1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package tls
6
7import (
8	"container/list"
9	"crypto"
10	"crypto/rand"
11	"crypto/sha512"
12	"crypto/x509"
13	"errors"
14	"fmt"
15	"io"
16	"math/big"
17	"net"
18	"strings"
19	"sync"
20	"time"
21
22	"github.com/ooni/psiphon/oopsi/github.com/Psiphon-Labs/psiphon-tunnel-core/psiphon/common/prng"
23	"github.com/ooni/psiphon/oopsi/github.com/Psiphon-Labs/tls-tris/cipherhw"
24)
25
26const (
27	VersionSSL30 = 0x0300
28	VersionTLS10 = 0x0301
29	VersionTLS11 = 0x0302
30	VersionTLS12 = 0x0303
31	VersionTLS13 = 0x0304
32)
33
34const (
35	maxPlaintext      = 16384        // maximum plaintext payload length
36	maxCiphertext     = 16384 + 2048 // maximum ciphertext payload length
37	recordHeaderLen   = 5            // record header length
38	maxHandshake      = 65536        // maximum handshake we support (protocol max is 16 MB)
39	maxWarnAlertCount = 5            // maximum number of consecutive warning alerts
40
41	minVersion = VersionTLS12
42	maxVersion = VersionTLS13
43)
44
45// TLS record types.
46type recordType uint8
47
48const (
49	recordTypeChangeCipherSpec recordType = 20
50	recordTypeAlert            recordType = 21
51	recordTypeHandshake        recordType = 22
52	recordTypeApplicationData  recordType = 23
53)
54
55// TLS handshake message types.
56const (
57	typeHelloRequest        uint8 = 0
58	typeClientHello         uint8 = 1
59	typeServerHello         uint8 = 2
60	typeNewSessionTicket    uint8 = 4
61	typeEndOfEarlyData      uint8 = 5
62	typeEncryptedExtensions uint8 = 8
63	typeCertificate         uint8 = 11
64	typeServerKeyExchange   uint8 = 12
65	typeCertificateRequest  uint8 = 13
66	typeServerHelloDone     uint8 = 14
67	typeCertificateVerify   uint8 = 15
68	typeClientKeyExchange   uint8 = 16
69	typeFinished            uint8 = 20
70	typeCertificateStatus   uint8 = 22
71	typeNextProtocol        uint8 = 67 // Not IANA assigned
72)
73
74// TLS compression types.
75const (
76	compressionNone uint8 = 0
77)
78
79// TLS extension numbers
80const (
81	extensionServerName              uint16 = 0
82	extensionStatusRequest           uint16 = 5
83	extensionSupportedCurves         uint16 = 10 // Supported Groups in 1.3 nomenclature
84	extensionSupportedPoints         uint16 = 11
85	extensionSignatureAlgorithms     uint16 = 13
86	extensionALPN                    uint16 = 16
87	extensionSCT                     uint16 = 18 // https://tools.ietf.org/html/rfc6962#section-6
88	extensionEMS                     uint16 = 23
89	extensionSessionTicket           uint16 = 35
90	extensionPreSharedKey            uint16 = 41
91	extensionEarlyData               uint16 = 42
92	extensionSupportedVersions       uint16 = 43
93	extensionPSKKeyExchangeModes     uint16 = 45
94	extensionCAs                     uint16 = 47
95	extensionSignatureAlgorithmsCert uint16 = 50
96	extensionKeyShare                uint16 = 51
97	extensionNextProtoNeg            uint16 = 13172 // not IANA assigned
98	extensionRenegotiationInfo       uint16 = 0xff01
99	extensionDelegatedCredential     uint16 = 0xff02 // TODO(any) Get IANA assignment
100)
101
102// TLS signaling cipher suite values
103const (
104	scsvRenegotiation uint16 = 0x00ff
105)
106
107// PSK Key Exchange Modes
108// https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-4.2.7
109const (
110	pskDHEKeyExchange uint8 = 1
111)
112
113// CurveID is the type of a TLS identifier for an elliptic curve. See
114// http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-8
115//
116// TLS 1.3 refers to these as Groups, but this library implements only
117// curve-based ones anyway. See https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-4.2.4.
118type CurveID uint16
119
120const (
121	CurveP256 CurveID = 23
122	CurveP384 CurveID = 24
123	CurveP521 CurveID = 25
124	X25519    CurveID = 29
125)
126
127// TLS 1.3 Key Share
128// See https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-4.2.5
129type keyShare struct {
130	group CurveID
131	data  []byte
132}
133
134// TLS 1.3 PSK Identity and Binder, as sent by the client
135// https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-4.2.6
136
137type psk struct {
138	identity     []byte
139	obfTicketAge uint32
140	binder       []byte
141}
142
143// TLS Elliptic Curve Point Formats
144// http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-9
145const (
146	pointFormatUncompressed uint8 = 0
147)
148
149// TLS CertificateStatusType (RFC 3546)
150const (
151	statusTypeOCSP uint8 = 1
152)
153
154// Certificate types (for certificateRequestMsg)
155const (
156	certTypeRSASign    = 1 // A certificate containing an RSA key
157	certTypeDSSSign    = 2 // A certificate containing a DSA key
158	certTypeRSAFixedDH = 3 // A certificate containing a static DH key
159	certTypeDSSFixedDH = 4 // A certificate containing a static DH key
160
161	// See RFC 4492 sections 3 and 5.5.
162	certTypeECDSASign      = 64 // A certificate containing an ECDSA-capable public key, signed with ECDSA.
163	certTypeRSAFixedECDH   = 65 // A certificate containing an ECDH-capable public key, signed with RSA.
164	certTypeECDSAFixedECDH = 66 // A certificate containing an ECDH-capable public key, signed with ECDSA.
165
166	// Rest of these are reserved by the TLS spec
167)
168
169// Signature algorithms for TLS 1.2 (See RFC 5246, section A.4.1)
170const (
171	signaturePKCS1v15 uint8 = iota + 1
172	signatureECDSA
173	signatureRSAPSS
174)
175
176// supportedSignatureAlgorithms contains the signature and hash algorithms that
177// the code advertises as supported in a TLS 1.2 ClientHello and in a TLS 1.2
178// CertificateRequest. The two fields are merged to match with TLS 1.3.
179// Note that in TLS 1.2, the ECDSA algorithms are not constrained to P-256, etc.
