
8056 	es->m_flags = msg->flags;
8057 	es->b_out = chn->buf->o;
8058 	es->b_wrap = chn->buf->data + chn->buf->size - chn->buf->p;
8059 	es->b_tot = chn->total;
8060 	es->m_clen = msg->chunk_len;
8061 	es->m_blen = msg->body_len;
8062 	HA_SPIN_UNLOCK(PROXY_LOCK, &proxy->lock);
8063 }
8064 
8065 /* Return in <vptr> and <vlen> the pointer and length of occurrence <occ> of
8066  * header whose name is <hname> of length <hlen>. If <ctx> is null, lookup is
8067  * performed over the whole headers. Otherwise it must contain a valid header
8068  * context, initialised with ctx->idx=0 for the first lookup in a series. If
8069  * <occ> is positive or null, occurrence #occ from the beginning (or last ctx)
8070  * is returned. Occ #0 and #1 are equivalent. If <occ> is negative (and no less
8071  * than -MAX_HDR_HISTORY), the occurrence is counted from the last one which is
8072  * -1. The value fetch stops at commas, so this function is suited for use with
8073  * list headers.
8074  * The return value is 0 if nothing was found, or non-zero otherwise.
8075  */
http_get_hdr(const struct http_msg * msg,const char * hname,int hlen,struct hdr_idx * idx,int occ,struct hdr_ctx * ctx,char ** vptr,int * vlen)8076 unsigned int http_get_hdr(const struct http_msg *msg, const char *hname, int hlen,
8077 			  struct hdr_idx *idx, int occ,
8078 			  struct hdr_ctx *ctx, char **vptr, int *vlen)
8079 {
8080 	struct hdr_ctx local_ctx;
8081 	char *ptr_hist[MAX_HDR_HISTORY];
8082 	int len_hist[MAX_HDR_HISTORY];
8083 	unsigned int hist_ptr;
8084 	int found;
8085 
8086 	if (!ctx) {
8087 		local_ctx.idx = 0;
8088 		ctx = &local_ctx;
8089 	}
8090 
8091 	if (occ >= 0) {
8092 		/* search from the beginning */
8093 		while (http_find_header2(hname, hlen, msg->chn->buf->p, idx, ctx)) {
8094 			occ--;
8095 			if (occ <= 0) {
8096 				*vptr = ctx->line + ctx->val;
8097 				*vlen = ctx->vlen;
8098 				return 1;
8099 			}
8100 		}
8101 		return 0;
8102 	}
8103 
8104 	/* negative occurrence, we scan all the list then walk back */
8105 	if (-occ > MAX_HDR_HISTORY)
8106 		return 0;
8107 
8108 	found = hist_ptr = 0;
8109 	while (http_find_header2(hname, hlen, msg->chn->buf->p, idx, ctx)) {
8110 		ptr_hist[hist_ptr] = ctx->line + ctx->val;
8111 		len_hist[hist_ptr] = ctx->vlen;
8112 		if (++hist_ptr >= MAX_HDR_HISTORY)
8113 			hist_ptr = 0;
8114 		found++;
8115 	}
8116 	if (-occ > found)
8117 		return 0;
8118 	/* OK now we have the last occurrence in [hist_ptr-1], and we need to
8119 	 * find occurrence -occ. 0 <= hist_ptr < MAX_HDR_HISTORY, and we have
8120 	 * -10 <= occ <= -1. So we have to check [hist_ptr%MAX_HDR_HISTORY+occ]
8121 	 * to remain in the 0..9 range.
8122 	 */
8123 	hist_ptr += occ + MAX_HDR_HISTORY;
8124 	if (hist_ptr >= MAX_HDR_HISTORY)
8125 		hist_ptr -= MAX_HDR_HISTORY;
8126 	*vptr = ptr_hist[hist_ptr];
8127 	*vlen = len_hist[hist_ptr];
8128 	return 1;
8129 }
8130 
8131 /* Return in <vptr> and <vlen> the pointer and length of occurrence <occ> of
8132  * header whose name is <hname> of length <hlen>. If <ctx> is null, lookup is
8133  * performed over the whole headers. Otherwise it must contain a valid header
8134  * context, initialised with ctx->idx=0 for the first lookup in a series. If
8135  * <occ> is positive or null, occurrence #occ from the beginning (or last ctx)
8136  * is returned. Occ #0 and #1 are equivalent. If <occ> is negative (and no less
8137  * than -MAX_HDR_HISTORY), the occurrence is counted from the last one which is
8138  * -1. This function differs from http_get_hdr() in that it only returns full
8139  * line header values and does not stop at commas.
8140  * The return value is 0 if nothing was found, or non-zero otherwise.
8141  */
http_get_fhdr(const struct http_msg * msg,const char * hname,int hlen,struct hdr_idx * idx,int occ,struct hdr_ctx * ctx,char ** vptr,int * vlen)8142 unsigned int http_get_fhdr(const struct http_msg *msg, const char *hname, int hlen,
8143 			   struct hdr_idx *idx, int occ,
8144 			   struct hdr_ctx *ctx, char **vptr, int *vlen)
8145 {
8146 	struct hdr_ctx local_ctx;
8147 	char *ptr_hist[MAX_HDR_HISTORY];
8148 	int len_hist[MAX_HDR_HISTORY];
8149 	unsigned int hist_ptr;
8150 	int found;
8151 
8152 	if (!ctx) {
8153 		local_ctx.idx = 0;
8154 		ctx = &local_ctx;
8155 	}
8156 
8157 	if (occ >= 0) {
8158 		/* search from the beginning */
8159 		while (http_find_full_header2(hname, hlen, msg->chn->buf->p, idx, ctx)) {
8160 			occ--;
8161 			if (occ <= 0) {
8162 				*vptr = ctx->line + ctx->val;
8163 				*vlen = ctx->vlen;
8164 				return 1;
8165 			}
8166 		}
8167 		return 0;
8168 	}
8169 
8170 	/* negative occurrence, we scan all the list then walk back */
8171 	if (-occ > MAX_HDR_HISTORY)
8172 		return 0;
8173 
8174 	found = hist_ptr = 0;
8175 	while (http_find_full_header2(hname, hlen, msg->chn->buf->p, idx, ctx)) {
8176 		ptr_hist[hist_ptr] = ctx->line + ctx->val;
8177 		len_hist[hist_ptr] = ctx->vlen;
8178 		if (++hist_ptr >= MAX_HDR_HISTORY)
8179 			hist_ptr = 0;
8180 		found++;
8181 	}
8182 	if (-occ > found)
8183 		return 0;
8184 
8185 	/* OK now we have the last occurrence in [hist_ptr-1], and we need to
8186 	 * find occurrence -occ. 0 <= hist_ptr < MAX_HDR_HISTORY, and we have
8187 	 * -10 <= occ <= -1. So we have to check [hist_ptr%MAX_HDR_HISTORY+occ]
8188 	 * to remain in the 0..9 range.
8189 	 */
8190 	hist_ptr += occ + MAX_HDR_HISTORY;
8191 	if (hist_ptr >= MAX_HDR_HISTORY)
8192 		hist_ptr -= MAX_HDR_HISTORY;
8193 	*vptr = ptr_hist[hist_ptr];
8194 	*vlen = len_hist[hist_ptr];
8195 	return 1;
8196 }
8197 
8198 /*
8199  * Print a debug line with a header. Always stop at the first CR or LF char,
8200  * so it is safe to pass it a full buffer if needed. If <err> is not NULL, an
8201  * arrow is printed after the line which contains the pointer.
8202  */
debug_hdr(const char * dir,struct stream * s,const char * start,const char * end)8203 void debug_hdr(const char *dir, struct stream *s, const char *start, const char *end)
8204 {
8205 	struct session *sess = strm_sess(s);
8206 	int max;
8207 
8208 	chunk_printf(&trash, "%08x:%s.%s[%04x:%04x]: ", s->uniq_id, s->be->id,
8209 		      dir,
8210 		     objt_conn(sess->origin) ? (unsigned short)objt_conn(sess->origin)->handle.fd : -1,
8211 		     objt_cs(s->si[1].end) ? (unsigned short)objt_cs(s->si[1].end)->conn->handle.fd : -1);
8212 
8213 	for (max = 0; start + max < end; max++)
8214 		if (start[max] == '\r' || start[max] == '\n')
8215 			break;
8216 
8217 	UBOUND(max, trash.size - trash.len - 3);
8218 	trash.len += strlcpy2(trash.str + trash.len, start, max + 1);
8219 	trash.str[trash.len++] = '\n';
8220 	shut_your_big_mouth_gcc(write(1, trash.str, trash.len));
8221 }
8222 
8223 
8224 /* Allocate a new HTTP transaction for stream <s> unless there is one already.
8225  * The hdr_idx is allocated as well. In case of allocation failure, everything
8226  * allocated is freed and NULL is returned. Otherwise the new transaction is
8227  * assigned to the stream and returned.
8228  */
http_alloc_txn(struct stream * s)8229 struct http_txn *http_alloc_txn(struct stream *s)
8230 {
8231 	struct http_txn *txn = s->txn;
8232 
8233 	if (txn)
8234 		return txn;
8235 
8236 	txn = pool_alloc(pool_head_http_txn);
8237 	if (!txn)
8238 		return txn;
8239 
8240 	txn->hdr_idx.size = global.tune.max_http_hdr;
8241 	txn->hdr_idx.v    = pool_alloc(pool_head_hdr_idx);
8242 	if (!txn->hdr_idx.v) {
8243 		pool_free(pool_head_http_txn, txn);
8244 		return NULL;
8245 	}
8246 
8247 	s->txn = txn;
8248 	return txn;
8249 }
8250 
http_txn_reset_req(struct http_txn * txn)8251 void http_txn_reset_req(struct http_txn *txn)
8252 {
8253 	txn->req.flags = 0;
8254 	txn->req.sol = txn->req.eol = txn->req.eoh = 0; /* relative to the buffer */
8255 	txn->req.next = 0;
8256 	txn->req.chunk_len = 0LL;
8257 	txn->req.body_len = 0LL;
8258 	txn->req.msg_state = HTTP_MSG_RQBEFORE; /* at the very beginning of the request */
8259 }
8260 
http_txn_reset_res(struct http_txn * txn)8261 void http_txn_reset_res(struct http_txn *txn)
8262 {
8263 	txn->rsp.flags = 0;
8264 	txn->rsp.sol = txn->rsp.eol = txn->rsp.eoh = 0; /* relative to the buffer */
8265 	txn->rsp.next = 0;
8266 	txn->rsp.chunk_len = 0LL;
8267 	txn->rsp.body_len = 0LL;
8268 	txn->rsp.msg_state = HTTP_MSG_RPBEFORE; /* at the very beginning of the response */
8269 }
8270 
8271 /*
8272  * Initialize a new HTTP transaction for stream <s>. It is assumed that all
8273  * the required fields are properly allocated and that we only need to (re)init
8274  * them. This should be used before processing any new request.
8275  */
http_init_txn(struct stream * s)8276 void http_init_txn(struct stream *s)
8277 {
8278 	struct http_txn *txn = s->txn;
8279 	struct proxy *fe = strm_fe(s);
8280 
8281 	txn->flags = 0;
8282 	txn->status = -1;
8283 	*(unsigned int *)txn->cache_hash = 0;
8284 
8285 	txn->cookie_first_date = 0;
8286 	txn->cookie_last_date = 0;
8287 
8288 	txn->srv_cookie = NULL;
8289 	txn->cli_cookie = NULL;
8290 	txn->uri = NULL;
8291 
8292 	http_txn_reset_req(txn);
8293 	http_txn_reset_res(txn);
8294 
8295 	txn->req.chn = &s->req;
8296 	txn->rsp.chn = &s->res;
8297 
8298 	txn->auth.method = HTTP_AUTH_UNKNOWN;
8299 
8300 	txn->req.err_pos = txn->rsp.err_pos = -2; /* block buggy requests/responses */
8301 	if (fe->options2 & PR_O2_REQBUG_OK)
8302 		txn->req.err_pos = -1;            /* let buggy requests pass */
8303 
8304 	if (txn->hdr_idx.v)
8305 		hdr_idx_init(&txn->hdr_idx);
8306 
8307 	vars_init(&s->vars_txn,    SCOPE_TXN);
8308 	vars_init(&s->vars_reqres, SCOPE_REQ);
8309 }
8310 
8311 /* to be used at the end of a transaction */
http_end_txn(struct stream * s)8312 void http_end_txn(struct stream *s)
8313 {
8314 	struct http_txn *txn = s->txn;
8315 
8316 	/* these ones will have been dynamically allocated */
8317 	pool_free(pool_head_requri, txn->uri);
8318 	pool_free(pool_head_capture, txn->cli_cookie);
8319 	pool_free(pool_head_capture, txn->srv_cookie);
8320 	pool_free(pool_head_uniqueid, s->unique_id);
8321 
8322 	s->unique_id = NULL;
8323 	txn->uri = NULL;
8324 	txn->srv_cookie = NULL;
8325 	txn->cli_cookie = NULL;
8326 
8327 	vars_prune(&s->vars_txn, s->sess, s);
8328 	vars_prune(&s->vars_reqres, s->sess, s);
8329 }
8330 
8331 /* to be used at the end of a transaction to prepare a new one */
http_reset_txn(struct stream * s)8332 void http_reset_txn(struct stream *s)
8333 {
8334 	http_end_txn(s);
8335 	http_init_txn(s);
8336 
8337 	/* reinitialise the current rule list pointer to NULL. We are sure that
8338 	 * any rulelist match the NULL pointer.
8339 	 */
8340 	s->current_rule_list = NULL;
8341 
8342 	s->be = strm_fe(s);
8343 	s->logs.logwait = strm_fe(s)->to_log;
8344 	s->logs.level = 0;
8345 	stream_del_srv_conn(s);
8346 	s->target = NULL;
8347 	/* re-init store persistence */
8348 	s->store_count = 0;
8349 	s->uniq_id = HA_ATOMIC_XADD(&global.req_count, 1);
8350 
8351 	s->req.flags |= CF_READ_DONTWAIT; /* one read is usually enough */
8352 
8353 	/* We must trim any excess data from the response buffer, because we
8354 	 * may have blocked an invalid response from a server that we don't
8355 	 * want to accidentely forward once we disable the analysers, nor do
8356 	 * we want those data to come along with next response. A typical
8357 	 * example of such data would be from a buggy server responding to
8358 	 * a HEAD with some data, or sending more than the advertised
8359 	 * content-length.
8360 	 */
8361 	if (unlikely(s->res.buf->i))
8362 		s->res.buf->i = 0;
8363 
8364 	/* Now we can realign the response buffer */
8365 	buffer_realign(s->res.buf);
8366 
8367 	s->req.rto = strm_fe(s)->timeout.client;
8368 	s->req.wto = TICK_ETERNITY;
8369 
8370 	s->res.rto = TICK_ETERNITY;
8371 	s->res.wto = strm_fe(s)->timeout.client;
8372 
8373 	s->req.rex = TICK_ETERNITY;
8374 	s->req.wex = TICK_ETERNITY;
8375 	s->req.analyse_exp = TICK_ETERNITY;
8376 	s->res.rex = TICK_ETERNITY;
8377 	s->res.wex = TICK_ETERNITY;
8378 	s->res.analyse_exp = TICK_ETERNITY;
8379 	s->si[1].hcto = TICK_ETERNITY;
8380 }
8381 
8382 /* parse an "http-request" rule */
parse_http_req_cond(const char ** args,const char * file,int linenum,struct proxy * proxy)8383 struct act_rule *parse_http_req_cond(const char **args, const char *file, int linenum, struct proxy *proxy)
8384 {
8385 	struct act_rule *rule;
8386 	struct action_kw *custom = NULL;
8387 	int cur_arg;
8388 	char *error;
8389 
8390 	rule = calloc(1, sizeof(*rule));
8391 	if (!rule) {
8392 		ha_alert("parsing [%s:%d]: out of memory.\n", file, linenum);
8393 		goto out_err;
8394 	}
8395 
8396 	if (!strcmp(args[0], "allow")) {
8397 		rule->action = ACT_ACTION_ALLOW;
8398 		cur_arg = 1;
8399 	} else if (!strcmp(args[0], "deny") || !strcmp(args[0], "block") || !strcmp(args[0], "tarpit")) {
8400 		int code;
8401 		int hc;
8402 
8403 		if (!strcmp(args[0], "tarpit")) {
8404 		    rule->action = ACT_HTTP_REQ_TARPIT;
8405 		    rule->deny_status = HTTP_ERR_500;
8406 		}
8407 		else {
8408 			rule->action = ACT_ACTION_DENY;
8409 			rule->deny_status = HTTP_ERR_403;
8410 		}
8411 		cur_arg = 1;
8412                 if (strcmp(args[cur_arg], "deny_status") == 0) {
8413                         cur_arg++;
8414                         if (!args[cur_arg]) {
8415                                 ha_alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-request %s' rule : missing status code.\n",
8416 					 file, linenum, proxy_type_str(proxy), proxy->id, args[0]);
8417                                 goto out_err;
8418                         }
8419 
8420                         code = atol(args[cur_arg]);
8421                         cur_arg++;
8422                         for (hc = 0; hc < HTTP_ERR_SIZE; hc++) {
8423                                 if (http_err_codes[hc] == code) {
8424                                         rule->deny_status = hc;
8425                                         break;
8426                                 }
8427                         }
8428 
8429                         if (hc >= HTTP_ERR_SIZE) {
8430                                 ha_warning("parsing [%s:%d] : status code %d not handled, using default code %d.\n",
8431 					   file, linenum, code, http_err_codes[rule->deny_status]);
8432                         }
8433                 }
8434 	} else if (!strcmp(args[0], "auth")) {
8435 		rule->action = ACT_HTTP_REQ_AUTH;
8436 		cur_arg = 1;
8437 
8438 		while(*args[cur_arg]) {
8439 			if (!strcmp(args[cur_arg], "realm")) {
8440 				rule->arg.auth.realm = strdup(args[cur_arg + 1]);
8441 				cur_arg+=2;
8442 				continue;
8443 			} else
8444 				break;
8445 		}
8446 	} else if (!strcmp(args[0], "set-nice")) {
8447 		rule->action = ACT_HTTP_SET_NICE;
8448 		cur_arg = 1;
8449 
8450 		if (!*args[cur_arg] ||
8451 		    (*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
8452 			ha_alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument (integer value).\n",
8453 				 file, linenum, args[0]);
8454 			goto out_err;
8455 		}
8456 		rule->arg.nice = atoi(args[cur_arg]);
8457 		if (rule->arg.nice < -1024)
8458 			rule->arg.nice = -1024;
8459 		else if (rule->arg.nice > 1024)
8460 			rule->arg.nice = 1024;
8461 		cur_arg++;
8462 	} else if (!strcmp(args[0], "set-tos")) {
8463 #ifdef IP_TOS
8464 		char *err;
8465 		rule->action = ACT_HTTP_SET_TOS;
8466 		cur_arg = 1;
8467 
8468 		if (!*args[cur_arg] ||
8469 		    (*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
8470 			ha_alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument (integer/hex value).\n",
8471 				 file, linenum, args[0]);
8472 			goto out_err;
8473 		}
8474 
8475 		rule->arg.tos = strtol(args[cur_arg], &err, 0);
8476 		if (err && *err != '\0') {
8477 			ha_alert("parsing [%s:%d]: invalid character starting at '%s' in 'http-request %s' (integer/hex value expected).\n",
8478 				 file, linenum, err, args[0]);
8479 			goto out_err;
8480 		}
8481 		cur_arg++;
8482 #else
8483 		ha_alert("parsing [%s:%d]: 'http-request %s' is not supported on this platform (IP_TOS undefined).\n", file, linenum, args[0]);
8484 		goto out_err;
8485 #endif
8486 	} else if (!strcmp(args[0], "set-mark")) {
8487 #ifdef SO_MARK
8488 		char *err;
8489 		rule->action = ACT_HTTP_SET_MARK;
8490 		cur_arg = 1;
8491 
8492 		if (!*args[cur_arg] ||
8493 		    (*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
8494 			ha_alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument (integer/hex value).\n",
8495 				 file, linenum, args[0]);
8496 			goto out_err;
8497 		}
8498 
8499 		rule->arg.mark = strtoul(args[cur_arg], &err, 0);
8500 		if (err && *err != '\0') {
8501 			ha_alert("parsing [%s:%d]: invalid character starting at '%s' in 'http-request %s' (integer/hex value expected).\n",
8502 				 file, linenum, err, args[0]);
8503 			goto out_err;
8504 		}
8505 		cur_arg++;
8506 		global.last_checks |= LSTCHK_NETADM;
8507 #else
8508 		ha_alert("parsing [%s:%d]: 'http-request %s' is not supported on this platform (SO_MARK undefined).\n", file, linenum, args[0]);
8509 		goto out_err;
8510 #endif
8511 	} else if (!strcmp(args[0], "set-log-level")) {
8512 		rule->action = ACT_HTTP_SET_LOGL;
8513 		cur_arg = 1;
8514 
8515 		if (!*args[cur_arg] ||
8516 		    (*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
8517 		bad_log_level:
8518 			ha_alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument (log level name or 'silent').\n",
8519 				 file, linenum, args[0]);
8520 			goto out_err;
8521 		}
8522 		if (strcmp(args[cur_arg], "silent") == 0)
8523 			rule->arg.loglevel = -1;
8524 		else if ((rule->arg.loglevel = get_log_level(args[cur_arg]) + 1) == 0)
8525 			goto bad_log_level;
8526 		cur_arg++;
8527 	} else if (strcmp(args[0], "add-header") == 0 || strcmp(args[0], "set-header") == 0) {
8528 		rule->action = *args[0] == 'a' ? ACT_HTTP_ADD_HDR : ACT_HTTP_SET_HDR;
8529 		cur_arg = 1;
8530 
8531 		if (!*args[cur_arg] || !*args[cur_arg+1] ||
8532 		    (*args[cur_arg+2] && strcmp(args[cur_arg+2], "if") != 0 && strcmp(args[cur_arg+2], "unless") != 0)) {
8533 			ha_alert("parsing [%s:%d]: 'http-request %s' expects exactly 2 arguments.\n",
8534 				 file, linenum, args[0]);
8535 			goto out_err;
8536 		}
8537 
8538 		rule->arg.hdr_add.name = strdup(args[cur_arg]);
8539 		rule->arg.hdr_add.name_len = strlen(rule->arg.hdr_add.name);
8540 		LIST_INIT(&rule->arg.hdr_add.fmt);
8541 
8542 		proxy->conf.args.ctx = ARGC_HRQ;
8543 		error = NULL;
8544 		if (!parse_logformat_string(args[cur_arg + 1], proxy, &rule->arg.hdr_add.fmt, LOG_OPT_HTTP,
8545 		                            (proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, &error)) {
8546 			ha_alert("parsing [%s:%d]: 'http-request %s': %s.\n",
8547 				 file, linenum, args[0], error);
8548 			free(error);
8549 			goto out_err;
8550 		}
8551 		free(proxy->conf.lfs_file);
8552 		proxy->conf.lfs_file = strdup(proxy->conf.args.file);
8553 		proxy->conf.lfs_line = proxy->conf.args.line;
8554 		cur_arg += 2;
8555 	} else if (strcmp(args[0], "replace-header") == 0 || strcmp(args[0], "replace-value") == 0) {
8556 		rule->action = args[0][8] == 'h' ? ACT_HTTP_REPLACE_HDR : ACT_HTTP_REPLACE_VAL;
8557 		cur_arg = 1;
8558 
8559 		if (!*args[cur_arg] || !*args[cur_arg+1] || !*args[cur_arg+2] ||
8560 		    (*args[cur_arg+3] && strcmp(args[cur_arg+3], "if") != 0 && strcmp(args[cur_arg+3], "unless") != 0)) {
8561 			ha_alert("parsing [%s:%d]: 'http-request %s' expects exactly 3 arguments.\n",
8562 				 file, linenum, args[0]);
8563 			goto out_err;
8564 		}
8565 
8566 		rule->arg.hdr_add.name = strdup(args[cur_arg]);
8567 		rule->arg.hdr_add.name_len = strlen(rule->arg.hdr_add.name);
8568 		LIST_INIT(&rule->arg.hdr_add.fmt);
8569 
8570 		error = NULL;
8571 		if (!regex_comp(args[cur_arg + 1], &rule->arg.hdr_add.re, 1, 1, &error)) {
8572 			ha_alert("parsing [%s:%d] : '%s' : %s.\n", file, linenum,
8573 				 args[cur_arg + 1], error);
8574 			free(error);
8575 			goto out_err;
8576 		}
8577 
8578 		proxy->conf.args.ctx = ARGC_HRQ;
8579 		error = NULL;
8580 		if (!parse_logformat_string(args[cur_arg + 2], proxy, &rule->arg.hdr_add.fmt, LOG_OPT_HTTP,
8581 		                            (proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, &error)) {
8582 			ha_alert("parsing [%s:%d]: 'http-request %s': %s.\n",
8583 				 file, linenum, args[0], error);
8584 			free(error);
8585 			goto out_err;
8586 		}
8587 
8588 		free(proxy->conf.lfs_file);
8589 		proxy->conf.lfs_file = strdup(proxy->conf.args.file);
8590 		proxy->conf.lfs_line = proxy->conf.args.line;
8591 		cur_arg += 3;
8592 	} else if (strcmp(args[0], "del-header") == 0) {
8593 		rule->action = ACT_HTTP_DEL_HDR;
8594 		cur_arg = 1;
8595 
8596 		if (!*args[cur_arg] ||
8597 		    (*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) {
8598 			ha_alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument.\n",
8599 				 file, linenum, args[0]);
8600 			goto out_err;
8601 		}
8602 
8603 		rule->arg.hdr_add.name = strdup(args[cur_arg]);
8604 		rule->arg.hdr_add.name_len = strlen(rule->arg.hdr_add.name);
8605 
8606 		proxy->conf.args.ctx = ARGC_HRQ;
8607 		free(proxy->conf.lfs_file);
8608 		proxy->conf.lfs_file = strdup(proxy->conf.args.file);
8609 		proxy->conf.lfs_line = proxy->conf.args.line;
8610 		cur_arg += 1;
8611 	} else if (strncmp(args[0], "track-sc", 8) == 0 &&
8612 		 args[0][9] == '\0' && args[0][8] >= '0' &&
8613 		 args[0][8] < '0' + MAX_SESS_STKCTR) { /* track-sc 0..9 */
8614 		struct sample_expr *expr;
8615 		unsigned int where;
8616 		char *err = NULL;
8617 
8618 		cur_arg = 1;
8619 		proxy->conf.args.ctx = ARGC_TRK;
8620 
8621 		expr = sample_parse_expr((char **)args, &cur_arg, file, linenum, &err, &proxy->conf.args);
8622 		if (!expr) {
8623 			ha_alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-request %s' rule : %s.\n",
8624 				 file, linenum, proxy_type_str(proxy), proxy->id, args[0], err);
8625 			free(err);
8626 			goto out_err;
8627 		}
8628 
8629 		where = 0;
8630 		if (proxy->cap & PR_CAP_FE)
8631 			where |= SMP_VAL_FE_HRQ_HDR;
8632 		if (proxy->cap & PR_CAP_BE)
8633 			where |= SMP_VAL_BE_HRQ_HDR;
8634 
8635 		if (!(expr->fetch->val & where)) {
8636 			ha_alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-request %s' rule :"
8637 				 " fetch method '%s' extracts information from '%s', none of which is available here.\n",
8638 				 file, linenum, proxy_type_str(proxy), proxy->id, args[0],
8639 				 args[cur_arg-1], sample_src_names(expr->fetch->use));
8640 			free(expr);
8641 			goto out_err;
8642 		}
8643 
8644 		if (strcmp(args[cur_arg], "table") == 0) {
8645 			cur_arg++;
8646 			if (!args[cur_arg]) {
8647 				ha_alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-request %s' rule : missing table name.\n",
8648 					 file, linenum, proxy_type_str(proxy), proxy->id, args[0]);
8649 				free(expr);
8650 				goto out_err;
8651 			}
8652 			/* we copy the table name for now, it will be resolved later */
8653 			rule->arg.trk_ctr.table.n = strdup(args[cur_arg]);
8654 			cur_arg++;
8655 		}
8656 		rule->arg.trk_ctr.expr = expr;
8657 		rule->action = ACT_ACTION_TRK_SC0 + args[0][8] - '0';
8658 		rule->check_ptr = check_trk_action;
8659 	} else if (strcmp(args[0], "redirect") == 0) {
8660 		struct redirect_rule *redir;
8661 		char *errmsg = NULL;
8662 
8663 		if ((redir = http_parse_redirect_rule(file, linenum, proxy, (const char **)args + 1, &errmsg, 1, 0)) == NULL) {
8664 			ha_alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-request %s' rule : %s.\n",
8665 				 file, linenum, proxy_type_str(proxy), proxy->id, args[0], errmsg);
8666 			goto out_err;
8667 		}
8668 
8669 		/* this redirect rule might already contain a parsed condition which
8670 		 * we'll pass to the http-request rule.
