1 /* Licensed under BSD-MIT - see LICENSE file for details */
2 #ifndef CCAN_LIST_H
3 #define CCAN_LIST_H
4 #include <stdbool.h>
5 #include <assert.h>
6 #include <ccan/container_of/container_of.h>
7 #include <ccan/check_type/check_type.h>
8 
9 #undef LIST_HEAD
10 #undef LIST_HEAD_INIT
11 
12 /**
13  * struct list_node - an entry in a doubly-linked list
14  * @next: next entry (self if empty)
15  * @prev: previous entry (self if empty)
16  *
17  * This is used as an entry in a linked list.
18  * Example:
19  *	struct child {
20  *		const char *name;
21  *		// Linked list of all us children.
22  *		struct list_node list;
23  *	};
24  */
25 struct list_node
26 {
27 	struct list_node *next, *prev;
28 };
29 
30 /**
31  * struct list_head - the head of a doubly-linked list
32  * @h: the list_head (containing next and prev pointers)
33  *
34  * This is used as the head of a linked list.
35  * Example:
36  *	struct parent {
37  *		const char *name;
38  *		struct list_head children;
39  *		unsigned int num_children;
40  *	};
41  */
42 struct list_head
43 {
44 	struct list_node n;
45 };
46 
47 /**
48  * list_check - check head of a list for consistency
49  * @h: the list_head
50  * @abortstr: the location to print on aborting, or NULL.
51  *
52  * Because list_nodes have redundant information, consistency checking between
53  * the back and forward links can be done.  This is useful as a debugging check.
54  * If @abortstr is non-NULL, that will be printed in a diagnostic if the list
55  * is inconsistent, and the function will abort.
56  *
57  * Returns the list head if the list is consistent, NULL if not (it
58  * can never return NULL if @abortstr is set).
59  *
60  * See also: list_check_node()
61  *
62  * Example:
63  *	static void dump_parent(struct parent *p)
64  *	{
65  *		struct child *c;
66  *
67  *		printf("%s (%u children):\n", p->name, p->num_children);
68  *		list_check(&p->children, "bad child list");
69  *		list_for_each(&p->children, c, list)
70  *			printf(" -> %s\n", c->name);
71  *	}
72  */
73 struct list_head *list_check(const struct list_head *h, const char *abortstr);
74 
75 /**
76  * list_check_node - check node of a list for consistency
77  * @n: the list_node
78  * @abortstr: the location to print on aborting, or NULL.
79  *
80  * Check consistency of the list node is in (it must be in one).
81  *
82  * See also: list_check()
83  *
84  * Example:
85  *	static void dump_child(const struct child *c)
86  *	{
87  *		list_check_node(&c->list, "bad child list");
88  *		printf("%s\n", c->name);
89  *	}
90  */
91 struct list_node *list_check_node(const struct list_node *n,
92 				  const char *abortstr);
93 
94 #ifdef CCAN_LIST_DEBUG
95 #define list_debug(h) list_check((h), __func__)
96 #define list_debug_node(n) list_check_node((n), __func__)
97 #else
98 #define list_debug(h) (h)
99 #define list_debug_node(n) (n)
100 #endif
101 
102 /**
103  * LIST_HEAD_INIT - initializer for an empty list_head
104  * @name: the name of the list.
105  *
106  * Explicit initializer for an empty list.
107  *
108  * See also:
109  *	LIST_HEAD, list_head_init()
110  *
111  * Example:
112  *	static struct list_head my_list = LIST_HEAD_INIT(my_list);
113  */
114 #define LIST_HEAD_INIT(name) { { &name.n, &name.n } }
115 
116 /**
117  * LIST_HEAD - define and initialize an empty list_head
118  * @name: the name of the list.
119  *
120  * The LIST_HEAD macro defines a list_head and initializes it to an empty
121  * list.  It can be prepended by "static" to define a static list_head.
122  *
123  * See also:
124  *	LIST_HEAD_INIT, list_head_init()
125  *
126  * Example:
127  *	static LIST_HEAD(my_global_list);
128  */
129 #define LIST_HEAD(name) \
130 	struct list_head name = LIST_HEAD_INIT(name)
131 
132 /**
133  * list_head_init - initialize a list_head
134  * @h: the list_head to set to the empty list
135  *
136  * Example:
137  *	...