180var supportedSignatureAlgorithms = []SignatureScheme{
181	PKCS1WithSHA256,
182	ECDSAWithP256AndSHA256,
183	PKCS1WithSHA384,
184	ECDSAWithP384AndSHA384,
185	PKCS1WithSHA512,
186	ECDSAWithP521AndSHA512,
187	PKCS1WithSHA1,
188	ECDSAWithSHA1,
189}
190
191// supportedSignatureAlgorithms13 lists the advertised signature algorithms
192// allowed for digital signatures. It includes TLS 1.2 + PSS.
193var supportedSignatureAlgorithms13 = []SignatureScheme{
194	PSSWithSHA256,
195	PKCS1WithSHA256,
196	ECDSAWithP256AndSHA256,
197	PSSWithSHA384,
198	PKCS1WithSHA384,
199	ECDSAWithP384AndSHA384,
200	PSSWithSHA512,
201	PKCS1WithSHA512,
202	ECDSAWithP521AndSHA512,
203	PKCS1WithSHA1,
204	ECDSAWithSHA1,
205}
206
207// ConnectionState records basic TLS details about the connection.
208type ConnectionState struct {
209	ConnectionID                []byte                // Random unique connection id
210	Version                     uint16                // TLS version used by the connection (e.g. VersionTLS12)
211	HandshakeComplete           bool                  // TLS handshake is complete
212	DidResume                   bool                  // connection resumes a previous TLS connection
213	CipherSuite                 uint16                // cipher suite in use (TLS_RSA_WITH_RC4_128_SHA, ...)
214	NegotiatedProtocol          string                // negotiated next protocol (not guaranteed to be from Config.NextProtos)
215	NegotiatedProtocolIsMutual  bool                  // negotiated protocol was advertised by server (client side only)
216	ServerName                  string                // server name requested by client, if any (server side only)
217	PeerCertificates            []*x509.Certificate   // certificate chain presented by remote peer
218	VerifiedChains              [][]*x509.Certificate // verified chains built from PeerCertificates
219	SignedCertificateTimestamps [][]byte              // SCTs from the server, if any
220	OCSPResponse                []byte                // stapled OCSP response from server, if any
221	DelegatedCredential         []byte                // Delegated credential sent by the server, if any
222
223	// TLSUnique contains the "tls-unique" channel binding value (see RFC
224	// 5929, section 3). For resumed sessions this value will be nil
225	// because resumption does not include enough context (see
226	// https://mitls.org/pages/attacks/3SHAKE#channelbindings). This will
227	// change in future versions of Go once the TLS master-secret fix has
228	// been standardized and implemented.
229	TLSUnique []byte
230
231	// HandshakeConfirmed is true once all data returned by Read
232	// (past and future) is guaranteed not to be replayed.
233	HandshakeConfirmed bool
234
235	// Unique0RTTToken is a value that never repeats, and can be used
236	// to detect replay attacks against 0-RTT connections.
237	// Unique0RTTToken is only present if HandshakeConfirmed is false.
238	Unique0RTTToken []byte
239
240	ClientHello []byte // ClientHello packet
241}
242
243// ClientAuthType declares the policy the server will follow for
244// TLS Client Authentication.
245type ClientAuthType int
246
247const (
248	NoClientCert ClientAuthType = iota
249	RequestClientCert
250	RequireAnyClientCert
251	VerifyClientCertIfGiven
252	RequireAndVerifyClientCert
253)
254
255// ClientSessionState contains the state needed by clients to resume TLS
256// sessions.
257type ClientSessionState struct {
258	sessionTicket      []uint8               // Encrypted ticket used for session resumption with server
259	vers               uint16                // SSL/TLS version negotiated for the session
260	cipherSuite        uint16                // Ciphersuite negotiated for the session
261	masterSecret       []byte                // MasterSecret generated by client on a full handshake
262	serverCertificates []*x509.Certificate   // Certificate chain presented by the server
263	verifiedChains     [][]*x509.Certificate // Certificate chains we built for verification
264	useEMS             bool                  // State of extended master secret
265}
266
267// ClientSessionCache is a cache of ClientSessionState objects that can be used
268// by a client to resume a TLS session with a given server. ClientSessionCache
269// implementations should expect to be called concurrently from different
270// goroutines. Only ticket-based resumption is supported, not SessionID-based
271// resumption.
272type ClientSessionCache interface {
273	// Get searches for a ClientSessionState associated with the given key.
274	// On return, ok is true if one was found.
275	Get(sessionKey string) (session *ClientSessionState, ok bool)
276
277	// Put adds the ClientSessionState to the cache with the given key.
278	Put(sessionKey string, cs *ClientSessionState)
279}
280
281// SignatureScheme identifies a signature algorithm supported by TLS. See
282// https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-4.2.3.
283type SignatureScheme uint16
284
285const (
286	PKCS1WithSHA1   SignatureScheme = 0x0201
287	PKCS1WithSHA256 SignatureScheme = 0x0401
288	PKCS1WithSHA384 SignatureScheme = 0x0501
289	PKCS1WithSHA512 SignatureScheme = 0x0601
290
291	PSSWithSHA256 SignatureScheme = 0x0804
292	PSSWithSHA384 SignatureScheme = 0x0805
293	PSSWithSHA512 SignatureScheme = 0x0806
294
295	ECDSAWithP256AndSHA256 SignatureScheme = 0x0403
296	ECDSAWithP384AndSHA384 SignatureScheme = 0x0503
297	ECDSAWithP521AndSHA512 SignatureScheme = 0x0603
298
299	// Legacy signature and hash algorithms for TLS 1.2.
300	ECDSAWithSHA1 SignatureScheme = 0x0203
301)
302
303// ClientHelloInfo contains information from a ClientHello message in order to
304// guide certificate selection in the GetCertificate callback.
305type ClientHelloInfo struct {
306	// CipherSuites lists the CipherSuites supported by the client (e.g.
307	// TLS_RSA_WITH_RC4_128_SHA).
308	CipherSuites []uint16
309
310	// ServerName indicates the name of the server requested by the client
311	// in order to support virtual hosting. ServerName is only set if the
312	// client is using SNI (see
313	// http://tools.ietf.org/html/rfc4366#section-3.1).
314	ServerName string
315
316	// SupportedCurves lists the elliptic curves supported by the client.