8671 		 */
8672 		rule->action = ACT_HTTP_REDIR;
8673 		rule->arg.redir = redir;
8674 		rule->cond = redir->cond;
8675 		redir->cond = NULL;
8676 		cur_arg = 2;
8677 		return rule;
8678 	} else if (strncmp(args[0], "add-acl", 7) == 0) {
8679 		/* http-request add-acl(<reference (acl name)>) <key pattern> */
8680 		rule->action = ACT_HTTP_ADD_ACL;
8681 		/*
8682 		 * '+ 8' for 'add-acl('
8683 		 * '- 9' for 'add-acl(' + trailing ')'
8684 		 */
8685 		rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9);
8686 
8687 		cur_arg = 1;
8688 
8689 		if (!*args[cur_arg] ||
8690 		    (*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) {
8691 			ha_alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument.\n",
8692 				 file, linenum, args[0]);
8693 			goto out_err;
8694 		}
8695 
8696 		LIST_INIT(&rule->arg.map.key);
8697 		proxy->conf.args.ctx = ARGC_HRQ;
8698 		error = NULL;
8699 		if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP,
8700 		                            (proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, &error)) {
8701 			ha_alert("parsing [%s:%d]: 'http-request %s': %s.\n",
8702 				 file, linenum, args[0], error);
8703 			free(error);
8704 			goto out_err;
8705 		}
8706 		free(proxy->conf.lfs_file);
8707 		proxy->conf.lfs_file = strdup(proxy->conf.args.file);
8708 		proxy->conf.lfs_line = proxy->conf.args.line;
8709 		cur_arg += 1;
8710 	} else if (strncmp(args[0], "del-acl", 7) == 0) {
8711 		/* http-request del-acl(<reference (acl name)>) <key pattern> */
8712 		rule->action = ACT_HTTP_DEL_ACL;
8713 		/*
8714 		 * '+ 8' for 'del-acl('
8715 		 * '- 9' for 'del-acl(' + trailing ')'
8716 		 */
8717 		rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9);
8718 
8719 		cur_arg = 1;
8720 
8721 		if (!*args[cur_arg] ||
8722 		    (*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) {
8723 			ha_alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument.\n",
8724 				 file, linenum, args[0]);
8725 			goto out_err;
8726 		}
8727 
8728 		LIST_INIT(&rule->arg.map.key);
8729 		proxy->conf.args.ctx = ARGC_HRQ;
8730 		error = NULL;
8731 		if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP,
8732 		                            (proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, &error)) {
8733 			ha_alert("parsing [%s:%d]: 'http-request %s': %s.\n",
8734 				 file, linenum, args[0], error);
8735 			free(error);
8736 			goto out_err;
8737 		}
8738 		free(proxy->conf.lfs_file);
8739 		proxy->conf.lfs_file = strdup(proxy->conf.args.file);
8740 		proxy->conf.lfs_line = proxy->conf.args.line;
8741 		cur_arg += 1;
8742 	} else if (strncmp(args[0], "del-map", 7) == 0) {
8743 		/* http-request del-map(<reference (map name)>) <key pattern> */
8744 		rule->action = ACT_HTTP_DEL_MAP;
8745 		/*
8746 		 * '+ 8' for 'del-map('
8747 		 * '- 9' for 'del-map(' + trailing ')'
8748 		 */
8749 		rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9);
8750 
8751 		cur_arg = 1;
8752 
8753 		if (!*args[cur_arg] ||
8754 		    (*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) {
8755 			ha_alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument.\n",
8756 				 file, linenum, args[0]);
8757 			goto out_err;
8758 		}
8759 
8760 		LIST_INIT(&rule->arg.map.key);
8761 		proxy->conf.args.ctx = ARGC_HRQ;
8762 		error = NULL;
8763 		if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP,
8764 		                            (proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, &error)) {
8765 			ha_alert("parsing [%s:%d]: 'http-request %s': %s.\n",
8766 				 file, linenum, args[0], error);
8767 			free(error);
8768 			goto out_err;
8769 		}
8770 		free(proxy->conf.lfs_file);
8771 		proxy->conf.lfs_file = strdup(proxy->conf.args.file);
8772 		proxy->conf.lfs_line = proxy->conf.args.line;
8773 		cur_arg += 1;
8774 	} else if (strncmp(args[0], "set-map", 7) == 0) {
8775 		/* http-request set-map(<reference (map name)>) <key pattern> <value pattern> */
8776 		rule->action = ACT_HTTP_SET_MAP;
8777 		/*
8778 		 * '+ 8' for 'set-map('
8779 		 * '- 9' for 'set-map(' + trailing ')'
8780 		 */
8781 		rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9);
8782 
8783 		cur_arg = 1;
8784 
8785 		if (!*args[cur_arg] || !*args[cur_arg+1] ||
8786 		    (*args[cur_arg+2] && strcmp(args[cur_arg+2], "if") != 0 && strcmp(args[cur_arg+2], "unless") != 0)) {
8787 			ha_alert("parsing [%s:%d]: 'http-request %s' expects exactly 2 arguments.\n",
8788 				 file, linenum, args[0]);
8789 			goto out_err;
8790 		}
8791 
8792 		LIST_INIT(&rule->arg.map.key);
8793 		LIST_INIT(&rule->arg.map.value);
8794 		proxy->conf.args.ctx = ARGC_HRQ;
8795 
8796 		/* key pattern */
8797 		error = NULL;
8798 		if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP,
8799 		                            (proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, &error)) {
8800 			ha_alert("parsing [%s:%d]: 'http-request %s' key: %s.\n",
8801 				 file, linenum, args[0], error);
8802 			free(error);
8803 			goto out_err;
8804 		}
8805 
8806 		/* value pattern */
8807 		error = NULL;
8808 		if (!parse_logformat_string(args[cur_arg + 1], proxy, &rule->arg.map.value, LOG_OPT_HTTP,
8809 		                            (proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, &error)) {
8810 			ha_alert("parsing [%s:%d]: 'http-request %s' pattern: %s.\n",
8811 				 file, linenum, args[0], error);
8812 			free(error);
8813 			goto out_err;
8814 		}
8815 		free(proxy->conf.lfs_file);
8816 		proxy->conf.lfs_file = strdup(proxy->conf.args.file);
8817 		proxy->conf.lfs_line = proxy->conf.args.line;
8818 
8819 		cur_arg += 2;
8820 	} else if (((custom = action_http_req_custom(args[0])) != NULL)) {
8821 		char *errmsg = NULL;
8822 		cur_arg = 1;
8823 		/* try in the module list */
8824 		rule->from = ACT_F_HTTP_REQ;
8825 		rule->kw = custom;
8826 		if (custom->parse(args, &cur_arg, proxy, rule, &errmsg) == ACT_RET_PRS_ERR) {
8827 			ha_alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-request %s' rule : %s.\n",
8828 				 file, linenum, proxy_type_str(proxy), proxy->id, args[0], errmsg);
8829 			free(errmsg);
8830 			goto out_err;
8831 		}
8832 	} else {
8833 		action_build_list(&http_req_keywords.list, &trash);
8834 		ha_alert("parsing [%s:%d]: 'http-request' expects 'allow', 'deny', 'auth', 'redirect', "
8835 			 "'tarpit', 'add-header', 'set-header', 'replace-header', 'replace-value', 'set-nice', "
8836 			 "'set-tos', 'set-mark', 'set-log-level', 'add-acl', 'del-acl', 'del-map', 'set-map', 'track-sc*'"
8837 			 "%s%s, but got '%s'%s.\n",
8838 			 file, linenum, *trash.str ? ", " : "", trash.str, args[0], *args[0] ? "" : " (missing argument)");
8839 		goto out_err;
8840 	}
8841 
8842 	if (strcmp(args[cur_arg], "if") == 0 || strcmp(args[cur_arg], "unless") == 0) {
8843 		struct acl_cond *cond;
8844 		char *errmsg = NULL;
8845 
8846 		if ((cond = build_acl_cond(file, linenum, &proxy->acl, proxy, args+cur_arg, &errmsg)) == NULL) {
8847 			ha_alert("parsing [%s:%d] : error detected while parsing an 'http-request %s' condition : %s.\n",
8848 				 file, linenum, args[0], errmsg);
8849 			free(errmsg);
8850 			goto out_err;
8851 		}
8852 		rule->cond = cond;
8853 	}
8854 	else if (*args[cur_arg]) {
8855 		ha_alert("parsing [%s:%d]: 'http-request %s' expects 'realm' for 'auth',"
8856 			 " 'deny_status' for 'deny', or"
8857 			 " either 'if' or 'unless' followed by a condition but found '%s'.\n",
8858 			 file, linenum, args[0], args[cur_arg]);
8859 		goto out_err;
8860 	}
8861 
8862 	return rule;
8863  out_err:
8864 	free(rule);
8865 	return NULL;
8866 }
8867 
8868 /* parse an "http-respose" rule */
parse_http_res_cond(const char ** args,const char * file,int linenum,struct proxy * proxy)8869 struct act_rule *parse_http_res_cond(const char **args, const char *file, int linenum, struct proxy *proxy)
8870 {
8871 	struct act_rule *rule;
8872 	struct action_kw *custom = NULL;
8873 	int cur_arg;
8874 	char *error;
8875 
8876 	rule = calloc(1, sizeof(*rule));
8877 	if (!rule) {
8878 		ha_alert("parsing [%s:%d]: out of memory.\n", file, linenum);
8879 		goto out_err;
8880 	}
8881 
8882 	if (!strcmp(args[0], "allow")) {
8883 		rule->action = ACT_ACTION_ALLOW;
8884 		cur_arg = 1;
8885 	} else if (!strcmp(args[0], "deny")) {
8886 		rule->action = ACT_ACTION_DENY;
8887 		cur_arg = 1;
8888 	} else if (!strcmp(args[0], "set-nice")) {
8889 		rule->action = ACT_HTTP_SET_NICE;
8890 		cur_arg = 1;
8891 
8892 		if (!*args[cur_arg] ||
8893 		    (*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
8894 			ha_alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument (integer value).\n",
8895 				 file, linenum, args[0]);
8896 			goto out_err;
8897 		}
8898 		rule->arg.nice = atoi(args[cur_arg]);
8899 		if (rule->arg.nice < -1024)
8900 			rule->arg.nice = -1024;
8901 		else if (rule->arg.nice > 1024)
8902 			rule->arg.nice = 1024;
8903 		cur_arg++;
8904 	} else if (!strcmp(args[0], "set-tos")) {
8905 #ifdef IP_TOS
8906 		char *err;
8907 		rule->action = ACT_HTTP_SET_TOS;
8908 		cur_arg = 1;
8909 
8910 		if (!*args[cur_arg] ||
8911 		    (*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
8912 			ha_alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument (integer/hex value).\n",
8913 				 file, linenum, args[0]);
8914 			goto out_err;
8915 		}
8916 
8917 		rule->arg.tos = strtol(args[cur_arg], &err, 0);
8918 		if (err && *err != '\0') {
8919 			ha_alert("parsing [%s:%d]: invalid character starting at '%s' in 'http-response %s' (integer/hex value expected).\n",
8920 				 file, linenum, err, args[0]);
8921 			goto out_err;
8922 		}
8923 		cur_arg++;
8924 #else
8925 		ha_alert("parsing [%s:%d]: 'http-response %s' is not supported on this platform (IP_TOS undefined).\n", file, linenum, args[0]);
8926 		goto out_err;
8927 #endif
8928 	} else if (!strcmp(args[0], "set-mark")) {
8929 #ifdef SO_MARK
8930 		char *err;
8931 		rule->action = ACT_HTTP_SET_MARK;
8932 		cur_arg = 1;
8933 
8934 		if (!*args[cur_arg] ||
8935 		    (*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
8936 			ha_alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument (integer/hex value).\n",
8937 				 file, linenum, args[0]);
8938 			goto out_err;
8939 		}
8940 
8941 		rule->arg.mark = strtoul(args[cur_arg], &err, 0);
8942 		if (err && *err != '\0') {
8943 			ha_alert("parsing [%s:%d]: invalid character starting at '%s' in 'http-response %s' (integer/hex value expected).\n",
8944 				 file, linenum, err, args[0]);
8945 			goto out_err;
8946 		}
8947 		cur_arg++;
8948 		global.last_checks |= LSTCHK_NETADM;
8949 #else
8950 		ha_alert("parsing [%s:%d]: 'http-response %s' is not supported on this platform (SO_MARK undefined).\n", file, linenum, args[0]);
8951 		goto out_err;
8952 #endif
8953 	} else if (!strcmp(args[0], "set-log-level")) {
8954 		rule->action = ACT_HTTP_SET_LOGL;
8955 		cur_arg = 1;
8956 
8957 		if (!*args[cur_arg] ||
8958 		    (*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
8959 		bad_log_level:
8960 			ha_alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument (log level name or 'silent').\n",
8961 				 file, linenum, args[0]);
8962 			goto out_err;
8963 		}
8964 		if (strcmp(args[cur_arg], "silent") == 0)
8965 			rule->arg.loglevel = -1;
8966 		else if ((rule->arg.loglevel = get_log_level(args[cur_arg]) + 1) == 0)
8967 			goto bad_log_level;
8968 		cur_arg++;
8969 	} else if (strcmp(args[0], "add-header") == 0 || strcmp(args[0], "set-header") == 0) {
8970 		rule->action = *args[0] == 'a' ? ACT_HTTP_ADD_HDR : ACT_HTTP_SET_HDR;
8971 		cur_arg = 1;
8972 
8973 		if (!*args[cur_arg] || !*args[cur_arg+1] ||
8974 		    (*args[cur_arg+2] && strcmp(args[cur_arg+2], "if") != 0 && strcmp(args[cur_arg+2], "unless") != 0)) {
8975 			ha_alert("parsing [%s:%d]: 'http-response %s' expects exactly 2 arguments.\n",
8976 				 file, linenum, args[0]);
8977 			goto out_err;
8978 		}
8979 
8980 		rule->arg.hdr_add.name = strdup(args[cur_arg]);
8981 		rule->arg.hdr_add.name_len = strlen(rule->arg.hdr_add.name);
8982 		LIST_INIT(&rule->arg.hdr_add.fmt);
8983 
8984 		proxy->conf.args.ctx = ARGC_HRS;
8985 		error = NULL;
8986 		if (!parse_logformat_string(args[cur_arg + 1], proxy, &rule->arg.hdr_add.fmt, LOG_OPT_HTTP,
8987 		                            (proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, &error)) {
8988 			ha_alert("parsing [%s:%d]: 'http-response %s': %s.\n",
8989 				 file, linenum, args[0], error);
8990 			free(error);
8991 			goto out_err;
8992 		}
8993 		free(proxy->conf.lfs_file);
8994 		proxy->conf.lfs_file = strdup(proxy->conf.args.file);
8995 		proxy->conf.lfs_line = proxy->conf.args.line;
8996 		cur_arg += 2;
8997 	} else if (strcmp(args[0], "replace-header") == 0 || strcmp(args[0], "replace-value") == 0) {
8998 		rule->action = args[0][8] == 'h' ? ACT_HTTP_REPLACE_HDR : ACT_HTTP_REPLACE_VAL;
8999 		cur_arg = 1;
9000 
9001 		if (!*args[cur_arg] || !*args[cur_arg+1] || !*args[cur_arg+2] ||
9002 		    (*args[cur_arg+3] && strcmp(args[cur_arg+3], "if") != 0 && strcmp(args[cur_arg+3], "unless") != 0)) {
9003 			ha_alert("parsing [%s:%d]: 'http-response %s' expects exactly 3 arguments.\n",
9004 				 file, linenum, args[0]);
9005 			goto out_err;
9006 		}
9007 
9008 		rule->arg.hdr_add.name = strdup(args[cur_arg]);
9009 		rule->arg.hdr_add.name_len = strlen(rule->arg.hdr_add.name);
9010 		LIST_INIT(&rule->arg.hdr_add.fmt);
9011 
9012 		error = NULL;
9013 		if (!regex_comp(args[cur_arg + 1], &rule->arg.hdr_add.re, 1, 1, &error)) {
9014 			ha_alert("parsing [%s:%d] : '%s' : %s.\n", file, linenum,
9015 				 args[cur_arg + 1], error);
9016 			free(error);
9017 			goto out_err;
9018 		}
9019 
9020 		proxy->conf.args.ctx = ARGC_HRQ;
9021 		error = NULL;
9022 		if (!parse_logformat_string(args[cur_arg + 2], proxy, &rule->arg.hdr_add.fmt, LOG_OPT_HTTP,
9023 		                            (proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, &error)) {
9024 			ha_alert("parsing [%s:%d]: 'http-response %s': %s.\n",
9025 				 file, linenum, args[0], error);
9026 			free(error);
9027 			goto out_err;
9028 		}
9029 
9030 		free(proxy->conf.lfs_file);
9031 		proxy->conf.lfs_file = strdup(proxy->conf.args.file);
9032 		proxy->conf.lfs_line = proxy->conf.args.line;
9033 		cur_arg += 3;
9034 	} else if (strcmp(args[0], "del-header") == 0) {
9035 		rule->action = ACT_HTTP_DEL_HDR;
9036 		cur_arg = 1;
9037 
9038 		if (!*args[cur_arg] ||
9039 		    (*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) {
9040 			ha_alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument.\n",
9041 				 file, linenum, args[0]);
9042 			goto out_err;
9043 		}
9044 
9045 		rule->arg.hdr_add.name = strdup(args[cur_arg]);
9046 		rule->arg.hdr_add.name_len = strlen(rule->arg.hdr_add.name);
9047 
9048 		proxy->conf.args.ctx = ARGC_HRS;
9049 		free(proxy->conf.lfs_file);
9050 		proxy->conf.lfs_file = strdup(proxy->conf.args.file);
9051 		proxy->conf.lfs_line = proxy->conf.args.line;
9052 		cur_arg += 1;
9053 	} else if (strncmp(args[0], "add-acl", 7) == 0) {
9054 		/* http-request add-acl(<reference (acl name)>) <key pattern> */
9055 		rule->action = ACT_HTTP_ADD_ACL;
9056 		/*
9057 		 * '+ 8' for 'add-acl('
9058 		 * '- 9' for 'add-acl(' + trailing ')'
9059 		 */
9060 		rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9);
9061 
9062 		cur_arg = 1;
9063 
9064 		if (!*args[cur_arg] ||
9065 		    (*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) {
9066 			ha_alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument.\n",
9067 				 file, linenum, args[0]);
9068 			goto out_err;
9069 		}
9070 
9071 		LIST_INIT(&rule->arg.map.key);
9072 		proxy->conf.args.ctx = ARGC_HRS;
9073 		error = NULL;
9074 		if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP,
9075 		                            (proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, &error)) {
9076 			ha_alert("parsing [%s:%d]: 'http-response %s': %s.\n",
9077 				 file, linenum, args[0], error);
9078 			free(error);
9079 			goto out_err;
9080 		}
9081 		free(proxy->conf.lfs_file);
9082 		proxy->conf.lfs_file = strdup(proxy->conf.args.file);
9083 		proxy->conf.lfs_line = proxy->conf.args.line;
9084 
9085 		cur_arg += 1;
9086 	} else if (strncmp(args[0], "del-acl", 7) == 0) {
9087 		/* http-response del-acl(<reference (acl name)>) <key pattern> */
9088 		rule->action = ACT_HTTP_DEL_ACL;
9089 		/*
9090 		 * '+ 8' for 'del-acl('
9091 		 * '- 9' for 'del-acl(' + trailing ')'
9092 		 */
9093 		rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9);
9094 
9095 		cur_arg = 1;
9096 
9097 		if (!*args[cur_arg] ||
9098 		    (*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) {
9099 			ha_alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument.\n",
9100 				 file, linenum, args[0]);
9101 			goto out_err;
9102 		}
9103 
9104 		LIST_INIT(&rule->arg.map.key);
9105 		proxy->conf.args.ctx = ARGC_HRS;
9106 		error = NULL;
9107 		if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP,
9108 		                            (proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, &error)) {
9109 			ha_alert("parsing [%s:%d]: 'http-response %s': %s.\n",
9110 				 file, linenum, args[0], error);
9111 			free(error);
9112 			goto out_err;
9113 		}
9114 		free(proxy->conf.lfs_file);
9115 		proxy->conf.lfs_file = strdup(proxy->conf.args.file);
9116 		proxy->conf.lfs_line = proxy->conf.args.line;
9117 		cur_arg += 1;
9118 	} else if (strncmp(args[0], "del-map", 7) == 0) {
9119 		/* http-response del-map(<reference (map name)>) <key pattern> */
9120 		rule->action = ACT_HTTP_DEL_MAP;
9121 		/*
9122 		 * '+ 8' for 'del-map('
9123 		 * '- 9' for 'del-map(' + trailing ')'
9124 		 */
9125 		rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9);
9126 
9127 		cur_arg = 1;
9128 
9129 		if (!*args[cur_arg] ||
9130 		    (*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) {
9131 			ha_alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument.\n",
9132 				 file, linenum, args[0]);
9133 			goto out_err;
9134 		}
9135 
9136 		LIST_INIT(&rule->arg.map.key);
9137 		proxy->conf.args.ctx = ARGC_HRS;
9138 		error = NULL;
9139 		if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP,
9140 		                            (proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, &error)) {
9141 			ha_alert("parsing [%s:%d]: 'http-response %s' %s.\n",
9142 				 file, linenum, args[0], error);
9143 			free(error);
9144 			goto out_err;
9145 		}
9146 		free(proxy->conf.lfs_file);
9147 		proxy->conf.lfs_file = strdup(proxy->conf.args.file);
9148 		proxy->conf.lfs_line = proxy->conf.args.line;
9149 		cur_arg += 1;
9150 	} else if (strncmp(args[0], "set-map", 7) == 0) {
9151 		/* http-response set-map(<reference (map name)>) <key pattern> <value pattern> */
9152 		rule->action = ACT_HTTP_SET_MAP;
9153 		/*
9154 		 * '+ 8' for 'set-map('
9155 		 * '- 9' for 'set-map(' + trailing ')'
9156 		 */
9157 		rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9);
9158 
9159 		cur_arg = 1;
9160 
9161 		if (!*args[cur_arg] || !*args[cur_arg+1] ||
9162 		    (*args[cur_arg+2] && strcmp(args[cur_arg+2], "if") != 0 && strcmp(args[cur_arg+2], "unless") != 0)) {
9163 			ha_alert("parsing [%s:%d]: 'http-response %s' expects exactly 2 arguments.\n",
9164 				 file, linenum, args[0]);
9165 			goto out_err;
9166 		}
9167 
9168 		LIST_INIT(&rule->arg.map.key);
9169 		LIST_INIT(&rule->arg.map.value);
9170 
9171 		proxy->conf.args.ctx = ARGC_HRS;
9172 
9173 		/* key pattern */
9174 		error = NULL;
9175 		if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP,
9176 		                            (proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, &error)) {
9177 			ha_alert("parsing [%s:%d]: 'http-response %s' name: %s.\n",
9178 				 file, linenum, args[0], error);
9179 			free(error);
9180 			goto out_err;
9181 		}
9182 
9183 		/* value pattern */
9184 		error = NULL;
9185 		if (!parse_logformat_string(args[cur_arg + 1], proxy, &rule->arg.map.value, LOG_OPT_HTTP,
9186 		                            (proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, &error)) {
9187 			ha_alert("parsing [%s:%d]: 'http-response %s' value: %s.\n",
9188 				 file, linenum, args[0], error);
9189 			free(error);
9190 			goto out_err;
9191 		}
9192 
9193 		free(proxy->conf.lfs_file);
9194 		proxy->conf.lfs_file = strdup(proxy->conf.args.file);
9195 		proxy->conf.lfs_line = proxy->conf.args.line;
9196 
9197 		cur_arg += 2;
9198 	} else if (strcmp(args[0], "redirect") == 0) {
9199 		struct redirect_rule *redir;
9200 		char *errmsg = NULL;
9201 
9202 		if ((redir = http_parse_redirect_rule(file, linenum, proxy, (const char **)args + 1, &errmsg, 1, 1)) == NULL) {
9203 			ha_alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-response %s' rule : %s.\n",
9204 				 file, linenum, proxy_type_str(proxy), proxy->id, args[0], errmsg);
9205 			goto out_err;
9206 		}
9207 
9208 		/* this redirect rule might already contain a parsed condition which
9209 		 * we'll pass to the http-request rule.
9210 		 */
9211 		rule->action = ACT_HTTP_REDIR;
9212 		rule->arg.redir = redir;
9213 		rule->cond = redir->cond;
9214 		redir->cond = NULL;
9215 		cur_arg = 2;
9216 		return rule;
9217 	} else if (strncmp(args[0], "track-sc", 8) == 0 &&
9218 	                   args[0][9] == '\0' && args[0][8] >= '0' &&
9219 	                   args[0][8] < '0' + MAX_SESS_STKCTR) { /* track-sc 0..9 */
9220 		struct sample_expr *expr;
9221 		unsigned int where;
9222 		char *err = NULL;
9223 
9224 		cur_arg = 1;
9225 		proxy->conf.args.ctx = ARGC_TRK;
9226 
9227 		expr = sample_parse_expr((char **)args, &cur_arg, file, linenum, &err, &proxy->conf.args);
9228 		if (!expr) {
9229 			ha_alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-response %s' rule : %s.\n",
9230 				 file, linenum, proxy_type_str(proxy), proxy->id, args[0], err);
9231 			free(err);
9232 			goto out_err;
9233 		}
9234 
9235 		where = 0;
9236 		if (proxy->cap & PR_CAP_FE)
9237 			where |= SMP_VAL_FE_HRS_HDR;
9238 		if (proxy->cap & PR_CAP_BE)
9239 			where |= SMP_VAL_BE_HRS_HDR;
9240 
9241 		if (!(expr->fetch->val & where)) {
9242 			ha_alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-response %s' rule :"
9243 				 " fetch method '%s' extracts information from '%s', none of which is available here.\n",
9244 				 file, linenum, proxy_type_str(proxy), proxy->id, args[0],
9245 				 args[cur_arg-1], sample_src_names(expr->fetch->use));
9246 			free(expr);
9247 			goto out_err;
9248 		}
9249 
9250 		if (strcmp(args[cur_arg], "table") == 0) {
9251 			cur_arg++;
9252 			if (!args[cur_arg]) {
9253 				ha_alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-response %s' rule : missing table name.\n",
9254 					 file, linenum, proxy_type_str(proxy), proxy->id, args[0]);
9255 				free(expr);
9256 				goto out_err;
9257 			}
9258 			/* we copy the table name for now, it will be resolved later */
9259 			rule->arg.trk_ctr.table.n = strdup(args[cur_arg]);
9260 			cur_arg++;
9261 		}
9262 		rule->arg.trk_ctr.expr = expr;
9263 		rule->action = ACT_ACTION_TRK_SC0 + args[0][8] - '0';
9264 		rule->check_ptr = check_trk_action;
9265 	} else if (((custom = action_http_res_custom(args[0])) != NULL)) {
9266 		char *errmsg = NULL;
9267 		cur_arg = 1;
9268 		/* try in the module list */
9269 		rule->from = ACT_F_HTTP_RES;
9270 		rule->kw = custom;
9271 		if (custom->parse(args, &cur_arg, proxy, rule, &errmsg) == ACT_RET_PRS_ERR) {
9272 			ha_alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-response %s' rule : %s.\n",
9273 				 file, linenum, proxy_type_str(proxy), proxy->id, args[0], errmsg);
9274 			free(errmsg);
9275 			goto out_err;
9276 		}
9277 	} else {
9278 		action_build_list(&http_res_keywords.list, &trash);
9279 		ha_alert("parsing [%s:%d]: 'http-response' expects 'allow', 'deny', 'redirect', "
9280 			 "'add-header', 'del-header', 'set-header', 'replace-header', 'replace-value', 'set-nice', "
9281 			 "'set-tos', 'set-mark', 'set-log-level', 'add-acl', 'del-acl', 'del-map', 'set-map', 'track-sc*'"
9282 			 "%s%s, but got '%s'%s.\n",
9283 			 file, linenum, *trash.str ? ", " : "", trash.str, args[0], *args[0] ? "" : " (missing argument)");
9284 		goto out_err;
9285 	}
9286 
9287 	if (strcmp(args[cur_arg], "if") == 0 || strcmp(args[cur_arg], "unless") == 0) {
9288 		struct acl_cond *cond;
9289 		char *errmsg = NULL;
9290 
9291 		if ((cond = build_acl_cond(file, linenum, &proxy->acl, proxy, args+cur_arg, &errmsg)) == NULL) {
9292 			ha_alert("parsing [%s:%d] : error detected while parsing an 'http-response %s' condition : %s.\n",
9293 				 file, linenum, args[0], errmsg);
9294 			free(errmsg);
9295 			goto out_err;
9296 		}
9297 		rule->cond = cond;
9298 	}
9299 	else if (*args[cur_arg]) {
9300 		ha_alert("parsing [%s:%d]: 'http-response %s' expects"
9301 			 " either 'if' or 'unless' followed by a condition but found '%s'.\n",
9302 			 file, linenum, args[0], args[cur_arg]);
9303 		goto out_err;
9304 	}
9305 
9306 	return rule;
9307  out_err:
9308 	free(rule);
9309 	return NULL;
9310 }
9311 
9312 /* Parses a redirect rule. Returns the redirect rule on success or NULL on error,
9313  * with <err> filled with the error message. If <use_fmt> is not null, builds a
9314  * dynamic log-format rule instead of a static string. Parameter <dir> indicates
9315  * the direction of the rule, and equals 0 for request, non-zero for responses.
