1 /*
2  * Task management functions.
3  *
4  * Copyright 2000-2009 Willy Tarreau <w@1wt.eu>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  *
11  */
12 
13 #include <string.h>
14 
15 #include <import/eb32sctree.h>
16 #include <import/eb32tree.h>
17 
18 #include <haproxy/api.h>
19 #include <haproxy/cfgparse.h>
20 #include <haproxy/fd.h>
21 #include <haproxy/freq_ctr.h>
22 #include <haproxy/list.h>
23 #include <haproxy/pool.h>
24 #include <haproxy/stream.h>
25 #include <haproxy/task.h>
26 #include <haproxy/time.h>
27 #include <haproxy/tools.h>
28 
29 
30 DECLARE_POOL(pool_head_task,    "task",    sizeof(struct task));
31 DECLARE_POOL(pool_head_tasklet, "tasklet", sizeof(struct tasklet));
32 
33 /* This is the memory pool containing all the signal structs. These
34  * struct are used to store each required signal between two tasks.
35  */
36 DECLARE_POOL(pool_head_notification, "notification", sizeof(struct notification));
37 
38 unsigned int nb_tasks = 0;
39 volatile unsigned long global_tasks_mask = 0; /* Mask of threads with tasks in the global runqueue */
40 unsigned int tasks_run_queue = 0;
41 unsigned int tasks_run_queue_cur = 0;    /* copy of the run queue size */
42 unsigned int nb_tasks_cur = 0;     /* copy of the tasks count */
43 unsigned int niced_tasks = 0;      /* number of niced tasks in the run queue */
44 
45 THREAD_LOCAL struct task_per_thread *sched = &task_per_thread[0]; /* scheduler context for the current thread */
46 
47 __decl_aligned_spinlock(rq_lock); /* spin lock related to run queue */
48 __decl_aligned_rwlock(wq_lock);   /* RW lock related to the wait queue */
49 
50 #ifdef USE_THREAD
51 struct eb_root timers;      /* sorted timers tree, global */
52 struct eb_root rqueue;      /* tree constituting the run queue */
53 int global_rqueue_size; /* Number of element sin the global runqueue */
54 #endif
55 
56 static unsigned int rqueue_ticks;  /* insertion count */
57 
58 struct task_per_thread task_per_thread[MAX_THREADS];
59 
60 
61 /* Flags the task <t> for immediate destruction and puts it into its first
62  * thread's shared tasklet list if not yet queued/running. This will bypass
63  * the priority scheduling and make the task show up as fast as possible in
64  * the other thread's queue. Note that this operation isn't idempotent and is
65  * not supposed to be run on the same task from multiple threads at once. It's
66  * the caller's responsibility to make sure it is the only one able to kill the
67  * task.
68  */
task_kill(struct task * t)69 void task_kill(struct task *t)
70 {
71 	unsigned short state = t->state;
72 	unsigned int thr;
73 
74 	BUG_ON(state & TASK_KILLED);
75 
76 	while (1) {
77 		while (state & (TASK_RUNNING | TASK_QUEUED)) {
78 			/* task already in the queue and about to be executed,
79 			 * or even currently running. Just add the flag and be
80 			 * done with it, the process loop will detect it and kill
81 			 * it. The CAS will fail if we arrive too late.
82 			 */
83 			if (_HA_ATOMIC_CAS(&t->state, &state, state | TASK_KILLED))
84 				return;
85 		}
86 
87 		/* We'll have to wake it up, but we must also secure it so that
88 		 * it doesn't vanish under us. TASK_QUEUED guarantees nobody will
89 		 * add past us.
90 		 */
91 		if (_HA_ATOMIC_CAS(&t->state, &state, state | TASK_QUEUED | TASK_KILLED)) {
92 			/* Bypass the tree and go directly into the shared tasklet list.
93 			 * Note: that's a task so it must be accounted for as such. Pick
94 			 * the task's first thread for the job.