317	// SupportedCurves is set only if the Supported Elliptic Curves
318	// Extension is being used (see
319	// http://tools.ietf.org/html/rfc4492#section-5.1.1).
320	SupportedCurves []CurveID
321
322	// SupportedPoints lists the point formats supported by the client.
323	// SupportedPoints is set only if the Supported Point Formats Extension
324	// is being used (see
325	// http://tools.ietf.org/html/rfc4492#section-5.1.2).
326	SupportedPoints []uint8
327
328	// SignatureSchemes lists the signature and hash schemes that the client
329	// is willing to verify. SignatureSchemes is set only if the Signature
330	// Algorithms Extension is being used (see
331	// https://tools.ietf.org/html/rfc5246#section-7.4.1.4.1).
332	SignatureSchemes []SignatureScheme
333
334	// SupportedProtos lists the application protocols supported by the client.
335	// SupportedProtos is set only if the Application-Layer Protocol
336	// Negotiation Extension is being used (see
337	// https://tools.ietf.org/html/rfc7301#section-3.1).
338	//
339	// Servers can select a protocol by setting Config.NextProtos in a
340	// GetConfigForClient return value.
341	SupportedProtos []string
342
343	// SupportedVersions lists the TLS versions supported by the client.
344	// For TLS versions less than 1.3, this is extrapolated from the max
345	// version advertised by the client, so values other than the greatest
346	// might be rejected if used.
347	SupportedVersions []uint16
348
349	// Conn is the underlying net.Conn for the connection. Do not read
350	// from, or write to, this connection; that will cause the TLS
351	// connection to fail.
352	Conn net.Conn
353
354	// Offered0RTTData is true if the client announced that it will send
355	// 0-RTT data. If the server Config.Accept0RTTData is true, and the
356	// client offered a session ticket valid for that purpose, it will
357	// be notified that the 0-RTT data is accepted and it will be made
358	// immediately available for Read.
359	Offered0RTTData bool
360
361	// AcceptsDelegatedCredential is true if the client indicated willingness
362	// to negotiate the delegated credential extension.
363	AcceptsDelegatedCredential bool
364
365	// The Fingerprint is an sequence of bytes unique to this Client Hello.
366	// It can be used to prevent or mitigate 0-RTT data replays as it's
367	// guaranteed that a replayed connection will have the same Fingerprint.
368	Fingerprint []byte
369}
370
371// CertificateRequestInfo contains information from a server's
372// CertificateRequest message, which is used to demand a certificate and proof
373// of control from a client.
374type CertificateRequestInfo struct {
375	// AcceptableCAs contains zero or more, DER-encoded, X.501
376	// Distinguished Names. These are the names of root or intermediate CAs
377	// that the server wishes the returned certificate to be signed by. An
378	// empty slice indicates that the server has no preference.
379	AcceptableCAs [][]byte
380
381	// SignatureSchemes lists the signature schemes that the server is
382	// willing to verify.
383	SignatureSchemes []SignatureScheme
384}
385
386// RenegotiationSupport enumerates the different levels of support for TLS
387// renegotiation. TLS renegotiation is the act of performing subsequent
388// handshakes on a connection after the first. This significantly complicates
389// the state machine and has been the source of numerous, subtle security
390// issues. Initiating a renegotiation is not supported, but support for
391// accepting renegotiation requests may be enabled.
392//
393// Even when enabled, the server may not change its identity between handshakes
394// (i.e. the leaf certificate must be the same). Additionally, concurrent
395// handshake and application data flow is not permitted so renegotiation can
396// only be used with protocols that synchronise with the renegotiation, such as
397// HTTPS.
398type RenegotiationSupport int
399
400const (
401	// RenegotiateNever disables renegotiation.
402	RenegotiateNever RenegotiationSupport = iota
403
404	// RenegotiateOnceAsClient allows a remote server to request
405	// renegotiation once per connection.
406	RenegotiateOnceAsClient
407
408	// RenegotiateFreelyAsClient allows a remote server to repeatedly
409	// request renegotiation.
410	RenegotiateFreelyAsClient
411)
412
413// A Config structure is used to configure a TLS client or server.
414// After one has been passed to a TLS function it must not be
415// modified. A Config may be reused; the tls package will also not
416// modify it.
417type Config struct {
418	// Rand provides the source of entropy for nonces and RSA blinding.
419	// If Rand is nil, TLS uses the cryptographic random reader in package
420	// crypto/rand.
421	// The Reader must be safe for use by multiple goroutines.
422	Rand io.Reader
423
424	// Time returns the current time as the number of seconds since the epoch.
425	// If Time is nil, TLS uses time.Now.
426	Time func() time.Time
427
428	// Certificates contains one or more certificate chains to present to
429	// the other side of the connection. Server configurations must include
430	// at least one certificate or else set GetCertificate. Clients doing
431	// client-authentication may set either Certificates or
432	// GetClientCertificate.
433	Certificates []Certificate
434
435	// NameToCertificate maps from a certificate name to an element of
436	// Certificates. Note that a certificate name can be of the form
437	// '*.example.com' and so doesn't have to be a domain name as such.
438	// See Config.BuildNameToCertificate
439	// The nil value causes the first element of Certificates to be used
440	// for all connections.
441	NameToCertificate map[string]*Certificate
442
443	// GetCertificate returns a Certificate based on the given
444	// ClientHelloInfo. It will only be called if the client supplies SNI
445	// information or if Certificates is empty.
446	//
447	// If GetCertificate is nil or returns nil, then the certificate is
448	// retrieved from NameToCertificate. If NameToCertificate is nil, the
449	// first element of Certificates will be used.
450	GetCertificate func(*ClientHelloInfo) (*Certificate, error)
451
452	// GetClientCertificate, if not nil, is called when a server requests a
453	// certificate from a client. If set, the contents of Certificates will
454	// be ignored.
455	//
456	// If GetClientCertificate returns an error, the handshake will be
457	// aborted and that error will be returned. Otherwise
458	// GetClientCertificate must return a non-nil Certificate. If
459	// Certificate.Certificate is empty then no certificate will be sent to
460	// the server. If this is unacceptable to the server then it may abort
461	// the handshake.
462	//
463	// GetClientCertificate may be called multiple times for the same
464	// connection if renegotiation occurs or if TLS 1.3 is in use.
