1 /*
2  * Task management functions.
3  *
4  * Copyright 2000-2009 Willy Tarreau <w@1wt.eu>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  *
11  */
12 
13 #include <string.h>
14 
15 #include <common/config.h>
16 #include <common/memory.h>
17 #include <common/mini-clist.h>
18 #include <common/standard.h>
19 #include <common/time.h>
20 #include <eb32sctree.h>
21 #include <eb32tree.h>
22 
23 #include <proto/fd.h>
24 #include <proto/freq_ctr.h>
25 #include <proto/proxy.h>
26 #include <proto/stream.h>
27 #include <proto/task.h>
28 
29 DECLARE_POOL(pool_head_task,    "task",    sizeof(struct task));
30 DECLARE_POOL(pool_head_tasklet, "tasklet", sizeof(struct tasklet));
31 
32 /* This is the memory pool containing all the signal structs. These
33  * struct are used to store each required signal between two tasks.
34  */
35 DECLARE_POOL(pool_head_notification, "notification", sizeof(struct notification));
36 
37 unsigned int nb_tasks = 0;
38 volatile unsigned long global_tasks_mask = 0; /* Mask of threads with tasks in the global runqueue */
39 unsigned int tasks_run_queue = 0;
40 unsigned int tasks_run_queue_cur = 0;    /* copy of the run queue size */
41 unsigned int nb_tasks_cur = 0;     /* copy of the tasks count */
42 unsigned int niced_tasks = 0;      /* number of niced tasks in the run queue */
43 
44 THREAD_LOCAL struct task *curr_task = NULL; /* task currently running or NULL */
45 
46 __decl_aligned_spinlock(rq_lock); /* spin lock related to run queue */
47 __decl_aligned_rwlock(wq_lock);   /* RW lock related to the wait queue */
48 
49 #ifdef USE_THREAD
50 struct eb_root timers;      /* sorted timers tree, global */
51 struct eb_root rqueue;      /* tree constituting the run queue */
52 int global_rqueue_size; /* Number of element sin the global runqueue */
53 #endif
54 
55 static unsigned int rqueue_ticks;  /* insertion count */
56 
57 struct task_per_thread task_per_thread[MAX_THREADS];
58 
59 /* Puts the task <t> in run queue at a position depending on t->nice. <t> is
60  * returned. The nice value assigns boosts in 32th of the run queue size. A
61  * nice value of -1024 sets the task to -tasks_run_queue*32, while a nice value
62  * of 1024 sets the task to tasks_run_queue*32. The state flags are cleared, so
63  * the caller will have to set its flags after this call.
64  * The task must not already be in the run queue. If unsure, use the safer
65  * task_wakeup() function.
66  */
__task_wakeup(struct task * t,struct eb_root * root)67 void __task_wakeup(struct task *t, struct eb_root *root)
68 {
69 #ifdef USE_THREAD
70 	if (root == &rqueue) {
71 		HA_SPIN_LOCK(TASK_RQ_LOCK, &rq_lock);
72 	}
73 #endif
74 	/* Make sure if the task isn't in the runqueue, nobody inserts it
75 	 * in the meanwhile.
76 	 */
77 	_HA_ATOMIC_ADD(&tasks_run_queue, 1);
78 #ifdef USE_THREAD
79 	if (root == &rqueue) {
80 		global_tasks_mask |= t->thread_mask;
81 		__ha_barrier_store();
82 	}
83 #endif
84 	t->rq.key = _HA_ATOMIC_ADD(&rqueue_ticks, 1);
85 
86 	if (likely(t->nice)) {
87 		int offset;
88 
89 		_HA_ATOMIC_ADD(&niced_tasks, 1);
90 		offset = t->nice * (int)global.tune.runqueue_depth;
91 		t->rq.key += offset;
92 	}
93 
94 	if (task_profiling_mask & tid_bit)
95 		t->call_date = now_mono_time();
96 
97 	eb32sc_insert(root, &t->rq, t->thread_mask);
98 #ifdef USE_THREAD
99 	if (root == &rqueue) {
100 		global_rqueue_size++;
101 		_HA_ATOMIC_OR(&t->state, TASK_GLOBAL);
102 		HA_SPIN_UNLOCK(TASK_RQ_LOCK, &rq_lock);
103 	} else
104 #endif
105 	{
106 		int nb = ((void *)root - (void *)&task_per_thread[0].rqueue) / sizeof(task_per_thread[0]);
107 		task_per_thread[nb].rqueue_size++;
108 	}
109 #ifdef USE_THREAD
110 	/* If all threads that are supposed to handle this task are sleeping,
111 	 * wake one.