9316  */
http_parse_redirect_rule(const char * file,int linenum,struct proxy * curproxy,const char ** args,char ** errmsg,int use_fmt,int dir)9317 struct redirect_rule *http_parse_redirect_rule(const char *file, int linenum, struct proxy *curproxy,
9318                                                const char **args, char **errmsg, int use_fmt, int dir)
9319 {
9320 	struct redirect_rule *rule;
9321 	int cur_arg;
9322 	int type = REDIRECT_TYPE_NONE;
9323 	int code = 302;
9324 	const char *destination = NULL;
9325 	const char *cookie = NULL;
9326 	int cookie_set = 0;
9327 	unsigned int flags = (!dir ? REDIRECT_FLAG_FROM_REQ : REDIRECT_FLAG_NONE);
9328 	struct acl_cond *cond = NULL;
9329 
9330 	cur_arg = 0;
9331 	while (*(args[cur_arg])) {
9332 		if (strcmp(args[cur_arg], "location") == 0) {
9333 			if (!*args[cur_arg + 1])
9334 				goto missing_arg;
9335 
9336 			type = REDIRECT_TYPE_LOCATION;
9337 			cur_arg++;
9338 			destination = args[cur_arg];
9339 		}
9340 		else if (strcmp(args[cur_arg], "prefix") == 0) {
9341 			if (!*args[cur_arg + 1])
9342 				goto missing_arg;
9343 			type = REDIRECT_TYPE_PREFIX;
9344 			cur_arg++;
9345 			destination = args[cur_arg];
9346 		}
9347 		else if (strcmp(args[cur_arg], "scheme") == 0) {
9348 			if (!*args[cur_arg + 1])
9349 				goto missing_arg;
9350 
9351 			type = REDIRECT_TYPE_SCHEME;
9352 			cur_arg++;
9353 			destination = args[cur_arg];
9354 		}
9355 		else if (strcmp(args[cur_arg], "set-cookie") == 0) {
9356 			if (!*args[cur_arg + 1])
9357 				goto missing_arg;
9358 
9359 			cur_arg++;
9360 			cookie = args[cur_arg];
9361 			cookie_set = 1;
9362 		}
9363 		else if (strcmp(args[cur_arg], "clear-cookie") == 0) {
9364 			if (!*args[cur_arg + 1])
9365 				goto missing_arg;
9366 
9367 			cur_arg++;
9368 			cookie = args[cur_arg];
9369 			cookie_set = 0;
9370 		}
9371 		else if (strcmp(args[cur_arg], "code") == 0) {
9372 			if (!*args[cur_arg + 1])
9373 				goto missing_arg;
9374 
9375 			cur_arg++;
9376 			code = atol(args[cur_arg]);
9377 			if (code < 301 || code > 308 || (code > 303 && code < 307)) {
9378 				memprintf(errmsg,
9379 				          "'%s': unsupported HTTP code '%s' (must be one of 301, 302, 303, 307 or 308)",
9380 				          args[cur_arg - 1], args[cur_arg]);
9381 				return NULL;
9382 			}
9383 		}
9384 		else if (!strcmp(args[cur_arg],"drop-query")) {
9385 			flags |= REDIRECT_FLAG_DROP_QS;
9386 		}
9387 		else if (!strcmp(args[cur_arg],"append-slash")) {
9388 			flags |= REDIRECT_FLAG_APPEND_SLASH;
9389 		}
9390 		else if (strcmp(args[cur_arg], "if") == 0 ||
9391 			 strcmp(args[cur_arg], "unless") == 0) {
9392 			cond = build_acl_cond(file, linenum, &curproxy->acl, curproxy, (const char **)args + cur_arg, errmsg);
9393 			if (!cond) {
9394 				memprintf(errmsg, "error in condition: %s", *errmsg);
9395 				return NULL;
9396 			}
9397 			break;
9398 		}
9399 		else {
9400 			memprintf(errmsg,
9401 			          "expects 'code', 'prefix', 'location', 'scheme', 'set-cookie', 'clear-cookie', 'drop-query' or 'append-slash' (was '%s')",
9402 			          args[cur_arg]);
9403 			return NULL;
9404 		}
9405 		cur_arg++;
9406 	}
9407 
9408 	if (type == REDIRECT_TYPE_NONE) {
9409 		memprintf(errmsg, "redirection type expected ('prefix', 'location', or 'scheme')");
9410 		return NULL;
9411 	}
9412 
9413 	if (dir && type != REDIRECT_TYPE_LOCATION) {
9414 		memprintf(errmsg, "response only supports redirect type 'location'");
9415 		return NULL;
9416 	}
9417 
9418 	rule = calloc(1, sizeof(*rule));
9419 	rule->cond = cond;
9420 	LIST_INIT(&rule->rdr_fmt);
9421 
9422 	if (!use_fmt) {
9423 		/* old-style static redirect rule */
9424 		rule->rdr_str = strdup(destination);
9425 		rule->rdr_len = strlen(destination);
9426 	}
9427 	else {
9428 		/* log-format based redirect rule */
9429 
9430 		/* Parse destination. Note that in the REDIRECT_TYPE_PREFIX case,
9431 		 * if prefix == "/", we don't want to add anything, otherwise it
9432 		 * makes it hard for the user to configure a self-redirection.
9433 		 */
9434 		curproxy->conf.args.ctx = ARGC_RDR;
9435 		if (!(type == REDIRECT_TYPE_PREFIX && destination[0] == '/' && destination[1] == '\0')) {
9436 			if (!parse_logformat_string(destination, curproxy, &rule->rdr_fmt, LOG_OPT_HTTP,
9437 			                            dir ? (curproxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRS_HDR : SMP_VAL_BE_HRS_HDR
9438 			                                : (curproxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR,
9439 			                            errmsg)) {
9440 				return  NULL;
9441 			}
9442 			free(curproxy->conf.lfs_file);
9443 			curproxy->conf.lfs_file = strdup(curproxy->conf.args.file);
9444 			curproxy->conf.lfs_line = curproxy->conf.args.line;
9445 		}
9446 	}
9447 
9448 	if (cookie) {
9449 		/* depending on cookie_set, either we want to set the cookie, or to clear it.
9450 		 * a clear consists in appending "; path=/; Max-Age=0;" at the end.
9451 		 */
9452 		rule->cookie_len = strlen(cookie);
9453 		if (cookie_set) {
9454 			rule->cookie_str = malloc(rule->cookie_len + 10);
9455 			memcpy(rule->cookie_str, cookie, rule->cookie_len);
9456 			memcpy(rule->cookie_str + rule->cookie_len, "; path=/;", 10);
9457 			rule->cookie_len += 9;
9458 		} else {
9459 			rule->cookie_str = malloc(rule->cookie_len + 21);
9460 			memcpy(rule->cookie_str, cookie, rule->cookie_len);
9461 			memcpy(rule->cookie_str + rule->cookie_len, "; path=/; Max-Age=0;", 21);
9462 			rule->cookie_len += 20;
9463 		}
9464 	}
9465 	rule->type = type;
9466 	rule->code = code;
9467 	rule->flags = flags;
9468 	LIST_INIT(&rule->list);
9469 	return rule;
9470 
9471  missing_arg:
9472 	memprintf(errmsg, "missing argument for '%s'", args[cur_arg]);
9473 	return NULL;
9474 }
9475 
9476 /************************************************************************/
9477 /*        The code below is dedicated to ACL parsing and matching       */
9478 /************************************************************************/
9479 #define SMP_REQ_CHN(smp) (smp->strm ? &smp->strm->req : NULL)
9480 #define SMP_RES_CHN(smp) (smp->strm ? &smp->strm->res : NULL)
9481 
9482 
9483 /* This function ensures that the prerequisites for an L7 fetch are ready,
9484  * which means that a request or response is ready. If some data is missing,
9485  * a parsing attempt is made. This is useful in TCP-based ACLs which are able
9486  * to extract data from L7. If <req_vol> is non-null during a request prefetch,
9487  * another test is made to ensure the required information is not gone.
9488  *
9489  * The function returns :
9490  *   0 with SMP_F_MAY_CHANGE in the sample flags if some data is missing to
9491  *     decide whether or not an HTTP message is present ;
9492  *   0 if the requested data cannot be fetched or if it is certain that
9493  *     we'll never have any HTTP message there ;
9494  *   1 if an HTTP message is ready
9495  */
smp_prefetch_http(struct proxy * px,struct stream * s,unsigned int opt,const struct channel * chn,struct sample * smp,int req_vol)9496 int smp_prefetch_http(struct proxy *px, struct stream *s, unsigned int opt,
9497                   const struct channel *chn, struct sample *smp, int req_vol)
9498 {
9499 	struct http_txn *txn;
9500 	struct http_msg *msg;
9501 
9502 	/* Note: it is possible that <s> is NULL when called before stream
9503 	 * initialization (eg: tcp-request connection), so this function is the
9504 	 * one responsible for guarding against this case for all HTTP users.
9505 	 */
9506 	if (!s || !chn)
9507 		return 0;
9508 
9509 	if (!s->txn) {
9510 		if (unlikely(!http_alloc_txn(s)))
9511 			return 0; /* not enough memory */
9512 		http_init_txn(s);
9513 	}
9514 	txn = s->txn;
9515 
9516 	smp->data.type = SMP_T_BOOL;
9517 
9518 	if (chn->flags & CF_ISRESP) {
9519 		/* Check for a dependency on a response */
9520 		if (txn->rsp.msg_state < HTTP_MSG_BODY) {
9521 			smp->flags |= SMP_F_MAY_CHANGE;
9522 			return 0;
9523 		}
9524 		goto end;
9525 	}
9526 
9527 	/* Check for a dependency on a request */
9528 	msg = &txn->req;
9529 
9530 	if (req_vol && (smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_RES) {
9531 		return 0;  /* data might have moved and indexes changed */
9532 	}
9533 
9534 	/* If the buffer does not leave enough free space at the end, we must
9535 	 * first realign it.
9536 	 */
9537 	if (chn->buf->p > chn->buf->data &&
9538 	    chn->buf->i + chn->buf->p > chn->buf->data + chn->buf->size - global.tune.maxrewrite)
9539 		buffer_slow_realign(chn->buf);
9540 
9541 	if (unlikely(msg->msg_state < HTTP_MSG_BODY)) {
9542 		if (msg->msg_state == HTTP_MSG_ERROR)
9543 			return 0;
9544 
9545 		/* Try to decode HTTP request */
9546 		if (likely(msg->next < chn->buf->i))
9547 			http_msg_analyzer(msg, &txn->hdr_idx);
9548 
9549 		/* Still no valid request ? */
9550 		if (unlikely(msg->msg_state < HTTP_MSG_BODY)) {
9551 			if ((msg->msg_state == HTTP_MSG_ERROR) ||
9552 			    buffer_full(chn->buf, global.tune.maxrewrite)) {
9553 				return 0;
9554 			}
9555 			/* wait for final state */
9556 			smp->flags |= SMP_F_MAY_CHANGE;
9557 			return 0;
9558 		}
9559 
9560 		/* OK we just got a valid HTTP message. We have some minor
9561 		 * preparation to perform so that further checks can rely
9562 		 * on HTTP tests.
9563 		 */
9564 
9565 		/* If the message was parsed but was too large, we must absolutely
9566 		 * return an error so that it is not processed. At the moment this
9567 		 * cannot happen, but if the parsers are to change in the future,
9568 		 * we want this check to be maintained.
9569 		 */
9570 		if (unlikely(chn->buf->i + chn->buf->p >
9571 			     chn->buf->data + chn->buf->size - global.tune.maxrewrite)) {
9572 			msg->err_state = msg->msg_state;
9573 			msg->msg_state = HTTP_MSG_ERROR;
9574 			smp->data.u.sint = 1;
9575 			return 1;
9576 		}
9577 
9578 		txn->meth = find_http_meth(chn->buf->p, msg->sl.rq.m_l);
9579 		if (txn->meth == HTTP_METH_GET || txn->meth == HTTP_METH_HEAD)
9580 			s->flags |= SF_REDIRECTABLE;
9581 
9582 		if (unlikely(msg->sl.rq.v_l == 0) && !http_upgrade_v09_to_v10(txn))
9583 			return 0;
9584 	}
9585 
9586   end:
9587 	/* everything's OK */
9588 	smp->data.u.sint = 1;
9589 	return 1;
9590 }
9591 
9592 /* 1. Check on METHOD
9593  * We use the pre-parsed method if it is known, and store its number as an
9594  * integer. If it is unknown, we use the pointer and the length.
9595  */
pat_parse_meth(const char * text,struct pattern * pattern,int mflags,char ** err)9596 static int pat_parse_meth(const char *text, struct pattern *pattern, int mflags, char **err)
9597 {
9598 	int len, meth;
9599 
9600 	len  = strlen(text);
9601 	meth = find_http_meth(text, len);
9602 
9603 	pattern->val.i = meth;
9604 	if (meth == HTTP_METH_OTHER) {
9605 		pattern->ptr.str = (char *)text;
9606 		pattern->len = len;
9607 	}
9608 	else {
9609 		pattern->ptr.str = NULL;
9610 		pattern->len = 0;
9611 	}
9612 	return 1;
9613 }
9614 
9615 /* This function fetches the method of current HTTP request and stores
9616  * it in the global pattern struct as a chunk. There are two possibilities :
9617  *   - if the method is known (not HTTP_METH_OTHER), its identifier is stored
9618  *     in <len> and <ptr> is NULL ;
9619  *   - if the method is unknown (HTTP_METH_OTHER), <ptr> points to the text and
9620  *     <len> to its length.
9621  * This is intended to be used with pat_match_meth() only.
9622  */
9623 static int
smp_fetch_meth(const struct arg * args,struct sample * smp,const char * kw,void * private)9624 smp_fetch_meth(const struct arg *args, struct sample *smp, const char *kw, void *private)
9625 {
9626 	struct channel *chn = SMP_REQ_CHN(smp);
9627 	int meth;
9628 	struct http_txn *txn;
9629 
9630 	CHECK_HTTP_MESSAGE_FIRST_PERM(chn);
9631 
9632 	txn = smp->strm->txn;
9633 	meth = txn->meth;
9634 	smp->data.type = SMP_T_METH;
9635 	smp->data.u.meth.meth = meth;
9636 	if (meth == HTTP_METH_OTHER) {
9637 		if ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_RES) {
9638 			/* ensure the indexes are not affected */
9639 			return 0;
9640 		}
9641 		smp->flags |= SMP_F_CONST;
9642 		smp->data.u.meth.str.len = txn->req.sl.rq.m_l;
9643 		smp->data.u.meth.str.str = txn->req.chn->buf->p;
9644 	}
9645 	smp->flags |= SMP_F_VOL_1ST;
9646 	return 1;
9647 }
9648 
9649 /* See above how the method is stored in the global pattern */
pat_match_meth(struct sample * smp,struct pattern_expr * expr,int fill)9650 static struct pattern *pat_match_meth(struct sample *smp, struct pattern_expr *expr, int fill)
9651 {
9652 	int icase;
9653 	struct pattern_list *lst;
9654 	struct pattern *pattern;
9655 
9656 	list_for_each_entry(lst, &expr->patterns, list) {
9657 		pattern = &lst->pat;
9658 
9659 		/* well-known method */
9660 		if (pattern->val.i != HTTP_METH_OTHER) {
9661 			if (smp->data.u.meth.meth == pattern->val.i)
9662 				return pattern;
9663 			else
9664 				continue;
9665 		}
9666 
9667 		/* Other method, we must compare the strings */
9668 		if (pattern->len != smp->data.u.meth.str.len)
9669 			continue;
9670 
9671 		icase = expr->mflags & PAT_MF_IGNORE_CASE;
9672 		if ((icase && strncasecmp(pattern->ptr.str, smp->data.u.meth.str.str, smp->data.u.meth.str.len) == 0) ||
9673 		    (!icase && strncmp(pattern->ptr.str, smp->data.u.meth.str.str, smp->data.u.meth.str.len) == 0))
9674 			return pattern;
9675 	}
9676 	return NULL;
9677 }
9678 
9679 static int
smp_fetch_rqver(const struct arg * args,struct sample * smp,const char * kw,void * private)9680 smp_fetch_rqver(const struct arg *args, struct sample *smp, const char *kw, void *private)
9681 {
9682 	struct channel *chn = SMP_REQ_CHN(smp);
9683 	struct http_txn *txn;
9684 	char *ptr;
9685 	int len;
9686 
9687 	CHECK_HTTP_MESSAGE_FIRST(chn);
9688 
9689 	txn = smp->strm->txn;
9690 	len = txn->req.sl.rq.v_l;
9691 	ptr = chn->buf->p + txn->req.sl.rq.v;
9692 
9693 	while ((len-- > 0) && (*ptr++ != '/'));
9694 	if (len <= 0)
9695 		return 0;
9696 
9697 	smp->data.type = SMP_T_STR;
9698 	smp->data.u.str.str = ptr;
9699 	smp->data.u.str.len = len;
9700 
9701 	smp->flags = SMP_F_VOL_1ST | SMP_F_CONST;
9702 	return 1;
9703 }
9704 
9705 static int
smp_fetch_stver(const struct arg * args,struct sample * smp,const char * kw,void * private)9706 smp_fetch_stver(const struct arg *args, struct sample *smp, const char *kw, void *private)
9707 {
9708 	struct channel *chn = SMP_RES_CHN(smp);
9709 	struct http_txn *txn;
9710 	char *ptr;
9711 	int len;
9712 
9713 	CHECK_HTTP_MESSAGE_FIRST(chn);
9714 
9715 	txn = smp->strm->txn;
9716 
9717 	len = txn->rsp.sl.st.v_l;
9718 	ptr = chn->buf->p;
9719 
9720 	while ((len-- > 0) && (*ptr++ != '/'));
9721 	if (len <= 0)
9722 		return 0;
9723 
9724 	smp->data.type = SMP_T_STR;
9725 	smp->data.u.str.str = ptr;
9726 	smp->data.u.str.len = len;
9727 
9728 	smp->flags = SMP_F_VOL_1ST | SMP_F_CONST;
9729 	return 1;
9730 }
9731 
9732 /* 3. Check on Status Code. We manipulate integers here. */
9733 static int
smp_fetch_stcode(const struct arg * args,struct sample * smp,const char * kw,void * private)9734 smp_fetch_stcode(const struct arg *args, struct sample *smp, const char *kw, void *private)
9735 {
9736 	struct channel *chn = SMP_RES_CHN(smp);
9737 	struct http_txn *txn;
9738 	char *ptr;
9739 	int len;
9740 
9741 	CHECK_HTTP_MESSAGE_FIRST(chn);
9742 
9743 	txn = smp->strm->txn;
9744 	if (txn->rsp.msg_state < HTTP_MSG_BODY)
9745 		return 0;
9746 
9747 	len = txn->rsp.sl.st.c_l;
9748 	ptr = chn->buf->p + txn->rsp.sl.st.c;
9749 
9750 	smp->data.type = SMP_T_SINT;
9751 	smp->data.u.sint = __strl2ui(ptr, len);
9752 	smp->flags = SMP_F_VOL_1ST;
9753 	return 1;
9754 }
9755 
9756 static int
smp_fetch_uniqueid(const struct arg * args,struct sample * smp,const char * kw,void * private)9757 smp_fetch_uniqueid(const struct arg *args, struct sample *smp, const char *kw, void *private)
9758 {
9759 	if (LIST_ISEMPTY(&smp->sess->fe->format_unique_id))
9760 		return 0;
9761 
9762 	if (!smp->strm)
9763 		return 0;
9764 
9765 	if (!smp->strm->unique_id) {
9766 		if ((smp->strm->unique_id = pool_alloc(pool_head_uniqueid)) == NULL)
9767 			return 0;
9768 		smp->strm->unique_id[0] = '\0';
9769 		build_logline(smp->strm, smp->strm->unique_id,
9770 		              UNIQUEID_LEN, &smp->sess->fe->format_unique_id);
9771 	}
9772 	smp->data.u.str.len = strlen(smp->strm->unique_id);
9773 	smp->data.type = SMP_T_STR;
9774 	smp->data.u.str.str = smp->strm->unique_id;
9775 	smp->flags = SMP_F_CONST;
9776 	return 1;
9777 }
9778 
9779 /* Returns a string block containing all headers including the
9780  * empty line wich separes headers from the body. This is useful
9781  * form some headers analysis.
9782  */
9783 static int
smp_fetch_hdrs(const struct arg * args,struct sample * smp,const char * kw,void * private)9784 smp_fetch_hdrs(const struct arg *args, struct sample *smp, const char *kw, void *private)
9785 {
9786 	struct channel *chn = SMP_REQ_CHN(smp);
9787 	struct http_msg *msg;
9788 	struct hdr_idx *idx;
9789 	struct http_txn *txn;
9790 
9791 	CHECK_HTTP_MESSAGE_FIRST(chn);
9792 
9793 	txn = smp->strm->txn;
9794 	idx = &txn->hdr_idx;
9795 	msg = &txn->req;
9796 
9797 	smp->data.type = SMP_T_STR;
9798 	smp->data.u.str.str = chn->buf->p + hdr_idx_first_pos(idx);
9799 	smp->data.u.str.len = msg->eoh - hdr_idx_first_pos(idx) + 1 +
9800 	                      (chn->buf->p[msg->eoh] == '\r');
9801 
9802 	return 1;
9803 }
9804 
9805 /* Returns the header request in a length/value encoded format.
9806  * This is useful for exchanges with the SPOE.
9807  *
9808  * A "length value" is a multibyte code encoding numbers. It uses the
9809  * SPOE format. The encoding is the following:
9810  *
9811  * Each couple "header name" / "header value" is composed
9812  * like this:
9813  *    "length value" "header name bytes"
9814  *    "length value" "header value bytes"
9815  * When the last header is reached, the header name and the header
9816  * value are empty. Their length are 0
9817  */
9818 static int
smp_fetch_hdrs_bin(const struct arg * args,struct sample * smp,const char * kw,void * private)9819 smp_fetch_hdrs_bin(const struct arg *args, struct sample *smp, const char *kw, void *private)
9820 {
9821 	struct channel *chn = SMP_REQ_CHN(smp);
9822 	struct chunk *temp;
9823 	struct hdr_idx *idx;
9824 	const char *cur_ptr, *cur_next, *p;
9825 	int old_idx, cur_idx;
9826 	struct hdr_idx_elem *cur_hdr;
9827 	const char *hn, *hv;
9828 	int hnl, hvl;
9829 	int ret;
9830 	struct http_txn *txn;
9831 	char *buf;
9832 	char *end;
9833 
9834 	CHECK_HTTP_MESSAGE_FIRST(chn);
9835 
9836 	temp = get_trash_chunk();
9837 	buf = temp->str;
9838 	end = temp->str + temp->size;
9839 
9840 	txn = smp->strm->txn;
9841 	idx = &txn->hdr_idx;
9842 
9843 	/* Build array of headers. */
9844 	old_idx = 0;
9845 	cur_next = chn->buf->p + hdr_idx_first_pos(idx);
9846 	while (1) {
9847 		cur_idx = idx->v[old_idx].next;
9848 		if (!cur_idx)
9849 			break;
9850 		old_idx = cur_idx;
9851 
9852 		cur_hdr  = &idx->v[cur_idx];
9853 		cur_ptr  = cur_next;
9854 		cur_next = cur_ptr + cur_hdr->len + cur_hdr->cr + 1;
9855 
9856 		/* Now we have one full header at cur_ptr of len cur_hdr->len,
9857 		 * and the next header starts at cur_next. We'll check
9858 		 * this header in the list as well as against the default
9859 		 * rule.
9860 		 */
9861 
9862 		/* look for ': *'. */
9863 		hn = cur_ptr;
9864 		for (p = cur_ptr; p < cur_ptr + cur_hdr->len && *p != ':'; p++);
9865 		if (p >= cur_ptr+cur_hdr->len)
9866 			continue;
9867 		hnl = p - hn;
9868 		p++;
9869 		while (p < cur_ptr + cur_hdr->len && (*p == ' ' || *p == '\t'))
9870 			p++;
9871 		if (p >= cur_ptr + cur_hdr->len)
9872 			continue;
9873 		hv = p;
9874 		hvl = cur_ptr + cur_hdr->len-p;
9875 
9876 		/* encode the header name. */
9877 		ret = encode_varint(hnl, &buf, end);
9878 		if (ret == -1)
9879 			return 0;
9880 		if (buf + hnl > end)
9881 			return 0;
9882 		memcpy(buf, hn, hnl);
9883 		buf += hnl;
9884 
9885 		/* encode and copy the value. */
9886 		ret = encode_varint(hvl, &buf, end);
9887 		if (ret == -1)
9888 			return 0;
9889 		if (buf + hvl > end)
9890 			return 0;
9891 		memcpy(buf, hv, hvl);
9892 		buf += hvl;
9893 	}
9894 
9895 	/* encode the end of the header list with empty
9896 	 * header name and header value.
9897 	 */
9898 	ret = encode_varint(0, &buf, end);
9899 	if (ret == -1)
9900 		return 0;
9901 	ret = encode_varint(0, &buf, end);
9902 	if (ret == -1)
9903 		return 0;
9904 
9905 	/* Initialise sample data which will be filled. */
9906 	smp->data.type = SMP_T_BIN;
9907 	smp->data.u.str.str = temp->str;
9908 	smp->data.u.str.len = buf - temp->str;
9909 	smp->data.u.str.size = temp->size;
9910 
9911 	return 1;
9912 }
9913 
9914 /* returns the longest available part of the body. This requires that the body
9915  * has been waited for using http-buffer-request.
9916  */
9917 static int
smp_fetch_body(const struct arg * args,struct sample * smp,const char * kw,void * private)9918 smp_fetch_body(const struct arg *args, struct sample *smp, const char *kw, void *private)
9919 {
9920 	struct channel *chn = SMP_REQ_CHN(smp);
9921 	struct http_msg *msg;
9922 	unsigned long len;
9923 	unsigned long block1;
9924 	char *body;
9925 	struct chunk *temp;
9926 
9927 	CHECK_HTTP_MESSAGE_FIRST(chn);
9928 
9929 	msg = &smp->strm->txn->req;
9930 
9931 	len  = http_body_bytes(msg);
9932 	body = b_ptr(chn->buf, -http_data_rewind(msg));
9933 
9934 	block1 = len;
9935 	if (block1 > chn->buf->data + chn->buf->size - body)
9936 		block1 = chn->buf->data + chn->buf->size - body;
9937 
9938 	if (block1 == len) {
9939 		/* buffer is not wrapped (or empty) */
9940 		smp->data.type = SMP_T_BIN;
9941 		smp->data.u.str.str = body;
9942 		smp->data.u.str.len = len;
9943 		smp->flags = SMP_F_VOL_TEST | SMP_F_CONST;
9944 	}
9945 	else {
9946 		/* buffer is wrapped, we need to defragment it */
9947 		temp = get_trash_chunk();
9948 		memcpy(temp->str, body, block1);
9949 		memcpy(temp->str + block1, chn->buf->data, len - block1);
9950 		smp->data.type = SMP_T_BIN;
9951 		smp->data.u.str.str = temp->str;
9952 		smp->data.u.str.len = len;
9953 		smp->flags = SMP_F_VOL_TEST;
9954 	}
9955 	return 1;
9956 }
9957 
9958 
9959 /* returns the available length of the body. This requires that the body
9960  * has been waited for using http-buffer-request.
9961  */
9962 static int
smp_fetch_body_len(const struct arg * args,struct sample * smp,const char * kw,void * private)9963 smp_fetch_body_len(const struct arg *args, struct sample *smp, const char *kw, void *private)
9964 {
9965 	struct channel *chn = SMP_REQ_CHN(smp);
9966 	struct http_msg *msg;
9967 
9968 	CHECK_HTTP_MESSAGE_FIRST(chn);
9969 
9970 	msg = &smp->strm->txn->req;
9971 	smp->data.type = SMP_T_SINT;
9972 	smp->data.u.sint = http_body_bytes(msg);
9973 
9974 	smp->flags = SMP_F_VOL_TEST;
9975 	return 1;
9976 }
9977 
9978 
9979 /* returns the advertised length of the body, or the advertised size of the
9980  * chunks available in the buffer. This requires that the body has been waited
9981  * for using http-buffer-request.
