1 /*
2  * SpanDSP - a series of DSP components for telephony
3  *
4  * echo.h - An echo cancellor, suitable for electrical and acoustic
5  *	    cancellation. This code does not currently comply with
6  *	    any relevant standards (e.g. G.164/5/7/8).
7  *
8  * Written by Steve Underwood <steveu@coppice.org>
9  *
10  * Copyright (C) 2001 Steve Underwood
11  *
12  * Based on a bit from here, a bit from there, eye of toad,
13  * ear of bat, etc - plus, of course, my own 2 cents.
14  *
15  * All rights reserved.
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU Lesser General Public License version 2.1,
19  * as published by the Free Software Foundation.
20  *
21  * This program is distributed in the hope that it will be useful,
22  * but WITHOUT ANY WARRANTY; without even the implied warranty of
23  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
24  * GNU Lesser General Public License for more details.
25  *
26  * You should have received a copy of the GNU Lesser General Public
27  * License along with this program; if not, write to the Free Software
28  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
29  *
30  * $Id: echo.h,v 1.13 2008/04/17 14:27:00 steveu Exp $
31  */
32 
33 /*! \file */
34 
35 #if !defined(_SPANDSP_ECHO_H_)
36 #define _SPANDSP_ECHO_H_
37 
38 /*! \page echo_can_page Line echo cancellation for voice
39 
40 \section echo_can_page_sec_1 What does it do?
41 This module aims to provide G.168-2002 compliant echo cancellation, to remove
42 electrical echoes (e.g. from 2-4 wire hybrids) from voice calls.
43 
44 \section echo_can_page_sec_2 How does it work?
45 The heart of the echo cancellor is FIR filter. This is adapted to match the echo
46 impulse response of the telephone line. It must be long enough to adequately cover
47 the duration of that impulse response. The signal transmitted to the telephone line
48 is passed through the FIR filter. Once the FIR is properly adapted, the resulting
49 output is an estimate of the echo signal received from the line. This is subtracted
50 from the received signal. The result is an estimate of the signal which originated
51 at the far end of the line, free from echos of our own transmitted signal.
52 
53 The least mean squares (LMS) algorithm is attributed to Widrow and Hoff, and was
54 introduced in 1960. It is the commonest form of filter adaption used in things
55 like modem line equalisers and line echo cancellers. There it works very well.
56 However, it only works well for signals of constant amplitude. It works very poorly
57 for things like speech echo cancellation, where the signal level varies widely.
58 This is quite easy to fix. If the signal level is normalised - similar to applying
59 AGC - LMS can work as well for a signal of varying amplitude as it does for a modem
60 signal. This normalised least mean squares (NLMS) algorithm is the commonest one used
61 for speech echo cancellation. Many other algorithms exist - e.g. RLS (essentially
62 the same as Kalman filtering), FAP, etc. Some perform significantly better than NLMS.
63 However, factors such as computational complexity and patents favour the use of NLMS.
64 
65 A simple refinement to NLMS can improve its performance with speech. NLMS tends
66 to adapt best to the strongest parts of a signal. If the signal is white noise,
67 the NLMS algorithm works very well. However, speech has more low frequency than
68 high frequency content. Pre-whitening (i.e. filtering the signal to flatten
69 its spectrum) the echo signal improves the adapt rate for speech, and ensures the
70 final residual signal is not heavily biased towards high frequencies. A very low
71 complexity filter is adequate for this, so pre-whitening adds little to the
72 compute requirements of the echo canceller.
73 
74 An FIR filter adapted using pre-whitened NLMS performs well, provided certain
75 conditions are met:
76 
77     - The transmitted signal has poor self-correlation.
78     - There is no signal being generated within the environment being cancelled.
79 
80 The difficulty is that neither of these can be guaranteed.
81 
82 If the adaption is performed while transmitting noise (or something fairly noise
83 like, such as voice) the adaption works very well. If the adaption is performed
84 while transmitting something highly correlative (typically narrow band energy
85 such as signalling tones or DTMF), the adaption can go seriously wrong. The reason
86 is there is only one solution for the adaption on a near random signal - the impulse
87 response of the line. For a repetitive signal, there are any number of solutions
88 which converge the adaption, and nothing guides the adaption to choose the generalised
89 one. Allowing an untrained canceller to converge on this kind of narrowband
90 energy probably a good thing, since at least it cancels the tones. Allowing a well
91 converged canceller to continue converging on such energy is just a way to ruin
92 its generalised adaption. A narrowband detector is needed, so adapation can be
93 suspended at appropriate times.
