1// Copyright 2010 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// TLS low level connection and record layer
6
7package tls
8
9import (
10	"bytes"
11	"crypto/cipher"
12	"crypto/subtle"
13	"crypto/x509"
14	"errors"
15	"fmt"
16	"io"
17	"net"
18	"sync"
19	"sync/atomic"
20	"time"
21)
22
23// A Conn represents a secured connection.
24// It implements the net.Conn interface.
25type Conn struct {
26	// constant
27	conn     net.Conn
28	isClient bool
29
30	// handshakeStatus is 1 if the connection is currently transferring
31	// application data (i.e. is not currently processing a handshake).
32	// This field is only to be accessed with sync/atomic.
33	handshakeStatus uint32
34	// constant after handshake; protected by handshakeMutex
35	handshakeMutex sync.Mutex
36	handshakeErr   error   // error resulting from handshake
37	vers           uint16  // TLS version
38	haveVers       bool    // version has been negotiated
39	config         *Config // configuration passed to constructor
40	// handshakes counts the number of handshakes performed on the
41	// connection so far. If renegotiation is disabled then this is either
42	// zero or one.
43	handshakes       int
44	didResume        bool // whether this connection was a session resumption
45	cipherSuite      uint16
46	ocspResponse     []byte   // stapled OCSP response
47	scts             [][]byte // signed certificate timestamps from server
48	peerCertificates []*x509.Certificate
49	// verifiedChains contains the certificate chains that we built, as
50	// opposed to the ones presented by the server.
51	verifiedChains [][]*x509.Certificate
52	// serverName contains the server name indicated by the client, if any.
53	serverName string
54	// secureRenegotiation is true if the server echoed the secure
55	// renegotiation extension. (This is meaningless as a server because
56	// renegotiation is not supported in that case.)
57	secureRenegotiation bool
58	// ekm is a closure for exporting keying material.
59	ekm func(label string, context []byte, length int) ([]byte, error)
60	// resumptionSecret is the resumption_master_secret for handling
61	// NewSessionTicket messages. nil if config.SessionTicketsDisabled.
62	resumptionSecret []byte
63
64	// clientFinishedIsFirst is true if the client sent the first Finished
65	// message during the most recent handshake. This is recorded because
66	// the first transmitted Finished message is the tls-unique
67	// channel-binding value.
68	clientFinishedIsFirst bool
69
70	// closeNotifyErr is any error from sending the alertCloseNotify record.
71	closeNotifyErr error
72	// closeNotifySent is true if the Conn attempted to send an
73	// alertCloseNotify record.
74	closeNotifySent bool
75
76	// clientFinished and serverFinished contain the Finished message sent
77	// by the client or server in the most recent handshake. This is
78	// retained to support the renegotiation extension and tls-unique
79	// channel-binding.
80	clientFinished [12]byte
81	serverFinished [12]byte
82
83	clientProtocol         string
84	clientProtocolFallback bool
85
86	// input/output
87	in, out   halfConn
88	rawInput  bytes.Buffer // raw input, starting with a record header
89	input     bytes.Reader // application data waiting to be read, from rawInput.Next
90	hand      bytes.Buffer // handshake data waiting to be read
91	outBuf    []byte       // scratch buffer used by out.encrypt
92	buffering bool         // whether records are buffered in sendBuf
93	sendBuf   []byte       // a buffer of records waiting to be sent
94
95	// bytesSent counts the bytes of application data sent.
96	// packetsSent counts packets.
97	bytesSent   int64
98	packetsSent int64
99
100	// retryCount counts the number of consecutive non-advancing records
101	// received by Conn.readRecord. That is, records that neither advance the
102	// handshake, nor deliver application data. Protected by in.Mutex.
103	retryCount int
104
105	// activeCall is an atomic int32; the low bit is whether Close has
106	// been called. the rest of the bits are the number of goroutines
107	// in Conn.Write.
108	activeCall int32
109
110	tmp [16]byte
111}
112
113// Access to net.Conn methods.
114// Cannot just embed net.Conn because that would
115// export the struct field too.
116
117// LocalAddr returns the local network address.
118func (c *Conn) LocalAddr() net.Addr {
119	return c.conn.LocalAddr()
120}
121
122// RemoteAddr returns the remote network address.
123func (c *Conn) RemoteAddr() net.Addr {
124	return c.conn.RemoteAddr()
125}
126
127// SetDeadline sets the read and write deadlines associated with the connection.
128// A zero value for t means Read and Write will not time out.
129// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
130func (c *Conn) SetDeadline(t time.Time) error {
131	return c.conn.SetDeadline(t)
132}
133
134// SetReadDeadline sets the read deadline on the underlying connection.
135// A zero value for t means Read will not time out.
136func (c *Conn) SetReadDeadline(t time.Time) error {
137	return c.conn.SetReadDeadline(t)
138}
139
140// SetWriteDeadline sets the write deadline on the underlying connection.
141// A zero value for t means Write will not time out.
142// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
143func (c *Conn) SetWriteDeadline(t time.Time) error {
144	return c.conn.SetWriteDeadline(t)
145}
146
147// A halfConn represents one direction of the record layer
148// connection, either sending or receiving.