9982  */
9983 static int
smp_fetch_body_size(const struct arg * args,struct sample * smp,const char * kw,void * private)9984 smp_fetch_body_size(const struct arg *args, struct sample *smp, const char *kw, void *private)
9985 {
9986 	struct channel *chn = SMP_REQ_CHN(smp);
9987 	struct http_msg *msg;
9988 
9989 	CHECK_HTTP_MESSAGE_FIRST(chn);
9990 
9991 	msg = &smp->strm->txn->req;
9992 	smp->data.type = SMP_T_SINT;
9993 	smp->data.u.sint = msg->body_len;
9994 
9995 	smp->flags = SMP_F_VOL_TEST;
9996 	return 1;
9997 }
9998 
9999 
10000 /* 4. Check on URL/URI. A pointer to the URI is stored. */
10001 static int
smp_fetch_url(const struct arg * args,struct sample * smp,const char * kw,void * private)10002 smp_fetch_url(const struct arg *args, struct sample *smp, const char *kw, void *private)
10003 {
10004 	struct channel *chn = SMP_REQ_CHN(smp);
10005 	struct http_txn *txn;
10006 
10007 	CHECK_HTTP_MESSAGE_FIRST(chn);
10008 
10009 	txn = smp->strm->txn;
10010 	smp->data.type = SMP_T_STR;
10011 	smp->data.u.str.len = txn->req.sl.rq.u_l;
10012 	smp->data.u.str.str = chn->buf->p + txn->req.sl.rq.u;
10013 	smp->flags = SMP_F_VOL_1ST | SMP_F_CONST;
10014 	return 1;
10015 }
10016 
10017 static int
smp_fetch_url_ip(const struct arg * args,struct sample * smp,const char * kw,void * private)10018 smp_fetch_url_ip(const struct arg *args, struct sample *smp, const char *kw, void *private)
10019 {
10020 	struct channel *chn = SMP_REQ_CHN(smp);
10021 	struct http_txn *txn;
10022 	struct sockaddr_storage addr;
10023 
10024 	CHECK_HTTP_MESSAGE_FIRST(chn);
10025 
10026 	txn = smp->strm->txn;
10027 	url2sa(chn->buf->p + txn->req.sl.rq.u, txn->req.sl.rq.u_l, &addr, NULL);
10028 	if (((struct sockaddr_in *)&addr)->sin_family != AF_INET)
10029 		return 0;
10030 
10031 	smp->data.type = SMP_T_IPV4;
10032 	smp->data.u.ipv4 = ((struct sockaddr_in *)&addr)->sin_addr;
10033 	smp->flags = 0;
10034 	return 1;
10035 }
10036 
10037 static int
smp_fetch_url_port(const struct arg * args,struct sample * smp,const char * kw,void * private)10038 smp_fetch_url_port(const struct arg *args, struct sample *smp, const char *kw, void *private)
10039 {
10040 	struct channel *chn = SMP_REQ_CHN(smp);
10041 	struct http_txn *txn;
10042 	struct sockaddr_storage addr;
10043 
10044 	CHECK_HTTP_MESSAGE_FIRST(chn);
10045 
10046 	txn = smp->strm->txn;
10047 	url2sa(chn->buf->p + txn->req.sl.rq.u, txn->req.sl.rq.u_l, &addr, NULL);
10048 	if (((struct sockaddr_in *)&addr)->sin_family != AF_INET)
10049 		return 0;
10050 
10051 	smp->data.type = SMP_T_SINT;
10052 	smp->data.u.sint = ntohs(((struct sockaddr_in *)&addr)->sin_port);
10053 	smp->flags = 0;
10054 	return 1;
10055 }
10056 
10057 /* Fetch an HTTP header. A pointer to the beginning of the value is returned.
10058  * Accepts an optional argument of type string containing the header field name,
10059  * and an optional argument of type signed or unsigned integer to request an
10060  * explicit occurrence of the header. Note that in the event of a missing name,
10061  * headers are considered from the first one. It does not stop on commas and
10062  * returns full lines instead (useful for User-Agent or Date for example).
10063  */
10064 static int
smp_fetch_fhdr(const struct arg * args,struct sample * smp,const char * kw,void * private)10065 smp_fetch_fhdr(const struct arg *args, struct sample *smp, const char *kw, void *private)
10066 {
10067 	/* possible keywords: req.fhdr, res.fhdr */
10068 	struct channel *chn = ((kw[2] == 'q') ? SMP_REQ_CHN(smp) : SMP_RES_CHN(smp));
10069 	struct hdr_idx *idx;
10070 	struct hdr_ctx *ctx = smp->ctx.a[0];
10071 	const struct http_msg *msg;
10072 	int occ = 0;
10073 	const char *name_str = NULL;
10074 	int name_len = 0;
10075 
10076 	if (!ctx) {
10077 		/* first call */
10078 		ctx = &static_hdr_ctx;
10079 		ctx->idx = 0;
10080 		smp->ctx.a[0] = ctx;
10081 	}
10082 
10083 	if (args) {
10084 		if (args[0].type != ARGT_STR)
10085 			return 0;
10086 		name_str = args[0].data.str.str;
10087 		name_len = args[0].data.str.len;
10088 
10089 		if (args[1].type == ARGT_SINT)
10090 			occ = args[1].data.sint;
10091 	}
10092 
10093 	CHECK_HTTP_MESSAGE_FIRST(chn);
10094 	idx = &smp->strm->txn->hdr_idx;
10095 	msg = (!(chn->flags & CF_ISRESP) ? &smp->strm->txn->req : &smp->strm->txn->rsp);
10096 
10097 	if (ctx && !(smp->flags & SMP_F_NOT_LAST))
10098 		/* search for header from the beginning */
10099 		ctx->idx = 0;
10100 
10101 	if (!occ && !(smp->opt & SMP_OPT_ITERATE))
10102 		/* no explicit occurrence and single fetch => last header by default */
10103 		occ = -1;
10104 
10105 	if (!occ)
10106 		/* prepare to report multiple occurrences for ACL fetches */
10107 		smp->flags |= SMP_F_NOT_LAST;
10108 
10109 	smp->data.type = SMP_T_STR;
10110 	smp->flags |= SMP_F_VOL_HDR | SMP_F_CONST;
10111 	if (http_get_fhdr(msg, name_str, name_len, idx, occ, ctx, &smp->data.u.str.str, &smp->data.u.str.len))
10112 		return 1;
10113 
10114 	smp->flags &= ~SMP_F_NOT_LAST;
10115 	return 0;
10116 }
10117 
10118 /* 6. Check on HTTP header count. The number of occurrences is returned.
10119  * Accepts exactly 1 argument of type string. It does not stop on commas and
10120  * returns full lines instead (useful for User-Agent or Date for example).
10121  */
10122 static int
smp_fetch_fhdr_cnt(const struct arg * args,struct sample * smp,const char * kw,void * private)10123 smp_fetch_fhdr_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private)
10124 {
10125 	/* possible keywords: req.fhdr_cnt, res.fhdr_cnt */
10126 	struct channel *chn = ((kw[2] == 'q') ? SMP_REQ_CHN(smp) : SMP_RES_CHN(smp));
10127 	struct hdr_idx *idx;
10128 	struct hdr_ctx ctx;
10129 	int cnt;
10130 	const char *name = NULL;
10131 	int len = 0;
10132 
10133 	if (args && args->type == ARGT_STR) {
10134 		name = args->data.str.str;
10135 		len = args->data.str.len;
10136 	}
10137 
10138 	CHECK_HTTP_MESSAGE_FIRST(chn);
10139 
10140 	idx = &smp->strm->txn->hdr_idx;
10141 	ctx.idx = 0;
10142 	cnt = 0;
10143 	while (http_find_full_header2(name, len, chn->buf->p, idx, &ctx))
10144 		cnt++;
10145 
10146 	smp->data.type = SMP_T_SINT;
10147 	smp->data.u.sint = cnt;
10148 	smp->flags = SMP_F_VOL_HDR;
10149 	return 1;
10150 }
10151 
10152 static int
smp_fetch_hdr_names(const struct arg * args,struct sample * smp,const char * kw,void * private)10153 smp_fetch_hdr_names(const struct arg *args, struct sample *smp, const char *kw, void *private)
10154 {
10155 	/* possible keywords: req.hdr_names, res.hdr_names */
10156 	struct channel *chn = ((kw[2] == 'q') ? SMP_REQ_CHN(smp) : SMP_RES_CHN(smp));
10157 	struct hdr_idx *idx;
10158 	struct hdr_ctx ctx;
10159 	struct chunk *temp;
10160 	char del = ',';
10161 
10162 	if (args && args->type == ARGT_STR)
10163 		del = *args[0].data.str.str;
10164 
10165 	CHECK_HTTP_MESSAGE_FIRST(chn);
10166 
10167 	idx = &smp->strm->txn->hdr_idx;
10168 
10169 	temp = get_trash_chunk();
10170 
10171 	ctx.idx = 0;
10172 	while (http_find_next_header(chn->buf->p, idx, &ctx)) {
10173 		if (temp->len)
10174 			temp->str[temp->len++] = del;
10175 		memcpy(temp->str + temp->len, ctx.line, ctx.del);
10176 		temp->len += ctx.del;
10177 	}
10178 
10179 	smp->data.type = SMP_T_STR;
10180 	smp->data.u.str.str = temp->str;
10181 	smp->data.u.str.len = temp->len;
10182 	smp->flags = SMP_F_VOL_HDR;
10183 	return 1;
10184 }
10185 
10186 /* Fetch an HTTP header. A pointer to the beginning of the value is returned.
10187  * Accepts an optional argument of type string containing the header field name,
10188  * and an optional argument of type signed or unsigned integer to request an
10189  * explicit occurrence of the header. Note that in the event of a missing name,
10190  * headers are considered from the first one.
10191  */
10192 static int
smp_fetch_hdr(const struct arg * args,struct sample * smp,const char * kw,void * private)10193 smp_fetch_hdr(const struct arg *args, struct sample *smp, const char *kw, void *private)
10194 {
10195 	/* possible keywords: req.hdr / hdr, res.hdr / shdr */
10196 	struct channel *chn = ((kw[0] == 'h' || kw[2] == 'q') ? SMP_REQ_CHN(smp) : SMP_RES_CHN(smp));
10197 	struct hdr_idx *idx;
10198 	struct hdr_ctx *ctx = smp->ctx.a[0];
10199 	const struct http_msg *msg;
10200 	int occ = 0;
10201 	const char *name_str = NULL;
10202 	int name_len = 0;
10203 
10204 	if (!ctx) {
10205 		/* first call */
10206 		ctx = &static_hdr_ctx;
10207 		ctx->idx = 0;
10208 		smp->ctx.a[0] = ctx;
10209 	}
10210 
10211 	if (args) {
10212 		if (args[0].type != ARGT_STR)
10213 			return 0;
10214 		name_str = args[0].data.str.str;
10215 		name_len = args[0].data.str.len;
10216 
10217 		if (args[1].type == ARGT_SINT)
10218 			occ = args[1].data.sint;
10219 	}
10220 
10221 	CHECK_HTTP_MESSAGE_FIRST(chn);
10222 
10223 	idx = &smp->strm->txn->hdr_idx;
10224 	msg = (!(chn->flags & CF_ISRESP) ? &smp->strm->txn->req : &smp->strm->txn->rsp);
10225 
10226 	if (ctx && !(smp->flags & SMP_F_NOT_LAST))
10227 		/* search for header from the beginning */
10228 		ctx->idx = 0;
10229 
10230 	if (!occ && !(smp->opt & SMP_OPT_ITERATE))
10231 		/* no explicit occurrence and single fetch => last header by default */
10232 		occ = -1;
10233 
10234 	if (!occ)
10235 		/* prepare to report multiple occurrences for ACL fetches */
10236 		smp->flags |= SMP_F_NOT_LAST;
10237 
10238 	smp->data.type = SMP_T_STR;
10239 	smp->flags |= SMP_F_VOL_HDR | SMP_F_CONST;
10240 	if (http_get_hdr(msg, name_str, name_len, idx, occ, ctx, &smp->data.u.str.str, &smp->data.u.str.len))
10241 		return 1;
10242 
10243 	smp->flags &= ~SMP_F_NOT_LAST;
10244 	return 0;
10245 }
10246 
10247 /* Same than smp_fetch_hdr() but only relies on the sample direction to choose
10248  * the right channel. So instead of duplicating the code, we just change the
10249  * keyword and then fallback on smp_fetch_hdr().
10250  */
10251 static int
smp_fetch_chn_hdr(const struct arg * args,struct sample * smp,const char * kw,void * private)10252 smp_fetch_chn_hdr(const struct arg *args, struct sample *smp, const char *kw, void *private)
10253 {
10254 	kw = ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ ? "req.hdr" : "res.hdr");
10255 	return smp_fetch_hdr(args, smp, kw, private);
10256 }
10257 
10258 /* 6. Check on HTTP header count. The number of occurrences is returned.
10259  * Accepts exactly 1 argument of type string.
10260  */
10261 static int
smp_fetch_hdr_cnt(const struct arg * args,struct sample * smp,const char * kw,void * private)10262 smp_fetch_hdr_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private)
10263 {
10264 	/* possible keywords: req.hdr_cnt / hdr_cnt, res.hdr_cnt / shdr_cnt */
10265 	struct channel *chn = ((kw[0] == 'h' || kw[2] == 'q') ? SMP_REQ_CHN(smp) : SMP_RES_CHN(smp));
10266 	struct hdr_idx *idx;
10267 	struct hdr_ctx ctx;
10268 	int cnt;
10269 	const char *name = NULL;
10270 	int len = 0;
10271 
10272 	if (args && args->type == ARGT_STR) {
10273 		name = args->data.str.str;
10274 		len = args->data.str.len;
10275 	}
10276 
10277 	CHECK_HTTP_MESSAGE_FIRST(chn);
10278 
10279 	idx = &smp->strm->txn->hdr_idx;
10280 
10281 	ctx.idx = 0;
10282 	cnt = 0;
10283 	while (http_find_header2(name, len, chn->buf->p, idx, &ctx))
10284 		cnt++;
10285 
10286 	smp->data.type = SMP_T_SINT;
10287 	smp->data.u.sint = cnt;
10288 	smp->flags = SMP_F_VOL_HDR;
10289 	return 1;
10290 }
10291 
10292 /* Fetch an HTTP header's integer value. The integer value is returned. It
10293  * takes a mandatory argument of type string and an optional one of type int
10294  * to designate a specific occurrence. It returns an unsigned integer, which
10295  * may or may not be appropriate for everything.
10296  */
10297 static int
smp_fetch_hdr_val(const struct arg * args,struct sample * smp,const char * kw,void * private)10298 smp_fetch_hdr_val(const struct arg *args, struct sample *smp, const char *kw, void *private)
10299 {
10300 	int ret = smp_fetch_hdr(args, smp, kw, private);
10301 
10302 	if (ret > 0) {
10303 		smp->data.type = SMP_T_SINT;
10304 		smp->data.u.sint = strl2ic(smp->data.u.str.str, smp->data.u.str.len);
10305 	}
10306 
10307 	return ret;
10308 }
10309 
10310 /* Fetch an HTTP header's IP value. takes a mandatory argument of type string
10311  * and an optional one of type int to designate a specific occurrence.
10312  * It returns an IPv4 or IPv6 address. Addresses surrounded by invalid chars
10313  * are rejected. However IPv4 addresses may be followed with a colon and a
10314  * valid port number.
10315  */
10316 static int
smp_fetch_hdr_ip(const struct arg * args,struct sample * smp,const char * kw,void * private)10317 smp_fetch_hdr_ip(const struct arg *args, struct sample *smp, const char *kw, void *private)
10318 {
10319 	struct chunk *temp = get_trash_chunk();
10320 	int ret, len;
10321 	int port;
10322 
10323 	while ((ret = smp_fetch_hdr(args, smp, kw, private)) > 0) {
10324 		if (smp->data.u.str.len < temp->size - 1) {
10325 			memcpy(temp->str, smp->data.u.str.str,
10326 			       smp->data.u.str.len);
10327 			temp->str[smp->data.u.str.len] = '\0';
10328 			len = url2ipv4((char *) temp->str, &smp->data.u.ipv4);
10329 			if (len > 0 && len == smp->data.u.str.len) {
10330 				/* plain IPv4 address */
10331 				smp->data.type = SMP_T_IPV4;
10332 				break;
10333 			} else if (len > 0 && temp->str[len] == ':' &&
10334 				   strl2irc(temp->str + len + 1, smp->data.u.str.len - len - 1, &port) == 0 &&
10335 				   port >= 0 && port <= 65535) {
10336 				/* IPv4 address suffixed with ':' followed by a valid port number */
10337 				smp->data.type = SMP_T_IPV4;
10338 				break;
10339 			} else if (inet_pton(AF_INET6, temp->str, &smp->data.u.ipv6)) {
10340 				smp->data.type = SMP_T_IPV6;
10341 				break;
10342 			}
10343 		}
10344 
10345 		/* if the header doesn't match an IP address, fetch next one */
10346 		if (!(smp->flags & SMP_F_NOT_LAST))
10347 			return 0;
10348 	}
10349 	return ret;
10350 }
10351 
10352 /* 8. Check on URI PATH. A pointer to the PATH is stored. The path starts at
10353  * the first '/' after the possible hostname, and ends before the possible '?'.
10354  */
10355 static int
smp_fetch_path(const struct arg * args,struct sample * smp,const char * kw,void * private)10356 smp_fetch_path(const struct arg *args, struct sample *smp, const char *kw, void *private)
10357 {
10358 	struct channel *chn = SMP_REQ_CHN(smp);
10359 	struct http_txn *txn;
10360 	char *ptr, *end;
10361 
10362 	CHECK_HTTP_MESSAGE_FIRST(chn);
10363 
10364 	txn = smp->strm->txn;
10365 	end = chn->buf->p + txn->req.sl.rq.u + txn->req.sl.rq.u_l;
10366 	ptr = http_get_path(txn);
10367 	if (!ptr)
10368 		return 0;
10369 
10370 	/* OK, we got the '/' ! */
10371 	smp->data.type = SMP_T_STR;
10372 	smp->data.u.str.str = ptr;
10373 
10374 	while (ptr < end && *ptr != '?')
10375 		ptr++;
10376 
10377 	smp->data.u.str.len = ptr - smp->data.u.str.str;
10378 	smp->flags = SMP_F_VOL_1ST | SMP_F_CONST;
10379 	return 1;
10380 }
10381 
10382 /* This produces a concatenation of the first occurrence of the Host header
10383  * followed by the path component if it begins with a slash ('/'). This means
10384  * that '*' will not be added, resulting in exactly the first Host entry.
10385  * If no Host header is found, then the path is returned as-is. The returned
10386  * value is stored in the trash so it does not need to be marked constant.
10387  * The returned sample is of type string.
10388  */
10389 static int
smp_fetch_base(const struct arg * args,struct sample * smp,const char * kw,void * private)10390 smp_fetch_base(const struct arg *args, struct sample *smp, const char *kw, void *private)
10391 {
10392 	struct channel *chn = SMP_REQ_CHN(smp);
10393 	struct http_txn *txn;
10394 	char *ptr, *end, *beg;
10395 	struct hdr_ctx ctx;
10396 	struct chunk *temp;
10397 
10398 	CHECK_HTTP_MESSAGE_FIRST(chn);
10399 
10400 	txn = smp->strm->txn;
10401 	ctx.idx = 0;
10402 	if (!http_find_header2("Host", 4, chn->buf->p, &txn->hdr_idx, &ctx) || !ctx.vlen)
10403 		return smp_fetch_path(args, smp, kw, private);
10404 
10405 	/* OK we have the header value in ctx.line+ctx.val for ctx.vlen bytes */
10406 	temp = get_trash_chunk();
10407 	memcpy(temp->str, ctx.line + ctx.val, ctx.vlen);
10408 	smp->data.type = SMP_T_STR;
10409 	smp->data.u.str.str = temp->str;
10410 	smp->data.u.str.len = ctx.vlen;
10411 
10412 	/* now retrieve the path */
10413 	end = chn->buf->p + txn->req.sl.rq.u + txn->req.sl.rq.u_l;
10414 	beg = http_get_path(txn);
10415 	if (!beg)
10416 		beg = end;
10417 
10418 	for (ptr = beg; ptr < end && *ptr != '?'; ptr++);
10419 
10420 	if (beg < ptr && *beg == '/') {
10421 		memcpy(smp->data.u.str.str + smp->data.u.str.len, beg, ptr - beg);
10422 		smp->data.u.str.len += ptr - beg;
10423 	}
10424 
10425 	smp->flags = SMP_F_VOL_1ST;
10426 	return 1;
10427 }
10428 
10429 /* This produces a 32-bit hash of the concatenation of the first occurrence of
10430  * the Host header followed by the path component if it begins with a slash ('/').
10431  * This means that '*' will not be added, resulting in exactly the first Host
10432  * entry. If no Host header is found, then the path is used. The resulting value
10433  * is hashed using the path hash followed by a full avalanche hash and provides a
10434  * 32-bit integer value. This fetch is useful for tracking per-path activity on
10435  * high-traffic sites without having to store whole paths.
10436  */
10437 int
smp_fetch_base32(const struct arg * args,struct sample * smp,const char * kw,void * private)10438 smp_fetch_base32(const struct arg *args, struct sample *smp, const char *kw, void *private)
10439 {
10440 	struct channel *chn = SMP_REQ_CHN(smp);
10441 	struct http_txn *txn;
10442 	struct hdr_ctx ctx;
10443 	unsigned int hash = 0;
10444 	char *ptr, *beg, *end;
10445 	int len;
10446 
10447 	CHECK_HTTP_MESSAGE_FIRST(chn);
10448 
10449 	txn = smp->strm->txn;
10450 	ctx.idx = 0;
10451 	if (http_find_header2("Host", 4, chn->buf->p, &txn->hdr_idx, &ctx)) {
10452 		/* OK we have the header value in ctx.line+ctx.val for ctx.vlen bytes */
10453 		ptr = ctx.line + ctx.val;
10454 		len = ctx.vlen;
10455 		while (len--)
10456 			hash = *(ptr++) + (hash << 6) + (hash << 16) - hash;
10457 	}
10458 
10459 	/* now retrieve the path */
10460 	end = chn->buf->p + txn->req.sl.rq.u + txn->req.sl.rq.u_l;
10461 	beg = http_get_path(txn);
10462 	if (!beg)
10463 		beg = end;
10464 
10465 	for (ptr = beg; ptr < end && *ptr != '?'; ptr++);
10466 
10467 	if (beg < ptr && *beg == '/') {
10468 		while (beg < ptr)
10469 			hash = *(beg++) + (hash << 6) + (hash << 16) - hash;
10470 	}
10471 	hash = full_hash(hash);
10472 
10473 	smp->data.type = SMP_T_SINT;
10474 	smp->data.u.sint = hash;
10475 	smp->flags = SMP_F_VOL_1ST;
10476 	return 1;
10477 }
10478 
10479 /* This concatenates the source address with the 32-bit hash of the Host and
10480  * path as returned by smp_fetch_base32(). The idea is to have per-source and
10481  * per-path counters. The result is a binary block from 8 to 20 bytes depending
10482  * on the source address length. The path hash is stored before the address so
10483  * that in environments where IPv6 is insignificant, truncating the output to
10484  * 8 bytes would still work.
10485  */
10486 static int
smp_fetch_base32_src(const struct arg * args,struct sample * smp,const char * kw,void * private)10487 smp_fetch_base32_src(const struct arg *args, struct sample *smp, const char *kw, void *private)
10488 {
10489 	struct chunk *temp;
10490 	struct connection *cli_conn = objt_conn(smp->sess->origin);
10491 
10492 	if (!cli_conn)
10493 		return 0;
10494 
10495 	if (!smp_fetch_base32(args, smp, kw, private))
10496 		return 0;
10497 
10498 	temp = get_trash_chunk();
10499 	*(unsigned int *)temp->str = htonl(smp->data.u.sint);
10500 	temp->len += sizeof(unsigned int);
10501 
10502 	switch (cli_conn->addr.from.ss_family) {
10503 	case AF_INET:
10504 		memcpy(temp->str + temp->len, &((struct sockaddr_in *)&cli_conn->addr.from)->sin_addr, 4);
10505 		temp->len += 4;
10506 		break;
10507 	case AF_INET6:
10508 		memcpy(temp->str + temp->len, &((struct sockaddr_in6 *)&cli_conn->addr.from)->sin6_addr, 16);
10509 		temp->len += 16;
10510 		break;
10511 	default:
10512 		return 0;
10513 	}
10514 
10515 	smp->data.u.str = *temp;
10516 	smp->data.type = SMP_T_BIN;
10517 	return 1;
10518 }
10519 
10520 /* Extracts the query string, which comes after the question mark '?'. If no
10521  * question mark is found, nothing is returned. Otherwise it returns a sample
10522  * of type string carrying the whole query string.
10523  */
10524 static int
smp_fetch_query(const struct arg * args,struct sample * smp,const char * kw,void * private)10525 smp_fetch_query(const struct arg *args, struct sample *smp, const char *kw, void *private)
10526 {
10527 	struct channel *chn = SMP_REQ_CHN(smp);
10528 	struct http_txn *txn;
10529 	char *ptr, *end;
10530 
10531 	CHECK_HTTP_MESSAGE_FIRST(chn);
10532 
10533 	txn = smp->strm->txn;
10534 	ptr = chn->buf->p + txn->req.sl.rq.u;
10535 	end = ptr + txn->req.sl.rq.u_l;
10536 
10537 	/* look up the '?' */
10538 	do {
10539 		if (ptr == end)
10540 			return 0;
10541 	} while (*ptr++ != '?');
10542 
10543 	smp->data.type = SMP_T_STR;
10544 	smp->data.u.str.str = ptr;
10545 	smp->data.u.str.len = end - ptr;
10546 	smp->flags = SMP_F_VOL_1ST | SMP_F_CONST;
10547 	return 1;
10548 }
10549 
10550 static int
smp_fetch_proto_http(const struct arg * args,struct sample * smp,const char * kw,void * private)10551 smp_fetch_proto_http(const struct arg *args, struct sample *smp, const char *kw, void *private)
10552 {
10553 	struct channel *chn = SMP_REQ_CHN(smp);
10554 
10555 	/* Note: hdr_idx.v cannot be NULL in this ACL because the ACL is tagged
10556 	 * as a layer7 ACL, which involves automatic allocation of hdr_idx.
10557 	 */
10558 
10559 	CHECK_HTTP_MESSAGE_FIRST_PERM(chn);
10560 
10561 	smp->data.type = SMP_T_BOOL;
10562 	smp->data.u.sint = 1;
10563 	return 1;
10564 }
10565 
10566 /* return a valid test if the current request is the first one on the connection */
10567 static int
smp_fetch_http_first_req(const struct arg * args,struct sample * smp,const char * kw,void * private)10568 smp_fetch_http_first_req(const struct arg *args, struct sample *smp, const char *kw, void *private)
10569 {
10570 	if (!smp->strm)
10571 		return 0;
10572 
10573 	smp->data.type = SMP_T_BOOL;
10574 	smp->data.u.sint = !(smp->strm->txn->flags & TX_NOT_FIRST);
10575 	return 1;
10576 }
10577 
10578 /* Accepts exactly 1 argument of type userlist */
10579 static int
smp_fetch_http_auth(const struct arg * args,struct sample * smp,const char * kw,void * private)10580 smp_fetch_http_auth(const struct arg *args, struct sample *smp, const char *kw, void *private)
10581 {
10582 	struct channel *chn = SMP_REQ_CHN(smp);
10583 
10584 	if (!args || args->type != ARGT_USR)
10585 		return 0;
10586 
10587 	CHECK_HTTP_MESSAGE_FIRST(chn);
10588 
10589 	if (!get_http_auth(smp->strm))
10590 		return 0;
10591 
10592 	smp->data.type = SMP_T_BOOL;
10593 	smp->data.u.sint = check_user(args->data.usr, smp->strm->txn->auth.user,
10594 	                            smp->strm->txn->auth.pass);
10595 	return 1;
10596 }
10597 
10598 /* Accepts exactly 1 argument of type userlist */
10599 static int
smp_fetch_http_auth_grp(const struct arg * args,struct sample * smp,const char * kw,void * private)10600 smp_fetch_http_auth_grp(const struct arg *args, struct sample *smp, const char *kw, void *private)
10601 {
10602 	struct channel *chn = SMP_REQ_CHN(smp);
10603 
10604 	if (!args || args->type != ARGT_USR)
10605 		return 0;
10606 
10607 	CHECK_HTTP_MESSAGE_FIRST(chn);
10608 
10609 	if (!get_http_auth(smp->strm))
10610 		return 0;
10611 
10612 	/* if the user does not belong to the userlist or has a wrong password,
10613 	 * report that it unconditionally does not match. Otherwise we return
10614 	 * a string containing the username.