95 			 */
96 			thr = my_ffsl(t->thread_mask) - 1;
97 
98 			/* Beware: tasks that have never run don't have their ->list empty yet! */
99 			LIST_INIT(&((struct tasklet *)t)->list);
100 			MT_LIST_ADDQ(&task_per_thread[thr].shared_tasklet_list,
101 			             (struct mt_list *)&((struct tasklet *)t)->list);
102 			_HA_ATOMIC_ADD(&tasks_run_queue, 1);
103 			_HA_ATOMIC_ADD(&task_per_thread[thr].task_list_size, 1);
104 			if (sleeping_thread_mask & (1UL << thr)) {
105 				_HA_ATOMIC_AND(&sleeping_thread_mask, ~(1UL << thr));
106 				wake_thread(thr);
107 			}
108 			return;
109 		}
110 	}
111 }
112 
113 /* Puts the task <t> in run queue at a position depending on t->nice. <t> is
114  * returned. The nice value assigns boosts in 32th of the run queue size. A
115  * nice value of -1024 sets the task to -tasks_run_queue*32, while a nice value
116  * of 1024 sets the task to tasks_run_queue*32. The state flags are cleared, so
117  * the caller will have to set its flags after this call.
118  * The task must not already be in the run queue. If unsure, use the safer
119  * task_wakeup() function.
120  */
__task_wakeup(struct task * t,struct eb_root * root)121 void __task_wakeup(struct task *t, struct eb_root *root)
122 {
123 #ifdef USE_THREAD
124 	if (root == &rqueue) {
125 		HA_SPIN_LOCK(TASK_RQ_LOCK, &rq_lock);
126 	}
127 #endif
128 	/* Make sure if the task isn't in the runqueue, nobody inserts it
129 	 * in the meanwhile.
130 	 */
131 	_HA_ATOMIC_ADD(&tasks_run_queue, 1);
132 #ifdef USE_THREAD
133 	if (root == &rqueue) {
134 		global_tasks_mask |= t->thread_mask;
135 		__ha_barrier_store();
136 	}
137 #endif
138 	t->rq.key = _HA_ATOMIC_ADD(&rqueue_ticks, 1);
139 
140 	if (likely(t->nice)) {
141 		int offset;
142 
143 		_HA_ATOMIC_ADD(&niced_tasks, 1);
144 		offset = t->nice * (int)global.tune.runqueue_depth;
145 		t->rq.key += offset;
146 	}
147 
148 	if (task_profiling_mask & tid_bit)
149 		t->call_date = now_mono_time();
150 
151 	eb32sc_insert(root, &t->rq, t->thread_mask);
152 #ifdef USE_THREAD
153 	if (root == &rqueue) {
154 		global_rqueue_size++;
155 		_HA_ATOMIC_OR(&t->state, TASK_GLOBAL);
156 		HA_SPIN_UNLOCK(TASK_RQ_LOCK, &rq_lock);
157 	} else
158 #endif
159 	{
160 		int nb = ((void *)root - (void *)&task_per_thread[0].rqueue) / sizeof(task_per_thread[0]);
161 		task_per_thread[nb].rqueue_size++;
162 	}
163 #ifdef USE_THREAD
164 	/* If all threads that are supposed to handle this task are sleeping,
165 	 * wake one.
166 	 */
167 	if ((((t->thread_mask & all_threads_mask) & sleeping_thread_mask) ==
168 	     (t->thread_mask & all_threads_mask))) {
169 		unsigned long m = (t->thread_mask & all_threads_mask) &~ tid_bit;
170 
171 		m = (m & (m - 1)) ^ m; // keep lowest bit set
172 		_HA_ATOMIC_AND(&sleeping_thread_mask, ~m);
173 		wake_thread(my_ffsl(m) - 1);
174 	}
175 #endif
176 	return;
177 }
178 
179 /*
180  * __task_queue()
181  *
182  * Inserts a task into wait queue <wq> at the position given by its expiration
183  * date. It does not matter if the task was already in the wait queue or not,
184  * as it will be unlinked. The task must not have an infinite expiration timer.
185  * Last, tasks must not be queued further than the end of the tree, which is
186  * between <now_ms> and <now_ms> + 2^31 ms (now+24days in 32bit).
187  *
188  * This function should not be used directly, it is meant to be called by the
189  * inline version of task_queue() which performs a few cheap preliminary tests
190  * before deciding to call __task_queue(). Moreover this function doesn't care
191  * at all about locking so the caller must be careful when deciding whether to
192  * lock or not around this call.
193  */
__task_queue(struct task * task,struct eb_root * wq)194 void __task_queue(struct task *task, struct eb_root *wq)
195 {
196 	if (likely(task_in_wq(task)))
197 		__task_unlink_wq(task);
198 
199 	/* the task is not in the queue now */
200 	task->wq.key = task->expire;
201 #ifdef DEBUG_CHECK_INVALID_EXPIRATION_DATES
202 	if (tick_is_lt(task->wq.key, now_ms))
203 		/* we're queuing too far away or in the past (most likely) */
204 		return;
205 #endif
206 
207 	eb32_insert(wq, &task->wq);
208 }
209 
210 /*
211  * Extract all expired timers from the timer queue, and wakes up all
212  * associated tasks.