149type halfConn struct {
150	sync.Mutex
151
152	err            error       // first permanent error
153	version        uint16      // protocol version
154	cipher         interface{} // cipher algorithm
155	mac            macFunction
156	seq            [8]byte  // 64-bit sequence number
157	additionalData [13]byte // to avoid allocs; interface method args escape
158
159	nextCipher interface{} // next encryption state
160	nextMac    macFunction // next MAC algorithm
161
162	trafficSecret []byte // current TLS 1.3 traffic secret
163}
164
165func (hc *halfConn) setErrorLocked(err error) error {
166	hc.err = err
167	return err
168}
169
170// prepareCipherSpec sets the encryption and MAC states
171// that a subsequent changeCipherSpec will use.
172func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) {
173	hc.version = version
174	hc.nextCipher = cipher
175	hc.nextMac = mac
176}
177
178// changeCipherSpec changes the encryption and MAC states
179// to the ones previously passed to prepareCipherSpec.
180func (hc *halfConn) changeCipherSpec() error {
181	if hc.nextCipher == nil || hc.version == VersionTLS13 {
182		return alertInternalError
183	}
184	hc.cipher = hc.nextCipher
185	hc.mac = hc.nextMac
186	hc.nextCipher = nil
187	hc.nextMac = nil
188	for i := range hc.seq {
189		hc.seq[i] = 0
190	}
191	return nil
192}
193
194func (hc *halfConn) setTrafficSecret(suite *cipherSuiteTLS13, secret []byte) {
195	hc.trafficSecret = secret
196	key, iv := suite.trafficKey(secret)
197	hc.cipher = suite.aead(key, iv)
198	for i := range hc.seq {
199		hc.seq[i] = 0
200	}
201}
202
203// incSeq increments the sequence number.
204func (hc *halfConn) incSeq() {
205	for i := 7; i >= 0; i-- {
206		hc.seq[i]++
207		if hc.seq[i] != 0 {
208			return
209		}
210	}
211
212	// Not allowed to let sequence number wrap.
213	// Instead, must renegotiate before it does.
214	// Not likely enough to bother.
215	panic("TLS: sequence number wraparound")
216}
217
218// explicitNonceLen returns the number of bytes of explicit nonce or IV included
219// in each record. Explicit nonces are present only in CBC modes after TLS 1.0
220// and in certain AEAD modes in TLS 1.2.
221func (hc *halfConn) explicitNonceLen() int {
222	if hc.cipher == nil {
223		return 0
224	}
225
226	switch c := hc.cipher.(type) {
227	case cipher.Stream:
228		return 0
229	case aead:
230		return c.explicitNonceLen()
231	case cbcMode:
232		// TLS 1.1 introduced a per-record explicit IV to fix the BEAST attack.
233		if hc.version >= VersionTLS11 {
234			return c.BlockSize()
235		}
236		return 0
237	default:
238		panic("unknown cipher type")
239	}
240}
241
242// extractPadding returns, in constant time, the length of the padding to remove
243// from the end of payload. It also returns a byte which is equal to 255 if the
244// padding was valid and 0 otherwise. See RFC 2246, Section 6.2.3.2.
245func extractPadding(payload []byte) (toRemove int, good byte) {
246	if len(payload) < 1 {
247		return 0, 0
248	}
249
250	paddingLen := payload[len(payload)-1]
251	t := uint(len(payload)-1) - uint(paddingLen)
252	// if len(payload) >= (paddingLen - 1) then the MSB of t is zero
253	good = byte(int32(^t) >> 31)
254
255	// The maximum possible padding length plus the actual length field
256	toCheck := 256
257	// The length of the padded data is public, so we can use an if here
258	if toCheck > len(payload) {
259		toCheck = len(payload)
260	}
261
262	for i := 0; i < toCheck; i++ {
263		t := uint(paddingLen) - uint(i)
264		// if i <= paddingLen then the MSB of t is zero
265		mask := byte(int32(^t) >> 31)
266		b := payload[len(payload)-1-i]
267		good &^= mask&paddingLen ^ mask&b
268	}
269
270	// We AND together the bits of good and replicate the result across
271	// all the bits.
272	good &= good << 4
273	good &= good << 2
274	good &= good << 1
275	good = uint8(int8(good) >> 7)
276
277	// Zero the padding length on error. This ensures any unchecked bytes
278	// are included in the MAC. Otherwise, an attacker that could
279	// distinguish MAC failures from padding failures could mount an attack
280	// similar to POODLE in SSL 3.0: given a good ciphertext that uses a
281	// full block's worth of padding, replace the final block with another
282	// block. If the MAC check passed but the padding check failed, the
283	// last byte of that block decrypted to the block size.
284	//
285	// See also macAndPaddingGood logic below.
286	paddingLen &= good
287
288	toRemove = int(paddingLen) + 1
289	return
290}
291
292// extractPaddingSSL30 is a replacement for extractPadding in the case that the
293// protocol version is SSLv3. In this version, the contents of the padding
294// are random and cannot be checked.
295func extractPaddingSSL30(payload []byte) (toRemove int, good byte) {
296	if len(payload) < 1 {
297		return 0, 0
298	}
299
300	paddingLen := int(payload[len(payload)-1]) + 1
301	if paddingLen > len(payload) {
302		return 0, 0
303	}
304
305	return paddingLen, 255
306}
307
308func roundUp(a, b int) int {
309	return a + (b-a%b)%b
310}
311
312// cbcMode is an interface for block ciphers using cipher block chaining.