10615 	 */
10616 	if (!check_user(args->data.usr, smp->strm->txn->auth.user,
10617 	                smp->strm->txn->auth.pass))
10618 		return 0;
10619 
10620 	/* pat_match_auth() will need the user list */
10621 	smp->ctx.a[0] = args->data.usr;
10622 
10623 	smp->data.type = SMP_T_STR;
10624 	smp->flags = SMP_F_CONST;
10625 	smp->data.u.str.str = smp->strm->txn->auth.user;
10626 	smp->data.u.str.len = strlen(smp->strm->txn->auth.user);
10627 
10628 	return 1;
10629 }
10630 
10631 /* Try to find the next occurrence of a cookie name in a cookie header value.
10632  * To match on any cookie name, <cookie_name_l> must be set to 0.
10633  * The lookup begins at <hdr>. The pointer and size of the next occurrence of
10634  * the cookie value is returned into *value and *value_l, and the function
10635  * returns a pointer to the next pointer to search from if the value was found.
10636  * Otherwise if the cookie was not found, NULL is returned and neither value
10637  * nor value_l are touched. The input <hdr> string should first point to the
10638  * header's value, and the <hdr_end> pointer must point to the first character
10639  * not part of the value. <list> must be non-zero if value may represent a list
10640  * of values (cookie headers). This makes it faster to abort parsing when no
10641  * list is expected.
10642  */
10643 char *
extract_cookie_value(char * hdr,const char * hdr_end,char * cookie_name,size_t cookie_name_l,int list,char ** value,int * value_l)10644 extract_cookie_value(char *hdr, const char *hdr_end,
10645 		  char *cookie_name, size_t cookie_name_l, int list,
10646 		  char **value, int *value_l)
10647 {
10648 	char *equal, *att_end, *att_beg, *val_beg, *val_end;
10649 	char *next;
10650 
10651 	/* we search at least a cookie name followed by an equal, and more
10652 	 * generally something like this :
10653 	 * Cookie:    NAME1  =  VALUE 1  ; NAME2 = VALUE2 ; NAME3 = VALUE3\r\n
10654 	 */
10655 	for (att_beg = hdr; att_beg + cookie_name_l + 1 < hdr_end; att_beg = next + 1) {
10656 		/* Iterate through all cookies on this line */
10657 
10658 		while (att_beg < hdr_end && HTTP_IS_SPHT(*att_beg))
10659 			att_beg++;
10660 
10661 		/* find att_end : this is the first character after the last non
10662 		 * space before the equal. It may be equal to hdr_end.
10663 		 */
10664 		equal = att_end = att_beg;
10665 
10666 		while (equal < hdr_end) {
10667 			if (*equal == '=' || *equal == ';' || (list && *equal == ','))
10668 				break;
10669 			if (HTTP_IS_SPHT(*equal++))
10670 				continue;
10671 			att_end = equal;
10672 		}
10673 
10674 		/* here, <equal> points to '=', a delimitor or the end. <att_end>
10675 		 * is between <att_beg> and <equal>, both may be identical.
10676 		 */
10677 
10678 		/* look for end of cookie if there is an equal sign */
10679 		if (equal < hdr_end && *equal == '=') {
10680 			/* look for the beginning of the value */
10681 			val_beg = equal + 1;
10682 			while (val_beg < hdr_end && HTTP_IS_SPHT(*val_beg))
10683 				val_beg++;
10684 
10685 			/* find the end of the value, respecting quotes */
10686 			next = find_cookie_value_end(val_beg, hdr_end);
10687 
10688 			/* make val_end point to the first white space or delimitor after the value */
10689 			val_end = next;
10690 			while (val_end > val_beg && HTTP_IS_SPHT(*(val_end - 1)))
10691 				val_end--;
10692 		} else {
10693 			val_beg = val_end = next = equal;
10694 		}
10695 
10696 		/* We have nothing to do with attributes beginning with '$'. However,
10697 		 * they will automatically be removed if a header before them is removed,
10698 		 * since they're supposed to be linked together.
10699 		 */
10700 		if (*att_beg == '$')
10701 			continue;
10702 
10703 		/* Ignore cookies with no equal sign */
10704 		if (equal == next)
10705 			continue;
10706 
10707 		/* Now we have the cookie name between att_beg and att_end, and
10708 		 * its value between val_beg and val_end.
10709 		 */
10710 
10711 		if (cookie_name_l == 0 || (att_end - att_beg == cookie_name_l &&
10712 		    memcmp(att_beg, cookie_name, cookie_name_l) == 0)) {
10713 			/* let's return this value and indicate where to go on from */
10714 			*value = val_beg;
10715 			*value_l = val_end - val_beg;
10716 			return next + 1;
10717 		}
10718 
10719 		/* Set-Cookie headers only have the name in the first attr=value part */
10720 		if (!list)
10721 			break;
10722 	}
10723 
10724 	return NULL;
10725 }
10726 
10727 /* Fetch a captured HTTP request header. The index is the position of
10728  * the "capture" option in the configuration file
10729  */
10730 static int
smp_fetch_capture_header_req(const struct arg * args,struct sample * smp,const char * kw,void * private)10731 smp_fetch_capture_header_req(const struct arg *args, struct sample *smp, const char *kw, void *private)
10732 {
10733 	struct proxy *fe;
10734 	int idx;
10735 
10736 	if (!args || args->type != ARGT_SINT)
10737 		return 0;
10738 
10739 	if (!smp->strm)
10740 		return 0;
10741 
10742 	fe = strm_fe(smp->strm);
10743 	idx = args->data.sint;
10744 
10745 	if (idx > (fe->nb_req_cap - 1) || smp->strm->req_cap == NULL || smp->strm->req_cap[idx] == NULL)
10746 		return 0;
10747 
10748 	smp->data.type = SMP_T_STR;
10749 	smp->flags |= SMP_F_CONST;
10750 	smp->data.u.str.str = smp->strm->req_cap[idx];
10751 	smp->data.u.str.len = strlen(smp->strm->req_cap[idx]);
10752 
10753 	return 1;
10754 }
10755 
10756 /* Fetch a captured HTTP response header. The index is the position of
10757  * the "capture" option in the configuration file
10758  */
10759 static int
smp_fetch_capture_header_res(const struct arg * args,struct sample * smp,const char * kw,void * private)10760 smp_fetch_capture_header_res(const struct arg *args, struct sample *smp, const char *kw, void *private)
10761 {
10762 	struct proxy *fe;
10763 	int idx;
10764 
10765 	if (!args || args->type != ARGT_SINT)
10766 		return 0;
10767 
10768 	if (!smp->strm)
10769 		return 0;
10770 
10771 	fe = strm_fe(smp->strm);
10772 	idx = args->data.sint;
10773 
10774 	if (idx > (fe->nb_rsp_cap - 1) || smp->strm->res_cap == NULL || smp->strm->res_cap[idx] == NULL)
10775 		return 0;
10776 
10777 	smp->data.type = SMP_T_STR;
10778 	smp->flags |= SMP_F_CONST;
10779 	smp->data.u.str.str = smp->strm->res_cap[idx];
10780 	smp->data.u.str.len = strlen(smp->strm->res_cap[idx]);
10781 
10782 	return 1;
10783 }
10784 
10785 /* Extracts the METHOD in the HTTP request, the txn->uri should be filled before the call */
10786 static int
smp_fetch_capture_req_method(const struct arg * args,struct sample * smp,const char * kw,void * private)10787 smp_fetch_capture_req_method(const struct arg *args, struct sample *smp, const char *kw, void *private)
10788 {
10789 	struct chunk *temp;
10790 	struct http_txn *txn;
10791 	char *ptr;
10792 
10793 	if (!smp->strm)
10794 		return 0;
10795 
10796 	txn = smp->strm->txn;
10797 	if (!txn || !txn->uri)
10798 		return 0;
10799 
10800 	ptr = txn->uri;
10801 
10802 	while (*ptr != ' ' && *ptr != '\0')  /* find first space */
10803 		ptr++;
10804 
10805 	temp = get_trash_chunk();
10806 	temp->str = txn->uri;
10807 	temp->len = ptr - txn->uri;
10808 	smp->data.u.str = *temp;
10809 	smp->data.type = SMP_T_STR;
10810 	smp->flags = SMP_F_CONST;
10811 
10812 	return 1;
10813 
10814 }
10815 
10816 /* Extracts the path in the HTTP request, the txn->uri should be filled before the call  */
10817 static int
smp_fetch_capture_req_uri(const struct arg * args,struct sample * smp,const char * kw,void * private)10818 smp_fetch_capture_req_uri(const struct arg *args, struct sample *smp, const char *kw, void *private)
10819 {
10820 	struct chunk *temp;
10821 	struct http_txn *txn;
10822 	char *ptr;
10823 
10824 	if (!smp->strm)
10825 		return 0;
10826 
10827 	txn = smp->strm->txn;
10828 	if (!txn || !txn->uri)
10829 		return 0;
10830 
10831 	ptr = txn->uri;
10832 
10833 	while (*ptr != ' ' && *ptr != '\0')  /* find first space */
10834 		ptr++;
10835 
10836 	if (!*ptr)
10837 		return 0;
10838 
10839 	ptr++;  /* skip the space */
10840 
10841 	temp = get_trash_chunk();
10842 	ptr = temp->str = http_get_path_from_string(ptr);
10843 	if (!ptr)
10844 		return 0;
10845 	while (*ptr != ' ' && *ptr != '\0')  /* find space after URI */
10846 		ptr++;
10847 
10848 	smp->data.u.str = *temp;
10849 	smp->data.u.str.len = ptr - temp->str;
10850 	smp->data.type = SMP_T_STR;
10851 	smp->flags = SMP_F_CONST;
10852 
10853 	return 1;
10854 }
10855 
10856 /* Retrieves the HTTP version from the request (either 1.0 or 1.1) and emits it
10857  * as a string (either "HTTP/1.0" or "HTTP/1.1").
10858  */
10859 static int
smp_fetch_capture_req_ver(const struct arg * args,struct sample * smp,const char * kw,void * private)10860 smp_fetch_capture_req_ver(const struct arg *args, struct sample *smp, const char *kw, void *private)
10861 {
10862 	struct http_txn *txn;
10863 
10864 	if (!smp->strm)
10865 		return 0;
10866 
10867 	txn = smp->strm->txn;
10868 	if (!txn || txn->req.msg_state < HTTP_MSG_HDR_FIRST)
10869 		return 0;
10870 
10871 	if (txn->req.flags & HTTP_MSGF_VER_11)
10872 		smp->data.u.str.str = "HTTP/1.1";
10873 	else
10874 		smp->data.u.str.str = "HTTP/1.0";
10875 
10876 	smp->data.u.str.len = 8;
10877 	smp->data.type  = SMP_T_STR;
10878 	smp->flags = SMP_F_CONST;
10879 	return 1;
10880 
10881 }
10882 
10883 /* Retrieves the HTTP version from the response (either 1.0 or 1.1) and emits it
10884  * as a string (either "HTTP/1.0" or "HTTP/1.1").
10885  */
10886 static int
smp_fetch_capture_res_ver(const struct arg * args,struct sample * smp,const char * kw,void * private)10887 smp_fetch_capture_res_ver(const struct arg *args, struct sample *smp, const char *kw, void *private)
10888 {
10889 	struct http_txn *txn;
10890 
10891 	if (!smp->strm)
10892 		return 0;
10893 
10894 	txn = smp->strm->txn;
10895 	if (!txn || txn->rsp.msg_state < HTTP_MSG_HDR_FIRST)
10896 		return 0;
10897 
10898 	if (txn->rsp.flags & HTTP_MSGF_VER_11)
10899 		smp->data.u.str.str = "HTTP/1.1";
10900 	else
10901 		smp->data.u.str.str = "HTTP/1.0";
10902 
10903 	smp->data.u.str.len = 8;
10904 	smp->data.type  = SMP_T_STR;
10905 	smp->flags = SMP_F_CONST;
10906 	return 1;
10907 
10908 }
10909 
10910 
10911 /* Iterate over all cookies present in a message. The context is stored in
10912  * smp->ctx.a[0] for the in-header position, smp->ctx.a[1] for the
10913  * end-of-header-value, and smp->ctx.a[2] for the hdr_ctx. Depending on
10914  * the direction, multiple cookies may be parsed on the same line or not.
10915  * If provided, the searched cookie name is in args, in args->data.str. If
10916  * the input options indicate that no iterating is desired, then only last
10917  * value is fetched if any. If no cookie name is provided, the first cookie
10918  * value found is fetched. The returned sample is of type CSTR.  Can be used
10919  * to parse cookies in other files.
10920  */
smp_fetch_cookie(const struct arg * args,struct sample * smp,const char * kw,void * private)10921 int smp_fetch_cookie(const struct arg *args, struct sample *smp, const char *kw, void *private)
10922 {
10923 	/* possible keywords: req.cookie / cookie / cook, res.cookie / scook / set-cookie */
10924 	struct channel *chn = ((kw[0] == 'c' || kw[2] == 'q') ? SMP_REQ_CHN(smp) : SMP_RES_CHN(smp));
10925 	char *cook = NULL;
10926 	size_t cook_l = 0;
10927 	struct hdr_idx *idx;
10928 	struct hdr_ctx *ctx = smp->ctx.a[2];
10929 	const char *hdr_name;
10930 	int hdr_name_len;
10931 	char *sol;
10932 	int found = 0;
10933 
10934 	if (args && args->type == ARGT_STR) {
10935 		cook = args->data.str.str;
10936 		cook_l = args->data.str.len;
10937 	}
10938 
10939 	if (!ctx) {
10940 		/* first call */
10941 		ctx = &static_hdr_ctx;
10942 		ctx->idx = 0;
10943 		smp->ctx.a[2] = ctx;
10944 	}
10945 
10946 	CHECK_HTTP_MESSAGE_FIRST(chn);
10947 
10948 	idx = &smp->strm->txn->hdr_idx;
10949 
10950 	if (!(chn->flags & CF_ISRESP)) {
10951 		hdr_name = "Cookie";
10952 		hdr_name_len = 6;
10953 	} else {
10954 		hdr_name = "Set-Cookie";
10955 		hdr_name_len = 10;
10956 	}
10957 
10958 	/* OK so basically here, either we want only one value or we want to
10959 	 * iterate over all of them and we fetch the next one. In this last case
10960 	 * SMP_OPT_ITERATE option is set.
10961 	 */
10962 
10963 	sol = chn->buf->p;
10964 	if (!(smp->flags & SMP_F_NOT_LAST)) {
10965 		/* search for the header from the beginning, we must first initialize
10966 		 * the search parameters.
10967 		 */
10968 		smp->ctx.a[0] = NULL;
10969 		ctx->idx = 0;
10970 	}
10971 
10972 	smp->flags |= SMP_F_VOL_HDR;
10973 
10974 	while (1) {
10975 		/* Note: smp->ctx.a[0] == NULL every time we need to fetch a new header */
10976 		if (!smp->ctx.a[0]) {
10977 			if (!http_find_header2(hdr_name, hdr_name_len, sol, idx, ctx))
10978 				goto out;
10979 
10980 			if (ctx->vlen < cook_l + 1)
10981 				continue;
10982 
10983 			smp->ctx.a[0] = ctx->line + ctx->val;
10984 			smp->ctx.a[1] = smp->ctx.a[0] + ctx->vlen;
10985 		}
10986 
10987 		smp->data.type = SMP_T_STR;
10988 		smp->flags |= SMP_F_CONST;
10989 		smp->ctx.a[0] = extract_cookie_value(smp->ctx.a[0], smp->ctx.a[1],
10990 						 cook, cook_l,
10991 						 (smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ,
10992 						 &smp->data.u.str.str,
10993 						 &smp->data.u.str.len);
10994 		if (smp->ctx.a[0]) {
10995 			found = 1;
10996 			if (smp->opt & SMP_OPT_ITERATE) {
10997 				/* iterate on cookie value */
10998 				smp->flags |= SMP_F_NOT_LAST;
10999 				return 1;
11000 			}
11001 			if (args->data.str.len == 0) {
11002 				/* No cookie name, first occurrence returned */
11003 				break;
11004 			}
11005 		}
11006 		/* if we're looking for last occurrence, let's loop */
11007 	}
11008 	/* all cookie headers and values were scanned. If we're looking for the
11009 	 * last occurrence, we may return it now.
11010 	 */
11011  out:
11012 	smp->flags &= ~SMP_F_NOT_LAST;
11013 	return found;
11014 }
11015 
11016 /* Same than smp_fetch_cookie() but only relies on the sample direction to
11017  * choose the right channel. So instead of duplicating the code, we just change
11018  * the keyword and then fallback on smp_fetch_cookie().
11019  */
11020 static int
smp_fetch_chn_cookie(const struct arg * args,struct sample * smp,const char * kw,void * private)11021 smp_fetch_chn_cookie(const struct arg *args, struct sample *smp, const char *kw, void *private)
11022 {
11023 	kw = ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ ? "req.cook" : "res.cook");
11024 	return smp_fetch_cookie(args, smp, kw, private);
11025 }
11026 
11027 /* Iterate over all cookies present in a request to count how many occurrences
11028  * match the name in args and args->data.str.len. If <multi> is non-null, then
11029  * multiple cookies may be parsed on the same line. The returned sample is of
11030  * type UINT. Accepts exactly 1 argument of type string.
11031  */
11032 static int
smp_fetch_cookie_cnt(const struct arg * args,struct sample * smp,const char * kw,void * private)11033 smp_fetch_cookie_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private)
11034 {
11035 	/* possible keywords: req.cook_cnt / cook_cnt, res.cook_cnt / scook_cnt */
11036 	struct channel *chn = ((kw[0] == 'c' || kw[2] == 'q') ? SMP_REQ_CHN(smp) : SMP_RES_CHN(smp));
11037 	struct hdr_idx *idx;
11038 	struct hdr_ctx ctx;
11039 	const char *hdr_name;
11040 	int hdr_name_len;
11041 	int cnt;
11042 	char *val_beg, *val_end;
11043 	char *cook = NULL;
11044 	size_t cook_l = 0;
11045 	char *sol;
11046 
11047 	if (args && args->type == ARGT_STR){
11048 		cook = args->data.str.str;
11049 		cook_l = args->data.str.len;
11050 	}
11051 
11052 	CHECK_HTTP_MESSAGE_FIRST(chn);
11053 
11054 	idx = &smp->strm->txn->hdr_idx;
11055 
11056 	if (!(chn->flags & CF_ISRESP)) {
11057 		hdr_name = "Cookie";
11058 		hdr_name_len = 6;
11059 	} else {
11060 		hdr_name = "Set-Cookie";
11061 		hdr_name_len = 10;
11062 	}
11063 
11064 	sol = chn->buf->p;
11065 	val_end = val_beg = NULL;
11066 	ctx.idx = 0;
11067 	cnt = 0;
11068 
11069 	while (1) {
11070 		/* Note: val_beg == NULL every time we need to fetch a new header */
11071 		if (!val_beg) {
11072 			if (!http_find_header2(hdr_name, hdr_name_len, sol, idx, &ctx))
11073 				break;
11074 
11075 			if (ctx.vlen < cook_l + 1)
11076 				continue;
11077 
11078 			val_beg = ctx.line + ctx.val;
11079 			val_end = val_beg + ctx.vlen;
11080 		}
11081 
11082 		smp->data.type = SMP_T_STR;
11083 		smp->flags |= SMP_F_CONST;
11084 		while ((val_beg = extract_cookie_value(val_beg, val_end,
11085 						       cook, cook_l,
11086 						       (smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ,
11087 						       &smp->data.u.str.str,
11088 						       &smp->data.u.str.len))) {
11089 			cnt++;
11090 		}
11091 	}
11092 
11093 	smp->data.type = SMP_T_SINT;
11094 	smp->data.u.sint = cnt;
11095 	smp->flags |= SMP_F_VOL_HDR;
11096 	return 1;
11097 }
11098 
11099 /* Fetch an cookie's integer value. The integer value is returned. It
11100  * takes a mandatory argument of type string. It relies on smp_fetch_cookie().
11101  */
11102 static int
smp_fetch_cookie_val(const struct arg * args,struct sample * smp,const char * kw,void * private)11103 smp_fetch_cookie_val(const struct arg *args, struct sample *smp, const char *kw, void *private)
11104 {
11105 	int ret = smp_fetch_cookie(args, smp, kw, private);
11106 
11107 	if (ret > 0) {
11108 		smp->data.type = SMP_T_SINT;
11109 		smp->data.u.sint = strl2ic(smp->data.u.str.str, smp->data.u.str.len);
11110 	}
11111 
11112 	return ret;
11113 }
11114 
11115 /************************************************************************/
11116 /*           The code below is dedicated to sample fetches              */
11117 /************************************************************************/
11118 
11119 /*
11120  * Given a path string and its length, find the position of beginning of the
11121  * query string. Returns NULL if no query string is found in the path.
11122  *
11123  * Example: if path = "/foo/bar/fubar?yo=mama;ye=daddy", and n = 22:
11124  *
11125  * find_query_string(path, n, '?') points to "yo=mama;ye=daddy" string.
11126  */
find_param_list(char * path,size_t path_l,char delim)11127 static inline char *find_param_list(char *path, size_t path_l, char delim)
11128 {
11129 	char *p;
11130 
11131 	p = memchr(path, delim, path_l);
11132 	return p ? p + 1 : NULL;
11133 }
11134 
is_param_delimiter(char c,char delim)11135 static inline int is_param_delimiter(char c, char delim)
11136 {
11137 	return c == '&' || c == ';' || c == delim;
11138 }
11139 
11140 /* after increasing a pointer value, it can exceed the first buffer
11141  * size. This function transform the value of <ptr> according with
11142  * the expected position. <chunks> is an array of the one or two
11143  * avalaible chunks. The first value is the start of the first chunk,
11144  * the second value if the end+1 of the first chunks. The third value
11145  * is NULL or the start of the second chunk and the fourth value is
11146  * the end+1 of the second chunk. The function returns 1 if does a
11147  * wrap, else returns 0.
11148  */
fix_pointer_if_wrap(const char ** chunks,const char ** ptr)11149 static inline int fix_pointer_if_wrap(const char **chunks, const char **ptr)
11150 {
11151 	if (*ptr < chunks[1])
11152 		return 0;
11153 	if (!chunks[2])
11154 		return 0;
11155 	*ptr = chunks[2] + ( *ptr - chunks[1] );
11156 	return 1;
11157 }
11158 
11159 /*
11160  * Given a url parameter, find the starting position of the first occurence,
11161  * or NULL if the parameter is not found.
11162  *
11163  * Example: if query_string is "yo=mama;ye=daddy" and url_param_name is "ye",
11164  * the function will return query_string+8.
11165  *
11166  * Warning: this function returns a pointer that can point to the first chunk
11167  * or the second chunk. The caller must be check the position before using the
11168  * result.
11169  */
11170 static const char *
find_url_param_pos(const char ** chunks,const char * url_param_name,size_t url_param_name_l,char delim)11171 find_url_param_pos(const char **chunks,
11172                    const char* url_param_name, size_t url_param_name_l,
11173                    char delim)
11174 {
11175 	const char *pos, *last, *equal;
11176 	const char **bufs = chunks;
11177 	int l1, l2;
11178 
11179 
11180 	pos  = bufs[0];
11181 	last = bufs[1];
11182 	while (pos < last) {
11183 		/* Check the equal. */
11184 		equal = pos + url_param_name_l;
11185 		if (fix_pointer_if_wrap(chunks, &equal)) {
11186 			if (equal >= chunks[3])
11187 				return NULL;
11188 		} else {
11189 			if (equal >= chunks[1])
11190 				return NULL;
11191 		}
11192 		if (*equal == '=') {
11193 			if (pos + url_param_name_l > last) {
11194 				/* process wrap case, we detect a wrap. In this case, the
11195 				 * comparison is performed in two parts.
11196 				 */
11197 
11198 				/* This is the end, we dont have any other chunk. */
11199 				if (bufs != chunks || !bufs[2])
11200 					return NULL;
11201 
11202 				/* Compute the length of each part of the comparison. */
11203 				l1 = last - pos;
11204 				l2 = url_param_name_l - l1;
11205 
11206 				/* The second buffer is too short to contain the compared string. */
11207 				if (bufs[2] + l2 > bufs[3])
11208 					return NULL;
11209 
11210 				if (memcmp(pos,     url_param_name,    l1) == 0 &&
11211 				    memcmp(bufs[2], url_param_name+l1, l2) == 0)
11212 					return pos;
11213 
11214 				/* Perform wrapping and jump the string who fail the comparison. */
11215 				bufs += 2;
11216 				pos = bufs[0] + l2;
11217 				last = bufs[1];
11218 
11219 			} else {
11220 				/* process a simple comparison. */
11221 				if (memcmp(pos, url_param_name, url_param_name_l) == 0)
11222 					return pos;
11223 				pos += url_param_name_l + 1;
11224 				if (fix_pointer_if_wrap(chunks, &pos))
11225 					last = bufs[2];
11226 			}
11227 		}
11228 
11229 		while (1) {
11230 			/* Look for the next delimiter. */
11231 			while (pos < last && !is_param_delimiter(*pos, delim))
11232 				pos++;
11233 			if (pos < last)
11234 				break;
11235 			/* process buffer wrapping. */
11236 			if (bufs != chunks || !bufs[2])
11237 				return NULL;
11238 			bufs += 2;
11239 			pos = bufs[0];
11240 			last = bufs[1];
11241 		}
11242 		pos++;
11243 	}
11244 	return NULL;
11245 }
11246 
11247 /*
11248  * Given a url parameter name and a query string, find the next value.
11249  * An empty url_param_name matches the first available parameter.
11250  * If the parameter is found, 1 is returned and *vstart / *vend are updated to
11251  * respectively provide a pointer to the value and its end.
11252  * Otherwise, 0 is returned and vstart/vend are not modified.
11253  */
11254 static int
find_next_url_param(const char ** chunks,const char * url_param_name,size_t url_param_name_l,const char ** vstart,const char ** vend,char delim)11255 find_next_url_param(const char **chunks,
11256                     const char* url_param_name, size_t url_param_name_l,
11257                     const char **vstart, const char **vend, char delim)
11258 {
11259 	const char *arg_start, *qs_end;
11260 	const char *value_start, *value_end;
11261 
11262 	arg_start = chunks[0];
11263 	qs_end = chunks[1];
11264 	if (url_param_name_l) {
11265 		/* Looks for an argument name. */
11266 		arg_start = find_url_param_pos(chunks,
11267 		                               url_param_name, url_param_name_l,
11268 		                               delim);
11269 		/* Check for wrapping. */
11270 		if (arg_start >= qs_end)
11271 			qs_end = chunks[3];
11272 	}
11273 	if (!arg_start)
11274 		return 0;
11275 
11276 	if (!url_param_name_l) {
11277 		while (1) {
11278 			/* looks for the first argument. */
11279 			value_start = memchr(arg_start, '=', qs_end - arg_start);
11280 			if (!value_start) {
11281 				/* Check for wrapping. */
11282 				if (arg_start >= chunks[0] &&
11283 				    arg_start < chunks[1] &&
11284 				    chunks[2]) {
11285 					arg_start = chunks[2];
11286 					qs_end = chunks[3];
11287 					continue;
11288 				}
11289 				return 0;
11290 			}
11291 			break;
11292 		}
11293 		value_start++;
11294 	}
11295 	else {
11296 		/* Jump the argument length. */
11297 		value_start = arg_start + url_param_name_l + 1;
11298 
11299 		/* Check for pointer wrapping. */
11300 		if (fix_pointer_if_wrap(chunks, &value_start)) {
11301 			/* Update the end pointer. */
11302 			qs_end = chunks[3];
11303 
11304 			/* Check for overflow. */
11305 			if (value_start >= qs_end)
11306 				return 0;
11307 		}
11308 	}
11309 
11310 	value_end = value_start;
11311 
11312 	while (1) {
11313 		while ((value_end < qs_end) && !is_param_delimiter(*value_end, delim))
11314 			value_end++;
11315 		if (value_end < qs_end)
11316 			break;
11317 		/* process buffer wrapping. */
11318 		if (value_end >= chunks[0] &&
11319 		    value_end < chunks[1] &&
11320 		    chunks[2]) {
11321 			value_end = chunks[2];
11322 			qs_end = chunks[3];
11323 			continue;
11324 		}
11325 		break;
11326 	}
11327 
11328 	*vstart = value_start;
11329 	*vend = value_end;
11330 	return 1;
11331 }
11332 
11333 /* This scans a URL-encoded query string. It takes an optionally wrapping
11334  * string whose first contigous chunk has its beginning in ctx->a[0] and end
11335  * in ctx->a[1], and the optional second part in (ctx->a[2]..ctx->a[3]). The
11336  * pointers are updated for next iteration before leaving.
