1 /*
2  * Consistent Hash implementation
3  * Please consult this very well detailed article for more information :
4  * http://www.spiteful.com/2008/03/17/programmers-toolbox-part-3-consistent-hashing/
5  *
6  * Our implementation has to support both weighted hashing and weighted round
7  * robin because we'll use it to replace the previous map-based implementation
8  * which offered both algorithms.
9  *
10  * Copyright 2000-2010 Willy Tarreau <w@1wt.eu>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License
14  * as published by the Free Software Foundation; either version
15  * 2 of the License, or (at your option) any later version.
16  *
17  */
18 
19 #include <common/compat.h>
20 #include <common/config.h>
21 #include <common/debug.h>
22 #include <common/standard.h>
23 #include <eb32tree.h>
24 
25 #include <types/global.h>
26 #include <types/server.h>
27 
28 #include <proto/backend.h>
29 #include <proto/log.h>
30 #include <proto/queue.h>
31 
32 /* Return next tree node after <node> which must still be in the tree, or be
33  * NULL. Lookup wraps around the end to the beginning. If the next node is the
34  * same node, return NULL. This is designed to find a valid next node before
35  * deleting one from the tree.
36  */
chash_skip_node(struct eb_root * root,struct eb32_node * node)37 static inline struct eb32_node *chash_skip_node(struct eb_root *root, struct eb32_node *node)
38 {
39 	struct eb32_node *stop = node;
40 
41 	if (!node)
42 		return NULL;
43 	node = eb32_next(node);
44 	if (!node)
45 		node = eb32_first(root);
46 	if (node == stop)
47 		return NULL;
48 	return node;
49 }
50 
51 /* Remove all of a server's entries from its tree. This may be used when
52  * setting a server down.
53  */
chash_dequeue_srv(struct server * s)54 static inline void chash_dequeue_srv(struct server *s)
55 {
56 	while (s->lb_nodes_now > 0) {
57 		if (s->lb_nodes_now >= s->lb_nodes_tot) // should always be false anyway
58 			s->lb_nodes_now = s->lb_nodes_tot;
59 		s->lb_nodes_now--;
60 		if (s->proxy->lbprm.chash.last == &s->lb_nodes[s->lb_nodes_now].node)
61 			s->proxy->lbprm.chash.last = chash_skip_node(s->lb_tree, s->proxy->lbprm.chash.last);
62 		eb32_delete(&s->lb_nodes[s->lb_nodes_now].node);
63 	}
64 }
65 
66 /* Adjust the number of entries of a server in its tree. The server must appear
67  * as many times as its weight indicates it. If it's there too often, we remove
68  * the last occurrences. If it's not there enough, we add more occurrences. To
69  * remove a server from the tree, normally call this with eweight=0.
70  *
71  * The server's lock and the lbprm's lock must be held.
72  */
chash_queue_dequeue_srv(struct server * s)73 static inline void chash_queue_dequeue_srv(struct server *s)
74 {
75 	while (s->lb_nodes_now > s->next_eweight) {
76 		if (s->lb_nodes_now >= s->lb_nodes_tot) // should always be false anyway
77 			s->lb_nodes_now = s->lb_nodes_tot;
78 		s->lb_nodes_now--;
79 		if (s->proxy->lbprm.chash.last == &s->lb_nodes[s->lb_nodes_now].node)
80 			s->proxy->lbprm.chash.last = chash_skip_node(s->lb_tree, s->proxy->lbprm.chash.last);
81 		eb32_delete(&s->lb_nodes[s->lb_nodes_now].node);
82 	}
83 
84 	/* Attempt to increase the total number of nodes, if the user
85 	 * increased the weight beyond the original weight
86 	 */
87 	if (s->lb_nodes_tot < s->next_eweight) {
88 		struct tree_occ *new_nodes;
89 
90 		/* First we need to remove all server's entries from its tree
91 		 * because the realloc will change all nodes pointers */
92 		chash_dequeue_srv(s);
93 
94 		new_nodes = realloc(s->lb_nodes, s->next_eweight * sizeof(*new_nodes));
95 		if (new_nodes) {
96 			unsigned int j;
97 
98 			s->lb_nodes = new_nodes;
99 			memset(&s->lb_nodes[s->lb_nodes_tot], 0,
100 			    (s->next_eweight - s->lb_nodes_tot) * sizeof(*s->lb_nodes));
101 			for (j = s->lb_nodes_tot; j < s->next_eweight; j++) {
102 				s->lb_nodes[j].server = s;
103 				s->lb_nodes[j].node.key = full_hash(s->puid * SRV_EWGHT_RANGE + j);
104 			}
105 			s->lb_nodes_tot = s->next_eweight;
106 		}
107 	}
108 	while (s->lb_nodes_now < s->next_eweight) {
109 		if (s->lb_nodes_now >= s->lb_nodes_tot) // should always be false anyway
110 			break;
111 		if (s->proxy->lbprm.chash.last == &s->lb_nodes[s->lb_nodes_now].node)
112 			s->proxy->lbprm.chash.last = chash_skip_node(s->lb_tree, s->proxy->lbprm.chash.last);
113 		eb32_insert(s->lb_tree, &s->lb_nodes[s->lb_nodes_now].node);
114 		s->lb_nodes_now++;
115 	}
116 }
117 
118 /* This function updates the server trees according to server <srv>'s new
119  * state. It should be called when server <srv>'s status changes to down.