313type cbcMode interface {
314	cipher.BlockMode
315	SetIV([]byte)
316}
317
318// decrypt authenticates and decrypts the record if protection is active at
319// this stage. The returned plaintext might overlap with the input.
320func (hc *halfConn) decrypt(record []byte) ([]byte, recordType, error) {
321	var plaintext []byte
322	typ := recordType(record[0])
323	payload := record[recordHeaderLen:]
324
325	// In TLS 1.3, change_cipher_spec messages are to be ignored without being
326	// decrypted. See RFC 8446, Appendix D.4.
327	if hc.version == VersionTLS13 && typ == recordTypeChangeCipherSpec {
328		return payload, typ, nil
329	}
330
331	paddingGood := byte(255)
332	paddingLen := 0
333
334	explicitNonceLen := hc.explicitNonceLen()
335
336	if hc.cipher != nil {
337		switch c := hc.cipher.(type) {
338		case cipher.Stream:
339			c.XORKeyStream(payload, payload)
340		case aead:
341			if len(payload) < explicitNonceLen {
342				return nil, 0, alertBadRecordMAC
343			}
344			nonce := payload[:explicitNonceLen]
345			if len(nonce) == 0 {
346				nonce = hc.seq[:]
347			}
348			payload = payload[explicitNonceLen:]
349
350			additionalData := hc.additionalData[:]
351			if hc.version == VersionTLS13 {
352				additionalData = record[:recordHeaderLen]
353			} else {
354				copy(additionalData, hc.seq[:])
355				copy(additionalData[8:], record[:3])
356				n := len(payload) - c.Overhead()
357				additionalData[11] = byte(n >> 8)
358				additionalData[12] = byte(n)
359			}
360
361			var err error
362			plaintext, err = c.Open(payload[:0], nonce, payload, additionalData)
363			if err != nil {
364				return nil, 0, alertBadRecordMAC
365			}
366		case cbcMode:
367			blockSize := c.BlockSize()
368			minPayload := explicitNonceLen + roundUp(hc.mac.Size()+1, blockSize)
369			if len(payload)%blockSize != 0 || len(payload) < minPayload {
370				return nil, 0, alertBadRecordMAC
371			}
372
373			if explicitNonceLen > 0 {
374				c.SetIV(payload[:explicitNonceLen])
375				payload = payload[explicitNonceLen:]
376			}
377			c.CryptBlocks(payload, payload)
378
379			// In a limited attempt to protect against CBC padding oracles like
380			// Lucky13, the data past paddingLen (which is secret) is passed to
381			// the MAC function as extra data, to be fed into the HMAC after
382			// computing the digest. This makes the MAC roughly constant time as
383			// long as the digest computation is constant time and does not
384			// affect the subsequent write, modulo cache effects.
385			if hc.version == VersionSSL30 {
386				paddingLen, paddingGood = extractPaddingSSL30(payload)
387			} else {
388				paddingLen, paddingGood = extractPadding(payload)
389			}
390		default:
391			panic("unknown cipher type")
392		}
393
394		if hc.version == VersionTLS13 {
395			if typ != recordTypeApplicationData {
396				return nil, 0, alertUnexpectedMessage
397			}
398			if len(plaintext) > maxPlaintext+1 {
399				return nil, 0, alertRecordOverflow
400			}
401			// Remove padding and find the ContentType scanning from the end.
402			for i := len(plaintext) - 1; i >= 0; i-- {
403				if plaintext[i] != 0 {
404					typ = recordType(plaintext[i])
405					plaintext = plaintext[:i]
406					break
407				}
408				if i == 0 {
409					return nil, 0, alertUnexpectedMessage
410				}
411			}
412		}
413	} else {
414		plaintext = payload
415	}
416
417	if hc.mac != nil {
418		macSize := hc.mac.Size()
419		if len(payload) < macSize {
420			return nil, 0, alertBadRecordMAC
421		}
422
423		n := len(payload) - macSize - paddingLen
424		n = subtle.ConstantTimeSelect(int(uint32(n)>>31), 0, n) // if n < 0 { n = 0 }
425		record[3] = byte(n >> 8)
426		record[4] = byte(n)
427		remoteMAC := payload[n : n+macSize]
428		localMAC := hc.mac.MAC(hc.seq[0:], record[:recordHeaderLen], payload[:n], payload[n+macSize:])
429
430		// This is equivalent to checking the MACs and paddingGood
431		// separately, but in constant-time to prevent distinguishing
432		// padding failures from MAC failures. Depending on what value
433		// of paddingLen was returned on bad padding, distinguishing
434		// bad MAC from bad padding can lead to an attack.
435		//
436		// See also the logic at the end of extractPadding.
437		macAndPaddingGood := subtle.ConstantTimeCompare(localMAC, remoteMAC) & int(paddingGood)
438		if macAndPaddingGood != 1 {
439			return nil, 0, alertBadRecordMAC
440		}
441
442		plaintext = payload[:n]
443	}
444
445	hc.incSeq()
446	return plaintext, typ, nil
447}
448
449// sliceForAppend extends the input slice by n bytes. head is the full extended
450// slice, while tail is the appended part. If the original slice has sufficient
451// capacity no allocation is performed.