213  */
wake_expired_tasks()214 void wake_expired_tasks()
215 {
216 	struct task_per_thread * const tt = sched; // thread's tasks
217 	int max_processed = global.tune.runqueue_depth;
218 	struct task *task;
219 	struct eb32_node *eb;
220 	__decl_thread(int key);
221 
222 	while (max_processed-- > 0) {
223   lookup_next_local:
224 		eb = eb32_lookup_ge(&tt->timers, now_ms - TIMER_LOOK_BACK);
225 		if (!eb) {
226 			/* we might have reached the end of the tree, typically because
227 			* <now_ms> is in the first half and we're first scanning the last
228 			* half. Let's loop back to the beginning of the tree now.
229 			*/
230 			eb = eb32_first(&tt->timers);
231 			if (likely(!eb))
232 				break;
233 		}
234 
235 		/* It is possible that this task was left at an earlier place in the
236 		 * tree because a recent call to task_queue() has not moved it. This
237 		 * happens when the new expiration date is later than the old one.
238 		 * Since it is very unlikely that we reach a timeout anyway, it's a
239 		 * lot cheaper to proceed like this because we almost never update
240 		 * the tree. We may also find disabled expiration dates there. Since
241 		 * we have detached the task from the tree, we simply call task_queue
242 		 * to take care of this. Note that we might occasionally requeue it at
243 		 * the same place, before <eb>, so we have to check if this happens,
244 		 * and adjust <eb>, otherwise we may skip it which is not what we want.
245 		 * We may also not requeue the task (and not point eb at it) if its
246 		 * expiration time is not set. We also make sure we leave the real
247 		 * expiration date for the next task in the queue so that when calling
248 		 * next_timer_expiry() we're guaranteed to see the next real date and
249 		 * not the next apparent date. This is in order to avoid useless
250 		 * wakeups.
251 		 */
252 
253 		task = eb32_entry(eb, struct task, wq);
254 		if (tick_is_expired(task->expire, now_ms)) {
255 			/* expired task, wake it up */
256 			__task_unlink_wq(task);
257 			task_wakeup(task, TASK_WOKEN_TIMER);
258 		}
259 		else if (task->expire != eb->key) {
260 			/* task is not expired but its key doesn't match so let's
261 			 * update it and skip to next apparently expired task.
262 			 */
263 			__task_unlink_wq(task);
264 			if (tick_isset(task->expire))
265 				__task_queue(task, &tt->timers);
266 		}
267 		else {
268 			/* task not expired and correctly placed */
269 			break;
270 		}
271 	}
272 
273 #ifdef USE_THREAD
274 	if (eb_is_empty(&timers))
275 		goto leave;
276 
277 	HA_RWLOCK_RDLOCK(TASK_WQ_LOCK, &wq_lock);
278 	eb = eb32_lookup_ge(&timers, now_ms - TIMER_LOOK_BACK);
279 	if (!eb) {
280 		eb = eb32_first(&timers);
281 		if (likely(!eb)) {
282 			HA_RWLOCK_RDUNLOCK(TASK_WQ_LOCK, &wq_lock);
283 			goto leave;
284 		}
285 	}
286 	key = eb->key;
287 	HA_RWLOCK_RDUNLOCK(TASK_WQ_LOCK, &wq_lock);
288 
289 	if (tick_is_lt(now_ms, key))
290 		goto leave;
291 
292 	/* There's really something of interest here, let's visit the queue */
293 
294 	while (1) {
295 		HA_RWLOCK_WRLOCK(TASK_WQ_LOCK, &wq_lock);
296   lookup_next:
297 		if (max_processed-- <= 0)
298 			break;
299 		eb = eb32_lookup_ge(&timers, now_ms - TIMER_LOOK_BACK);
300 		if (!eb) {
301 			/* we might have reached the end of the tree, typically because
302 			* <now_ms> is in the first half and we're first scanning the last
303 			* half. Let's loop back to the beginning of the tree now.