120  * It is not important whether the server was already down or not. It is not
121  * important either that the new state is completely down (the caller may not
122  * know all the variables of a server's state).
123  *
124  * The server's lock must be held. The lbprm lock will be used.
125  */
chash_set_server_status_down(struct server * srv)126 static void chash_set_server_status_down(struct server *srv)
127 {
128 	struct proxy *p = srv->proxy;
129 
130 	if (!srv_lb_status_changed(srv))
131                return;
132 
133 	HA_SPIN_LOCK(LBPRM_LOCK, &p->lbprm.lock);
134 
135 	if (srv_willbe_usable(srv))
136 		goto out_update_state;
137 
138 	if (!srv_currently_usable(srv))
139 		/* server was already down */
140 		goto out_update_backend;
141 
142 	if (srv->flags & SRV_F_BACKUP) {
143 		p->lbprm.tot_wbck -= srv->cur_eweight;
144 		p->srv_bck--;
145 
146 		if (srv == p->lbprm.fbck) {
147 			/* we lost the first backup server in a single-backup
148 			 * configuration, we must search another one.
149 			 */
150 			struct server *srv2 = p->lbprm.fbck;
151 			do {
152 				srv2 = srv2->next;
153 			} while (srv2 &&
154 				 !((srv2->flags & SRV_F_BACKUP) &&
155 				   srv_willbe_usable(srv2)));
156 			p->lbprm.fbck = srv2;
157 		}
158 	} else {
159 		p->lbprm.tot_wact -= srv->cur_eweight;
160 		p->srv_act--;
161 	}
162 
163 	chash_dequeue_srv(srv);
164 
165 out_update_backend:
166 	/* check/update tot_used, tot_weight */
167 	update_backend_weight(p);
168  out_update_state:
169 	srv_lb_commit_status(srv);
170 
171 	HA_SPIN_UNLOCK(LBPRM_LOCK, &p->lbprm.lock);
172 }
173 
174 /* This function updates the server trees according to server <srv>'s new
175  * state. It should be called when server <srv>'s status changes to up.
176  * It is not important whether the server was already down or not. It is not
177  * important either that the new state is completely UP (the caller may not
178  * know all the variables of a server's state). This function will not change
179  * the weight of a server which was already up.
180  *
181  * The server's lock must be held. The lbprm lock will be used.
182  */
chash_set_server_status_up(struct server * srv)183 static void chash_set_server_status_up(struct server *srv)
184 {
185 	struct proxy *p = srv->proxy;
186 
187 	if (!srv_lb_status_changed(srv))
188                return;
189 
190 	HA_SPIN_LOCK(LBPRM_LOCK, &p->lbprm.lock);
191 
192 	if (!srv_willbe_usable(srv))
193 		goto out_update_state;
194 
195 	if (srv_currently_usable(srv))
196 		/* server was already up */
197 		goto out_update_backend;
198 
199 	if (srv->flags & SRV_F_BACKUP) {
200 		p->lbprm.tot_wbck += srv->next_eweight;
201 		p->srv_bck++;
202 
203 		if (!(p->options & PR_O_USE_ALL_BK)) {
204 			if (!p->lbprm.fbck) {
205 				/* there was no backup server anymore */
206 				p->lbprm.fbck = srv;
207 			} else {
208 				/* we may have restored a backup server prior to fbck,
209 				 * in which case it should replace it.