452func sliceForAppend(in []byte, n int) (head, tail []byte) {
453	if total := len(in) + n; cap(in) >= total {
454		head = in[:total]
455	} else {
456		head = make([]byte, total)
457		copy(head, in)
458	}
459	tail = head[len(in):]
460	return
461}
462
463// encrypt encrypts payload, adding the appropriate nonce and/or MAC, and
464// appends it to record, which contains the record header.
465func (hc *halfConn) encrypt(record, payload []byte, rand io.Reader) ([]byte, error) {
466	if hc.cipher == nil {
467		return append(record, payload...), nil
468	}
469
470	var explicitNonce []byte
471	if explicitNonceLen := hc.explicitNonceLen(); explicitNonceLen > 0 {
472		record, explicitNonce = sliceForAppend(record, explicitNonceLen)
473		if _, isCBC := hc.cipher.(cbcMode); !isCBC && explicitNonceLen < 16 {
474			// The AES-GCM construction in TLS has an explicit nonce so that the
475			// nonce can be random. However, the nonce is only 8 bytes which is
476			// too small for a secure, random nonce. Therefore we use the
477			// sequence number as the nonce. The 3DES-CBC construction also has
478			// an 8 bytes nonce but its nonces must be unpredictable (see RFC
479			// 5246, Appendix F.3), forcing us to use randomness. That's not
480			// 3DES' biggest problem anyway because the birthday bound on block
481			// collision is reached first due to its simlarly small block size
482			// (see the Sweet32 attack).
483			copy(explicitNonce, hc.seq[:])
484		} else {
485			if _, err := io.ReadFull(rand, explicitNonce); err != nil {
486				return nil, err
487			}
488		}
489	}
490
491	var mac []byte
492	if hc.mac != nil {
493		mac = hc.mac.MAC(hc.seq[:], record[:recordHeaderLen], payload, nil)
494	}
495
496	var dst []byte
497	switch c := hc.cipher.(type) {
498	case cipher.Stream:
499		record, dst = sliceForAppend(record, len(payload)+len(mac))
500		c.XORKeyStream(dst[:len(payload)], payload)
501		c.XORKeyStream(dst[len(payload):], mac)
502	case aead:
503		nonce := explicitNonce
504		if len(nonce) == 0 {
505			nonce = hc.seq[:]
506		}
507
508		if hc.version == VersionTLS13 {
509			record = append(record, payload...)
510
511			// Encrypt the actual ContentType and replace the plaintext one.
512			record = append(record, record[0])
513			record[0] = byte(recordTypeApplicationData)
514
515			n := len(payload) + 1 + c.Overhead()
516			record[3] = byte(n >> 8)
517			record[4] = byte(n)
518
519			record = c.Seal(record[:recordHeaderLen],
520				nonce, record[recordHeaderLen:], record[:recordHeaderLen])
521		} else {
522			copy(hc.additionalData[:], hc.seq[:])
523			copy(hc.additionalData[8:], record)
524			record = c.Seal(record, nonce, payload, hc.additionalData[:])
525		}
526	case cbcMode:
527		blockSize := c.BlockSize()
528		plaintextLen := len(payload) + len(mac)
529		paddingLen := blockSize - plaintextLen%blockSize
530		record, dst = sliceForAppend(record, plaintextLen+paddingLen)
531		copy(dst, payload)
532		copy(dst[len(payload):], mac)
533		for i := plaintextLen; i < len(dst); i++ {
534			dst[i] = byte(paddingLen - 1)
535		}
536		if len(explicitNonce) > 0 {
537			c.SetIV(explicitNonce)
538		}
539		c.CryptBlocks(dst, dst)
540	default:
541		panic("unknown cipher type")
542	}
543
544	// Update length to include nonce, MAC and any block padding needed.
545	n := len(record) - recordHeaderLen
546	record[3] = byte(n >> 8)
547	record[4] = byte(n)
548	hc.incSeq()
549
550	return record, nil
551}
552
553// RecordHeaderError is returned when a TLS record header is invalid.
554type RecordHeaderError struct {
555	// Msg contains a human readable string that describes the error.
556	Msg string
557	// RecordHeader contains the five bytes of TLS record header that
558	// triggered the error.
559	RecordHeader [5]byte
560	// Conn provides the underlying net.Conn in the case that a client
561	// sent an initial handshake that didn't look like TLS.
562	// It is nil if there's already been a handshake or a TLS alert has
563	// been written to the connection.