304 			*/
305 			eb = eb32_first(&timers);
306 			if (likely(!eb))
307 				break;
308 		}
309 
310 		task = eb32_entry(eb, struct task, wq);
311 		if (tick_is_expired(task->expire, now_ms)) {
312 			/* expired task, wake it up */
313 			__task_unlink_wq(task);
314 			task_wakeup(task, TASK_WOKEN_TIMER);
315 		}
316 		else if (task->expire != eb->key) {
317 			/* task is not expired but its key doesn't match so let's
318 			 * update it and skip to next apparently expired task.
319 			 */
320 			__task_unlink_wq(task);
321 			if (tick_isset(task->expire))
322 				__task_queue(task, &timers);
323 			goto lookup_next;
324 		}
325 		else {
326 			/* task not expired and correctly placed */
327 			break;
328 		}
329 		HA_RWLOCK_WRUNLOCK(TASK_WQ_LOCK, &wq_lock);
330 	}
331 
332 	HA_RWLOCK_WRUNLOCK(TASK_WQ_LOCK, &wq_lock);
333 #endif
334 leave:
335 	return;
336 }
337 
338 /* Checks the next timer for the current thread by looking into its own timer
339  * list and the global one. It may return TICK_ETERNITY if no timer is present.
340  * Note that the next timer might very well be slightly in the past.
341  */
next_timer_expiry()342 int next_timer_expiry()
343 {
344 	struct task_per_thread * const tt = sched; // thread's tasks
345 	struct eb32_node *eb;
346 	int ret = TICK_ETERNITY;
347 	__decl_thread(int key = TICK_ETERNITY);
348 
349 	/* first check in the thread-local timers */
350 	eb = eb32_lookup_ge(&tt->timers, now_ms - TIMER_LOOK_BACK);
351 	if (!eb) {
352 		/* we might have reached the end of the tree, typically because
353 		 * <now_ms> is in the first half and we're first scanning the last
354 		 * half. Let's loop back to the beginning of the tree now.
355 		 */
356 		eb = eb32_first(&tt->timers);
357 	}
358 
359 	if (eb)
360 		ret = eb->key;
361 
362 #ifdef USE_THREAD
363 	if (!eb_is_empty(&timers)) {
364 		HA_RWLOCK_RDLOCK(TASK_WQ_LOCK, &wq_lock);
365 		eb = eb32_lookup_ge(&timers, now_ms - TIMER_LOOK_BACK);
366 		if (!eb)
367 			eb = eb32_first(&timers);
368 		if (eb)
369 			key = eb->key;
370 		HA_RWLOCK_RDUNLOCK(TASK_WQ_LOCK, &wq_lock);
371 		if (eb)
372 			ret = tick_first(ret, key);
373 	}
374 #endif
375 	return ret;
376 }
377 
378 /* Walks over tasklet lists sched->tasklets[0..TL_CLASSES-1] and run at most
379  * budget[TL_*] of them. Returns the number of entries effectively processed
380  * (tasks and tasklets merged). The count of tasks in the list for the current
381  * thread is adjusted.
382  */
run_tasks_from_lists(unsigned int budgets[])383 unsigned int run_tasks_from_lists(unsigned int budgets[])
384 {
385 	struct task *(*process)(struct task *t, void *ctx, unsigned short state);
386 	struct list *tl_queues = sched->tasklets;
387 	struct task *t;
388 	uint8_t budget_mask = (1 << TL_CLASSES) - 1;
389 	unsigned int done = 0;
390 	unsigned int queue;
391 	unsigned short state;
392 	void *ctx;
393 
394 	for (queue = 0; queue < TL_CLASSES;) {
395 		sched->current_queue = queue;
396 
397 		/* global.tune.sched.low-latency is set */
398 		if (global.tune.options & GTUNE_SCHED_LOW_LATENCY) {
399 			if (unlikely(sched->tl_class_mask & budget_mask & ((1 << queue) - 1))) {
400 				/* a lower queue index has tasks again and still has a
401 				 * budget to run them. Let's switch to it now.