11337  */
11338 static int
smp_fetch_param(char delim,const char * name,int name_len,const struct arg * args,struct sample * smp,const char * kw,void * private)11339 smp_fetch_param(char delim, const char *name, int name_len, const struct arg *args, struct sample *smp, const char *kw, void *private)
11340 {
11341 	const char *vstart, *vend;
11342 	struct chunk *temp;
11343 	const char **chunks = (const char **)smp->ctx.a;
11344 
11345 	if (!find_next_url_param(chunks,
11346 	                         name, name_len,
11347 	                         &vstart, &vend,
11348 	                         delim))
11349 		return 0;
11350 
11351 	/* Create sample. If the value is contiguous, return the pointer as CONST,
11352 	 * if the value is wrapped, copy-it in a buffer.
11353 	 */
11354 	smp->data.type = SMP_T_STR;
11355 	if (chunks[2] &&
11356 	    vstart >= chunks[0] && vstart <= chunks[1] &&
11357 	    vend >= chunks[2] && vend <= chunks[3]) {
11358 		/* Wrapped case. */
11359 		temp = get_trash_chunk();
11360 		memcpy(temp->str, vstart, chunks[1] - vstart);
11361 		memcpy(temp->str + ( chunks[1] - vstart ), chunks[2], vend - chunks[2]);
11362 		smp->data.u.str.str = temp->str;
11363 		smp->data.u.str.len = ( chunks[1] - vstart ) + ( vend - chunks[2] );
11364 	} else {
11365 		/* Contiguous case. */
11366 		smp->data.u.str.str = (char *)vstart;
11367 		smp->data.u.str.len = vend - vstart;
11368 		smp->flags = SMP_F_VOL_1ST | SMP_F_CONST;
11369 	}
11370 
11371 	/* Update context, check wrapping. */
11372 	chunks[0] = vend;
11373 	if (chunks[2] && vend >= chunks[2] && vend <= chunks[3]) {
11374 		chunks[1] = chunks[3];
11375 		chunks[2] = NULL;
11376 	}
11377 
11378 	if (chunks[0] < chunks[1])
11379 		smp->flags |= SMP_F_NOT_LAST;
11380 
11381 	return 1;
11382 }
11383 
11384 /* This function iterates over each parameter of the query string. It uses
11385  * ctx->a[0] and ctx->a[1] to store the beginning and end of the current
11386  * parameter. Since it uses smp_fetch_param(), ctx->a[2..3] are both NULL.
11387  * An optional parameter name is passed in args[0], otherwise any parameter is
11388  * considered. It supports an optional delimiter argument for the beginning of
11389  * the string in args[1], which defaults to "?".
11390  */
11391 static int
smp_fetch_url_param(const struct arg * args,struct sample * smp,const char * kw,void * private)11392 smp_fetch_url_param(const struct arg *args, struct sample *smp, const char *kw, void *private)
11393 {
11394 	struct channel *chn = SMP_REQ_CHN(smp);
11395 	struct http_msg *msg;
11396 	char delim = '?';
11397 	const char *name;
11398 	int name_len;
11399 
11400 	if (!args ||
11401 	    (args[0].type && args[0].type != ARGT_STR) ||
11402 	    (args[1].type && args[1].type != ARGT_STR))
11403 		return 0;
11404 
11405 	name = "";
11406 	name_len = 0;
11407 	if (args->type == ARGT_STR) {
11408 		name     = args->data.str.str;
11409 		name_len = args->data.str.len;
11410 	}
11411 
11412 	if (args[1].type)
11413 		delim = *args[1].data.str.str;
11414 
11415 	if (!smp->ctx.a[0]) { // first call, find the query string
11416 		CHECK_HTTP_MESSAGE_FIRST(chn);
11417 
11418 		msg = &smp->strm->txn->req;
11419 
11420 		smp->ctx.a[0] = find_param_list(chn->buf->p + msg->sl.rq.u,
11421 		                                msg->sl.rq.u_l, delim);
11422 		if (!smp->ctx.a[0])
11423 			return 0;
11424 
11425 		smp->ctx.a[1] = chn->buf->p + msg->sl.rq.u + msg->sl.rq.u_l;
11426 
11427 		/* Assume that the context is filled with NULL pointer
11428 		 * before the first call.
11429 		 * smp->ctx.a[2] = NULL;
11430 		 * smp->ctx.a[3] = NULL;
11431 		 */
11432 	}
11433 
11434 	return smp_fetch_param(delim, name, name_len, args, smp, kw, private);
11435 }
11436 
11437 /* This function iterates over each parameter of the body. This requires
11438  * that the body has been waited for using http-buffer-request. It uses
11439  * ctx->a[0] and ctx->a[1] to store the beginning and end of the first
11440  * contigous part of the body, and optionally ctx->a[2..3] to reference the
11441  * optional second part if the body wraps at the end of the buffer. An optional
11442  * parameter name is passed in args[0], otherwise any parameter is considered.
11443  */
11444 static int
smp_fetch_body_param(const struct arg * args,struct sample * smp,const char * kw,void * private)11445 smp_fetch_body_param(const struct arg *args, struct sample *smp, const char *kw, void *private)
11446 {
11447 	struct channel *chn = SMP_REQ_CHN(smp);
11448 	struct http_msg *msg;
11449 	unsigned long len;
11450 	unsigned long block1;
11451 	char *body;
11452 	const char *name;
11453 	int name_len;
11454 
11455 	if (!args || (args[0].type && args[0].type != ARGT_STR))
11456 		return 0;
11457 
11458 	name = "";
11459 	name_len = 0;
11460 	if (args[0].type == ARGT_STR) {
11461 		name     = args[0].data.str.str;
11462 		name_len = args[0].data.str.len;
11463 	}
11464 
11465 	if (!smp->ctx.a[0]) { // first call, find the query string
11466 		CHECK_HTTP_MESSAGE_FIRST(chn);
11467 
11468 		msg = &smp->strm->txn->req;
11469 		len  = http_body_bytes(msg);
11470 		body = b_ptr(chn->buf, -http_data_rewind(msg));
11471 
11472 		block1 = len;
11473 		if (block1 > chn->buf->data + chn->buf->size - body)
11474 			block1 = chn->buf->data + chn->buf->size - body;
11475 
11476 		if (block1 == len) {
11477 			/* buffer is not wrapped (or empty) */
11478 			smp->ctx.a[0] = body;
11479 			smp->ctx.a[1] = body + len;
11480 
11481 			/* Assume that the context is filled with NULL pointer
11482 			 * before the first call.
11483 			 * smp->ctx.a[2] = NULL;
11484 			 * smp->ctx.a[3] = NULL;
11485 			*/
11486 		}
11487 		else {
11488 			/* buffer is wrapped, we need to defragment it */
11489 			smp->ctx.a[0] = body;
11490 			smp->ctx.a[1] = body + block1;
11491 			smp->ctx.a[2] = chn->buf->data;
11492 			smp->ctx.a[3] = chn->buf->data + ( len - block1 );
11493 		}
11494 	}
11495 	return smp_fetch_param('&', name, name_len, args, smp, kw, private);
11496 }
11497 
11498 /* Return the signed integer value for the specified url parameter (see url_param
11499  * above).
11500  */
11501 static int
smp_fetch_url_param_val(const struct arg * args,struct sample * smp,const char * kw,void * private)11502 smp_fetch_url_param_val(const struct arg *args, struct sample *smp, const char *kw, void *private)
11503 {
11504 	int ret = smp_fetch_url_param(args, smp, kw, private);
11505 
11506 	if (ret > 0) {
11507 		smp->data.type = SMP_T_SINT;
11508 		smp->data.u.sint = strl2ic(smp->data.u.str.str, smp->data.u.str.len);
11509 	}
11510 
11511 	return ret;
11512 }
11513 
11514 /* This produces a 32-bit hash of the concatenation of the first occurrence of
11515  * the Host header followed by the path component if it begins with a slash ('/').
11516  * This means that '*' will not be added, resulting in exactly the first Host
11517  * entry. If no Host header is found, then the path is used. The resulting value
11518  * is hashed using the url hash followed by a full avalanche hash and provides a
11519  * 32-bit integer value. This fetch is useful for tracking per-URL activity on
11520  * high-traffic sites without having to store whole paths.
11521  * this differs from the base32 functions in that it includes the url parameters
11522  * as well as the path
11523  */
11524 static int
smp_fetch_url32(const struct arg * args,struct sample * smp,const char * kw,void * private)11525 smp_fetch_url32(const struct arg *args, struct sample *smp, const char *kw, void *private)
11526 {
11527 	struct channel *chn = SMP_REQ_CHN(smp);
11528 	struct http_txn *txn;
11529 	struct hdr_ctx ctx;
11530 	unsigned int hash = 0;
11531 	char *ptr, *beg, *end;
11532 	int len;
11533 
11534 	CHECK_HTTP_MESSAGE_FIRST(chn);
11535 
11536 	txn = smp->strm->txn;
11537 	ctx.idx = 0;
11538 	if (http_find_header2("Host", 4, chn->buf->p, &txn->hdr_idx, &ctx)) {
11539 		/* OK we have the header value in ctx.line+ctx.val for ctx.vlen bytes */
11540 		ptr = ctx.line + ctx.val;
11541 		len = ctx.vlen;
11542 		while (len--)
11543 			hash = *(ptr++) + (hash << 6) + (hash << 16) - hash;
11544 	}
11545 
11546 	/* now retrieve the path */
11547 	end = chn->buf->p + txn->req.sl.rq.u + txn->req.sl.rq.u_l;
11548 	beg = http_get_path(txn);
11549 	if (!beg)
11550 		beg = end;
11551 
11552 	for (ptr = beg; ptr < end ; ptr++);
11553 
11554 	if (beg < ptr && *beg == '/') {
11555 		while (beg < ptr)
11556 			hash = *(beg++) + (hash << 6) + (hash << 16) - hash;
11557 	}
11558 	hash = full_hash(hash);
11559 
11560 	smp->data.type = SMP_T_SINT;
11561 	smp->data.u.sint = hash;
11562 	smp->flags = SMP_F_VOL_1ST;
11563 	return 1;
11564 }
11565 
11566 /* This concatenates the source address with the 32-bit hash of the Host and
11567  * URL as returned by smp_fetch_base32(). The idea is to have per-source and
11568  * per-url counters. The result is a binary block from 8 to 20 bytes depending
11569  * on the source address length. The URL hash is stored before the address so
11570  * that in environments where IPv6 is insignificant, truncating the output to
11571  * 8 bytes would still work.
11572  */
11573 static int
smp_fetch_url32_src(const struct arg * args,struct sample * smp,const char * kw,void * private)11574 smp_fetch_url32_src(const struct arg *args, struct sample *smp, const char *kw, void *private)
11575 {
11576 	struct chunk *temp;
11577 	struct connection *cli_conn = objt_conn(smp->sess->origin);
11578 
11579 	if (!cli_conn)
11580 		return 0;
11581 
11582 	if (!smp_fetch_url32(args, smp, kw, private))
11583 		return 0;
11584 
11585 	temp = get_trash_chunk();
11586 	*(unsigned int *)temp->str = htonl(smp->data.u.sint);
11587 	temp->len += sizeof(unsigned int);
11588 
11589 	switch (cli_conn->addr.from.ss_family) {
11590 	case AF_INET:
11591 		memcpy(temp->str + temp->len, &((struct sockaddr_in *)&cli_conn->addr.from)->sin_addr, 4);
11592 		temp->len += 4;
11593 		break;
11594 	case AF_INET6:
11595 		memcpy(temp->str + temp->len, &((struct sockaddr_in6 *)&cli_conn->addr.from)->sin6_addr, 16);
11596 		temp->len += 16;
11597 		break;
11598 	default:
11599 		return 0;
11600 	}
11601 
11602 	smp->data.u.str = *temp;
11603 	smp->data.type = SMP_T_BIN;
11604 	return 1;
11605 }
11606 
11607 /* This function is used to validate the arguments passed to any "hdr" fetch
11608  * keyword. These keywords support an optional positive or negative occurrence
11609  * number. We must ensure that the number is greater than -MAX_HDR_HISTORY. It
11610  * is assumed that the types are already the correct ones. Returns 0 on error,
11611  * non-zero if OK. If <err> is not NULL, it will be filled with a pointer to an
11612  * error message in case of error, that the caller is responsible for freeing.
11613  * The initial location must either be freeable or NULL.
11614  */
val_hdr(struct arg * arg,char ** err_msg)11615 int val_hdr(struct arg *arg, char **err_msg)
11616 {
11617 	if (arg && arg[1].type == ARGT_SINT && arg[1].data.sint < -MAX_HDR_HISTORY) {
11618 		memprintf(err_msg, "header occurrence must be >= %d", -MAX_HDR_HISTORY);
11619 		return 0;
11620 	}
11621 	return 1;
11622 }
11623 
11624 /* takes an UINT value on input supposed to represent the time since EPOCH,
11625  * adds an optional offset found in args[0] and emits a string representing
11626  * the date in RFC-1123/5322 format.
11627  */
sample_conv_http_date(const struct arg * args,struct sample * smp,void * private)11628 static int sample_conv_http_date(const struct arg *args, struct sample *smp, void *private)
11629 {
11630 	const char day[7][4] = { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
11631 	const char mon[12][4] = { "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
11632 	struct chunk *temp;
11633 	struct tm *tm;
11634 	/* With high numbers, the date returned can be negative, the 55 bits mask prevent this. */
11635 	time_t curr_date = smp->data.u.sint & 0x007fffffffffffffLL;
11636 
11637 	/* add offset */
11638 	if (args && (args[0].type == ARGT_SINT))
11639 		curr_date += args[0].data.sint;
11640 
11641 	tm = gmtime(&curr_date);
11642 	if (!tm)
11643 		return 0;
11644 
11645 	temp = get_trash_chunk();
11646 	temp->len = snprintf(temp->str, temp->size - temp->len,
11647 			     "%s, %02d %s %04d %02d:%02d:%02d GMT",
11648 			     day[tm->tm_wday], tm->tm_mday, mon[tm->tm_mon], 1900+tm->tm_year,
11649 			     tm->tm_hour, tm->tm_min, tm->tm_sec);
11650 
11651 	smp->data.u.str = *temp;
11652 	smp->data.type = SMP_T_STR;
11653 	return 1;
11654 }
11655 
11656 /* Match language range with language tag. RFC2616 14.4:
11657  *
11658  *    A language-range matches a language-tag if it exactly equals
11659  *    the tag, or if it exactly equals a prefix of the tag such
11660  *    that the first tag character following the prefix is "-".
11661  *
11662  * Return 1 if the strings match, else return 0.
11663  */
language_range_match(const char * range,int range_len,const char * tag,int tag_len)11664 static inline int language_range_match(const char *range, int range_len,
11665                                        const char *tag, int tag_len)
11666 {
11667 	const char *end = range + range_len;
11668 	const char *tend = tag + tag_len;
11669 	while (range < end) {
11670 		if (*range == '-' && tag == tend)
11671 			return 1;
11672 		if (*range != *tag || tag == tend)
11673 			return 0;
11674 		range++;
11675 		tag++;
11676 	}
11677 	/* Return true only if the last char of the tag is matched. */
11678 	return tag == tend;
11679 }
11680 
11681 /* Arguments: The list of expected value, the number of parts returned and the separator */
sample_conv_q_prefered(const struct arg * args,struct sample * smp,void * private)11682 static int sample_conv_q_prefered(const struct arg *args, struct sample *smp, void *private)
11683 {
11684 	const char *al = smp->data.u.str.str;
11685 	const char *end = al + smp->data.u.str.len;
11686 	const char *token;
11687 	int toklen;
11688 	int qvalue;
11689 	const char *str;
11690 	const char *w;
11691 	int best_q = 0;
11692 
11693 	/* Set the constant to the sample, because the output of the
11694 	 * function will be peek in the constant configuration string.
11695 	 */
11696 	smp->flags |= SMP_F_CONST;
11697 	smp->data.u.str.size = 0;
11698 	smp->data.u.str.str = "";
11699 	smp->data.u.str.len = 0;
11700 
11701 	/* Parse the accept language */
11702 	while (1) {
11703 
11704 		/* Jump spaces, quit if the end is detected. */
11705 		while (al < end && isspace((unsigned char)*al))
11706 			al++;
11707 		if (al >= end)
11708 			break;
11709 
11710 		/* Start of the fisrt word. */
11711 		token = al;
11712 
11713 		/* Look for separator: isspace(), ',' or ';'. Next value if 0 length word. */
11714 		while (al < end && *al != ';' && *al != ',' && !isspace((unsigned char)*al))
11715 			al++;
11716 		if (al == token)
11717 			goto expect_comma;
11718 
11719 		/* Length of the token. */
11720 		toklen = al - token;
11721 		qvalue = 1000;
11722 
11723 		/* Check if the token exists in the list. If the token not exists,
11724 		 * jump to the next token.
11725 		 */
11726 		str = args[0].data.str.str;
11727 		w = str;
11728 		while (1) {
11729 			if (*str == ';' || *str == '\0') {
11730 				if (language_range_match(token, toklen, w, str-w))
11731 					goto look_for_q;
11732 				if (*str == '\0')
11733 					goto expect_comma;
11734 				w = str + 1;
11735 			}
11736 			str++;
11737 		}
11738 		goto expect_comma;
11739 
11740 look_for_q:
11741 
11742 		/* Jump spaces, quit if the end is detected. */
11743 		while (al < end && isspace((unsigned char)*al))
11744 			al++;
11745 		if (al >= end)
11746 			goto process_value;
11747 
11748 		/* If ',' is found, process the result */
11749 		if (*al == ',')
11750 			goto process_value;
11751 
11752 		/* If the character is different from ';', look
11753 		 * for the end of the header part in best effort.
11754 		 */
11755 		if (*al != ';')
11756 			goto expect_comma;
11757 
11758 		/* Assumes that the char is ';', now expect "q=". */
11759 		al++;
11760 
11761 		/* Jump spaces, process value if the end is detected. */
11762 		while (al < end && isspace((unsigned char)*al))
11763 			al++;
11764 		if (al >= end)
11765 			goto process_value;
11766 
11767 		/* Expect 'q'. If no 'q', continue in best effort */
11768 		if (*al != 'q')
11769 			goto process_value;
11770 		al++;
11771 
11772 		/* Jump spaces, process value if the end is detected. */
11773 		while (al < end && isspace((unsigned char)*al))
11774 			al++;
11775 		if (al >= end)
11776 			goto process_value;
11777 
11778 		/* Expect '='. If no '=', continue in best effort */
11779 		if (*al != '=')
11780 			goto process_value;
11781 		al++;
11782 
11783 		/* Jump spaces, process value if the end is detected. */
11784 		while (al < end && isspace((unsigned char)*al))
11785 			al++;
11786 		if (al >= end)
11787 			goto process_value;
11788 
11789 		/* Parse the q value. */
11790 		qvalue = parse_qvalue(al, &al);
11791 
11792 process_value:
11793 
11794 		/* If the new q value is the best q value, then store the associated
11795 		 * language in the response. If qvalue is the biggest value (1000),
11796 		 * break the process.
11797 		 */
11798 		if (qvalue > best_q) {
11799 			smp->data.u.str.str = (char *)w;
11800 			smp->data.u.str.len = str - w;
11801 			if (qvalue >= 1000)
11802 				break;
11803 			best_q = qvalue;
11804 		}
11805 
11806 expect_comma:
11807 
11808 		/* Expect comma or end. If the end is detected, quit the loop. */
11809 		while (al < end && *al != ',')
11810 			al++;
11811 		if (al >= end)
11812 			break;
11813 
11814 		/* Comma is found, jump it and restart the analyzer. */
11815 		al++;
11816 	}
11817 
11818 	/* Set default value if required. */
11819 	if (smp->data.u.str.len == 0 && args[1].type == ARGT_STR) {
11820 		smp->data.u.str.str = args[1].data.str.str;
11821 		smp->data.u.str.len = args[1].data.str.len;
11822 	}
11823 
11824 	/* Return true only if a matching language was found. */
11825 	return smp->data.u.str.len != 0;
11826 }
11827 
11828 /* This fetch url-decode any input string. */
sample_conv_url_dec(const struct arg * args,struct sample * smp,void * private)11829 static int sample_conv_url_dec(const struct arg *args, struct sample *smp, void *private)
11830 {
11831 	int in_form = 0;
11832 
11833 	/* If the constant flag is set or if not size is avalaible at
11834 	 * the end of the buffer, copy the string in other buffer
11835 	  * before decoding.
11836 	 */
11837 	if (smp->flags & SMP_F_CONST || smp->data.u.str.size <= smp->data.u.str.len) {
11838 		struct chunk *str = get_trash_chunk();
11839 		memcpy(str->str, smp->data.u.str.str, smp->data.u.str.len);
11840 		smp->data.u.str.str = str->str;
11841 		smp->data.u.str.size = str->size;
11842 		smp->flags &= ~SMP_F_CONST;
11843 	}
11844 
11845 	/* Add final \0 required by url_decode(), and convert the input string. */
11846 	smp->data.u.str.str[smp->data.u.str.len] = '\0';
11847 
11848 	if (args && (args[0].type == ARGT_SINT))
11849 		in_form = !!args[0].data.sint;
11850 
11851 	smp->data.u.str.len = url_decode(smp->data.u.str.str, in_form);
11852 	return (smp->data.u.str.len >= 0);
11853 }
11854 
smp_conv_req_capture(const struct arg * args,struct sample * smp,void * private)11855 static int smp_conv_req_capture(const struct arg *args, struct sample *smp, void *private)
11856 {
11857 	struct proxy *fe;
11858 	int idx, i;
11859 	struct cap_hdr *hdr;
11860 	int len;
11861 
11862 	if (!args || args->type != ARGT_SINT)
11863 		return 0;
11864 
11865 	if (!smp->strm)
11866 		return 0;
11867 
11868 	fe = strm_fe(smp->strm);
11869 	idx = args->data.sint;
11870 
11871 	/* Check the availibity of the capture id. */
11872 	if (idx > fe->nb_req_cap - 1)
11873 		return 0;
11874 
11875 	/* Look for the original configuration. */
11876 	for (hdr = fe->req_cap, i = fe->nb_req_cap - 1;
11877 	     hdr != NULL && i != idx ;
11878 	     i--, hdr = hdr->next);
11879 	if (!hdr)
11880 		return 0;
11881 
11882 	/* check for the memory allocation */
11883 	if (smp->strm->req_cap[hdr->index] == NULL)
11884 		smp->strm->req_cap[hdr->index] = pool_alloc(hdr->pool);
11885 	if (smp->strm->req_cap[hdr->index] == NULL)
11886 		return 0;
11887 
11888 	/* Check length. */
11889 	len = smp->data.u.str.len;
11890 	if (len > hdr->len)
11891 		len = hdr->len;
11892 
11893 	/* Capture input data. */
11894 	memcpy(smp->strm->req_cap[idx], smp->data.u.str.str, len);
11895 	smp->strm->req_cap[idx][len] = '\0';
11896 
11897 	return 1;
11898 }
11899 
smp_conv_res_capture(const struct arg * args,struct sample * smp,void * private)11900 static int smp_conv_res_capture(const struct arg *args, struct sample *smp, void *private)
11901 {
11902 	struct proxy *fe;
11903 	int idx, i;
11904 	struct cap_hdr *hdr;
11905 	int len;
11906 
11907 	if (!args || args->type != ARGT_SINT)
11908 		return 0;
11909 
11910 	if (!smp->strm)
11911 		return 0;
11912 
11913 	fe = strm_fe(smp->strm);
11914 	idx = args->data.sint;
11915 
11916 	/* Check the availibity of the capture id. */
11917 	if (idx > fe->nb_rsp_cap - 1)
11918 		return 0;
11919 
11920 	/* Look for the original configuration. */
11921 	for (hdr = fe->rsp_cap, i = fe->nb_rsp_cap - 1;
11922 	     hdr != NULL && i != idx ;
11923 	     i--, hdr = hdr->next);
11924 	if (!hdr)
11925 		return 0;
11926 
11927 	/* check for the memory allocation */
11928 	if (smp->strm->res_cap[hdr->index] == NULL)
11929 		smp->strm->res_cap[hdr->index] = pool_alloc(hdr->pool);
11930 	if (smp->strm->res_cap[hdr->index] == NULL)
11931 		return 0;
11932 
11933 	/* Check length. */
11934 	len = smp->data.u.str.len;
11935 	if (len > hdr->len)
11936 		len = hdr->len;
11937 
11938 	/* Capture input data. */
11939 	memcpy(smp->strm->res_cap[idx], smp->data.u.str.str, len);
11940 	smp->strm->res_cap[idx][len] = '\0';
11941 
11942 	return 1;
11943 }
11944 
11945 /* This function executes one of the set-{method,path,query,uri} actions. It
11946  * takes the string from the variable 'replace' with length 'len', then modifies
11947  * the relevant part of the request line accordingly. Then it updates various
11948  * pointers to the next elements which were moved, and the total buffer length.
11949  * It finds the action to be performed in p[2], previously filled by function
11950  * parse_set_req_line(). It returns 0 in case of success, -1 in case of internal
11951  * error, though this can be revisited when this code is finally exploited.
11952  *
11953  * 'action' can be '0' to replace method, '1' to replace path, '2' to replace
11954  * query string and 3 to replace uri.
11955  *
11956  * In query string case, the mark question '?' must be set at the start of the
11957  * string by the caller, event if the replacement query string is empty.
11958  */
http_replace_req_line(int action,const char * replace,int len,struct proxy * px,struct stream * s)11959 int http_replace_req_line(int action, const char *replace, int len,
11960                           struct proxy *px, struct stream *s)
11961 {
11962 	struct http_txn *txn = s->txn;
11963 	char *cur_ptr, *cur_end;
11964 	int offset = 0;
11965 	int delta;
11966 
11967 	switch (action) {
11968 	case 0: // method
11969 		cur_ptr = s->req.buf->p;
11970 		cur_end = cur_ptr + txn->req.sl.rq.m_l;
11971 
11972 		/* adjust req line offsets and lengths */
11973 		delta = len - offset - (cur_end - cur_ptr);
11974 		txn->req.sl.rq.m_l += delta;
11975 		txn->req.sl.rq.u   += delta;
11976 		txn->req.sl.rq.v   += delta;
11977 		break;
11978 
11979 	case 1: // path
11980 		cur_ptr = http_get_path(txn);
11981 		if (!cur_ptr)
11982 			cur_ptr = s->req.buf->p + txn->req.sl.rq.u;
11983 
11984 		cur_end = cur_ptr;
11985 		while (cur_end < s->req.buf->p + txn->req.sl.rq.u + txn->req.sl.rq.u_l && *cur_end != '?')
11986 			cur_end++;
11987 
11988 		/* adjust req line offsets and lengths */
11989 		delta = len - offset - (cur_end - cur_ptr);
11990 		txn->req.sl.rq.u_l += delta;
11991 		txn->req.sl.rq.v   += delta;
11992 		break;
11993 
11994 	case 2: // query
11995 		offset = 1;
11996 		cur_ptr = s->req.buf->p + txn->req.sl.rq.u;
11997 		cur_end = cur_ptr + txn->req.sl.rq.u_l;
11998 		while (cur_ptr < cur_end && *cur_ptr != '?')
11999 			cur_ptr++;
12000 
12001 		/* skip the question mark or indicate that we must insert it
12002 		 * (but only if the format string is not empty then).
12003 		 */
12004 		if (cur_ptr < cur_end)
12005 			cur_ptr++;
12006 		else if (len > 1)
12007 			offset = 0;
12008 
12009 		/* adjust req line offsets and lengths */
12010 		delta = len - offset - (cur_end - cur_ptr);
12011 		txn->req.sl.rq.u_l += delta;
12012 		txn->req.sl.rq.v   += delta;
12013 		break;
12014 
12015 	case 3: // uri
12016 		cur_ptr = s->req.buf->p + txn->req.sl.rq.u;
12017 		cur_end = cur_ptr + txn->req.sl.rq.u_l;
12018 
12019 		/* adjust req line offsets and lengths */
12020 		delta = len - offset - (cur_end - cur_ptr);
12021 		txn->req.sl.rq.u_l += delta;
12022 		txn->req.sl.rq.v   += delta;
12023 		break;
12024 
12025 	default:
12026 		return -1;
12027 	}
12028 
12029 	/* commit changes and adjust end of message */
12030 	delta = buffer_replace2(s->req.buf, cur_ptr, cur_end, replace + offset, len - offset);
12031 	txn->req.sl.rq.l += delta;
12032 	txn->hdr_idx.v[0].len += delta;
12033 	http_msg_move_end(&txn->req, delta);
12034 	return 0;
12035 }
12036 
12037 /* This function replace the HTTP status code and the associated message. The
12038  * variable <status> contains the new status code. This function never fails.