564	Conn net.Conn
565}
566
567func (e RecordHeaderError) Error() string { return "tls: " + e.Msg }
568
569func (c *Conn) newRecordHeaderError(conn net.Conn, msg string) (err RecordHeaderError) {
570	err.Msg = msg
571	err.Conn = conn
572	copy(err.RecordHeader[:], c.rawInput.Bytes())
573	return err
574}
575
576func (c *Conn) readRecord() error {
577	return c.readRecordOrCCS(false)
578}
579
580func (c *Conn) readChangeCipherSpec() error {
581	return c.readRecordOrCCS(true)
582}
583
584// readRecordOrCCS reads one or more TLS records from the connection and
585// updates the record layer state. Some invariants:
586//   * c.in must be locked
587//   * c.input must be empty
588// During the handshake one and only one of the following will happen:
589//   - c.hand grows
590//   - c.in.changeCipherSpec is called
591//   - an error is returned
592// After the handshake one and only one of the following will happen:
593//   - c.hand grows
594//   - c.input is set
595//   - an error is returned
596func (c *Conn) readRecordOrCCS(expectChangeCipherSpec bool) error {
597	if c.in.err != nil {
598		return c.in.err
599	}
600	handshakeComplete := c.handshakeComplete()
601
602	// This function modifies c.rawInput, which owns the c.input memory.
603	if c.input.Len() != 0 {
604		return c.in.setErrorLocked(errors.New("tls: internal error: attempted to read record with pending application data"))
605	}
606	c.input.Reset(nil)
607
608	// Read header, payload.
609	if err := c.readFromUntil(c.conn, recordHeaderLen); err != nil {
610		// RFC 8446, Section 6.1 suggests that EOF without an alertCloseNotify
611		// is an error, but popular web sites seem to do this, so we accept it
612		// if and only if at the record boundary.
613		if err == io.ErrUnexpectedEOF && c.rawInput.Len() == 0 {
614			err = io.EOF
615		}
616		if e, ok := err.(net.Error); !ok || !e.Temporary() {
617			c.in.setErrorLocked(err)
618		}
619		return err
620	}
621	hdr := c.rawInput.Bytes()[:recordHeaderLen]
622	typ := recordType(hdr[0])
623
624	// No valid TLS record has a type of 0x80, however SSLv2 handshakes
625	// start with a uint16 length where the MSB is set and the first record
626	// is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
627	// an SSLv2 client.
628	if !handshakeComplete && typ == 0x80 {
629		c.sendAlert(alertProtocolVersion)
630		return c.in.setErrorLocked(c.newRecordHeaderError(nil, "unsupported SSLv2 handshake received"))
631	}
632
633	vers := uint16(hdr[1])<<8 | uint16(hdr[2])
634	n := int(hdr[3])<<8 | int(hdr[4])
635	if c.haveVers && c.vers != VersionTLS13 && vers != c.vers {
636		c.sendAlert(alertProtocolVersion)
637		msg := fmt.Sprintf("received record with version %x when expecting version %x", vers, c.vers)
638		return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg))
639	}
640	if !c.haveVers {
641		// First message, be extra suspicious: this might not be a TLS
642		// client. Bail out before reading a full 'body', if possible.
643		// The current max version is 3.3 so if the version is >= 16.0,
644		// it's probably not real.
645		if (typ != recordTypeAlert && typ != recordTypeHandshake) || vers >= 0x1000 {
646			return c.in.setErrorLocked(c.newRecordHeaderError(c.conn, "first record does not look like a TLS handshake"))
647		}
648	}
649	if c.vers == VersionTLS13 && n > maxCiphertextTLS13 || n > maxCiphertext {
650		c.sendAlert(alertRecordOverflow)
651		msg := fmt.Sprintf("oversized record received with length %d", n)
652		return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg))
653	}
654	if err := c.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
655		if e, ok := err.(net.Error); !ok || !e.Temporary() {
656			c.in.setErrorLocked(err)
657		}
658		return err
659	}
660
661	// Process message.
662	record := c.rawInput.Next(recordHeaderLen + n)
663	data, typ, err := c.in.decrypt(record)
664	if err != nil {
665		return c.in.setErrorLocked(c.sendAlert(err.(alert)))
666	}
667	if len(data) > maxPlaintext {
668		return c.in.setErrorLocked(c.sendAlert(alertRecordOverflow))
669	}
670
671	// Application Data messages are always protected.
672	if c.in.cipher == nil && typ == recordTypeApplicationData {
673		return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
674	}
675
676	if typ != recordTypeAlert && typ != recordTypeChangeCipherSpec && len(data) > 0 {
677		// This is a state-advancing message: reset the retry count.
678		c.retryCount = 0
679	}
680
681	// Handshake messages MUST NOT be interleaved with other record types in TLS 1.3.
682	if c.vers == VersionTLS13 && typ != recordTypeHandshake && c.hand.Len() > 0 {
683		return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
684	}
685
686	switch typ {
687	default:
688		return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
689
690	case recordTypeAlert:
691		if len(data) != 2 {
692			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
693		}
694		if alert(data[1]) == alertCloseNotify {
695			return c.in.setErrorLocked(io.EOF)
696		}
697		if c.vers == VersionTLS13 {
698			return c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
699		}
700		switch data[0] {
701		case alertLevelWarning:
702			// Drop the record on the floor and retry.
703			return c.retryReadRecord(expectChangeCipherSpec)
704		case alertLevelError:
705			return c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
706		default:
707			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
708		}
709
710	case recordTypeChangeCipherSpec:
711		if len(data) != 1 || data[0] != 1 {
712			return c.in.setErrorLocked(c.sendAlert(alertDecodeError))
713		}
714		// Handshake messages are not allowed to fragment across the CCS.