465	GetClientCertificate func(*CertificateRequestInfo) (*Certificate, error)
466
467	// GetConfigForClient, if not nil, is called after a ClientHello is
468	// received from a client. It may return a non-nil Config in order to
469	// change the Config that will be used to handle this connection. If
470	// the returned Config is nil, the original Config will be used. The
471	// Config returned by this callback may not be subsequently modified.
472	//
473	// If GetConfigForClient is nil, the Config passed to Server() will be
474	// used for all connections.
475	//
476	// Uniquely for the fields in the returned Config, session ticket keys
477	// will be duplicated from the original Config if not set.
478	// Specifically, if SetSessionTicketKeys was called on the original
479	// config but not on the returned config then the ticket keys from the
480	// original config will be copied into the new config before use.
481	// Otherwise, if SessionTicketKey was set in the original config but
482	// not in the returned config then it will be copied into the returned
483	// config before use. If neither of those cases applies then the key
484	// material from the returned config will be used for session tickets.
485	GetConfigForClient func(*ClientHelloInfo) (*Config, error)
486
487	// VerifyPeerCertificate, if not nil, is called after normal
488	// certificate verification by either a TLS client or server. It
489	// receives the raw ASN.1 certificates provided by the peer and also
490	// any verified chains that normal processing found. If it returns a
491	// non-nil error, the handshake is aborted and that error results.
492	//
493	// If normal verification fails then the handshake will abort before
494	// considering this callback. If normal verification is disabled by
495	// setting InsecureSkipVerify, or (for a server) when ClientAuth is
496	// RequestClientCert or RequireAnyClientCert, then this callback will
497	// be considered but the verifiedChains argument will always be nil.
498	VerifyPeerCertificate func(rawCerts [][]byte, verifiedChains [][]*x509.Certificate) error
499
500	// RootCAs defines the set of root certificate authorities
501	// that clients use when verifying server certificates.
502	// If RootCAs is nil, TLS uses the host's root CA set.
503	RootCAs *x509.CertPool
504
505	// NextProtos is a list of supported, application level protocols.
506	NextProtos []string
507
508	// ServerName is used to verify the hostname on the returned
509	// certificates unless InsecureSkipVerify is given. It is also included
510	// in the client's handshake to support virtual hosting unless it is
511	// an IP address.
512	ServerName string
513
514	// ClientAuth determines the server's policy for
515	// TLS Client Authentication. The default is NoClientCert.
516	ClientAuth ClientAuthType
517
518	// ClientCAs defines the set of root certificate authorities
519	// that servers use if required to verify a client certificate
520	// by the policy in ClientAuth.
521	ClientCAs *x509.CertPool
522
523	// InsecureSkipVerify controls whether a client verifies the
524	// server's certificate chain and host name.
525	// If InsecureSkipVerify is true, TLS accepts any certificate
526	// presented by the server and any host name in that certificate.
527	// In this mode, TLS is susceptible to man-in-the-middle attacks.
528	// This should be used only for testing.
529	InsecureSkipVerify bool
530
531	// CipherSuites is a list of supported cipher suites to be used in
532	// TLS 1.0-1.2. If CipherSuites is nil, TLS uses a list of suites
533	// supported by the implementation.
534	CipherSuites []uint16
535
536	// PreferServerCipherSuites controls whether the server selects the
537	// client's most preferred ciphersuite, or the server's most preferred
538	// ciphersuite. If true then the server's preference, as expressed in
539	// the order of elements in CipherSuites, is used.
540	PreferServerCipherSuites bool
541
542	// SessionTicketsDisabled may be set to true to disable session ticket
543	// (resumption) support.
544	SessionTicketsDisabled bool
545
546	// SessionTicketKey is used by TLS servers to provide session
547	// resumption. See RFC 5077. If zero, it will be filled with
548	// random data before the first server handshake.
549	//
550	// If multiple servers are terminating connections for the same host
551	// they should all have the same SessionTicketKey. If the
552	// SessionTicketKey leaks, previously recorded and future TLS
553	// connections using that key are compromised.
554	SessionTicketKey [32]byte
555
556	// ClientSessionCache is a cache of ClientSessionState entries for TLS
557	// session resumption.
558	ClientSessionCache ClientSessionCache
559
560	// MinVersion contains the minimum SSL/TLS version that is acceptable.
561	// If zero, then TLS 1.0 is taken as the minimum.
562	MinVersion uint16
563
564	// MaxVersion contains the maximum SSL/TLS version that is acceptable.
565	// If zero, then the maximum version supported by this package is used,
566	// which is currently TLS 1.2.
567	MaxVersion uint16
568
569	// CurvePreferences contains the elliptic curves that will be used in
570	// an ECDHE handshake, in preference order. If empty, the default will
571	// be used.
572	CurvePreferences []CurveID
573
574	// DynamicRecordSizingDisabled disables adaptive sizing of TLS records.
575	// When true, the largest possible TLS record size is always used. When
576	// false, the size of TLS records may be adjusted in an attempt to
577	// improve latency.
578	DynamicRecordSizingDisabled bool
579
580	// Renegotiation controls what types of renegotiation are supported.
581	// The default, none, is correct for the vast majority of applications.
582	Renegotiation RenegotiationSupport
583
584	// KeyLogWriter optionally specifies a destination for TLS master secrets
585	// in NSS key log format that can be used to allow external programs
586	// such as Wireshark to decrypt TLS connections.
587	// See https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format.
588	// Use of KeyLogWriter compromises security and should only be
589	// used for debugging.
590	KeyLogWriter io.Writer
591
592	// If Max0RTTDataSize is not zero, the client will be allowed to use
593	// session tickets to send at most this number of bytes of 0-RTT data.
594	// 0-RTT data is subject to replay and has memory DoS implications.
595	// The server will later be able to refuse the 0-RTT data with
596	// Accept0RTTData, or wait for the client to prove that it's not
597	// replayed with Conn.ConfirmHandshake.
598	//
599	// It has no meaning on the client.
600	//
601	// See https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-2.3.
602	Max0RTTDataSize uint32
603
604	// Accept0RTTData makes the 0-RTT data received from the client
605	// immediately available to Read. 0-RTT data is subject to replay.
606	// Use Conn.ConfirmHandshake to wait until the data is known not
607	// to be replayed after reading it.
608	//
609	// It has no meaning on the client.
610	//
611	// See https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-2.3.