402 				 */
403 				queue = (sched->tl_class_mask & 1) ? 0 :
404 					(sched->tl_class_mask & 2) ? 1 : 2;
405 				continue;
406 			}
407 
408 			if (unlikely(queue > TL_URGENT &&
409 				     budget_mask & (1 << TL_URGENT) &&
410 				     !MT_LIST_ISEMPTY(&sched->shared_tasklet_list))) {
411 				/* an urgent tasklet arrived from another thread */
412 				break;
413 			}
414 
415 			if (unlikely(queue > TL_NORMAL &&
416 				     budget_mask & (1 << TL_NORMAL) &&
417 				     ((sched->rqueue_size > 0) ||
418 				      (global_tasks_mask & tid_bit)))) {
419 				/* a task was woken up by a bulk tasklet or another thread */
420 				break;
421 			}
422 		}
423 
424 		if (LIST_ISEMPTY(&tl_queues[queue])) {
425 			sched->tl_class_mask &= ~(1 << queue);
426 			queue++;
427 			continue;
428 		}
429 
430 		if (!budgets[queue]) {
431 			budget_mask &= ~(1 << queue);
432 			queue++;
433 			continue;
434 		}
435 
436 		budgets[queue]--;
437 		t = (struct task *)LIST_ELEM(tl_queues[queue].n, struct tasklet *, list);
438 		state = t->state & (TASK_SHARED_WQ|TASK_SELF_WAKING|TASK_KILLED);
439 
440 		ti->flags &= ~TI_FL_STUCK; // this thread is still running
441 		activity[tid].ctxsw++;
442 		ctx = t->context;
443 		process = t->process;
444 		t->calls++;
445 		sched->current = t;
446 
447 		_HA_ATOMIC_SUB(&tasks_run_queue, 1);
448 
449 		if (TASK_IS_TASKLET(t)) {
450 			LIST_DEL_INIT(&((struct tasklet *)t)->list);
451 			__ha_barrier_store();
452 			state = _HA_ATOMIC_XCHG(&t->state, state);
453 			__ha_barrier_atomic_store();
454 			process(t, ctx, state);
455 			done++;
456 			sched->current = NULL;
457 			__ha_barrier_store();
458 			continue;
459 		}
460 
461 		LIST_DEL_INIT(&((struct tasklet *)t)->list);
462 		__ha_barrier_store();
463 		state = _HA_ATOMIC_XCHG(&t->state, state | TASK_RUNNING);
464 		__ha_barrier_atomic_store();
465 
466 		/* OK then this is a regular task */
467 
468 		_HA_ATOMIC_SUB(&task_per_thread[tid].task_list_size, 1);
469 		if (unlikely(t->call_date)) {
470 			uint64_t now_ns = now_mono_time();
471 
472 			t->lat_time += now_ns - t->call_date;
473 			t->call_date = now_ns;
474 		}
475 
476 		__ha_barrier_store();
477 
478 		/* Note for below: if TASK_KILLED arrived before we've read the state, we
479 		 * directly free the task. Otherwise it will be seen after processing and
480 		 * it's freed on the exit path.
481 		 */
482 		if (likely(!(state & TASK_KILLED) && process == process_stream))
483 			t = process_stream(t, ctx, state);
484 		else if (!(state & TASK_KILLED) && process != NULL)
485 			t = process(t, ctx, state);
486 		else {
487 			task_unlink_wq(t);
488 			__task_free(t);
489 			sched->current = NULL;
490 			__ha_barrier_store();
491 			/* We don't want max_processed to be decremented if
492 			 * we're just freeing a destroyed task, we should only
493 			 * do so if we really ran a task.
494 			 */
495 			continue;
496 		}
497 		sched->current = NULL;
498 		__ha_barrier_store();
499 		/* If there is a pending state  we have to wake up the task
500 		 * immediately, else we defer it into wait queue
501 		 */
502 		if (t != NULL) {
503 			if (unlikely(t->call_date)) {
504 				t->cpu_time += now_mono_time() - t->call_date;
505 				t->call_date = 0;
506 			}
507 
508 			state = _HA_ATOMIC_AND(&t->state, ~TASK_RUNNING);
509 			if (unlikely(state & TASK_KILLED)) {
510 				task_unlink_wq(t);
511 				__task_free(t);
512 			}
513 			else if (state & TASK_WOKEN_ANY)
514 				task_wakeup(t, 0);
515 			else
516 				task_queue(t);
517 		}
518 		done++;
519 	}
520 	sched->current_queue = -1;
521 
522 	return done;
523 }
524 
525 /* The run queue is chronologically sorted in a tree. An insertion counter is
526  * used to assign a position to each task. This counter may be combined with
527  * other variables (eg: nice value) to set the final position in the tree. The
528  * counter may wrap without a problem, of course. We then limit the number of
529  * tasks processed to 200 in any case, so that general latency remains low and
530  * so that task positions have a chance to be considered. The function scans
531  * both the global and local run queues and picks the most urgent task between
532  * the two. We need to grab the global runqueue lock to touch it so it's taken
533  * on the very first access to the global run queue and is released as soon as
534  * it reaches the end.