715		if c.hand.Len() > 0 {
716			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
717		}
718		// In TLS 1.3, change_cipher_spec records are ignored until the
719		// Finished. See RFC 8446, Appendix D.4. Note that according to Section
720		// 5, a server can send a ChangeCipherSpec before its ServerHello, when
721		// c.vers is still unset. That's not useful though and suspicious if the
722		// server then selects a lower protocol version, so don't allow that.
723		if c.vers == VersionTLS13 {
724			return c.retryReadRecord(expectChangeCipherSpec)
725		}
726		if !expectChangeCipherSpec {
727			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
728		}
729		if err := c.in.changeCipherSpec(); err != nil {
730			return c.in.setErrorLocked(c.sendAlert(err.(alert)))
731		}
732
733	case recordTypeApplicationData:
734		if !handshakeComplete || expectChangeCipherSpec {
735			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
736		}
737		// Some OpenSSL servers send empty records in order to randomize the
738		// CBC IV. Ignore a limited number of empty records.
739		if len(data) == 0 {
740			return c.retryReadRecord(expectChangeCipherSpec)
741		}
742		// Note that data is owned by c.rawInput, following the Next call above,
743		// to avoid copying the plaintext. This is safe because c.rawInput is
744		// not read from or written to until c.input is drained.
745		c.input.Reset(data)
746
747	case recordTypeHandshake:
748		if len(data) == 0 || expectChangeCipherSpec {
749			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
750		}
751		c.hand.Write(data)
752	}
753
754	return nil
755}
756
757// retryReadRecord recurses into readRecordOrCCS to drop a non-advancing record, like
758// a warning alert, empty application_data, or a change_cipher_spec in TLS 1.3.
759func (c *Conn) retryReadRecord(expectChangeCipherSpec bool) error {
760	c.retryCount++
761	if c.retryCount > maxUselessRecords {
762		c.sendAlert(alertUnexpectedMessage)
763		return c.in.setErrorLocked(errors.New("tls: too many ignored records"))
764	}
765	return c.readRecordOrCCS(expectChangeCipherSpec)
766}
767
768// atLeastReader reads from R, stopping with EOF once at least N bytes have been
769// read. It is different from an io.LimitedReader in that it doesn't cut short
770// the last Read call, and in that it considers an early EOF an error.
771type atLeastReader struct {
772	R io.Reader
773	N int64
774}
775
776func (r *atLeastReader) Read(p []byte) (int, error) {
777	if r.N <= 0 {
778		return 0, io.EOF
779	}
780	n, err := r.R.Read(p)
781	r.N -= int64(n) // won't underflow unless len(p) >= n > 9223372036854775809
782	if r.N > 0 && err == io.EOF {
783		return n, io.ErrUnexpectedEOF
784	}
785	if r.N <= 0 && err == nil {
786		return n, io.EOF
787	}
788	return n, err
789}
790
791// readFromUntil reads from r into c.rawInput until c.rawInput contains
792// at least n bytes or else returns an error.
793func (c *Conn) readFromUntil(r io.Reader, n int) error {
794	if c.rawInput.Len() >= n {
795		return nil
796	}
797	needs := n - c.rawInput.Len()
798	// There might be extra input waiting on the wire. Make a best effort
799	// attempt to fetch it so that it can be used in (*Conn).Read to
800	// "predict" closeNotify alerts.
801	c.rawInput.Grow(needs + bytes.MinRead)
802	_, err := c.rawInput.ReadFrom(&atLeastReader{r, int64(needs)})
803	return err
804}
805
806// sendAlert sends a TLS alert message.
807func (c *Conn) sendAlertLocked(err alert) error {
808	switch err {
809	case alertNoRenegotiation, alertCloseNotify:
810		c.tmp[0] = alertLevelWarning
811	default:
812		c.tmp[0] = alertLevelError
813	}
814	c.tmp[1] = byte(err)
815
816	_, writeErr := c.writeRecordLocked(recordTypeAlert, c.tmp[0:2])
817	if err == alertCloseNotify {
818		// closeNotify is a special case in that it isn't an error.
819		return writeErr
820	}
821
822	return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
823}
824
825// sendAlert sends a TLS alert message.
826func (c *Conn) sendAlert(err alert) error {
827	c.out.Lock()
828	defer c.out.Unlock()
829	return c.sendAlertLocked(err)
830}
831
832const (
833	// tcpMSSEstimate is a conservative estimate of the TCP maximum segment
834	// size (MSS). A constant is used, rather than querying the kernel for
835	// the actual MSS, to avoid complexity. The value here is the IPv6
836	// minimum MTU (1280 bytes) minus the overhead of an IPv6 header (40
837	// bytes) and a TCP header with timestamps (32 bytes).
838	tcpMSSEstimate = 1208
839
840	// recordSizeBoostThreshold is the number of bytes of application data
841	// sent after which the TLS record size will be increased to the
842	// maximum.
843	recordSizeBoostThreshold = 128 * 1024
844)
845
846// maxPayloadSizeForWrite returns the maximum TLS payload size to use for the
847// next application data record. There is the following trade-off:
848//
849//   - For latency-sensitive applications, such as web browsing, each TLS
850//     record should fit in one TCP segment.
851//   - For throughput-sensitive applications, such as large file transfers,
852//     larger TLS records better amortize framing and encryption overheads.