112 	 */
113 	if ((((t->thread_mask & all_threads_mask) & sleeping_thread_mask) ==
114 	     (t->thread_mask & all_threads_mask))) {
115 		unsigned long m = (t->thread_mask & all_threads_mask) &~ tid_bit;
116 
117 		m = (m & (m - 1)) ^ m; // keep lowest bit set
118 		_HA_ATOMIC_AND(&sleeping_thread_mask, ~m);
119 		wake_thread(my_ffsl(m) - 1);
120 	}
121 #endif
122 	return;
123 }
124 
125 /*
126  * __task_queue()
127  *
128  * Inserts a task into wait queue <wq> at the position given by its expiration
129  * date. It does not matter if the task was already in the wait queue or not,
130  * as it will be unlinked. The task must not have an infinite expiration timer.
131  * Last, tasks must not be queued further than the end of the tree, which is
132  * between <now_ms> and <now_ms> + 2^31 ms (now+24days in 32bit).
133  *
134  * This function should not be used directly, it is meant to be called by the
135  * inline version of task_queue() which performs a few cheap preliminary tests
136  * before deciding to call __task_queue(). Moreover this function doesn't care
137  * at all about locking so the caller must be careful when deciding whether to
138  * lock or not around this call.
139  */
__task_queue(struct task * task,struct eb_root * wq)140 void __task_queue(struct task *task, struct eb_root *wq)
141 {
142 	if (likely(task_in_wq(task)))
143 		__task_unlink_wq(task);
144 
145 	/* the task is not in the queue now */
146 	task->wq.key = task->expire;
147 #ifdef DEBUG_CHECK_INVALID_EXPIRATION_DATES
148 	if (tick_is_lt(task->wq.key, now_ms))
149 		/* we're queuing too far away or in the past (most likely) */
150 		return;
151 #endif
152 
153 	eb32_insert(wq, &task->wq);
154 }
155 
156 /*
157  * Extract all expired timers from the timer queue, and wakes up all
158  * associated tasks. Returns the date of next event (or eternity).
159  */
wake_expired_tasks()160 int wake_expired_tasks()
161 {
162 	int max_processed = global.tune.runqueue_depth;
163 	struct task *task;
164 	struct eb32_node *eb;
165 	int ret = TICK_ETERNITY;
166 	__decl_hathreads(int key);
167 
168 	while (max_processed-- > 0) {
169   lookup_next_local:
170 		eb = eb32_lookup_ge(&task_per_thread[tid].timers, now_ms - TIMER_LOOK_BACK);
171 		if (!eb) {
172 			/* we might have reached the end of the tree, typically because
173 			* <now_ms> is in the first half and we're first scanning the last
174 			* half. Let's loop back to the beginning of the tree now.
175 			*/
176 			eb = eb32_first(&task_per_thread[tid].timers);
177 			if (likely(!eb))
178 				break;
179 		}
180 
181 		if (tick_is_lt(now_ms, eb->key)) {
182 			/* timer not expired yet, revisit it later */
183 			ret = eb->key;
184 			break;
185 		}
186 
187 		/* timer looks expired, detach it from the queue */
188 		task = eb32_entry(eb, struct task, wq);
189 		__task_unlink_wq(task);
190 
191 		/* It is possible that this task was left at an earlier place in the
192 		 * tree because a recent call to task_queue() has not moved it. This
193 		 * happens when the new expiration date is later than the old one.