210 				 */
211 				struct server *srv2 = srv;
212 				do {
213 					srv2 = srv2->next;
214 				} while (srv2 && (srv2 != p->lbprm.fbck));
215 				if (srv2)
216 					p->lbprm.fbck = srv;
217 			}
218 		}
219 	} else {
220 		p->lbprm.tot_wact += srv->next_eweight;
221 		p->srv_act++;
222 	}
223 
224 	/* note that eweight cannot be 0 here */
225 	chash_queue_dequeue_srv(srv);
226 
227  out_update_backend:
228 	/* check/update tot_used, tot_weight */
229 	update_backend_weight(p);
230  out_update_state:
231 	srv_lb_commit_status(srv);
232 
233 	HA_SPIN_UNLOCK(LBPRM_LOCK, &p->lbprm.lock);
234 }
235 
236 /* This function must be called after an update to server <srv>'s effective
237  * weight. It may be called after a state change too.
238  *
239  * The server's lock must be held. The lbprm lock may be used.
240  */
chash_update_server_weight(struct server * srv)241 static void chash_update_server_weight(struct server *srv)
242 {
243 	int old_state, new_state;
244 	struct proxy *p = srv->proxy;
245 
246 	if (!srv_lb_status_changed(srv))
247 		return;
248 
249 	/* If changing the server's weight changes its state, we simply apply
250 	 * the procedures we already have for status change. If the state
251 	 * remains down, the server is not in any tree, so it's as easy as
252 	 * updating its values. If the state remains up with different weights,
253 	 * there are some computations to perform to find a new place and
254 	 * possibly a new tree for this server.
255 	 */
256 
257 	old_state = srv_currently_usable(srv);
258 	new_state = srv_willbe_usable(srv);
259 
260 	if (!old_state && !new_state) {
261 		srv_lb_commit_status(srv);
262 		return;
263 	}
264 	else if (!old_state && new_state) {
265 		chash_set_server_status_up(srv);
266 		return;
267 	}
268 	else if (old_state && !new_state) {
269 		chash_set_server_status_down(srv);
270 		return;
271 	}
272 
273 	HA_SPIN_LOCK(LBPRM_LOCK, &p->lbprm.lock);
274 
275 	/* only adjust the server's presence in the tree */
276 	chash_queue_dequeue_srv(srv);
277 
278 	if (srv->flags & SRV_F_BACKUP)
279 		p->lbprm.tot_wbck += srv->next_eweight - srv->cur_eweight;
280 	else
281 		p->lbprm.tot_wact += srv->next_eweight - srv->cur_eweight;
282 
283 	update_backend_weight(p);
284 	srv_lb_commit_status(srv);
285 
286 	HA_SPIN_UNLOCK(LBPRM_LOCK, &p->lbprm.lock);
287 }
288 
289 /*
290  * This function implements the "Consistent Hashing with Bounded Loads" algorithm
291  * of Mirrokni, Thorup, and Zadimoghaddam (arxiv:1608.01350), adapted for use with
292  * unequal server weights.
293  */
chash_server_is_eligible(struct server * s)294 int chash_server_is_eligible(struct server *s)
295 {
296 	/* The total number of slots to allocate is the total number of outstanding requests
297 	 * (including the one we're about to make) times the load-balance-factor, rounded up.