535  *
536  * The function adjusts <next> if a new event is closer.
537  */
process_runnable_tasks()538 void process_runnable_tasks()
539 {
540 	struct task_per_thread * const tt = sched;
541 	struct eb32sc_node *lrq; // next local run queue entry
542 	struct eb32sc_node *grq; // next global run queue entry
543 	struct task *t;
544 	const unsigned int default_weights[TL_CLASSES] = {
545 		[TL_URGENT] = 64, // ~50% of CPU bandwidth for I/O
546 		[TL_NORMAL] = 48, // ~37% of CPU bandwidth for tasks
547 		[TL_BULK]   = 16, // ~13% of CPU bandwidth for self-wakers
548 	};
549 	unsigned int max[TL_CLASSES]; // max to be run per class
550 	unsigned int max_total;       // sum of max above
551 	struct mt_list *tmp_list;
552 	unsigned int queue;
553 	int max_processed;
554 
555 	ti->flags &= ~TI_FL_STUCK; // this thread is still running
556 
557 	if (!thread_has_tasks()) {
558 		activity[tid].empty_rq++;
559 		return;
560 	}
561 
562 	tasks_run_queue_cur = tasks_run_queue; /* keep a copy for reporting */
563 	nb_tasks_cur = nb_tasks;
564 	max_processed = global.tune.runqueue_depth;
565 
566 	if (likely(niced_tasks))
567 		max_processed = (max_processed + 3) / 4;
568 
569  not_done_yet:
570 	max[TL_URGENT] = max[TL_NORMAL] = max[TL_BULK] = 0;
571 
572 	/* urgent tasklets list gets a default weight of ~50% */
573 	if ((tt->tl_class_mask & (1 << TL_URGENT)) ||
574 	    !MT_LIST_ISEMPTY(&tt->shared_tasklet_list))
575 		max[TL_URGENT] = default_weights[TL_URGENT];
576 
577 	/* normal tasklets list gets a default weight of ~37% */
578 	if ((tt->tl_class_mask & (1 << TL_NORMAL)) ||
579 	    (sched->rqueue_size > 0) || (global_tasks_mask & tid_bit))
580 		max[TL_NORMAL] = default_weights[TL_NORMAL];
581 
582 	/* bulk tasklets list gets a default weight of ~13% */
583 	if ((tt->tl_class_mask & (1 << TL_BULK)))
584 		max[TL_BULK] = default_weights[TL_BULK];
585 
586 	/* Now compute a fair share of the weights. Total may slightly exceed
587 	 * 100% due to rounding, this is not a problem. Note that while in
588 	 * theory the sum cannot be NULL as we cannot get there without tasklets
589 	 * to process, in practice it seldom happens when multiple writers
590 	 * conflict and rollback on MT_LIST_ADDQ(shared_tasklet_list), causing
591 	 * a first MT_LIST_ISEMPTY() to succeed for thread_has_task() and the
592 	 * one above to finally fail. This is extremely rare and not a problem.
593 	 */
594 	max_total = max[TL_URGENT] + max[TL_NORMAL] + max[TL_BULK];
595 	if (!max_total)
596 		return;
597 
598 	for (queue = 0; queue < TL_CLASSES; queue++)
599 		max[queue]  = ((unsigned)max_processed * max[queue] + max_total - 1) / max_total;
600 
601 	lrq = grq = NULL;
602 
603 	/* pick up to max[TL_NORMAL] regular tasks from prio-ordered run queues */
604 	/* Note: the grq lock is always held when grq is not null */
605 	while (tt->task_list_size < max[TL_NORMAL]) {
606 		if ((global_tasks_mask & tid_bit) && !grq) {
607 #ifdef USE_THREAD
608 			HA_SPIN_LOCK(TASK_RQ_LOCK, &rq_lock);
609 			grq = eb32sc_lookup_ge(&rqueue, rqueue_ticks - TIMER_LOOK_BACK, tid_bit);
610 			if (unlikely(!grq)) {
611 				grq = eb32sc_first(&rqueue, tid_bit);
612 				if (!grq) {
613 					global_tasks_mask &= ~tid_bit;
614 					HA_SPIN_UNLOCK(TASK_RQ_LOCK, &rq_lock);
615 				}
616 			}
617 #endif
618 		}
619 
620 		/* If a global task is available for this thread, it's in grq
621 		 * now and the global RQ is locked.