194 		 * Since it is very unlikely that we reach a timeout anyway, it's a
195 		 * lot cheaper to proceed like this because we almost never update
196 		 * the tree. We may also find disabled expiration dates there. Since
197 		 * we have detached the task from the tree, we simply call task_queue
198 		 * to take care of this. Note that we might occasionally requeue it at
199 		 * the same place, before <eb>, so we have to check if this happens,
200 		 * and adjust <eb>, otherwise we may skip it which is not what we want.
201 		 * We may also not requeue the task (and not point eb at it) if its
202 		 * expiration time is not set.
203 		 */
204 		if (!tick_is_expired(task->expire, now_ms)) {
205 			if (tick_isset(task->expire))
206 				__task_queue(task, &task_per_thread[tid].timers);
207 			goto lookup_next_local;
208 		}
209 		task_wakeup(task, TASK_WOKEN_TIMER);
210 	}
211 
212 #ifdef USE_THREAD
213 	if (eb_is_empty(&timers))
214 		goto leave;
215 
216 	HA_RWLOCK_RDLOCK(TASK_WQ_LOCK, &wq_lock);
217 	eb = eb32_lookup_ge(&timers, now_ms - TIMER_LOOK_BACK);
218 	if (!eb) {
219 		eb = eb32_first(&timers);
220 		if (likely(!eb)) {
221 			HA_RWLOCK_RDUNLOCK(TASK_WQ_LOCK, &wq_lock);
222 			goto leave;
223 		}
224 	}
225 	key = eb->key;
226 	HA_RWLOCK_RDUNLOCK(TASK_WQ_LOCK, &wq_lock);
227 
228 	if (tick_is_lt(now_ms, key)) {
229 		/* timer not expired yet, revisit it later */
230 		ret = tick_first(ret, key);
231 		goto leave;
232 	}
233 
234 	/* There's really something of interest here, let's visit the queue */
235 
236 	while (1) {
237 		HA_RWLOCK_WRLOCK(TASK_WQ_LOCK, &wq_lock);
238   lookup_next:
239 		if (max_processed-- <= 0)
240 			break;
241 		eb = eb32_lookup_ge(&timers, now_ms - TIMER_LOOK_BACK);
242 		if (!eb) {
243 			/* we might have reached the end of the tree, typically because
244 			* <now_ms> is in the first half and we're first scanning the last
245 			* half. Let's loop back to the beginning of the tree now.
246 			*/
247 			eb = eb32_first(&timers);
248 			if (likely(!eb))
249 				break;
250 		}
251 
252 		if (tick_is_lt(now_ms, eb->key)) {
253 			/* timer not expired yet, revisit it later */
254 			ret = tick_first(ret, eb->key);
255 			break;
256 		}
257 
258 		/* timer looks expired, detach it from the queue */
259 		task = eb32_entry(eb, struct task, wq);
260 		__task_unlink_wq(task);
261 
262 		/* It is possible that this task was left at an earlier place in the
263 		 * tree because a recent call to task_queue() has not moved it. This
264 		 * happens when the new expiration date is later than the old one.
265 		 * Since it is very unlikely that we reach a timeout anyway, it's a
266 		 * lot cheaper to proceed like this because we almost never update
267 		 * the tree. We may also find disabled expiration dates there. Since
268 		 * we have detached the task from the tree, we simply call task_queue
269 		 * to take care of this. Note that we might occasionally requeue it at
270 		 * the same place, before <eb>, so we have to check if this happens,
271 		 * and adjust <eb>, otherwise we may skip it which is not what we want.
272 		 * We may also not requeue the task (and not point eb at it) if its
273 		 * expiration time is not set.