612	Accept0RTTData bool
613
614	// SessionTicketSealer, if not nil, is used to wrap and unwrap
615	// session tickets, instead of SessionTicketKey.
616	SessionTicketSealer SessionTicketSealer
617
618	// AcceptDelegatedCredential is true if the client is willing to negotiate
619	// the delegated credential extension.
620	//
621	// This value has no meaning for the server.
622	//
623	// See https://tools.ietf.org/html/draft-ietf-tls-subcerts-02.
624	AcceptDelegatedCredential bool
625
626	// GetDelegatedCredential returns a DC and its private key for use in the
627	// delegated credential extension. The inputs to the callback are some
628	// information parsed from the ClientHello, as well as the protocol version
629	// selected by the server. This is necessary because the DC is bound to the
630	// protocol version in which it's used. The return value is the raw DC
631	// encoded in the wire format specified in
632	// https://tools.ietf.org/html/draft-ietf-tls-subcerts-02. If the return
633	// value is nil, then the server will not offer negotiate the extension.
634	//
635	// This value has no meaning for the client.
636	GetDelegatedCredential func(*ClientHelloInfo, uint16) ([]byte, crypto.PrivateKey, error)
637
638	serverInitOnce sync.Once // guards calling (*Config).serverInit
639
640	// mutex protects sessionTicketKeys.
641	mutex sync.RWMutex
642	// sessionTicketKeys contains zero or more ticket keys. If the length
643	// is zero, SessionTicketsDisabled must be true. The first key is used
644	// for new tickets and any subsequent keys can be used to decrypt old
645	// tickets.
646	sessionTicketKeys []ticketKey
647
648	// UseExtendedMasterSecret indicates whether or not the connection
649	// should use the extended master secret computation if available
650	UseExtendedMasterSecret bool
651
652	// [Psiphon]
653	// ClientHelloPRNGSeed is a seeded PRNG which allows for optional replay of
654	// same randomized Client Hello.
655	ClientHelloPRNGSeed *prng.Seed
656
657	// [Psiphon]
658	// UseObfuscatedSessionTickets should be set when using obfuscated session
659	// tickets. This setting ensures that checkForResumption operates in a way
660	// that is compatible with the obfuscated session ticket scheme.
661	//
662	// This flag doesn't fully configure obfuscated session tickets.
663	// SessionTicketKey and SetSessionTicketKeys must also be intialized. See the
664	// setup in psiphon/server.MeekServer.makeMeekTLSConfig.
665	//
666	// See the comment for NewObfuscatedClientSessionState for more details on
667	// obfuscated session tickets.
668	UseObfuscatedSessionTickets bool
669
670	// [Psiphon]
671	// PassthroughAddress, when not blank, enables passthrough mode. It is a
672	// network address, host and port, to which client traffic is relayed when
673	// the client fails anti-probing tests.
674	//
675	// The PassthroughAddress is expected to be a TCP endpoint. Passthrough is
676	// triggered when a ClientHello random field doesn't have a valid value, as
677	// determined by PassthroughKey.
678	PassthroughAddress string
679
680	// [Psiphon]
681	// PassthroughKey must be set, to a value generated by
682	// obfuscator.DerivePassthroughKey, when passthrough mode is enabled.
683	PassthroughKey []byte
684
685	// [Psiphon]
686	// PassthroughHistoryAddNew must be set when passthough mode is enabled. The
687	// function should check that a ClientHello random value has not been
688	// previously observed, returning true only for a newly observed value. Any
689	// logging is the callback's responsibility.
690	PassthroughHistoryAddNew func(
691		clientIP string,
692		clientRandom []byte) bool
693
694	// [Psiphon]
695	// PassthroughLogInvalidMessage must be set when passthough mode is enabled.
696	// The function should log an invalid ClientHello random value event.
697	PassthroughLogInvalidMessage func(clientIP string)
698}
699
700// ticketKeyNameLen is the number of bytes of identifier that is prepended to
701// an encrypted session ticket in order to identify the key used to encrypt it.
702const ticketKeyNameLen = 16
703
704// ticketKey is the internal representation of a session ticket key.
705type ticketKey struct {
706	// keyName is an opaque byte string that serves to identify the session
707	// ticket key. It's exposed as plaintext in every session ticket.
708	keyName [ticketKeyNameLen]byte
709	aesKey  [16]byte
710	hmacKey [16]byte
711}
712
713// ticketKeyFromBytes converts from the external representation of a session
714// ticket key to a ticketKey. Externally, session ticket keys are 32 random
715// bytes and this function expands that into sufficient name and key material.
716func ticketKeyFromBytes(b [32]byte) (key ticketKey) {
717	hashed := sha512.Sum512(b[:])
718	copy(key.keyName[:], hashed[:ticketKeyNameLen])
719	copy(key.aesKey[:], hashed[ticketKeyNameLen:ticketKeyNameLen+16])
720	copy(key.hmacKey[:], hashed[ticketKeyNameLen+16:ticketKeyNameLen+32])
721	return key
722}
723
724// Clone returns a shallow clone of c. It is safe to clone a Config that is
725// being used concurrently by a TLS client or server.
726func (c *Config) Clone() *Config {
727	// Running serverInit ensures that it's safe to read
728	// SessionTicketsDisabled.