298 	 */
299 	unsigned tot_slots = ((s->proxy->served + 1) * s->proxy->lbprm.hash_balance_factor + 99) / 100;
300 	unsigned slots_per_weight = tot_slots / s->proxy->lbprm.tot_weight;
301 	unsigned remainder = tot_slots % s->proxy->lbprm.tot_weight;
302 
303 	/* Allocate a whole number of slots per weight unit... */
304 	unsigned slots = s->cur_eweight * slots_per_weight;
305 
306 	/* And then distribute the rest among servers proportionally to their weight. */
307 	slots += ((s->cumulative_weight + s->cur_eweight) * remainder) / s->proxy->lbprm.tot_weight
308 		- (s->cumulative_weight * remainder) / s->proxy->lbprm.tot_weight;
309 
310 	/* But never leave a server with 0. */
311 	if (slots == 0)
312 		slots = 1;
313 
314 	return s->served < slots;
315 }
316 
317 /*
318  * This function returns the running server from the CHASH tree, which is at
319  * the closest distance from the value of <hash>. Doing so ensures that even
320  * with a well imbalanced hash, if some servers are close to each other, they
321  * will still both receive traffic. If any server is found, it will be returned.
322  * It will also skip server <avoid> if the hash result ends on this one.
323  * If no valid server is found, NULL is returned.
324  */
chash_get_server_hash(struct proxy * p,unsigned int hash,const struct server * avoid)325 struct server *chash_get_server_hash(struct proxy *p, unsigned int hash, const struct server *avoid)
326 {
327 	struct eb32_node *next, *prev;
328 	struct server *nsrv, *psrv;
329 	struct eb_root *root;
330 	unsigned int dn, dp;
331 	int loop;
332 
333 	HA_SPIN_LOCK(LBPRM_LOCK, &p->lbprm.lock);
334 
335 	if (p->srv_act)
336 		root = &p->lbprm.chash.act;
337 	else if (p->lbprm.fbck) {
338 		nsrv = p->lbprm.fbck;
339 		goto out;
340 	}
341 	else if (p->srv_bck)
342 		root = &p->lbprm.chash.bck;
343 	else {
344 		nsrv = NULL;
345 		goto out;
346 	}
347 
348 	/* find the node after and the node before */
349 	next = eb32_lookup_ge(root, hash);
350 	if (!next)
351 		next = eb32_first(root);
352 	if (!next) {
353 		nsrv = NULL; /* tree is empty */
354 		goto out;
355 	}
356 
357 	prev = eb32_prev(next);
358 	if (!prev)
359 		prev = eb32_last(root);
360 
361 	nsrv = eb32_entry(next, struct tree_occ, node)->server;
362 	psrv = eb32_entry(prev, struct tree_occ, node)->server;
363 
364 	/* OK we're located between two servers, let's
365 	 * compare distances between hash and the two servers
366 	 * and select the closest server.
367 	 */
368 	dp = hash - prev->key;
369 	dn = next->key - hash;
370 
371 	if (dp <= dn) {
372 		next = prev;
373 		nsrv = psrv;
374 	}
375 
376 	loop = 0;
377 	while (nsrv == avoid || (p->lbprm.hash_balance_factor && !chash_server_is_eligible(nsrv))) {
378 		next = eb32_next(next);
379 		if (!next) {
380 			next = eb32_first(root);
381 			if (++loop > 1) // protection against accidental loop
382 				break;
383 		}
384 		nsrv = eb32_entry(next, struct tree_occ, node)->server;
385 	}
386 
387  out:
388 	HA_SPIN_UNLOCK(LBPRM_LOCK, &p->lbprm.lock);
389 	return nsrv;
390 }
391 
392 /* Return next server from the CHASH tree in backend <p>. If the tree is empty,
393  * return NULL. Saturated servers are skipped.
394  */
chash_get_next_server(struct proxy * p,struct server * srvtoavoid)395 struct server *chash_get_next_server(struct proxy *p, struct server *srvtoavoid)
396 {
397 	struct server *srv, *avoided;
398 	struct eb32_node *node, *stop, *avoided_node;
399 	struct eb_root *root;
400 
401 	srv = avoided = NULL;
402 	avoided_node = NULL;
403 
404 	HA_SPIN_LOCK(LBPRM_LOCK, &p->lbprm.lock);
405 	if (p->srv_act)
406 		root = &p->lbprm.chash.act;
407 	else if (p->lbprm.fbck) {
408 		srv = p->lbprm.fbck;
409 		goto out;
410 	}
411 	else if (p->srv_bck)
412 		root = &p->lbprm.chash.bck;
413 	else {
414 		srv = NULL;
415 		goto out;
416 	}
417 
418 	stop = node = p->lbprm.chash.last;
419 	do {
420 		struct server *s;
421 
422 		if (node)
423 			node = eb32_next(node);
424 		if (!node)
425 			node = eb32_first(root);
426 
427 		p->lbprm.chash.last = node;
428 		if (!node) {
429 			/* no node is available */
430 			srv = NULL;
431 			goto out;
432 		}
433 
434 		/* Note: if we came here after a down/up cycle with no last
435 		 * pointer, and after a redispatch (srvtoavoid is set), we
436 		 * must set stop to non-null otherwise we can loop forever.