274 		 */
275 		if (!tick_is_expired(task->expire, now_ms)) {
276 			if (tick_isset(task->expire))
277 				__task_queue(task, &timers);
278 			goto lookup_next;
279 		}
280 		task_wakeup(task, TASK_WOKEN_TIMER);
281 		HA_RWLOCK_WRUNLOCK(TASK_WQ_LOCK, &wq_lock);
282 	}
283 
284 	HA_RWLOCK_WRUNLOCK(TASK_WQ_LOCK, &wq_lock);
285 #endif
286 leave:
287 	return ret;
288 }
289 
290 /* The run queue is chronologically sorted in a tree. An insertion counter is
291  * used to assign a position to each task. This counter may be combined with
292  * other variables (eg: nice value) to set the final position in the tree. The
293  * counter may wrap without a problem, of course. We then limit the number of
294  * tasks processed to 200 in any case, so that general latency remains low and
295  * so that task positions have a chance to be considered. The function scans
296  * both the global and local run queues and picks the most urgent task between
297  * the two. We need to grab the global runqueue lock to touch it so it's taken
298  * on the very first access to the global run queue and is released as soon as
299  * it reaches the end.
300  *
301  * The function adjusts <next> if a new event is closer.
302  */
process_runnable_tasks()303 void process_runnable_tasks()
304 {
305 	struct eb32sc_node *lrq = NULL; // next local run queue entry
306 	struct eb32sc_node *grq = NULL; // next global run queue entry
307 	struct task *t;
308 	int max_processed;
309 
310 	ti->flags &= ~TI_FL_STUCK; // this thread is still running
311 
312 	if (!thread_has_tasks()) {
313 		activity[tid].empty_rq++;
314 		return;
315 	}
316 
317 	tasks_run_queue_cur = tasks_run_queue; /* keep a copy for reporting */
318 	nb_tasks_cur = nb_tasks;
319 	max_processed = global.tune.runqueue_depth;
320 
321 	if (likely(niced_tasks))
322 		max_processed = (max_processed + 3) / 4;
323 
324 	/* Note: the grq lock is always held when grq is not null */
325 
326 	while (task_per_thread[tid].task_list_size < max_processed) {
327 		if ((global_tasks_mask & tid_bit) && !grq) {
328 #ifdef USE_THREAD
329 			HA_SPIN_LOCK(TASK_RQ_LOCK, &rq_lock);
330 			grq = eb32sc_lookup_ge(&rqueue, rqueue_ticks - TIMER_LOOK_BACK, tid_bit);
331 			if (unlikely(!grq)) {
332 				grq = eb32sc_first(&rqueue, tid_bit);
333 				if (!grq) {
334 					global_tasks_mask &= ~tid_bit;
335 					HA_SPIN_UNLOCK(TASK_RQ_LOCK, &rq_lock);
336 				}
337 			}
338 #endif
339 		}
340 
341 		/* If a global task is available for this thread, it's in grq
342 		 * now and the global RQ is locked.