729	c.serverInitOnce.Do(func() { c.serverInit(nil) })
730
731	var sessionTicketKeys []ticketKey
732	c.mutex.RLock()
733	sessionTicketKeys = c.sessionTicketKeys
734	c.mutex.RUnlock()
735
736	return &Config{
737		Rand:                        c.Rand,
738		Time:                        c.Time,
739		Certificates:                c.Certificates,
740		NameToCertificate:           c.NameToCertificate,
741		GetCertificate:              c.GetCertificate,
742		GetClientCertificate:        c.GetClientCertificate,
743		GetConfigForClient:          c.GetConfigForClient,
744		VerifyPeerCertificate:       c.VerifyPeerCertificate,
745		RootCAs:                     c.RootCAs,
746		NextProtos:                  c.NextProtos,
747		ServerName:                  c.ServerName,
748		ClientAuth:                  c.ClientAuth,
749		ClientCAs:                   c.ClientCAs,
750		InsecureSkipVerify:          c.InsecureSkipVerify,
751		CipherSuites:                c.CipherSuites,
752		PreferServerCipherSuites:    c.PreferServerCipherSuites,
753		SessionTicketsDisabled:      c.SessionTicketsDisabled,
754		SessionTicketKey:            c.SessionTicketKey,
755		ClientSessionCache:          c.ClientSessionCache,
756		MinVersion:                  c.MinVersion,
757		MaxVersion:                  c.MaxVersion,
758		CurvePreferences:            c.CurvePreferences,
759		DynamicRecordSizingDisabled: c.DynamicRecordSizingDisabled,
760		Renegotiation:               c.Renegotiation,
761		KeyLogWriter:                c.KeyLogWriter,
762		Accept0RTTData:              c.Accept0RTTData,
763		Max0RTTDataSize:             c.Max0RTTDataSize,
764		SessionTicketSealer:         c.SessionTicketSealer,
765		AcceptDelegatedCredential:   c.AcceptDelegatedCredential,
766		GetDelegatedCredential:      c.GetDelegatedCredential,
767		sessionTicketKeys:           sessionTicketKeys,
768		UseExtendedMasterSecret:     c.UseExtendedMasterSecret,
769	}
770}
771
772// serverInit is run under c.serverInitOnce to do initialization of c. If c was
773// returned by a GetConfigForClient callback then the argument should be the
774// Config that was passed to Server, otherwise it should be nil.
775func (c *Config) serverInit(originalConfig *Config) {
776	if c.SessionTicketsDisabled || len(c.ticketKeys()) != 0 || c.SessionTicketSealer != nil {
777		return
778	}
779
780	alreadySet := false
781	for _, b := range c.SessionTicketKey {
782		if b != 0 {
783			alreadySet = true
784			break
785		}
786	}
787
788	if !alreadySet {
789		if originalConfig != nil {
790			copy(c.SessionTicketKey[:], originalConfig.SessionTicketKey[:])
791		} else if _, err := io.ReadFull(c.rand(), c.SessionTicketKey[:]); err != nil {
792			c.SessionTicketsDisabled = true
793			return
794		}
795	}
796
797	if originalConfig != nil {
798		originalConfig.mutex.RLock()
799		c.sessionTicketKeys = originalConfig.sessionTicketKeys
800		originalConfig.mutex.RUnlock()
801	} else {
802		c.sessionTicketKeys = []ticketKey{ticketKeyFromBytes(c.SessionTicketKey)}
803	}
804}
805
806func (c *Config) ticketKeys() []ticketKey {
807	c.mutex.RLock()
808	// c.sessionTicketKeys is constant once created. SetSessionTicketKeys
809	// will only update it by replacing it with a new value.
810	ret := c.sessionTicketKeys
811	c.mutex.RUnlock()
812	return ret
813}
814
815// SetSessionTicketKeys updates the session ticket keys for a server. The first
816// key will be used when creating new tickets, while all keys can be used for
817// decrypting tickets. It is safe to call this function while the server is
818// running in order to rotate the session ticket keys. The function will panic
819// if keys is empty.
820func (c *Config) SetSessionTicketKeys(keys [][32]byte) {
821	if len(keys) == 0 {
822		panic("tls: keys must have at least one key")
823	}
824
825	newKeys := make([]ticketKey, len(keys))
826	for i, bytes := range keys {
827		newKeys[i] = ticketKeyFromBytes(bytes)
828	}
829
830	c.mutex.Lock()
831	c.sessionTicketKeys = newKeys
832	c.mutex.Unlock()
833}
834
835func (c *Config) rand() io.Reader {
836	r := c.Rand
837	if r == nil {
838		return rand.Reader
839	}
840	return r
841}
842
843func (c *Config) time() time.Time {
844	t := c.Time
845	if t == nil {
846		t = time.Now
847	}
848	return t()
849}
850
851func hasOverlappingCipherSuites(cs1, cs2 []uint16) bool {
852	for _, c1 := range cs1 {
853		for _, c2 := range cs2 {
854			if c1 == c2 {
855				return true
856			}
857		}
858	}
859	return false
860}
861
862func (c *Config) cipherSuites() []uint16 {
863	s := c.CipherSuites
864	if s == nil {
865		s = defaultCipherSuites()
866	} else if c.maxVersion() >= VersionTLS13 {
867		// Ensure that TLS 1.3 suites are always present, but respect
868		// the application cipher suite preferences.
869		s13 := defaultTLS13CipherSuites()
870		if !hasOverlappingCipherSuites(s, s13) {
871			allSuites := make([]uint16, len(s13)+len(s))
872			allSuites = append(allSuites, s13...)
873			s = append(allSuites, s...)
874		}
875	}
876	return s
877}
878
879func (c *Config) minVersion() uint16 {
880	if c == nil || c.MinVersion == 0 {
881		return minVersion
882	}
883	return c.MinVersion
884}
885
886func (c *Config) maxVersion() uint16 {
887	if c == nil || c.MaxVersion == 0 {
888		return maxVersion
889	}
890	return c.MaxVersion
891}
892
893var defaultCurvePreferences = []CurveID{X25519, CurveP256, CurveP384, CurveP521}
894
895func (c *Config) curvePreferences() []CurveID {
896	if c == nil || len(c.CurvePreferences) == 0 {
897		return defaultCurvePreferences
898	}
899	return c.CurvePreferences
900}
901
902// mutualVersion returns the protocol version to use given the advertised
903// version of the peer using the legacy non-extension methods.
904func (c *Config) mutualVersion(vers uint16) (uint16, bool) {
905	minVersion := c.minVersion()
906	maxVersion := c.maxVersion()
907
908	// Version 1.3 and higher are not negotiated via this mechanism.
909	if maxVersion > VersionTLS12 {
910		maxVersion = VersionTLS12
911	}
912
913	if vers < minVersion {
914		return 0, false
915	}
916	if vers > maxVersion {
917		vers = maxVersion
918	}
919	return vers, true
920}
921
922// pickVersion returns the protocol version to use given the advertised
923// versions of the peer using the Supported Versions extension.
924func (c *Config) pickVersion(peerSupportedVersions []uint16) (uint16, bool) {
925	supportedVersions := c.getSupportedVersions()
926	for _, supportedVersion := range supportedVersions {
927		for _, version := range peerSupportedVersions {
928			if version == supportedVersion {
929				return version, true
930			}
931		}
932	}
933	return 0, false
934}
935
936// configSuppVersArray is the backing array of Config.getSupportedVersions
937var configSuppVersArray = [...]uint16{VersionTLS13, VersionTLS12, VersionTLS11, VersionTLS10, VersionSSL30}
938
939// getSupportedVersions returns the protocol versions that are supported by the
940// current configuration.