622 		 */
623 
624 		if (!lrq) {
625 			lrq = eb32sc_lookup_ge(&tt->rqueue, rqueue_ticks - TIMER_LOOK_BACK, tid_bit);
626 			if (unlikely(!lrq))
627 				lrq = eb32sc_first(&tt->rqueue, tid_bit);
628 		}
629 
630 		if (!lrq && !grq)
631 			break;
632 
633 		if (likely(!grq || (lrq && (int)(lrq->key - grq->key) <= 0))) {
634 			t = eb32sc_entry(lrq, struct task, rq);
635 			lrq = eb32sc_next(lrq, tid_bit);
636 			__task_unlink_rq(t);
637 		}
638 #ifdef USE_THREAD
639 		else {
640 			t = eb32sc_entry(grq, struct task, rq);
641 			grq = eb32sc_next(grq, tid_bit);
642 			__task_unlink_rq(t);
643 			if (unlikely(!grq)) {
644 				grq = eb32sc_first(&rqueue, tid_bit);
645 				if (!grq) {
646 					global_tasks_mask &= ~tid_bit;
647 					HA_SPIN_UNLOCK(TASK_RQ_LOCK, &rq_lock);
648 				}
649 			}
650 		}
651 #endif
652 
653 		/* Make sure the entry doesn't appear to be in a list */
654 		LIST_INIT(&((struct tasklet *)t)->list);
655 		/* And add it to the local task list */
656 		tasklet_insert_into_tasklet_list(&tt->tasklets[TL_NORMAL], (struct tasklet *)t);
657 		tt->tl_class_mask |= 1 << TL_NORMAL;
658 		_HA_ATOMIC_ADD(&tt->task_list_size, 1);
659 		activity[tid].tasksw++;
660 	}
661 
662 	/* release the rqueue lock */
663 	if (grq) {
664 		HA_SPIN_UNLOCK(TASK_RQ_LOCK, &rq_lock);
665 		grq = NULL;
666 	}
667 
668 	/* Merge the list of tasklets waken up by other threads to the
669 	 * main list.
670 	 */
671 	tmp_list = MT_LIST_BEHEAD(&tt->shared_tasklet_list);
672 	if (tmp_list) {
673 		LIST_SPLICE_END_DETACHED(&tt->tasklets[TL_URGENT], (struct list *)tmp_list);
674 		if (!LIST_ISEMPTY(&tt->tasklets[TL_URGENT]))
675 			tt->tl_class_mask |= 1 << TL_URGENT;
676 	}
677 
678 	/* execute tasklets in each queue */
679 	max_processed -= run_tasks_from_lists(max);
680 
681 	/* some tasks may have woken other ones up */
682 	if (max_processed > 0 && thread_has_tasks())
683 		goto not_done_yet;
684 
685 	if (tt->tl_class_mask)
686 		activity[tid].long_rq++;
687 }
688 
689 /* create a work list array for <nbthread> threads, using tasks made of
690  * function <fct>. The context passed to the function will be the pointer to
691  * the thread's work list, which will contain a copy of argument <arg>. The
692  * wake up reason will be TASK_WOKEN_OTHER. The pointer to the work_list array
693  * is returned on success, otherwise NULL on failure.