437 		 */
438 		if (!stop)
439 			stop = node;
440 
441 		/* OK, we have a server. However, it may be saturated, in which
442 		 * case we don't want to reconsider it for now, so we'll simply
443 		 * skip it. Same if it's the server we try to avoid, in which
444 		 * case we simply remember it for later use if needed.
445 		 */
446 		s = eb32_entry(node, struct tree_occ, node)->server;
447 		if (!s->maxconn || (!s->nbpend && s->served < srv_dynamic_maxconn(s))) {
448 			if (s != srvtoavoid) {
449 				srv = s;
450 				break;
451 			}
452 			avoided = s;
453 			avoided_node = node;
454 		}
455 	} while (node != stop);
456 
457 	if (!srv) {
458 		srv = avoided;
459 		p->lbprm.chash.last = avoided_node;
460 	}
461 
462  out:
463 	HA_SPIN_UNLOCK(LBPRM_LOCK, &p->lbprm.lock);
464 	return srv;
465 }
466 
467 /* This function is responsible for building the active and backup trees for
468  * constistent hashing. The servers receive an array of initialized nodes
469  * with their assigned keys. It also sets p->lbprm.wdiv to the eweight to
470  * uweight ratio.
471  * Return 0 in case of success, -1 in case of allocation failure.
472  */
chash_init_server_tree(struct proxy * p)473 int chash_init_server_tree(struct proxy *p)
474 {
475 	struct server *srv;
476 	struct eb_root init_head = EB_ROOT;
477 	int node;
478 
479 	p->lbprm.set_server_status_up   = chash_set_server_status_up;
480 	p->lbprm.set_server_status_down = chash_set_server_status_down;
481 	p->lbprm.update_server_eweight  = chash_update_server_weight;
482 	p->lbprm.server_take_conn = NULL;
483 	p->lbprm.server_drop_conn = NULL;
484 
485 	p->lbprm.wdiv = BE_WEIGHT_SCALE;
486 	for (srv = p->srv; srv; srv = srv->next) {
487 		srv->next_eweight = (srv->uweight * p->lbprm.wdiv + p->lbprm.wmult - 1) / p->lbprm.wmult;
488 		srv_lb_commit_status(srv);
489 	}
490 
491 	recount_servers(p);
492 	update_backend_weight(p);
493 
494 	p->lbprm.chash.act = init_head;
495 	p->lbprm.chash.bck = init_head;
496 	p->lbprm.chash.last = NULL;
497 
498 	/* queue active and backup servers in two distinct groups */
499 	for (srv = p->srv; srv; srv = srv->next) {
500 		srv->lb_tree = (srv->flags & SRV_F_BACKUP) ? &p->lbprm.chash.bck : &p->lbprm.chash.act;
501 		srv->lb_nodes_tot = srv->uweight * BE_WEIGHT_SCALE;
502 		srv->lb_nodes_now = 0;
503 		srv->lb_nodes = calloc(srv->lb_nodes_tot, sizeof(struct tree_occ));
504 		if (!srv->lb_nodes) {
505 			ha_alert("failed to allocate lb_nodes for server %s.\n", srv->id);
506 			return -1;
507 		}
508 		for (node = 0; node < srv->lb_nodes_tot; node++) {
509 			srv->lb_nodes[node].server = srv;
510 			srv->lb_nodes[node].node.key = full_hash(srv->puid * SRV_EWGHT_RANGE + node);
511 		}
512 
513 		if (srv_currently_usable(srv))
514 			chash_queue_dequeue_srv(srv);
515 	}
516 	return 0;
517 }
518