853//
854// A simple heuristic that works well in practice is to use small records for
855// the first 1MB of data, then use larger records for subsequent data, and
856// reset back to smaller records after the connection becomes idle. See "High
857// Performance Web Networking", Chapter 4, or:
858// https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/
859//
860// In the interests of simplicity and determinism, this code does not attempt
861// to reset the record size once the connection is idle, however.
862func (c *Conn) maxPayloadSizeForWrite(typ recordType) int {
863	if c.config.DynamicRecordSizingDisabled || typ != recordTypeApplicationData {
864		return maxPlaintext
865	}
866
867	if c.bytesSent >= recordSizeBoostThreshold {
868		return maxPlaintext
869	}
870
871	// Subtract TLS overheads to get the maximum payload size.
872	payloadBytes := tcpMSSEstimate - recordHeaderLen - c.out.explicitNonceLen()
873	if c.out.cipher != nil {
874		switch ciph := c.out.cipher.(type) {
875		case cipher.Stream:
876			payloadBytes -= c.out.mac.Size()
877		case cipher.AEAD:
878			payloadBytes -= ciph.Overhead()
879		case cbcMode:
880			blockSize := ciph.BlockSize()
881			// The payload must fit in a multiple of blockSize, with
882			// room for at least one padding byte.
883			payloadBytes = (payloadBytes & ^(blockSize - 1)) - 1
884			// The MAC is appended before padding so affects the
885			// payload size directly.
886			payloadBytes -= c.out.mac.Size()
887		default:
888			panic("unknown cipher type")
889		}
890	}
891	if c.vers == VersionTLS13 {
892		payloadBytes-- // encrypted ContentType
893	}
894
895	// Allow packet growth in arithmetic progression up to max.
896	pkt := c.packetsSent
897	c.packetsSent++
898	if pkt > 1000 {
899		return maxPlaintext // avoid overflow in multiply below
900	}
901
902	n := payloadBytes * int(pkt+1)
903	if n > maxPlaintext {
904		n = maxPlaintext
905	}
906	return n
907}
908
909func (c *Conn) write(data []byte) (int, error) {
910	if c.buffering {
911		c.sendBuf = append(c.sendBuf, data...)
912		return len(data), nil
913	}
914
915	n, err := c.conn.Write(data)
916	c.bytesSent += int64(n)
917	return n, err
918}
919
920func (c *Conn) flush() (int, error) {
921	if len(c.sendBuf) == 0 {
922		return 0, nil
923	}
924
925	n, err := c.conn.Write(c.sendBuf)
926	c.bytesSent += int64(n)
927	c.sendBuf = nil
928	c.buffering = false
929	return n, err
930}
931
932// writeRecordLocked writes a TLS record with the given type and payload to the
933// connection and updates the record layer state.
934func (c *Conn) writeRecordLocked(typ recordType, data []byte) (int, error) {
935	var n int
936	for len(data) > 0 {
937		m := len(data)
938		if maxPayload := c.maxPayloadSizeForWrite(typ); m > maxPayload {
939			m = maxPayload
940		}
941
942		_, c.outBuf = sliceForAppend(c.outBuf[:0], recordHeaderLen)
943		c.outBuf[0] = byte(typ)
944		vers := c.vers
945		if vers == 0 {
946			// Some TLS servers fail if the record version is
947			// greater than TLS 1.0 for the initial ClientHello.
948			vers = VersionTLS10
949		} else if vers == VersionTLS13 {
950			// TLS 1.3 froze the record layer version to 1.2.
951			// See RFC 8446, Section 5.1.
952			vers = VersionTLS12
953		}
954		c.outBuf[1] = byte(vers >> 8)
955		c.outBuf[2] = byte(vers)
956		c.outBuf[3] = byte(m >> 8)
957		c.outBuf[4] = byte(m)
958
959		var err error
960		c.outBuf, err = c.out.encrypt(c.outBuf, data[:m], c.config.rand())
961		if err != nil {
962			return n, err
963		}
964		if _, err := c.write(c.outBuf); err != nil {
965			return n, err
966		}
967		n += m
968		data = data[m:]
969	}
970
971	if typ == recordTypeChangeCipherSpec && c.vers != VersionTLS13 {
972		if err := c.out.changeCipherSpec(); err != nil {
973			return n, c.sendAlertLocked(err.(alert))
974		}
975	}
976
977	return n, nil
978}
979
980// writeRecord writes a TLS record with the given type and payload to the
981// connection and updates the record layer state.
982func (c *Conn) writeRecord(typ recordType, data []byte) (int, error) {
983	c.out.Lock()
984	defer c.out.Unlock()
985
986	return c.writeRecordLocked(typ, data)
987}
988
989// readHandshake reads the next handshake message from
990// the record layer.