694  */
work_list_create(int nbthread,struct task * (* fct)(struct task *,void *,unsigned short),void * arg)695 struct work_list *work_list_create(int nbthread,
696                                    struct task *(*fct)(struct task *, void *, unsigned short),
697                                    void *arg)
698 {
699 	struct work_list *wl;
700 	int i;
701 
702 	wl = calloc(nbthread, sizeof(*wl));
703 	if (!wl)
704 		goto fail;
705 
706 	for (i = 0; i < nbthread; i++) {
707 		MT_LIST_INIT(&wl[i].head);
708 		wl[i].task = task_new(1UL << i);
709 		if (!wl[i].task)
710 			goto fail;
711 		wl[i].task->process = fct;
712 		wl[i].task->context = &wl[i];
713 		wl[i].arg = arg;
714 	}
715 	return wl;
716 
717  fail:
718 	work_list_destroy(wl, nbthread);
719 	return NULL;
720 }
721 
722 /* destroy work list <work> */
work_list_destroy(struct work_list * work,int nbthread)723 void work_list_destroy(struct work_list *work, int nbthread)
724 {
725 	int t;
726 
727 	if (!work)
728 		return;
729 	for (t = 0; t < nbthread; t++)
730 		task_destroy(work[t].task);
731 	free(work);
732 }
733 
734 /*
735  * Delete every tasks before running the master polling loop
736  */
mworker_cleantasks()737 void mworker_cleantasks()
738 {
739 	struct task *t;
740 	int i;
741 	struct eb32_node *tmp_wq = NULL;
742 	struct eb32sc_node *tmp_rq = NULL;
743 
744 #ifdef USE_THREAD
745 	/* cleanup the global run queue */
746 	tmp_rq = eb32sc_first(&rqueue, MAX_THREADS_MASK);
747 	while (tmp_rq) {
748 		t = eb32sc_entry(tmp_rq, struct task, rq);
749 		tmp_rq = eb32sc_next(tmp_rq, MAX_THREADS_MASK);
750 		task_destroy(t);
751 	}
752 	/* cleanup the timers queue */
753 	tmp_wq = eb32_first(&timers);
754 	while (tmp_wq) {
755 		t = eb32_entry(tmp_wq, struct task, wq);
756 		tmp_wq = eb32_next(tmp_wq);
757 		task_destroy(t);
758 	}
759 #endif
760 	/* clean the per thread run queue */
761 	for (i = 0; i < global.nbthread; i++) {
762 		tmp_rq = eb32sc_first(&task_per_thread[i].rqueue, MAX_THREADS_MASK);
763 		while (tmp_rq) {
764 			t = eb32sc_entry(tmp_rq, struct task, rq);
765 			tmp_rq = eb32sc_next(tmp_rq, MAX_THREADS_MASK);
766 			task_destroy(t);
767 		}
768 		/* cleanup the per thread timers queue */
769 		tmp_wq = eb32_first(&task_per_thread[i].timers);
770 		while (tmp_wq) {
771 			t = eb32_entry(tmp_wq, struct task, wq);
772 			tmp_wq = eb32_next(tmp_wq);
773 			task_destroy(t);
774 		}
775 	}
776 }
777 
778 /* perform minimal intializations */
init_task()779 static void init_task()
780 {
781 	int i;
782 
783 #ifdef USE_THREAD
784 	memset(&timers, 0, sizeof(timers));
785 	memset(&rqueue, 0, sizeof(rqueue));
786 #endif
787 	memset(&task_per_thread, 0, sizeof(task_per_thread));
788 	for (i = 0; i < MAX_THREADS; i++) {
789 		LIST_INIT(&task_per_thread[i].tasklets[TL_URGENT]);
790 		LIST_INIT(&task_per_thread[i].tasklets[TL_NORMAL]);
791 		LIST_INIT(&task_per_thread[i].tasklets[TL_BULK]);
792 		MT_LIST_INIT(&task_per_thread[i].shared_tasklet_list);
793 	}
794 }
795 
796 /* config parser for global "tune.sched.low-latency", accepts "on" or "off" */
cfg_parse_tune_sched_low_latency(char ** args,int section_type,struct proxy * curpx,struct proxy * defpx,const char * file,int line,char ** err)797 static int cfg_parse_tune_sched_low_latency(char **args, int section_type, struct proxy *curpx,
798                                       struct proxy *defpx, const char *file, int line,
799                                       char **err)
800 {
801 	if (too_many_args(1, args, err, NULL))
802 		return -1;
803 
804 	if (strcmp(args[1], "on") == 0)
805 		global.tune.options |= GTUNE_SCHED_LOW_LATENCY;
806 	else if (strcmp(args[1], "off") == 0)
807 		global.tune.options &= ~GTUNE_SCHED_LOW_LATENCY;
808 	else {
809 		memprintf(err, "'%s' expects either 'on' or 'off' but got '%s'.", args[0], args[1]);
810 		return -1;
811 	}
812 	return 0;
813 }
814 
815 /* config keyword parsers */
816 static struct cfg_kw_list cfg_kws = {ILH, {
817 	{ CFG_GLOBAL, "tune.sched.low-latency", cfg_parse_tune_sched_low_latency },
818 	{ 0, NULL, NULL }
819 }};
820 
821 INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws);
822 INITCALL0(STG_PREPARE, init_task);
823 
824 /*
825  * Local variables:
826  *  c-indent-level: 8
827  *  c-basic-offset: 8
828  * End:
829  */
830