138  *	struct parent *parent = malloc(sizeof(*parent));
139  *
140  *	list_head_init(&parent->children);
141  *	parent->num_children = 0;
142  */
list_head_init(struct list_head * h)143 static inline void list_head_init(struct list_head *h)
144 {
145 	h->n.next = h->n.prev = &h->n;
146 }
147 
148 /**
149  * list_add - add an entry at the start of a linked list.
150  * @h: the list_head to add the node to
151  * @n: the list_node to add to the list.
152  *
153  * The list_node does not need to be initialized; it will be overwritten.
154  * Example:
155  *	struct child *child = malloc(sizeof(*child));
156  *
157  *	child->name = "marvin";
158  *	list_add(&parent->children, &child->list);
159  *	parent->num_children++;
160  */
list_add(struct list_head * h,struct list_node * n)161 static inline void list_add(struct list_head *h, struct list_node *n)
162 {
163 	n->next = h->n.next;
164 	n->prev = &h->n;
165 	h->n.next->prev = n;
166 	h->n.next = n;
167 	(void)list_debug(h);
168 }
169 
170 /**
171  * list_add_tail - add an entry at the end of a linked list.
172  * @h: the list_head to add the node to
173  * @n: the list_node to add to the list.
174  *
175  * The list_node does not need to be initialized; it will be overwritten.
176  * Example:
177  *	list_add_tail(&parent->children, &child->list);
178  *	parent->num_children++;
179  */
list_add_tail(struct list_head * h,struct list_node * n)180 static inline void list_add_tail(struct list_head *h, struct list_node *n)
181 {
182 	n->next = &h->n;
183 	n->prev = h->n.prev;
184 	h->n.prev->next = n;
185 	h->n.prev = n;
186 	(void)list_debug(h);
187 }
188 
189 /**
190  * list_empty - is a list empty?
191  * @h: the list_head
192  *
193  * If the list is empty, returns true.
194  *
195  * Example:
196  *	assert(list_empty(&parent->children) == (parent->num_children == 0));
197  */
list_empty(const struct list_head * h)198 static inline bool list_empty(const struct list_head *h)
199 {
200 	(void)list_debug(h);
201 	return h->n.next == &h->n;
202 }
203 
204 /**
205  * list_del - delete an entry from an (unknown) linked list.
206  * @n: the list_node to delete from the list.
207  *
208  * Note that this leaves @n in an undefined state; it can be added to
209  * another list, but not deleted again.
210  *
211  * See also:
212  *	list_del_from()
213  *
214  * Example:
215  *	list_del(&child->list);
216  *	parent->num_children--;
217  */
list_del(struct list_node * n)218 static inline void list_del(struct list_node *n)
219 {
220 	(void)list_debug_node(n);
221 	n->next->prev = n->prev;
222 	n->prev->next = n->next;
223 #ifdef CCAN_LIST_DEBUG
224 	/* Catch use-after-del. */
225 	n->next = n->prev = NULL;
226 #endif
227 }
228 
229 /**
230  * list_del_from - delete an entry from a known linked list.
231  * @h: the list_head the node is in.
232  * @n: the list_node to delete from the list.
233  *
234  * This explicitly indicates which list a node is expected to be in,
235  * which is better documentation and can catch more bugs.
236  *
237  * See also: list_del()
238  *
239  * Example:
240  *	list_del_from(&parent->children, &child->list);
241  *	parent->num_children--;
242  */
list_del_from(struct list_head * h,struct list_node * n)243 static inline void list_del_from(struct list_head *h, struct list_node *n)
244 {
245 #ifdef CCAN_LIST_DEBUG
246 	{
247 		/* Thorough check: make sure it was in list! */
248 		struct list_node *i;
249 		for (i = h->n.next; i != n; i = i->next)
250 			assert(i != &h->n);
251 	}
252 #endif /* CCAN_LIST_DEBUG */
253 
254 	/* Quick test that catches a surprising number of bugs. */
255 	assert(!list_empty(h));
256 	list_del(n);
257 }
258 
259 /**
260  * list_entry - convert a list_node back into the structure containing it.