343 		 */
344 
345 		if (!lrq) {
346 			lrq = eb32sc_lookup_ge(&task_per_thread[tid].rqueue, rqueue_ticks - TIMER_LOOK_BACK, tid_bit);
347 			if (unlikely(!lrq))
348 				lrq = eb32sc_first(&task_per_thread[tid].rqueue, tid_bit);
349 		}
350 
351 		if (!lrq && !grq)
352 			break;
353 
354 		if (likely(!grq || (lrq && (int)(lrq->key - grq->key) <= 0))) {
355 			t = eb32sc_entry(lrq, struct task, rq);
356 			lrq = eb32sc_next(lrq, tid_bit);
357 			__task_unlink_rq(t);
358 		}
359 #ifdef USE_THREAD
360 		else {
361 			t = eb32sc_entry(grq, struct task, rq);
362 			grq = eb32sc_next(grq, tid_bit);
363 			__task_unlink_rq(t);
364 			if (unlikely(!grq)) {
365 				grq = eb32sc_first(&rqueue, tid_bit);
366 				if (!grq) {
367 					global_tasks_mask &= ~tid_bit;
368 					HA_SPIN_UNLOCK(TASK_RQ_LOCK, &rq_lock);
369 				}
370 			}
371 		}
372 #endif
373 
374 		/* And add it to the local task list */
375 		tasklet_insert_into_tasklet_list((struct tasklet *)t);
376 		task_per_thread[tid].task_list_size++;
377 		activity[tid].tasksw++;
378 	}
379 
380 	/* release the rqueue lock */
381 	if (grq) {
382 		HA_SPIN_UNLOCK(TASK_RQ_LOCK, &rq_lock);
383 		grq = NULL;
384 	}
385 
386 	while (max_processed > 0 && !LIST_ISEMPTY(&task_per_thread[tid].task_list)) {
387 		struct task *t;
388 		unsigned short state;
389 		void *ctx;
390 		struct task *(*process)(struct task *t, void *ctx, unsigned short state);
391 
392 		t = (struct task *)LIST_ELEM(task_per_thread[tid].task_list.n, struct tasklet *, list);
393 		state = (t->state & TASK_SHARED_WQ) | TASK_RUNNING;
394 		state = _HA_ATOMIC_XCHG(&t->state, state);
395 		__ha_barrier_atomic_store();
396 		__tasklet_remove_from_tasklet_list((struct tasklet *)t);
397 		if (!TASK_IS_TASKLET(t))
398 			task_per_thread[tid].task_list_size--;
399 
400 		ti->flags &= ~TI_FL_STUCK; // this thread is still running
401 		activity[tid].ctxsw++;
402 		ctx = t->context;
403 		process = t->process;
404 		t->calls++;
405 
406 		if (unlikely(!TASK_IS_TASKLET(t) && t->call_date)) {
407 			uint64_t now_ns = now_mono_time();
408 
409 			t->lat_time += now_ns - t->call_date;
410 			t->call_date = now_ns;
411 		}
412 
413 		curr_task = (struct task *)t;
414 		__ha_barrier_store();
415 		if (likely(process == process_stream))
416 			t = process_stream(t, ctx, state);
417 		else if (process != NULL)
418 			t = process(TASK_IS_TASKLET(t) ? NULL : t, ctx, state);
419 		else {
420 			__task_free(t);
421 			curr_task = NULL;
422 			__ha_barrier_store();
423 			/* We don't want max_processed to be decremented if
424 			 * we're just freeing a destroyed task, we should only
425 			 * do so if we really ran a task.
426 			 */
427 			continue;
428 		}
429 		curr_task = NULL;
430 		__ha_barrier_store();
431 		/* If there is a pending state  we have to wake up the task
432 		 * immediately, else we defer it into wait queue
433 		 */
434 		if (t != NULL) {
435 			if (unlikely(!TASK_IS_TASKLET(t) && t->call_date)) {
436 				t->cpu_time += now_mono_time() - t->call_date;
437 				t->call_date = 0;
438 			}
439 
440 			state = _HA_ATOMIC_AND(&t->state, ~TASK_RUNNING);
441 			if (state & TASK_WOKEN_ANY)
442 				task_wakeup(t, 0);
443 			else
444 				task_queue(t);
445 		}
446 
447 		max_processed--;
448 	}
449 
450 	if (!LIST_ISEMPTY(&task_per_thread[tid].task_list))
451 		activity[tid].long_rq++;
452 }
453 
454 /* create a work list array for <nbthread> threads, using tasks made of
455  * function <fct>. The context passed to the function will be the pointer to
456  * the thread's work list, which will contain a copy of argument <arg>. The
457  * wake up reason will be TASK_WOKEN_OTHER. The pointer to the work_list array
458  * is returned on success, otherwise NULL on failure.