12039  */
http_set_status(unsigned int status,const char * reason,struct stream * s)12040 void http_set_status(unsigned int status, const char *reason, struct stream *s)
12041 {
12042 	struct http_txn *txn = s->txn;
12043 	char *cur_ptr, *cur_end;
12044 	int delta;
12045 	char *res;
12046 	int c_l;
12047 	const char *msg = reason;
12048 	int msg_len;
12049 
12050 	chunk_reset(&trash);
12051 
12052 	res = ultoa_o(status, trash.str, trash.size);
12053 	c_l = res - trash.str;
12054 
12055 	trash.str[c_l] = ' ';
12056 	trash.len = c_l + 1;
12057 
12058 	/* Do we have a custom reason format string? */
12059 	if (msg == NULL)
12060 		msg = get_reason(status);
12061 	msg_len = strlen(msg);
12062 	strncpy(&trash.str[trash.len], msg, trash.size - trash.len);
12063 	trash.len += msg_len;
12064 
12065 	cur_ptr = s->res.buf->p + txn->rsp.sl.st.c;
12066 	cur_end = s->res.buf->p + txn->rsp.sl.st.r + txn->rsp.sl.st.r_l;
12067 
12068 	/* commit changes and adjust message */
12069 	delta = buffer_replace2(s->res.buf, cur_ptr, cur_end, trash.str, trash.len);
12070 
12071 	/* adjust res line offsets and lengths */
12072 	txn->rsp.sl.st.r += c_l - txn->rsp.sl.st.c_l;
12073 	txn->rsp.sl.st.c_l = c_l;
12074 	txn->rsp.sl.st.r_l = msg_len;
12075 
12076 	delta = trash.len - (cur_end - cur_ptr);
12077 	txn->rsp.sl.st.l += delta;
12078 	txn->hdr_idx.v[0].len += delta;
12079 	http_msg_move_end(&txn->rsp, delta);
12080 }
12081 
12082 /* This function executes one of the set-{method,path,query,uri} actions. It
12083  * builds a string in the trash from the specified format string. It finds
12084  * the action to be performed in <http.action>, previously filled by function
12085  * parse_set_req_line(). The replacement action is excuted by the function
12086  * http_action_set_req_line(). It always returns ACT_RET_CONT. If an error
12087  * occurs the action is canceled, but the rule processing continue.
12088  */
http_action_set_req_line(struct act_rule * rule,struct proxy * px,struct session * sess,struct stream * s,int flags)12089 enum act_return http_action_set_req_line(struct act_rule *rule, struct proxy *px,
12090                                          struct session *sess, struct stream *s, int flags)
12091 {
12092 	struct chunk *replace;
12093 	enum act_return ret = ACT_RET_ERR;
12094 
12095 	replace = alloc_trash_chunk();
12096 	if (!replace)
12097 		goto leave;
12098 
12099 	/* If we have to create a query string, prepare a '?'. */
12100 	if (rule->arg.http.action == 2)
12101 		replace->str[replace->len++] = '?';
12102 	replace->len += build_logline(s, replace->str + replace->len, replace->size - replace->len,
12103 	                              &rule->arg.http.logfmt);
12104 
12105 	http_replace_req_line(rule->arg.http.action, replace->str, replace->len, px, s);
12106 
12107 	ret = ACT_RET_CONT;
12108 
12109 leave:
12110 	free_trash_chunk(replace);
12111 	return ret;
12112 }
12113 
12114 /* This function is just a compliant action wrapper for "set-status". */
action_http_set_status(struct act_rule * rule,struct proxy * px,struct session * sess,struct stream * s,int flags)12115 enum act_return action_http_set_status(struct act_rule *rule, struct proxy *px,
12116                                        struct session *sess, struct stream *s, int flags)
12117 {
12118 	http_set_status(rule->arg.status.code, rule->arg.status.reason, s);
12119 	return ACT_RET_CONT;
12120 }
12121 
12122 /* parse an http-request action among :
12123  *   set-method
12124  *   set-path
12125  *   set-query
12126  *   set-uri
12127  *
12128  * All of them accept a single argument of type string representing a log-format.
12129  * The resulting rule makes use of arg->act.p[0..1] to store the log-format list
12130  * head, and p[2] to store the action as an int (0=method, 1=path, 2=query, 3=uri).
12131  * It returns ACT_RET_PRS_OK on success, ACT_RET_PRS_ERR on error.
12132  */
parse_set_req_line(const char ** args,int * orig_arg,struct proxy * px,struct act_rule * rule,char ** err)12133 enum act_parse_ret parse_set_req_line(const char **args, int *orig_arg, struct proxy *px,
12134                                       struct act_rule *rule, char **err)
12135 {
12136 	int cur_arg = *orig_arg;
12137 
12138 	rule->action = ACT_CUSTOM;
12139 
12140 	switch (args[0][4]) {
12141 	case 'm' :
12142 		rule->arg.http.action = 0;
12143 		rule->action_ptr = http_action_set_req_line;
12144 		break;
12145 	case 'p' :
12146 		rule->arg.http.action = 1;
12147 		rule->action_ptr = http_action_set_req_line;
12148 		break;
12149 	case 'q' :
12150 		rule->arg.http.action = 2;
12151 		rule->action_ptr = http_action_set_req_line;
12152 		break;
12153 	case 'u' :
12154 		rule->arg.http.action = 3;
12155 		rule->action_ptr = http_action_set_req_line;
12156 		break;
12157 	default:
12158 		memprintf(err, "internal error: unhandled action '%s'", args[0]);
12159 		return ACT_RET_PRS_ERR;
12160 	}
12161 
12162 	if (!*args[cur_arg] ||
12163 	    (*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
12164 		memprintf(err, "expects exactly 1 argument <format>");
12165 		return ACT_RET_PRS_ERR;
12166 	}
12167 
12168 	LIST_INIT(&rule->arg.http.logfmt);
12169 	px->conf.args.ctx = ARGC_HRQ;
12170 	if (!parse_logformat_string(args[cur_arg], px, &rule->arg.http.logfmt, LOG_OPT_HTTP,
12171 	                            (px->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, err)) {
12172 		return ACT_RET_PRS_ERR;
12173 	}
12174 
12175 	(*orig_arg)++;
12176 	return ACT_RET_PRS_OK;
12177 }
12178 
12179 /* parse set-status action:
12180  * This action accepts a single argument of type int representing
12181  * an http status code. It returns ACT_RET_PRS_OK on success,
12182  * ACT_RET_PRS_ERR on error.
12183  */
parse_http_set_status(const char ** args,int * orig_arg,struct proxy * px,struct act_rule * rule,char ** err)12184 enum act_parse_ret parse_http_set_status(const char **args, int *orig_arg, struct proxy *px,
12185                                          struct act_rule *rule, char **err)
12186 {
12187 	char *error;
12188 
12189 	rule->action = ACT_CUSTOM;
12190 	rule->action_ptr = action_http_set_status;
12191 
12192 	/* Check if an argument is available */
12193 	if (!*args[*orig_arg]) {
12194 		memprintf(err, "expects 1 argument: <status>; or 3 arguments: <status> reason <fmt>");
12195 		return ACT_RET_PRS_ERR;
12196 	}
12197 
12198 	/* convert status code as integer */
12199 	rule->arg.status.code = strtol(args[*orig_arg], &error, 10);
12200 	if (*error != '\0' || rule->arg.status.code < 100 || rule->arg.status.code > 999) {
12201 		memprintf(err, "expects an integer status code between 100 and 999");
12202 		return ACT_RET_PRS_ERR;
12203 	}
12204 
12205 	(*orig_arg)++;
12206 
12207 	/* set custom reason string */
12208 	rule->arg.status.reason = NULL; // If null, we use the default reason for the status code.
12209 	if (*args[*orig_arg] && strcmp(args[*orig_arg], "reason") == 0 &&
12210 	    (*args[*orig_arg + 1] && strcmp(args[*orig_arg + 1], "if") != 0 && strcmp(args[*orig_arg + 1], "unless") != 0)) {
12211 		(*orig_arg)++;
12212 		rule->arg.status.reason = strdup(args[*orig_arg]);
12213 		(*orig_arg)++;
12214 	}
12215 
12216 	return ACT_RET_PRS_OK;
12217 }
12218 
12219 /* This function executes the "reject" HTTP action. It clears the request and
12220  * response buffer without sending any response. It can be useful as an HTTP
12221  * alternative to the silent-drop action to defend against DoS attacks, and may
12222  * also be used with HTTP/2 to close a connection instead of just a stream.
12223  * The txn status is unchanged, indicating no response was sent. The termination
12224  * flags will indicate "PR". It always returns ACT_RET_STOP.
12225  */
http_action_reject(struct act_rule * rule,struct proxy * px,struct session * sess,struct stream * s,int flags)12226 enum act_return http_action_reject(struct act_rule *rule, struct proxy *px,
12227                                    struct session *sess, struct stream *s, int flags)
12228 {
12229 	si_must_kill_conn(chn_prod(&s->req));
12230 	channel_abort(&s->req);
12231 	channel_abort(&s->res);
12232 	s->req.analysers &= AN_REQ_FLT_END;
12233 	s->res.analysers &= AN_RES_FLT_END;
12234 
12235 	HA_ATOMIC_ADD(&s->be->be_counters.denied_req, 1);
12236 	HA_ATOMIC_ADD(&sess->fe->fe_counters.denied_req, 1);
12237 	if (sess->listener && sess->listener->counters)
12238 		HA_ATOMIC_ADD(&sess->listener->counters->denied_req, 1);
12239 
12240 	if (!(s->flags & SF_ERR_MASK))
12241 		s->flags |= SF_ERR_PRXCOND;
12242 	if (!(s->flags & SF_FINST_MASK))
12243 		s->flags |= SF_FINST_R;
12244 
12245 	return ACT_RET_STOP;
12246 }
12247 
12248 /* parse the "reject" action:
12249  * This action takes no argument and returns ACT_RET_PRS_OK on success,
12250  * ACT_RET_PRS_ERR on error.
12251  */
parse_http_action_reject(const char ** args,int * orig_arg,struct proxy * px,struct act_rule * rule,char ** err)12252 enum act_parse_ret parse_http_action_reject(const char **args, int *orig_arg, struct proxy *px,
12253                                             struct act_rule *rule, char **err)
12254 {
12255 	rule->action = ACT_CUSTOM;
12256 	rule->action_ptr = http_action_reject;
12257 	return ACT_RET_PRS_OK;
12258 }
12259 
12260 /* This function executes the "capture" action. It executes a fetch expression,
12261  * turns the result into a string and puts it in a capture slot. It always
12262  * returns 1. If an error occurs the action is cancelled, but the rule
12263  * processing continues.
12264  */
http_action_req_capture(struct act_rule * rule,struct proxy * px,struct session * sess,struct stream * s,int flags)12265 enum act_return http_action_req_capture(struct act_rule *rule, struct proxy *px,
12266                                         struct session *sess, struct stream *s, int flags)
12267 {
12268 	struct sample *key;
12269 	struct cap_hdr *h = rule->arg.cap.hdr;
12270 	char **cap = s->req_cap;
12271 	int len;
12272 
12273 	key = sample_fetch_as_type(s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->arg.cap.expr, SMP_T_STR);
12274 	if (!key)
12275 		return ACT_RET_CONT;
12276 
12277 	if (cap[h->index] == NULL)
12278 		cap[h->index] = pool_alloc(h->pool);
12279 
12280 	if (cap[h->index] == NULL) /* no more capture memory */
12281 		return ACT_RET_CONT;
12282 
12283 	len = key->data.u.str.len;
12284 	if (len > h->len)
12285 		len = h->len;
12286 
12287 	memcpy(cap[h->index], key->data.u.str.str, len);
12288 	cap[h->index][len] = 0;
12289 	return ACT_RET_CONT;
12290 }
12291 
12292 /* This function executes the "capture" action and store the result in a
12293  * capture slot if exists. It executes a fetch expression, turns the result
12294  * into a string and puts it in a capture slot. It always returns 1. If an
12295  * error occurs the action is cancelled, but the rule processing continues.
12296  */
http_action_req_capture_by_id(struct act_rule * rule,struct proxy * px,struct session * sess,struct stream * s,int flags)12297 enum act_return http_action_req_capture_by_id(struct act_rule *rule, struct proxy *px,
12298                                               struct session *sess, struct stream *s, int flags)
12299 {
12300 	struct sample *key;
12301 	struct cap_hdr *h;
12302 	char **cap = s->req_cap;
12303 	struct proxy *fe = strm_fe(s);
12304 	int len;
12305 	int i;
12306 
12307 	/* Look for the original configuration. */
12308 	for (h = fe->req_cap, i = fe->nb_req_cap - 1;
12309 	     h != NULL && i != rule->arg.capid.idx ;
12310 	     i--, h = h->next);
12311 	if (!h)
12312 		return ACT_RET_CONT;
12313 
12314 	key = sample_fetch_as_type(s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->arg.capid.expr, SMP_T_STR);
12315 	if (!key)
12316 		return ACT_RET_CONT;
12317 
12318 	if (cap[h->index] == NULL)
12319 		cap[h->index] = pool_alloc(h->pool);
12320 
12321 	if (cap[h->index] == NULL) /* no more capture memory */
12322 		return ACT_RET_CONT;
12323 
12324 	len = key->data.u.str.len;
12325 	if (len > h->len)
12326 		len = h->len;
12327 
12328 	memcpy(cap[h->index], key->data.u.str.str, len);
12329 	cap[h->index][len] = 0;
12330 	return ACT_RET_CONT;
12331 }
12332 
12333 /* Check an "http-request capture" action.
12334  *
12335  * The function returns 1 in success case, otherwise, it returns 0 and err is
12336  * filled.
12337  */
check_http_req_capture(struct act_rule * rule,struct proxy * px,char ** err)12338 int check_http_req_capture(struct act_rule *rule, struct proxy *px, char **err)
12339 {
12340 	if (rule->action_ptr != http_action_req_capture_by_id)
12341 		return 1;
12342 
12343 	/* capture slots can only be declared in frontends, so we can't check their
12344 	 * existence in backends at configuration parsing step
12345 	 */
12346 	if (px->cap & PR_CAP_FE && rule->arg.capid.idx >= px->nb_req_cap) {
12347 		memprintf(err, "unable to find capture id '%d' referenced by http-request capture rule",
12348 			  rule->arg.capid.idx);
12349 		return 0;
12350 	}
12351 
12352 	return 1;
12353 }
12354 
12355 /* parse an "http-request capture" action. It takes a single argument which is
12356  * a sample fetch expression. It stores the expression into arg->act.p[0] and
12357  * the allocated hdr_cap struct or the preallocated "id" into arg->act.p[1].
12358  * It returns ACT_RET_PRS_OK on success, ACT_RET_PRS_ERR on error.
12359  */
parse_http_req_capture(const char ** args,int * orig_arg,struct proxy * px,struct act_rule * rule,char ** err)12360 enum act_parse_ret parse_http_req_capture(const char **args, int *orig_arg, struct proxy *px,
12361                                           struct act_rule *rule, char **err)
12362 {
12363 	struct sample_expr *expr;
12364 	struct cap_hdr *hdr;
12365 	int cur_arg;
12366 	int len = 0;
12367 
12368 	for (cur_arg = *orig_arg; cur_arg < *orig_arg + 3 && *args[cur_arg]; cur_arg++)
12369 		if (strcmp(args[cur_arg], "if") == 0 ||
12370 		    strcmp(args[cur_arg], "unless") == 0)
12371 			break;
12372 
12373 	if (cur_arg < *orig_arg + 3) {
12374 		memprintf(err, "expects <expression> [ 'len' <length> | id <idx> ]");
12375 		return ACT_RET_PRS_ERR;
12376 	}
12377 
12378 	cur_arg = *orig_arg;
12379 	expr = sample_parse_expr((char **)args, &cur_arg, px->conf.args.file, px->conf.args.line, err, &px->conf.args);
12380 	if (!expr)
12381 		return ACT_RET_PRS_ERR;
12382 
12383 	if (!(expr->fetch->val & SMP_VAL_FE_HRQ_HDR)) {
12384 		memprintf(err,
12385 			  "fetch method '%s' extracts information from '%s', none of which is available here",
12386 			  args[cur_arg-1], sample_src_names(expr->fetch->use));
12387 		free(expr);
12388 		return ACT_RET_PRS_ERR;
12389 	}
12390 
12391 	if (!args[cur_arg] || !*args[cur_arg]) {
12392 		memprintf(err, "expects 'len or 'id'");
12393 		free(expr);
12394 		return ACT_RET_PRS_ERR;
12395 	}
12396 
12397 	if (strcmp(args[cur_arg], "len") == 0) {
12398 		cur_arg++;
12399 
12400 		if (!(px->cap & PR_CAP_FE)) {
12401 			memprintf(err, "proxy '%s' has no frontend capability", px->id);
12402 			return ACT_RET_PRS_ERR;
12403 		}
12404 
12405 		px->conf.args.ctx = ARGC_CAP;
12406 
12407 		if (!args[cur_arg]) {
12408 			memprintf(err, "missing length value");
12409 			free(expr);
12410 			return ACT_RET_PRS_ERR;
12411 		}
12412 		/* we copy the table name for now, it will be resolved later */
12413 		len = atoi(args[cur_arg]);
12414 		if (len <= 0) {
12415 			memprintf(err, "length must be > 0");
12416 			free(expr);
12417 			return ACT_RET_PRS_ERR;
12418 		}
12419 		cur_arg++;
12420 
12421 		if (!len) {
12422 			memprintf(err, "a positive 'len' argument is mandatory");
12423 			free(expr);
12424 			return ACT_RET_PRS_ERR;
12425 		}
12426 
12427 		hdr = calloc(1, sizeof(*hdr));
12428 		hdr->next = px->req_cap;
12429 		hdr->name = NULL; /* not a header capture */
12430 		hdr->namelen = 0;
12431 		hdr->len = len;
12432 		hdr->pool = create_pool("caphdr", hdr->len + 1, MEM_F_SHARED);
12433 		hdr->index = px->nb_req_cap++;
12434 
12435 		px->req_cap = hdr;
12436 		px->to_log |= LW_REQHDR;
12437 
12438 		rule->action       = ACT_CUSTOM;
12439 		rule->action_ptr   = http_action_req_capture;
12440 		rule->arg.cap.expr = expr;
12441 		rule->arg.cap.hdr  = hdr;
12442 	}
12443 
12444 	else if (strcmp(args[cur_arg], "id") == 0) {
12445 		int id;
12446 		char *error;
12447 
12448 		cur_arg++;
12449 
12450 		if (!args[cur_arg]) {
12451 			memprintf(err, "missing id value");
12452 			free(expr);
12453 			return ACT_RET_PRS_ERR;
12454 		}
12455 
12456 		id = strtol(args[cur_arg], &error, 10);
12457 		if (*error != '\0') {
12458 			memprintf(err, "cannot parse id '%s'", args[cur_arg]);
12459 			free(expr);
12460 			return ACT_RET_PRS_ERR;
12461 		}
12462 		cur_arg++;
12463 
12464 		px->conf.args.ctx = ARGC_CAP;
12465 
12466 		rule->action       = ACT_CUSTOM;
12467 		rule->action_ptr   = http_action_req_capture_by_id;
12468 		rule->check_ptr    = check_http_req_capture;
12469 		rule->arg.capid.expr = expr;
12470 		rule->arg.capid.idx  = id;
12471 	}
12472 
12473 	else {
12474 		memprintf(err, "expects 'len' or 'id', found '%s'", args[cur_arg]);
12475 		free(expr);
12476 		return ACT_RET_PRS_ERR;
12477 	}
12478 
12479 	*orig_arg = cur_arg;
12480 	return ACT_RET_PRS_OK;
12481 }
12482 
12483 /* This function executes the "capture" action and store the result in a
12484  * capture slot if exists. It executes a fetch expression, turns the result
12485  * into a string and puts it in a capture slot. It always returns 1. If an
12486  * error occurs the action is cancelled, but the rule processing continues.
12487  */
http_action_res_capture_by_id(struct act_rule * rule,struct proxy * px,struct session * sess,struct stream * s,int flags)12488 enum act_return http_action_res_capture_by_id(struct act_rule *rule, struct proxy *px,
12489                                               struct session *sess, struct stream *s, int flags)
12490 {
12491 	struct sample *key;
12492 	struct cap_hdr *h;
12493 	char **cap = s->res_cap;
12494 	struct proxy *fe = strm_fe(s);
12495 	int len;
12496 	int i;
12497 
12498 	/* Look for the original configuration. */
12499 	for (h = fe->rsp_cap, i = fe->nb_rsp_cap - 1;
12500 	     h != NULL && i != rule->arg.capid.idx ;
12501 	     i--, h = h->next);
12502 	if (!h)
12503 		return ACT_RET_CONT;
12504 
12505 	key = sample_fetch_as_type(s->be, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL, rule->arg.capid.expr, SMP_T_STR);
12506 	if (!key)
12507 		return ACT_RET_CONT;
12508 
12509 	if (cap[h->index] == NULL)
12510 		cap[h->index] = pool_alloc(h->pool);
12511 
12512 	if (cap[h->index] == NULL) /* no more capture memory */
12513 		return ACT_RET_CONT;
12514 
12515 	len = key->data.u.str.len;
12516 	if (len > h->len)
12517 		len = h->len;
12518 
12519 	memcpy(cap[h->index], key->data.u.str.str, len);
12520 	cap[h->index][len] = 0;
12521 	return ACT_RET_CONT;
12522 }
12523 
12524 /* Check an "http-response capture" action.
12525  *
12526  * The function returns 1 in success case, otherwise, it returns 0 and err is
12527  * filled.
12528  */
check_http_res_capture(struct act_rule * rule,struct proxy * px,char ** err)12529 int check_http_res_capture(struct act_rule *rule, struct proxy *px, char **err)
12530 {
12531 	if (rule->action_ptr != http_action_res_capture_by_id)
12532 		return 1;
12533 
12534 	/* capture slots can only be declared in frontends, so we can't check their
12535 	 * existence in backends at configuration parsing step
12536 	 */
12537 	if (px->cap & PR_CAP_FE && rule->arg.capid.idx >= px->nb_rsp_cap) {
12538 		memprintf(err, "unable to find capture id '%d' referenced by http-response capture rule",
12539 			  rule->arg.capid.idx);
12540 		return 0;
12541 	}
12542 
12543 	return 1;
12544 }
12545 
12546 /* parse an "http-response capture" action. It takes a single argument which is
12547  * a sample fetch expression. It stores the expression into arg->act.p[0] and
12548  * the allocated hdr_cap struct od the preallocated id into arg->act.p[1].
12549  * It returns ACT_RET_PRS_OK on success, ACT_RET_PRS_ERR on error.
12550  */
parse_http_res_capture(const char ** args,int * orig_arg,struct proxy * px,struct act_rule * rule,char ** err)12551 enum act_parse_ret parse_http_res_capture(const char **args, int *orig_arg, struct proxy *px,
12552                                           struct act_rule *rule, char **err)
12553 {
12554 	struct sample_expr *expr;
12555 	int cur_arg;
12556 	int id;
12557 	char *error;
12558 
12559 	for (cur_arg = *orig_arg; cur_arg < *orig_arg + 3 && *args[cur_arg]; cur_arg++)
12560 		if (strcmp(args[cur_arg], "if") == 0 ||
12561 		    strcmp(args[cur_arg], "unless") == 0)
12562 			break;
12563 
12564 	if (cur_arg < *orig_arg + 3) {
12565 		memprintf(err, "expects <expression> id <idx>");
12566 		return ACT_RET_PRS_ERR;
12567 	}
12568 
12569 	cur_arg = *orig_arg;
12570 	expr = sample_parse_expr((char **)args, &cur_arg, px->conf.args.file, px->conf.args.line, err, &px->conf.args);
12571 	if (!expr)
12572 		return ACT_RET_PRS_ERR;
12573 
12574 	if (!(expr->fetch->val & SMP_VAL_FE_HRS_HDR)) {
12575 		memprintf(err,
12576 			  "fetch method '%s' extracts information from '%s', none of which is available here",
12577 			  args[cur_arg-1], sample_src_names(expr->fetch->use));
12578 		free(expr);
12579 		return ACT_RET_PRS_ERR;
12580 	}
12581 
12582 	if (!args[cur_arg] || !*args[cur_arg]) {
12583 		memprintf(err, "expects 'id'");
12584 		free(expr);
12585 		return ACT_RET_PRS_ERR;
12586 	}
12587 
12588 	if (strcmp(args[cur_arg], "id") != 0) {
12589 		memprintf(err, "expects 'id', found '%s'", args[cur_arg]);
12590 		free(expr);
12591 		return ACT_RET_PRS_ERR;
12592 	}
12593 
12594 	cur_arg++;
12595 
12596 	if (!args[cur_arg]) {
12597 		memprintf(err, "missing id value");
12598 		free(expr);
12599 		return ACT_RET_PRS_ERR;
12600 	}
12601 
12602 	id = strtol(args[cur_arg], &error, 10);
12603 	if (*error != '\0') {
12604 		memprintf(err, "cannot parse id '%s'", args[cur_arg]);
12605 		free(expr);
12606 		return ACT_RET_PRS_ERR;
12607 	}
12608 	cur_arg++;
12609 
12610 	px->conf.args.ctx = ARGC_CAP;
12611 
12612 	rule->action       = ACT_CUSTOM;
12613 	rule->action_ptr   = http_action_res_capture_by_id;
12614 	rule->check_ptr    = check_http_res_capture;
12615 	rule->arg.capid.expr = expr;
12616 	rule->arg.capid.idx  = id;
12617 
12618 	*orig_arg = cur_arg;
12619 	return ACT_RET_PRS_OK;
12620 }
12621 
12622 /*
12623  * Return the struct http_req_action_kw associated to a keyword.
12624  */
action_http_req_custom(const char * kw)12625 struct action_kw *action_http_req_custom(const char *kw)
12626 {
12627 	return action_lookup(&http_req_keywords.list, kw);
12628 }
12629 
12630 /*
12631  * Return the struct http_res_action_kw associated to a keyword.
12632  */
action_http_res_custom(const char * kw)12633 struct action_kw *action_http_res_custom(const char *kw)
12634 {
12635 	return action_lookup(&http_res_keywords.list, kw);
12636 }
12637 
12638 
12639 /* "show errors" handler for the CLI. Returns 0 if wants to continue, 1 to stop
12640  * now.
12641  */
cli_parse_show_errors(char ** args,struct appctx * appctx,void * private)12642 static int cli_parse_show_errors(char **args, struct appctx *appctx, void *private)
12643 {
12644 	if (!cli_has_level(appctx, ACCESS_LVL_OPER))
12645 		return 1;
12646 
12647 	if (*args[2]) {
12648 		struct proxy *px;
12649 
12650 		px = proxy_find_by_name(args[2], 0, 0);
12651 		if (px)
12652 			appctx->ctx.errors.iid = px->uuid;
12653 		else
12654 			appctx->ctx.errors.iid = atoi(args[2]);
12655 
12656 		if (!appctx->ctx.errors.iid) {
12657 			appctx->ctx.cli.severity = LOG_ERR;
12658 			appctx->ctx.cli.msg = "No such proxy.\n";
12659 			appctx->st0 = CLI_ST_PRINT;
12660 			return 1;
12661 		}
12662 	}
12663 	else
12664 		appctx->ctx.errors.iid	= -1; // dump all proxies
12665 
12666 	appctx->ctx.errors.flag = 0;
12667 	if (strcmp(args[3], "request") == 0)
12668 		appctx->ctx.errors.flag |= 4; // ignore response
12669 	else if (strcmp(args[3], "response") == 0)
12670 		appctx->ctx.errors.flag |= 2; // ignore request
12671 	appctx->ctx.errors.px = NULL;
12672 	return 0;
12673 }
12674 
12675 /* This function dumps all captured errors onto the stream interface's
12676  * read buffer. It returns 0 if the output buffer is full and it needs
12677  * to be called again, otherwise non-zero.
12678  */
cli_io_handler_show_errors(struct appctx * appctx)12679 static int cli_io_handler_show_errors(struct appctx *appctx)
12680 {
12681 	struct stream_interface *si = appctx->owner;
12682 	extern const char *monthname[12];
12683 
12684 	if (unlikely(si_ic(si)->flags & (CF_WRITE_ERROR|CF_SHUTW)))
12685 		return 1;
12686 
12687 	chunk_reset(&trash);
12688 
12689 	if (!appctx->ctx.errors.px) {
12690 		/* the function had not been called yet, let's prepare the
12691 		 * buffer for a response.