941func (c *Config) getSupportedVersions() []uint16 {
942	minVersion := c.minVersion()
943	maxVersion := c.maxVersion()
944	// Sanity check to avoid advertising unsupported versions.
945	if minVersion < VersionSSL30 {
946		minVersion = VersionSSL30
947	}
948	if maxVersion > VersionTLS13 {
949		maxVersion = VersionTLS13
950	}
951	if maxVersion < minVersion {
952		return nil
953	}
954	return configSuppVersArray[VersionTLS13-maxVersion : VersionTLS13-minVersion+1]
955}
956
957// getCertificate returns the best certificate for the given ClientHelloInfo,
958// defaulting to the first element of c.Certificates.
959func (c *Config) getCertificate(clientHello *ClientHelloInfo) (*Certificate, error) {
960	if c.GetCertificate != nil &&
961		(len(c.Certificates) == 0 || len(clientHello.ServerName) > 0) {
962		cert, err := c.GetCertificate(clientHello)
963		if cert != nil || err != nil {
964			return cert, err
965		}
966	}
967
968	if len(c.Certificates) == 0 {
969		return nil, errors.New("tls: no certificates configured")
970	}
971
972	if len(c.Certificates) == 1 || c.NameToCertificate == nil {
973		// There's only one choice, so no point doing any work.
974		return &c.Certificates[0], nil
975	}
976
977	name := strings.ToLower(clientHello.ServerName)
978	for len(name) > 0 && name[len(name)-1] == '.' {
979		name = name[:len(name)-1]
980	}
981
982	if cert, ok := c.NameToCertificate[name]; ok {
983		return cert, nil
984	}
985
986	// try replacing labels in the name with wildcards until we get a
987	// match.
988	labels := strings.Split(name, ".")
989	for i := range labels {
990		labels[i] = "*"
991		candidate := strings.Join(labels, ".")
992		if cert, ok := c.NameToCertificate[candidate]; ok {
993			return cert, nil
994		}
995	}
996
997	// If nothing matches, return the first certificate.
998	return &c.Certificates[0], nil
999}
1000
1001// BuildNameToCertificate parses c.Certificates and builds c.NameToCertificate
1002// from the CommonName and SubjectAlternateName fields of each of the leaf
1003// certificates.
1004func (c *Config) BuildNameToCertificate() {
1005	c.NameToCertificate = make(map[string]*Certificate)
1006	for i := range c.Certificates {
1007		cert := &c.Certificates[i]
1008		x509Cert, err := x509.ParseCertificate(cert.Certificate[0])
1009		if err != nil {
1010			continue
1011		}
1012		if len(x509Cert.Subject.CommonName) > 0 {
1013			c.NameToCertificate[x509Cert.Subject.CommonName] = cert
1014		}
1015		for _, san := range x509Cert.DNSNames {
1016			c.NameToCertificate[san] = cert
1017		}
1018	}
1019}
1020
1021// writeKeyLog logs client random and master secret if logging was enabled by
1022// setting c.KeyLogWriter.
1023func (c *Config) writeKeyLog(what string, clientRandom, masterSecret []byte) error {
1024	if c.KeyLogWriter == nil {
1025		return nil
1026	}
1027
1028	logLine := []byte(fmt.Sprintf("%s %x %x\n", what, clientRandom, masterSecret))
1029
1030	writerMutex.Lock()
1031	_, err := c.KeyLogWriter.Write(logLine)
1032	writerMutex.Unlock()
1033
1034	return err
1035}
1036
1037// writerMutex protects all KeyLogWriters globally. It is rarely enabled,
1038// and is only for debugging, so a global mutex saves space.
1039var writerMutex sync.Mutex
1040
1041// A Certificate is a chain of one or more certificates, leaf first.
1042type Certificate struct {
1043	Certificate [][]byte
1044	// PrivateKey contains the private key corresponding to the public key
1045	// in Leaf. For a server, this must implement crypto.Signer and/or
1046	// crypto.Decrypter, with an RSA or ECDSA PublicKey. For a client
1047	// (performing client authentication), this must be a crypto.Signer
1048	// with an RSA or ECDSA PublicKey.
1049	PrivateKey crypto.PrivateKey
1050	// OCSPStaple contains an optional OCSP response which will be served
1051	// to clients that request it.
1052	OCSPStaple []byte
1053	// SignedCertificateTimestamps contains an optional list of Signed
1054	// Certificate Timestamps which will be served to clients that request it.
1055	SignedCertificateTimestamps [][]byte
1056	// Leaf is the parsed form of the leaf certificate, which may be
1057	// initialized using x509.ParseCertificate to reduce per-handshake
1058	// processing for TLS clients doing client authentication. If nil, the
1059	// leaf certificate will be parsed as needed.
1060	Leaf *x509.Certificate
1061}
1062
1063type handshakeMessage interface {
1064	marshal() []byte
1065	unmarshal([]byte) alert
1066}
1067
1068// lruSessionCache is a ClientSessionCache implementation that uses an LRU
1069// caching strategy.
1070type lruSessionCache struct {
1071	sync.Mutex
1072
1073	m        map[string]*list.Element
1074	q        *list.List
1075	capacity int
1076}
1077
1078type lruSessionCacheEntry struct {
1079	sessionKey string
1080	state      *ClientSessionState
1081}
1082
1083// NewLRUClientSessionCache returns a ClientSessionCache with the given
1084// capacity that uses an LRU strategy. If capacity is < 1, a default capacity
1085// is used instead.
1086func NewLRUClientSessionCache(capacity int) ClientSessionCache {
1087	const defaultSessionCacheCapacity = 64
1088
1089	if capacity < 1 {
1090		capacity = defaultSessionCacheCapacity
1091	}
1092	return &lruSessionCache{
1093		m:        make(map[string]*list.Element),
1094		q:        list.New(),
1095		capacity: capacity,
1096	}
1097}
1098
1099// Put adds the provided (sessionKey, cs) pair to the cache.