94 
95 The adaption process is based on trying to eliminate the received signal. When
96 there is any signal from within the environment being cancelled it may upset the
97 adaption process. Similarly, if the signal we are transmitting is small, noise
98 may dominate and disturb the adaption process. If we can ensure that the
99 adaption is only performed when we are transmitting a significant signal level,
100 and the environment is not, things will be OK. Clearly, it is easy to tell when
101 we are sending a significant signal. Telling, if the environment is generating a
102 significant signal, and doing it with sufficient speed that the adaption will
103 not have diverged too much more we stop it, is a little harder.
104 
105 The key problem in detecting when the environment is sourcing significant energy
106 is that we must do this very quickly. Given a reasonably long sample of the
107 received signal, there are a number of strategies which may be used to assess
108 whether that signal contains a strong far end component. However, by the time
109 that assessment is complete the far end signal will have already caused major
110 mis-convergence in the adaption process. An assessment algorithm is needed which
111 produces a fairly accurate result from a very short burst of far end energy.
112 
113 \section echo_can_page_sec_3 How do I use it?
114 The echo cancellor processes both the transmit and receive streams sample by
115 sample. The processing function is not declared inline. Unfortunately,
116 cancellation requires many operations per sample, so the call overhead is only a
117 minor burden.
118 */
119 
120 #include "fir.h"
121 
122 #define NONUPDATE_DWELL_TIME	600 	/* 600 samples, or 75ms */
123 
124 /* Mask bits for the adaption mode */
125 #define ECHO_CAN_USE_NLP            0x01
126 #define ECHO_CAN_USE_SUPPRESSOR     0x02
127 #define ECHO_CAN_USE_CNG            0x04
128 #define ECHO_CAN_USE_ADAPTION       0x08
129 
130 /*!
131     G.168 echo canceller descriptor. This defines the working state for a line
132     echo canceller.
133 */
134 typedef struct
135 {
136     int tx_power[4];
137     int rx_power[3];
138     int clean_rx_power;
139 
140     int rx_power_threshold;
141     int nonupdate_dwell;
142 
143     fir16_state_t fir_state;
144     /*! Echo FIR taps (16 bit version) */
145     int16_t *fir_taps16[4];
146     /*! Echo FIR taps (32 bit version) */
147     int32_t *fir_taps32;
148 
149     int curr_pos;
150 
151     int taps;
152     int tap_mask;
153     int adaption_mode;
154 
155     int32_t supp_test1;
156     int32_t supp_test2;
157     int32_t supp1;
158     int32_t supp2;
159     int vad;
160     int cng;
161     /* Parameters for the Hoth noise generator */
162     int cng_level;
163     int cng_rndnum;
164     int cng_filter;
165 
166     int16_t geigel_max;
167     int geigel_lag;
168     int dtd_onset;
169     int tap_set;
170     int tap_rotate_counter;
171 
172     int32_t latest_correction;  /* Indication of the magnitude of the latest
173                                    adaption, or a code to indicate why adaption
174                                    was skipped, for test purposes */
175     int32_t last_acf[28];
176     int narrowband_count;
177     int narrowband_score;
178 } echo_can_state_t;
179 
180 #if defined(__cplusplus)
181 extern "C"
182 {
183 #endif
184 
185 /*! Create a voice echo canceller context.
186     \param len The length of the canceller, in samples.
187     \return The new canceller context, or NULL if the canceller could not be created.
188 */
189 echo_can_state_t *echo_can_create(int len, int adaption_mode);
190 
191 /*! Free a voice echo canceller context.
192     \param ec The echo canceller context.
193 */
194 void echo_can_free(echo_can_state_t *ec);
195 
196 /*! Flush (reinitialise) a voice echo canceller context.
197     \param ec The echo canceller context.
198 */
199 void echo_can_flush(echo_can_state_t *ec);
200 
201 /*! Set the adaption mode of a voice echo canceller context.
202     \param ec The echo canceller context.
203     \param adaption_mode The mode.
204 */
205 void echo_can_adaption_mode(echo_can_state_t *ec, int adaption_mode);
206 
207 /*! Process a sample through a voice echo canceller.
208     \param ec The echo canceller context.
209     \param tx The transmitted audio sample.
210     \param rx The received audio sample.
211     \return The clean (echo cancelled) received sample.
212 */
213 int16_t echo_can_update(echo_can_state_t *ec, int16_t tx, int16_t rx);
214 
215 #if defined(__cplusplus)
216 }
217 #endif
218 
219 #endif
220 /*- End of file ------------------------------------------------------------*/
221