12692 		 */
12693 		struct tm tm;
12694 
12695 		get_localtime(date.tv_sec, &tm);
12696 		chunk_appendf(&trash, "Total events captured on [%02d/%s/%04d:%02d:%02d:%02d.%03d] : %u\n",
12697 			     tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900,
12698 			     tm.tm_hour, tm.tm_min, tm.tm_sec, (int)(date.tv_usec/1000),
12699 			     error_snapshot_id);
12700 
12701 		if (ci_putchk(si_ic(si), &trash) == -1)
12702 			goto cant_send;
12703 
12704 		appctx->ctx.errors.px = proxies_list;
12705 		appctx->ctx.errors.bol = 0;
12706 		appctx->ctx.errors.ptr = -1;
12707 	}
12708 
12709 	/* we have two inner loops here, one for the proxy, the other one for
12710 	 * the buffer.
12711 	 */
12712 	while (appctx->ctx.errors.px) {
12713 		struct error_snapshot *es;
12714 
12715 		HA_SPIN_LOCK(PROXY_LOCK, &appctx->ctx.errors.px->lock);
12716 
12717 		if ((appctx->ctx.errors.flag & 1) == 0) {
12718 			es = &appctx->ctx.errors.px->invalid_req;
12719 			if (appctx->ctx.errors.flag & 2) // skip req
12720 				goto next;
12721 		}
12722 		else {
12723 			es = &appctx->ctx.errors.px->invalid_rep;
12724 			if (appctx->ctx.errors.flag & 4) // skip resp
12725 				goto next;
12726 		}
12727 
12728 		if (!es->when.tv_sec)
12729 			goto next;
12730 
12731 		if (appctx->ctx.errors.iid >= 0 &&
12732 		    appctx->ctx.errors.px->uuid != appctx->ctx.errors.iid &&
12733 		    es->oe->uuid != appctx->ctx.errors.iid)
12734 			goto next;
12735 
12736 		if (appctx->ctx.errors.ptr < 0) {
12737 			/* just print headers now */
12738 
12739 			char pn[INET6_ADDRSTRLEN];
12740 			struct tm tm;
12741 			int port;
12742 
12743 			get_localtime(es->when.tv_sec, &tm);
12744 			chunk_appendf(&trash, " \n[%02d/%s/%04d:%02d:%02d:%02d.%03d]",
12745 				     tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900,
12746 				     tm.tm_hour, tm.tm_min, tm.tm_sec, (int)(es->when.tv_usec/1000));
12747 
12748 			switch (addr_to_str(&es->src, pn, sizeof(pn))) {
12749 			case AF_INET:
12750 			case AF_INET6:
12751 				port = get_host_port(&es->src);
12752 				break;
12753 			default:
12754 				port = 0;
12755 			}
12756 
12757 			switch (appctx->ctx.errors.flag & 1) {
12758 			case 0:
12759 				chunk_appendf(&trash,
12760 					     " frontend %s (#%d): invalid request\n"
12761 					     "  backend %s (#%d)",
12762 					     appctx->ctx.errors.px->id, appctx->ctx.errors.px->uuid,
12763 					     (es->oe->cap & PR_CAP_BE) ? es->oe->id : "<NONE>",
12764 					     (es->oe->cap & PR_CAP_BE) ? es->oe->uuid : -1);
12765 				break;
12766 			case 1:
12767 				chunk_appendf(&trash,
12768 					     " backend %s (#%d): invalid response\n"
12769 					     "  frontend %s (#%d)",
12770 					     appctx->ctx.errors.px->id, appctx->ctx.errors.px->uuid,
12771 					     es->oe->id, es->oe->uuid);
12772 				break;
12773 			}
12774 
12775 			chunk_appendf(&trash,
12776 				     ", server %s (#%d), event #%u\n"
12777 				     "  src %s:%d, session #%d, session flags 0x%08x\n"
12778 				     "  HTTP msg state %s(%d), msg flags 0x%08x, tx flags 0x%08x\n"
12779 				     "  HTTP chunk len %lld bytes, HTTP body len %lld bytes\n"
12780 				     "  buffer flags 0x%08x, out %d bytes, total %lld bytes\n"
12781 				     "  pending %d bytes, wrapping at %d, error at position %d:\n \n",
12782 				     es->srv ? es->srv->id : "<NONE>", es->srv ? es->srv->puid : -1,
12783 				     es->ev_id,
12784 				     pn, port, es->sid, es->s_flags,
12785 				     h1_msg_state_str(es->state), es->state, es->m_flags, es->t_flags,
12786 				     es->m_clen, es->m_blen,
12787 				     es->b_flags, es->b_out, es->b_tot,
12788 				     es->len, es->b_wrap, es->pos);
12789 
12790 			if (ci_putchk(si_ic(si), &trash) == -1)
12791 				goto cant_send_unlock;
12792 
12793 			appctx->ctx.errors.ptr = 0;
12794 			appctx->ctx.errors.sid = es->sid;
12795 		}
12796 
12797 		if (appctx->ctx.errors.sid != es->sid) {
12798 			/* the snapshot changed while we were dumping it */
12799 			chunk_appendf(&trash,
12800 				     "  WARNING! update detected on this snapshot, dump interrupted. Please re-check!\n");
12801 			if (ci_putchk(si_ic(si), &trash) == -1)
12802 				goto cant_send_unlock;
12803 
12804 			goto next;
12805 		}
12806 
12807 		/* OK, ptr >= 0, so we have to dump the current line */
12808 		while (es->buf && appctx->ctx.errors.ptr < es->len && appctx->ctx.errors.ptr < global.tune.bufsize) {
12809 			int newptr;
12810 			int newline;
12811 
12812 			newline = appctx->ctx.errors.bol;
12813 			newptr = dump_text_line(&trash, es->buf, global.tune.bufsize, es->len, &newline, appctx->ctx.errors.ptr);
12814 			if (newptr == appctx->ctx.errors.ptr)
12815 				goto cant_send_unlock;
12816 
12817 			if (ci_putchk(si_ic(si), &trash) == -1)
12818 				goto cant_send_unlock;
12819 
12820 			appctx->ctx.errors.ptr = newptr;
12821 			appctx->ctx.errors.bol = newline;
12822 		};
12823 	next:
12824 		HA_SPIN_UNLOCK(PROXY_LOCK, &appctx->ctx.errors.px->lock);
12825 		appctx->ctx.errors.bol = 0;
12826 		appctx->ctx.errors.ptr = -1;
12827 		appctx->ctx.errors.flag ^= 1;
12828 		if (!(appctx->ctx.errors.flag & 1))
12829 			appctx->ctx.errors.px = appctx->ctx.errors.px->next;
12830 	}
12831 
12832 	/* dump complete */
12833 	return 1;
12834 
12835  cant_send_unlock:
12836 	HA_SPIN_UNLOCK(PROXY_LOCK, &appctx->ctx.errors.px->lock);
12837  cant_send:
12838 	si_applet_cant_put(si);
12839 	return 0;
12840 }
12841 
12842 /* register cli keywords */
12843 static struct cli_kw_list cli_kws = {{ },{
12844 	{ { "show", "errors", NULL },
12845 	  "show errors    : report last request and response errors for each proxy",
12846 	  cli_parse_show_errors, cli_io_handler_show_errors, NULL,
12847 	},
12848 	{{},}
12849 }};
12850 
12851 /************************************************************************/
12852 /*          All supported ACL keywords must be declared here.           */
12853 /************************************************************************/
12854 
12855 /* Note: must not be declared <const> as its list will be overwritten.
12856  * Please take care of keeping this list alphabetically sorted.
12857  */
12858 static struct acl_kw_list acl_kws = {ILH, {
12859 	{ "base",            "base",     PAT_MATCH_STR },
12860 	{ "base_beg",        "base",     PAT_MATCH_BEG },
12861 	{ "base_dir",        "base",     PAT_MATCH_DIR },
12862 	{ "base_dom",        "base",     PAT_MATCH_DOM },
12863 	{ "base_end",        "base",     PAT_MATCH_END },
12864 	{ "base_len",        "base",     PAT_MATCH_LEN },
12865 	{ "base_reg",        "base",     PAT_MATCH_REG },
12866 	{ "base_sub",        "base",     PAT_MATCH_SUB },
12867 
12868 	{ "cook",            "req.cook", PAT_MATCH_STR },
12869 	{ "cook_beg",        "req.cook", PAT_MATCH_BEG },
12870 	{ "cook_dir",        "req.cook", PAT_MATCH_DIR },
12871 	{ "cook_dom",        "req.cook", PAT_MATCH_DOM },
12872 	{ "cook_end",        "req.cook", PAT_MATCH_END },
12873 	{ "cook_len",        "req.cook", PAT_MATCH_LEN },
12874 	{ "cook_reg",        "req.cook", PAT_MATCH_REG },
12875 	{ "cook_sub",        "req.cook", PAT_MATCH_SUB },
12876 
12877 	{ "hdr",             "req.hdr",  PAT_MATCH_STR },
12878 	{ "hdr_beg",         "req.hdr",  PAT_MATCH_BEG },
12879 	{ "hdr_dir",         "req.hdr",  PAT_MATCH_DIR },
12880 	{ "hdr_dom",         "req.hdr",  PAT_MATCH_DOM },
12881 	{ "hdr_end",         "req.hdr",  PAT_MATCH_END },
12882 	{ "hdr_len",         "req.hdr",  PAT_MATCH_LEN },
12883 	{ "hdr_reg",         "req.hdr",  PAT_MATCH_REG },
12884 	{ "hdr_sub",         "req.hdr",  PAT_MATCH_SUB },
12885 
12886 	/* these two declarations uses strings with list storage (in place
12887 	 * of tree storage). The basic match is PAT_MATCH_STR, but the indexation
12888 	 * and delete functions are relative to the list management. The parse
12889 	 * and match method are related to the corresponding fetch methods. This
12890 	 * is very particular ACL declaration mode.
12891 	 */
12892 	{ "http_auth_group", NULL,       PAT_MATCH_STR, NULL,  pat_idx_list_str, pat_del_list_ptr, NULL, pat_match_auth },
12893 	{ "method",          NULL,       PAT_MATCH_STR, pat_parse_meth, pat_idx_list_str, pat_del_list_ptr, NULL, pat_match_meth },
12894 
12895 	{ "path",            "path",     PAT_MATCH_STR },
12896 	{ "path_beg",        "path",     PAT_MATCH_BEG },
12897 	{ "path_dir",        "path",     PAT_MATCH_DIR },
12898 	{ "path_dom",        "path",     PAT_MATCH_DOM },
12899 	{ "path_end",        "path",     PAT_MATCH_END },
12900 	{ "path_len",        "path",     PAT_MATCH_LEN },
12901 	{ "path_reg",        "path",     PAT_MATCH_REG },
12902 	{ "path_sub",        "path",     PAT_MATCH_SUB },
12903 
12904 	{ "req_ver",         "req.ver",  PAT_MATCH_STR },
12905 	{ "resp_ver",        "res.ver",  PAT_MATCH_STR },
12906 
12907 	{ "scook",           "res.cook", PAT_MATCH_STR },
12908 	{ "scook_beg",       "res.cook", PAT_MATCH_BEG },
12909 	{ "scook_dir",       "res.cook", PAT_MATCH_DIR },
12910 	{ "scook_dom",       "res.cook", PAT_MATCH_DOM },
12911 	{ "scook_end",       "res.cook", PAT_MATCH_END },
12912 	{ "scook_len",       "res.cook", PAT_MATCH_LEN },
12913 	{ "scook_reg",       "res.cook", PAT_MATCH_REG },
12914 	{ "scook_sub",       "res.cook", PAT_MATCH_SUB },
12915 
12916 	{ "shdr",            "res.hdr",  PAT_MATCH_STR },
12917 	{ "shdr_beg",        "res.hdr",  PAT_MATCH_BEG },
12918 	{ "shdr_dir",        "res.hdr",  PAT_MATCH_DIR },
12919 	{ "shdr_dom",        "res.hdr",  PAT_MATCH_DOM },
12920 	{ "shdr_end",        "res.hdr",  PAT_MATCH_END },
12921 	{ "shdr_len",        "res.hdr",  PAT_MATCH_LEN },
12922 	{ "shdr_reg",        "res.hdr",  PAT_MATCH_REG },
12923 	{ "shdr_sub",        "res.hdr",  PAT_MATCH_SUB },
12924 
12925 	{ "url",             "url",      PAT_MATCH_STR },
12926 	{ "url_beg",         "url",      PAT_MATCH_BEG },
12927 	{ "url_dir",         "url",      PAT_MATCH_DIR },
12928 	{ "url_dom",         "url",      PAT_MATCH_DOM },
12929 	{ "url_end",         "url",      PAT_MATCH_END },
12930 	{ "url_len",         "url",      PAT_MATCH_LEN },
12931 	{ "url_reg",         "url",      PAT_MATCH_REG },
12932 	{ "url_sub",         "url",      PAT_MATCH_SUB },
12933 
12934 	{ "urlp",            "urlp",     PAT_MATCH_STR },
12935 	{ "urlp_beg",        "urlp",     PAT_MATCH_BEG },
12936 	{ "urlp_dir",        "urlp",     PAT_MATCH_DIR },
12937 	{ "urlp_dom",        "urlp",     PAT_MATCH_DOM },
12938 	{ "urlp_end",        "urlp",     PAT_MATCH_END },
12939 	{ "urlp_len",        "urlp",     PAT_MATCH_LEN },
12940 	{ "urlp_reg",        "urlp",     PAT_MATCH_REG },
12941 	{ "urlp_sub",        "urlp",     PAT_MATCH_SUB },
12942 
12943 	{ /* END */ },
12944 }};
12945 
12946 /************************************************************************/
12947 /*         All supported pattern keywords must be declared here.        */
12948 /************************************************************************/
12949 /* Note: must not be declared <const> as its list will be overwritten */
12950 static struct sample_fetch_kw_list sample_fetch_keywords = {ILH, {
12951 	{ "base",            smp_fetch_base,           0,                NULL,    SMP_T_STR,  SMP_USE_HRQHV },
12952 	{ "base32",          smp_fetch_base32,         0,                NULL,    SMP_T_SINT, SMP_USE_HRQHV },
12953 	{ "base32+src",      smp_fetch_base32_src,     0,                NULL,    SMP_T_BIN,  SMP_USE_HRQHV },
12954 
12955 	/* capture are allocated and are permanent in the stream */
12956 	{ "capture.req.hdr", smp_fetch_capture_header_req, ARG1(1,SINT), NULL,   SMP_T_STR,  SMP_USE_HRQHP },
12957 
12958 	/* retrieve these captures from the HTTP logs */
12959 	{ "capture.req.method", smp_fetch_capture_req_method, 0,         NULL,   SMP_T_STR,  SMP_USE_HRQHP },
12960 	{ "capture.req.uri",    smp_fetch_capture_req_uri,    0,         NULL,   SMP_T_STR,  SMP_USE_HRQHP },
12961 	{ "capture.req.ver",    smp_fetch_capture_req_ver,    0,         NULL,   SMP_T_STR,  SMP_USE_HRQHP },
12962 
12963 	{ "capture.res.hdr", smp_fetch_capture_header_res, ARG1(1,SINT), NULL,   SMP_T_STR,  SMP_USE_HRSHP },
12964 	{ "capture.res.ver", smp_fetch_capture_res_ver,       0,         NULL,   SMP_T_STR,  SMP_USE_HRQHP },
12965 
12966 	/* cookie is valid in both directions (eg: for "stick ...") but cook*
12967 	 * are only here to match the ACL's name, are request-only and are used
12968 	 * for ACL compatibility only.
12969 	 */
12970 	{ "cook",            smp_fetch_cookie,         ARG1(0,STR),      NULL,    SMP_T_STR,  SMP_USE_HRQHV },
12971 	{ "cookie",          smp_fetch_chn_cookie,     ARG1(0,STR),      NULL,    SMP_T_STR,  SMP_USE_HRQHV|SMP_USE_HRSHV },
12972 	{ "cook_cnt",        smp_fetch_cookie_cnt,     ARG1(0,STR),      NULL,    SMP_T_SINT, SMP_USE_HRQHV },
12973 	{ "cook_val",        smp_fetch_cookie_val,     ARG1(0,STR),      NULL,    SMP_T_SINT, SMP_USE_HRQHV },
12974 
12975 	/* hdr is valid in both directions (eg: for "stick ...") but hdr_* are
12976 	 * only here to match the ACL's name, are request-only and are used for
12977 	 * ACL compatibility only.
12978 	 */
12979 	{ "hdr",             smp_fetch_chn_hdr,        ARG2(0,STR,SINT), val_hdr, SMP_T_STR,  SMP_USE_HRQHV|SMP_USE_HRSHV },
12980 	{ "hdr_cnt",         smp_fetch_hdr_cnt,        ARG1(0,STR),      NULL,    SMP_T_SINT, SMP_USE_HRQHV },
12981 	{ "hdr_ip",          smp_fetch_hdr_ip,         ARG2(0,STR,SINT), val_hdr, SMP_T_IPV4, SMP_USE_HRQHV },
12982 	{ "hdr_val",         smp_fetch_hdr_val,        ARG2(0,STR,SINT), val_hdr, SMP_T_SINT, SMP_USE_HRQHV },
12983 
12984 	{ "http_auth",       smp_fetch_http_auth,      ARG1(1,USR),      NULL,    SMP_T_BOOL, SMP_USE_HRQHV },
12985 	{ "http_auth_group", smp_fetch_http_auth_grp,  ARG1(1,USR),      NULL,    SMP_T_STR,  SMP_USE_HRQHV },
12986 	{ "http_first_req",  smp_fetch_http_first_req, 0,                NULL,    SMP_T_BOOL, SMP_USE_HRQHP },
12987 	{ "method",          smp_fetch_meth,           0,                NULL,    SMP_T_METH, SMP_USE_HRQHP },
12988 	{ "path",            smp_fetch_path,           0,                NULL,    SMP_T_STR,  SMP_USE_HRQHV },
12989 	{ "query",           smp_fetch_query,          0,                NULL,    SMP_T_STR,  SMP_USE_HRQHV },
12990 
12991 	/* HTTP protocol on the request path */
12992 	{ "req.proto_http",  smp_fetch_proto_http,     0,                NULL,    SMP_T_BOOL, SMP_USE_HRQHP },
12993 	{ "req_proto_http",  smp_fetch_proto_http,     0,                NULL,    SMP_T_BOOL, SMP_USE_HRQHP },
12994 
12995 	/* HTTP version on the request path */
12996 	{ "req.ver",         smp_fetch_rqver,          0,                NULL,    SMP_T_STR,  SMP_USE_HRQHV },
12997 	{ "req_ver",         smp_fetch_rqver,          0,                NULL,    SMP_T_STR,  SMP_USE_HRQHV },
12998 
12999 	{ "req.body",        smp_fetch_body,           0,                NULL,    SMP_T_BIN,  SMP_USE_HRQHV },
13000 	{ "req.body_len",    smp_fetch_body_len,       0,                NULL,    SMP_T_SINT, SMP_USE_HRQHV },
13001 	{ "req.body_size",   smp_fetch_body_size,      0,                NULL,    SMP_T_SINT, SMP_USE_HRQHV },
13002 	{ "req.body_param",  smp_fetch_body_param,     ARG1(0,STR),      NULL,    SMP_T_BIN,  SMP_USE_HRQHV },
13003 
13004 	{ "req.hdrs",        smp_fetch_hdrs,           0,                NULL,    SMP_T_BIN,  SMP_USE_HRQHV },
13005 	{ "req.hdrs_bin",    smp_fetch_hdrs_bin,       0,                NULL,    SMP_T_BIN,  SMP_USE_HRQHV },
13006 
13007 	/* HTTP version on the response path */
13008 	{ "res.ver",         smp_fetch_stver,          0,                NULL,    SMP_T_STR,  SMP_USE_HRSHV },
13009 	{ "resp_ver",        smp_fetch_stver,          0,                NULL,    SMP_T_STR,  SMP_USE_HRSHV },
13010 
13011 	/* explicit req.{cook,hdr} are used to force the fetch direction to be request-only */
13012 	{ "req.cook",        smp_fetch_cookie,         ARG1(0,STR),      NULL,    SMP_T_STR,  SMP_USE_HRQHV },
13013 	{ "req.cook_cnt",    smp_fetch_cookie_cnt,     ARG1(0,STR),      NULL,    SMP_T_SINT, SMP_USE_HRQHV },
13014 	{ "req.cook_val",    smp_fetch_cookie_val,     ARG1(0,STR),      NULL,    SMP_T_SINT, SMP_USE_HRQHV },
13015 
13016 	{ "req.fhdr",        smp_fetch_fhdr,           ARG2(0,STR,SINT), val_hdr, SMP_T_STR,  SMP_USE_HRQHV },
13017 	{ "req.fhdr_cnt",    smp_fetch_fhdr_cnt,       ARG1(0,STR),      NULL,    SMP_T_SINT, SMP_USE_HRQHV },
13018 	{ "req.hdr",         smp_fetch_hdr,            ARG2(0,STR,SINT), val_hdr, SMP_T_STR,  SMP_USE_HRQHV },
13019 	{ "req.hdr_cnt",     smp_fetch_hdr_cnt,        ARG1(0,STR),      NULL,    SMP_T_SINT, SMP_USE_HRQHV },
13020 	{ "req.hdr_ip",      smp_fetch_hdr_ip,         ARG2(0,STR,SINT), val_hdr, SMP_T_IPV4, SMP_USE_HRQHV },
13021 	{ "req.hdr_names",   smp_fetch_hdr_names,      ARG1(0,STR),      NULL,    SMP_T_STR,  SMP_USE_HRQHV },
13022 	{ "req.hdr_val",     smp_fetch_hdr_val,        ARG2(0,STR,SINT), val_hdr, SMP_T_SINT, SMP_USE_HRQHV },
13023 
13024 	/* explicit req.{cook,hdr} are used to force the fetch direction to be response-only */
13025 	{ "res.cook",        smp_fetch_cookie,         ARG1(0,STR),      NULL,    SMP_T_STR,  SMP_USE_HRSHV },
13026 	{ "res.cook_cnt",    smp_fetch_cookie_cnt,     ARG1(0,STR),      NULL,    SMP_T_SINT, SMP_USE_HRSHV },
13027 	{ "res.cook_val",    smp_fetch_cookie_val,     ARG1(0,STR),      NULL,    SMP_T_SINT, SMP_USE_HRSHV },
13028 
13029 	{ "res.fhdr",        smp_fetch_fhdr,           ARG2(0,STR,SINT), val_hdr, SMP_T_STR,  SMP_USE_HRSHV },
13030 	{ "res.fhdr_cnt",    smp_fetch_fhdr_cnt,       ARG1(0,STR),      NULL,    SMP_T_SINT, SMP_USE_HRSHV },
13031 	{ "res.hdr",         smp_fetch_hdr,            ARG2(0,STR,SINT), val_hdr, SMP_T_STR,  SMP_USE_HRSHV },
13032 	{ "res.hdr_cnt",     smp_fetch_hdr_cnt,        ARG1(0,STR),      NULL,    SMP_T_SINT, SMP_USE_HRSHV },
13033 	{ "res.hdr_ip",      smp_fetch_hdr_ip,         ARG2(0,STR,SINT), val_hdr, SMP_T_IPV4, SMP_USE_HRSHV },
13034 	{ "res.hdr_names",   smp_fetch_hdr_names,      ARG1(0,STR),      NULL,    SMP_T_STR,  SMP_USE_HRSHV },
13035 	{ "res.hdr_val",     smp_fetch_hdr_val,        ARG2(0,STR,SINT), val_hdr, SMP_T_SINT, SMP_USE_HRSHV },
13036 
13037 	/* scook is valid only on the response and is used for ACL compatibility */
13038 	{ "scook",           smp_fetch_cookie,         ARG1(0,STR),      NULL,    SMP_T_STR,  SMP_USE_HRSHV },
13039 	{ "scook_cnt",       smp_fetch_cookie_cnt,     ARG1(0,STR),      NULL,    SMP_T_SINT, SMP_USE_HRSHV },
13040 	{ "scook_val",       smp_fetch_cookie_val,     ARG1(0,STR),      NULL,    SMP_T_SINT, SMP_USE_HRSHV },
13041 	{ "set-cookie",      smp_fetch_cookie,         ARG1(0,STR),      NULL,    SMP_T_STR,  SMP_USE_HRSHV }, /* deprecated */
13042 
13043 	/* shdr is valid only on the response and is used for ACL compatibility */
13044 	{ "shdr",            smp_fetch_hdr,            ARG2(0,STR,SINT), val_hdr, SMP_T_STR,  SMP_USE_HRSHV },
13045 	{ "shdr_cnt",        smp_fetch_hdr_cnt,        ARG1(0,STR),      NULL,    SMP_T_SINT, SMP_USE_HRSHV },
13046 	{ "shdr_ip",         smp_fetch_hdr_ip,         ARG2(0,STR,SINT), val_hdr, SMP_T_IPV4, SMP_USE_HRSHV },
13047 	{ "shdr_val",        smp_fetch_hdr_val,        ARG2(0,STR,SINT), val_hdr, SMP_T_SINT, SMP_USE_HRSHV },
13048 
13049 	{ "status",          smp_fetch_stcode,         0,                NULL,    SMP_T_SINT, SMP_USE_HRSHP },
13050 	{ "unique-id",       smp_fetch_uniqueid,       0,                NULL,    SMP_T_STR,  SMP_SRC_L4SRV },
13051 	{ "url",             smp_fetch_url,            0,                NULL,    SMP_T_STR,  SMP_USE_HRQHV },
13052 	{ "url32",           smp_fetch_url32,          0,                NULL,    SMP_T_SINT, SMP_USE_HRQHV },
13053 	{ "url32+src",       smp_fetch_url32_src,      0,                NULL,    SMP_T_BIN,  SMP_USE_HRQHV },
13054 	{ "url_ip",          smp_fetch_url_ip,         0,                NULL,    SMP_T_IPV4, SMP_USE_HRQHV },
13055 	{ "url_port",        smp_fetch_url_port,       0,                NULL,    SMP_T_SINT, SMP_USE_HRQHV },
13056 	{ "url_param",       smp_fetch_url_param,      ARG2(0,STR,STR),  NULL,    SMP_T_STR,  SMP_USE_HRQHV },
13057 	{ "urlp"     ,       smp_fetch_url_param,      ARG2(0,STR,STR),  NULL,    SMP_T_STR,  SMP_USE_HRQHV },
13058 	{ "urlp_val",        smp_fetch_url_param_val,  ARG2(0,STR,STR),  NULL,    SMP_T_SINT, SMP_USE_HRQHV },
13059 	{ /* END */ },
13060 }};
13061 
13062 
13063 /************************************************************************/
13064 /*        All supported converter keywords must be declared here.       */
13065 /************************************************************************/
13066 /* Note: must not be declared <const> as its list will be overwritten */
13067 static struct sample_conv_kw_list sample_conv_kws = {ILH, {
13068 	{ "http_date", sample_conv_http_date,  ARG1(0,SINT),     NULL, SMP_T_SINT, SMP_T_STR},
13069 	{ "language",  sample_conv_q_prefered, ARG2(1,STR,STR),  NULL, SMP_T_STR,  SMP_T_STR},
13070 	{ "capture-req", smp_conv_req_capture, ARG1(1,SINT),     NULL, SMP_T_STR,  SMP_T_STR},
13071 	{ "capture-res", smp_conv_res_capture, ARG1(1,SINT),     NULL, SMP_T_STR,  SMP_T_STR},
13072 	{ "url_dec",   sample_conv_url_dec,    ARG1(0,SINT),     NULL, SMP_T_STR,  SMP_T_STR},
13073 	{ NULL, NULL, 0, 0, 0 },
13074 }};
13075 
13076 
13077 /************************************************************************/
13078 /*   All supported http-request action keywords must be declared here.  */
13079 /************************************************************************/
13080 struct action_kw_list http_req_actions = {
13081 	.kw = {
13082 		{ "capture",    parse_http_req_capture },
13083 		{ "reject",     parse_http_action_reject },
13084 		{ "set-method", parse_set_req_line },
13085 		{ "set-path",   parse_set_req_line },
13086 		{ "set-query",  parse_set_req_line },
13087 		{ "set-uri",    parse_set_req_line },
13088 		{ NULL, NULL }
13089 	}
13090 };
13091 
13092 struct action_kw_list http_res_actions = {
13093 	.kw = {
13094 		{ "capture",    parse_http_res_capture },
13095 		{ "set-status", parse_http_set_status },
13096 		{ NULL, NULL }
13097 	}
13098 };
13099 
13100 __attribute__((constructor))
__http_protocol_init(void)13101 static void __http_protocol_init(void)
13102 {
13103 	acl_register_keywords(&acl_kws);
13104 	sample_register_fetches(&sample_fetch_keywords);
13105 	sample_register_convs(&sample_conv_kws);
13106 	http_req_keywords_register(&http_req_actions);
13107 	http_res_keywords_register(&http_res_actions);
13108 	cli_register_kw(&cli_kws);
13109 }
13110 
13111 
13112 /*
13113  * Local variables:
13114  *  c-indent-level: 8
13115  *  c-basic-offset: 8
13116  * End:
13117  */
13118