459  */
work_list_create(int nbthread,struct task * (* fct)(struct task *,void *,unsigned short),void * arg)460 struct work_list *work_list_create(int nbthread,
461                                    struct task *(*fct)(struct task *, void *, unsigned short),
462                                    void *arg)
463 {
464 	struct work_list *wl;
465 	int i;
466 
467 	wl = calloc(nbthread, sizeof(*wl));
468 	if (!wl)
469 		goto fail;
470 
471 	for (i = 0; i < nbthread; i++) {
472 		LIST_INIT(&wl[i].head);
473 		wl[i].task = task_new(1UL << i);
474 		if (!wl[i].task)
475 			goto fail;
476 		wl[i].task->process = fct;
477 		wl[i].task->context = &wl[i];
478 		wl[i].arg = arg;
479 	}
480 	return wl;
481 
482  fail:
483 	work_list_destroy(wl, nbthread);
484 	return NULL;
485 }
486 
487 /* destroy work list <work> */
work_list_destroy(struct work_list * work,int nbthread)488 void work_list_destroy(struct work_list *work, int nbthread)
489 {
490 	int t;
491 
492 	if (!work)
493 		return;
494 	for (t = 0; t < nbthread; t++)
495 		task_destroy(work[t].task);
496 	free(work);
497 }
498 
499 /*
500  * Delete every tasks before running the master polling loop
501  */
mworker_cleantasks()502 void mworker_cleantasks()
503 {
504 	struct task *t;
505 	int i;
506 	struct eb32_node *tmp_wq = NULL;
507 	struct eb32sc_node *tmp_rq = NULL;
508 
509 #ifdef USE_THREAD
510 	/* cleanup the global run queue */
511 	tmp_rq = eb32sc_first(&rqueue, MAX_THREADS_MASK);
512 	while (tmp_rq) {
513 		t = eb32sc_entry(tmp_rq, struct task, rq);
514 		tmp_rq = eb32sc_next(tmp_rq, MAX_THREADS_MASK);
515 		task_destroy(t);
516 	}
517 	/* cleanup the timers queue */
518 	tmp_wq = eb32_first(&timers);
519 	while (tmp_wq) {
520 		t = eb32_entry(tmp_wq, struct task, wq);
521 		tmp_wq = eb32_next(tmp_wq);
522 		task_destroy(t);
523 	}
524 #endif
525 	/* clean the per thread run queue */
526 	for (i = 0; i < global.nbthread; i++) {
527 		tmp_rq = eb32sc_first(&task_per_thread[i].rqueue, MAX_THREADS_MASK);
528 		while (tmp_rq) {
529 			t = eb32sc_entry(tmp_rq, struct task, rq);
530 			tmp_rq = eb32sc_next(tmp_rq, MAX_THREADS_MASK);
531 			task_destroy(t);
532 		}
533 		/* cleanup the per thread timers queue */
534 		tmp_wq = eb32_first(&task_per_thread[i].timers);
535 		while (tmp_wq) {
536 			t = eb32_entry(tmp_wq, struct task, wq);
537 			tmp_wq = eb32_next(tmp_wq);
538 			task_destroy(t);
539 		}
540 	}
541 }
542 
543 /* perform minimal intializations */
init_task()544 static void init_task()
545 {
546 	int i;
547 
548 #ifdef USE_THREAD
549 	memset(&timers, 0, sizeof(timers));
550 	memset(&rqueue, 0, sizeof(rqueue));
551 #endif
552 	memset(&task_per_thread, 0, sizeof(task_per_thread));
553 	for (i = 0; i < MAX_THREADS; i++) {
554 		LIST_INIT(&task_per_thread[i].task_list);
555 	}
556 }
557 
558 INITCALL0(STG_PREPARE, init_task);
559 
560 /*
561  * Local variables:
562  *  c-indent-level: 8
563  *  c-basic-offset: 8
564  * End:
565  */
566