1100func (c *lruSessionCache) Put(sessionKey string, cs *ClientSessionState) {
1101	c.Lock()
1102	defer c.Unlock()
1103
1104	if elem, ok := c.m[sessionKey]; ok {
1105		entry := elem.Value.(*lruSessionCacheEntry)
1106		entry.state = cs
1107		c.q.MoveToFront(elem)
1108		return
1109	}
1110
1111	if c.q.Len() < c.capacity {
1112		entry := &lruSessionCacheEntry{sessionKey, cs}
1113		c.m[sessionKey] = c.q.PushFront(entry)
1114		return
1115	}
1116
1117	elem := c.q.Back()
1118	entry := elem.Value.(*lruSessionCacheEntry)
1119	delete(c.m, entry.sessionKey)
1120	entry.sessionKey = sessionKey
1121	entry.state = cs
1122	c.q.MoveToFront(elem)
1123	c.m[sessionKey] = elem
1124}
1125
1126// Get returns the ClientSessionState value associated with a given key. It
1127// returns (nil, false) if no value is found.
1128func (c *lruSessionCache) Get(sessionKey string) (*ClientSessionState, bool) {
1129	c.Lock()
1130	defer c.Unlock()
1131
1132	if elem, ok := c.m[sessionKey]; ok {
1133		c.q.MoveToFront(elem)
1134		return elem.Value.(*lruSessionCacheEntry).state, true
1135	}
1136	return nil, false
1137}
1138
1139// TODO(jsing): Make these available to both crypto/x509 and crypto/tls.
1140type dsaSignature struct {
1141	R, S *big.Int
1142}
1143
1144type ecdsaSignature dsaSignature
1145
1146var emptyConfig Config
1147
1148func defaultConfig() *Config {
1149	return &emptyConfig
1150}
1151
1152var (
1153	once                        sync.Once
1154	varDefaultCipherSuites      []uint16
1155	varDefaultTLS13CipherSuites []uint16
1156)
1157
1158func defaultCipherSuites() []uint16 {
1159	once.Do(initDefaultCipherSuites)
1160	return varDefaultCipherSuites
1161}
1162
1163func defaultTLS13CipherSuites() []uint16 {
1164	once.Do(initDefaultCipherSuites)
1165	return varDefaultTLS13CipherSuites
1166}
1167
1168func initDefaultCipherSuites() {
1169	var topCipherSuites, topTLS13CipherSuites []uint16
1170	if cipherhw.AESGCMSupport() {
1171		// If AES-GCM hardware is provided then prioritise AES-GCM
1172		// cipher suites.
1173		topTLS13CipherSuites = []uint16{
1174			TLS_AES_128_GCM_SHA256,
1175			TLS_AES_256_GCM_SHA384,
1176			TLS_CHACHA20_POLY1305_SHA256,
1177		}
1178		topCipherSuites = []uint16{
1179			TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
1180			TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
1181			TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
1182			TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
1183			TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,
1184			TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,
1185		}
1186	} else {
1187		// Without AES-GCM hardware, we put the ChaCha20-Poly1305
1188		// cipher suites first.
1189		topTLS13CipherSuites = []uint16{
1190			TLS_CHACHA20_POLY1305_SHA256,
1191			TLS_AES_128_GCM_SHA256,
1192			TLS_AES_256_GCM_SHA384,
1193		}
1194		topCipherSuites = []uint16{
1195			TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,
1196			TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,
1197			TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
1198			TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
1199			TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
1200			TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
1201		}
1202	}
1203
1204	varDefaultTLS13CipherSuites = make([]uint16, 0, len(cipherSuites))
1205	varDefaultTLS13CipherSuites = append(varDefaultTLS13CipherSuites, topTLS13CipherSuites...)
1206	varDefaultCipherSuites = make([]uint16, 0, len(cipherSuites))
1207	varDefaultCipherSuites = append(varDefaultCipherSuites, topCipherSuites...)
1208
1209NextCipherSuite:
1210	for _, suite := range cipherSuites {
1211		if suite.flags&suiteDefaultOff != 0 {
1212			continue
1213		}
1214		if suite.flags&suiteTLS13 != 0 {
1215			for _, existing := range varDefaultTLS13CipherSuites {
1216				if existing == suite.id {
1217					continue NextCipherSuite
1218				}
1219			}
1220			varDefaultTLS13CipherSuites = append(varDefaultTLS13CipherSuites, suite.id)
1221		} else {
1222			for _, existing := range varDefaultCipherSuites {
1223				if existing == suite.id {
1224					continue NextCipherSuite
1225				}
1226			}
1227			varDefaultCipherSuites = append(varDefaultCipherSuites, suite.id)
1228		}
1229	}
1230	varDefaultCipherSuites = append(varDefaultTLS13CipherSuites, varDefaultCipherSuites...)
1231}
1232
1233func unexpectedMessageError(wanted, got interface{}) error {
1234	return fmt.Errorf("tls: received unexpected handshake message of type %T when waiting for %T", got, wanted)
1235}
1236
1237func isSupportedSignatureAlgorithm(sigAlg SignatureScheme, supportedSignatureAlgorithms []SignatureScheme) bool {
1238	for _, s := range supportedSignatureAlgorithms {
1239		if s == sigAlg {
1240			return true
1241		}
1242	}
1243	return false
1244}
1245
1246// signatureFromSignatureScheme maps a signature algorithm to the underlying
1247// signature method (without hash function).
1248func signatureFromSignatureScheme(signatureAlgorithm SignatureScheme) uint8 {
1249	switch signatureAlgorithm {
1250	case PKCS1WithSHA1, PKCS1WithSHA256, PKCS1WithSHA384, PKCS1WithSHA512:
1251		return signaturePKCS1v15
1252	case PSSWithSHA256, PSSWithSHA384, PSSWithSHA512:
1253		return signatureRSAPSS
1254	case ECDSAWithSHA1, ECDSAWithP256AndSHA256, ECDSAWithP384AndSHA384, ECDSAWithP521AndSHA512:
1255		return signatureECDSA
1256	default:
1257		return 0
1258	}
1259}
1260
1261// TODO(kk): Use variable length encoding?
1262func getUint24(b []byte) int {
1263	n := int(b[2])
1264	n += int(b[1] << 8)
1265	n += int(b[0] << 16)
1266	return n
1267}
1268
1269func putUint24(b []byte, n int) {
1270	b[0] = byte(n >> 16)
1271	b[1] = byte(n >> 8)
1272	b[2] = byte(n & 0xff)
1273}
1274