261  * @n: the list_node
262  * @type: the type of the entry
263  * @member: the list_node member of the type
264  *
265  * Example:
266  *	// First list entry is children.next; convert back to child.
267  *	child = list_entry(parent->children.n.next, struct child, list);
268  *
269  * See Also:
270  *	list_top(), list_for_each()
271  */
272 #define list_entry(n, type, member) container_of(n, type, member)
273 
274 /**
275  * list_top - get the first entry in a list
276  * @h: the list_head
277  * @type: the type of the entry
278  * @member: the list_node member of the type
279  *
280  * If the list is empty, returns NULL.
281  *
282  * Example:
283  *	struct child *first;
284  *	first = list_top(&parent->children, struct child, list);
285  *	if (!first)
286  *		printf("Empty list!\n");
287  */
288 #define list_top(h, type, member)					\
289 	((type *)list_top_((h), list_off_(type, member)))
290 
list_top_(const struct list_head * h,size_t off)291 static inline const void *list_top_(const struct list_head *h, size_t off)
292 {
293 	if (list_empty(h))
294 		return NULL;
295 	return (const char *)h->n.next - off;
296 }
297 
298 /**
299  * list_tail - get the last entry in a list
300  * @h: the list_head
301  * @type: the type of the entry
302  * @member: the list_node member of the type
303  *
304  * If the list is empty, returns NULL.
305  *
306  * Example:
307  *	struct child *last;
308  *	last = list_tail(&parent->children, struct child, list);
309  *	if (!last)
310  *		printf("Empty list!\n");
311  */
312 #define list_tail(h, type, member) \
313 	((type *)list_tail_((h), list_off_(type, member)))
314 
list_tail_(const struct list_head * h,size_t off)315 static inline const void *list_tail_(const struct list_head *h, size_t off)
316 {
317 	if (list_empty(h))
318 		return NULL;
319 	return (const char *)h->n.prev - off;
320 }
321 
322 /**
323  * list_for_each - iterate through a list.
324  * @h: the list_head (warning: evaluated multiple times!)
325  * @i: the structure containing the list_node
326  * @member: the list_node member of the structure
327  *
328  * This is a convenient wrapper to iterate @i over the entire list.  It's
329  * a for loop, so you can break and continue as normal.
330  *
331  * Example:
332  *	list_for_each(&parent->children, child, list)
333  *		printf("Name: %s\n", child->name);
334  */
335 #define list_for_each(h, i, member)					\
336 	list_for_each_off(h, i, list_off_var_(i, member))
337 
338 /**
339  * list_for_each_rev - iterate through a list backwards.
340  * @h: the list_head
341  * @i: the structure containing the list_node
342  * @member: the list_node member of the structure
343  *
344  * This is a convenient wrapper to iterate @i over the entire list.  It's
345  * a for loop, so you can break and continue as normal.
346  *
347  * Example:
348  *	list_for_each_rev(&parent->children, child, list)
349  *		printf("Name: %s\n", child->name);
350  */
351 #define list_for_each_rev(h, i, member)					\
352 	for (i = container_of_var(list_debug(h)->n.prev, i, member);	\
353 	     &i->member != &(h)->n;					\
354 	     i = container_of_var(i->member.prev, i, member))
355 
356 /**
357  * list_for_each_safe - iterate through a list, maybe during deletion
358  * @h: the list_head
359  * @i: the structure containing the list_node
360  * @nxt: the structure containing the list_node
361  * @member: the list_node member of the structure
362  *
363  * This is a convenient wrapper to iterate @i over the entire list.  It's
364  * a for loop, so you can break and continue as normal.  The extra variable
365  * @nxt is used to hold the next element, so you can delete @i from the list.
366  *
367  * Example:
368  *	struct child *next;
369  *	list_for_each_safe(&parent->children, child, next, list) {
370  *		list_del(&child->list);
371  *		parent->num_children--;
372  *	}
373  */
374 #define list_for_each_safe(h, i, nxt, member)				\
375 	list_for_each_safe_off(h, i, nxt, list_off_var_(i, member))
376 
377 /**
378  * list_for_each_off - iterate through a list of memory regions.
379  * @h: the list_head
380  * @i: the pointer to a memory region wich contains list node data.
381  * @off: offset(relative to @i) at which list node data resides.
382  *
383  * This is a low-level wrapper to iterate @i over the entire list, used to
384  * implement all oher, more high-level, for-each constructs. It's a for loop,
385  * so you can break and continue as normal.
386  *
387  * WARNING! Being the low-level macro that it is, this wrapper doesn't know
388  * nor care about the type of @i. The only assumtion made is that @i points
389  * to a chunk of memory that at some @offset, relative to @i, contains a
390  * properly filled `struct node_list' which in turn contains pointers to
391  * memory chunks and it's turtles all the way down. Whith all that in mind
392  * remember that given the wrong pointer/offset couple this macro will
393  * happilly churn all you memory untill SEGFAULT stops it, in other words
394  * caveat emptor.
395  *
396  * It is worth mentioning that one of legitimate use-cases for that wrapper
397  * is operation on opaque types with known offset for `struct list_node'
398  * member(preferably 0), because it allows you not to disclose the type of
399  * @i.
400  *
401  * Example:
402  *	list_for_each_off(&parent->children, child,
403  *				offsetof(struct child, list))
404  *		printf("Name: %s\n", child->name);
405  */
406 #define list_for_each_off(h, i, off)                                    \
407   for (i = list_node_to_off_(list_debug(h)->n.next, (off));             \
408        list_node_from_off_((void *)i, (off)) != &(h)->n;                \
409        i = list_node_to_off_(list_node_from_off_((void *)i, (off))->next, \
410                              (off)))
411 
412 /**
413  * list_for_each_safe_off - iterate through a list of memory regions, maybe
414  * during deletion
415  * @h: the list_head
416  * @i: the pointer to a memory region wich contains list node data.
417  * @nxt: the structure containing the list_node
418  * @off: offset(relative to @i) at which list node data resides.
419  *
420  * For details see `list_for_each_off' and `list_for_each_safe'
421  * descriptions.
422  *
423  * Example:
424  *	list_for_each_safe_off(&parent->children, child,
425  *		next, offsetof(struct child, list))
426  *		printf("Name: %s\n", child->name);
427  */
428 #define list_for_each_safe_off(h, i, nxt, off)                          \
429   for (i = list_node_to_off_(list_debug(h)->n.next, (off)),             \
430          nxt = list_node_to_off_(list_node_from_off_(i, (off))->next,   \
431                                  (off));                                \
432        list_node_from_off_(i, (off)) != &(h)->n;                        \
433        i = nxt,                                                         \
434          nxt = list_node_to_off_(list_node_from_off_(i, (off))->next,   \
435                                  (off)))
436 
437 
438 /* Other -off variants. */
439 #define list_entry_off(n, type, off)		\
440 	((type *)list_node_from_off_((n), (off)))
441 
442 #define list_head_off(h, type, off)		\
443 	((type *)list_head_off((h), (off)))
444 
445 #define list_tail_off(h, type, off)		\
446 	((type *)list_tail_((h), (off)))
447 
448 #define list_add_off(h, n, off)                 \
449 	list_add((h), list_node_from_off_((n), (off)))
450 
451 #define list_del_off(n, off)                    \
452 	list_del(list_node_from_off_((n), (off)))
453 
454 #define list_del_from_off(h, n, off)			\
455 	list_del_from(h, list_node_from_off_((n), (off)))
456 
457 /* Offset helper functions so we only single-evaluate. */
list_node_to_off_(struct list_node * node,size_t off)458 static inline void *list_node_to_off_(struct list_node *node, size_t off)
459 {
460 	return (void *)((char *)node - off);
461 }
list_node_from_off_(void * ptr,size_t off)462 static inline struct list_node *list_node_from_off_(void *ptr, size_t off)
463 {
464 	return (struct list_node *)((char *)ptr + off);
465 }
466 
467 /* Get the offset of the member, but make sure it's a list_node. */
468 #define list_off_(type, member)					\
469 	(container_off(type, member) +				\
470 	 check_type(((type *)0)->member, struct list_node))
471 
472 #define list_off_var_(var, member)			\
473 	(container_off_var(var, member) +		\
474 	 check_type(var->member, struct list_node))
475 
476 #endif /* CCAN_LIST_H */
477