991func (c *Conn) readHandshake() (interface{}, error) {
992	for c.hand.Len() < 4 {
993		if err := c.readRecord(); err != nil {
994			return nil, err
995		}
996	}
997
998	data := c.hand.Bytes()
999	n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
1000	if n > maxHandshake {
1001		c.sendAlertLocked(alertInternalError)
1002		return nil, c.in.setErrorLocked(fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshake))
1003	}
1004	for c.hand.Len() < 4+n {
1005		if err := c.readRecord(); err != nil {
1006			return nil, err
1007		}
1008	}
1009	data = c.hand.Next(4 + n)
1010	var m handshakeMessage
1011	switch data[0] {
1012	case typeHelloRequest:
1013		m = new(helloRequestMsg)
1014	case typeClientHello:
1015		m = new(clientHelloMsg)
1016	case typeServerHello:
1017		m = new(serverHelloMsg)
1018	case typeNewSessionTicket:
1019		if c.vers == VersionTLS13 {
1020			m = new(newSessionTicketMsgTLS13)
1021		} else {
1022			m = new(newSessionTicketMsg)
1023		}
1024	case typeCertificate:
1025		if c.vers == VersionTLS13 {
1026			m = new(certificateMsgTLS13)
1027		} else {
1028			m = new(certificateMsg)
1029		}
1030	case typeCertificateRequest:
1031		if c.vers == VersionTLS13 {
1032			m = new(certificateRequestMsgTLS13)
1033		} else {
1034			m = &certificateRequestMsg{
1035				hasSignatureAlgorithm: c.vers >= VersionTLS12,
1036			}
1037		}
1038	case typeCertificateStatus:
1039		m = new(certificateStatusMsg)
1040	case typeServerKeyExchange:
1041		m = new(serverKeyExchangeMsg)
1042	case typeServerHelloDone:
1043		m = new(serverHelloDoneMsg)
1044	case typeClientKeyExchange:
1045		m = new(clientKeyExchangeMsg)
1046	case typeCertificateVerify:
1047		m = &certificateVerifyMsg{
1048			hasSignatureAlgorithm: c.vers >= VersionTLS12,
1049		}
1050	case typeNextProtocol:
1051		m = new(nextProtoMsg)
1052	case typeFinished:
1053		m = new(finishedMsg)
1054	case typeEncryptedExtensions:
1055		m = new(encryptedExtensionsMsg)
1056	case typeEndOfEarlyData:
1057		m = new(endOfEarlyDataMsg)
1058	case typeKeyUpdate:
1059		m = new(keyUpdateMsg)
1060	case typeCompressedCertificate:
1061		m = new(compressedCertificateMsg)
1062	default:
1063		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
1064	}
1065
1066	// The handshake message unmarshalers
1067	// expect to be able to keep references to data,
1068	// so pass in a fresh copy that won't be overwritten.
1069	data = append([]byte(nil), data...)
1070
1071	if !m.unmarshal(data) {
1072		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
1073	}
1074	return m, nil
1075}
1076
1077var (
1078	errClosed   = errors.New("tls: use of closed connection")
1079	errShutdown = errors.New("tls: protocol is shutdown")
1080)
1081
1082// Write writes data to the connection.
1083func (c *Conn) Write(b []byte) (int, error) {
1084	// interlock with Close below
1085	for {
1086		x := atomic.LoadInt32(&c.activeCall)
1087		if x&1 != 0 {
1088			return 0, errClosed
1089		}
1090		if atomic.CompareAndSwapInt32(&c.activeCall, x, x+2) {
1091			defer atomic.AddInt32(&c.activeCall, -2)
1092			break
1093		}
1094	}
1095
1096	if err := c.Handshake(); err != nil {
1097		return 0, err
1098	}
1099
1100	c.out.Lock()
1101	defer c.out.Unlock()
1102
1103	if err := c.out.err; err != nil {
1104		return 0, err
1105	}
1106
1107	if !c.handshakeComplete() {
1108		return 0, alertInternalError
1109	}
1110
1111	if c.closeNotifySent {
1112		return 0, errShutdown
1113	}
1114
1115	// SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext
1116	// attack when using block mode ciphers due to predictable IVs.
1117	// This can be prevented by splitting each Application Data
1118	// record into two records, effectively randomizing the IV.
1119	//
1120	// https://www.openssl.org/~bodo/tls-cbc.txt
1121	// https://bugzilla.mozilla.org/show_bug.cgi?id=665814
1122	// https://www.imperialviolet.org/2012/01/15/beastfollowup.html
1123
1124	var m int
1125	if len(b) > 1 && c.vers <= VersionTLS10 {
1126		if _, ok := c.out.cipher.(cipher.BlockMode); ok {
1127			n, err := c.writeRecordLocked(recordTypeApplicationData, b[:1])
1128			if err != nil {
1129				return n, c.out.setErrorLocked(err)
1130			}
1131			m, b = 1, b[1:]
1132		}
1133	}
1134
1135	n, err := c.writeRecordLocked(recordTypeApplicationData, b)
1136	return n + m, c.out.setErrorLocked(err)
1137}
1138
1139// handleRenegotiation processes a HelloRequest handshake message.
1140func (c *Conn) handleRenegotiation() error {
1141	if c.vers == VersionTLS13 {
1142		return errors.New("tls: internal error: unexpected renegotiation")
1143	}
1144
1145	msg, err := c.readHandshake()
1146	if err != nil {
1147		return err
1148	}
1149
1150	helloReq, ok := msg.(*helloRequestMsg)
1151	if !ok {
1152		c.sendAlert(alertUnexpectedMessage)
1153		return unexpectedMessageError(helloReq, msg)
1154	}
1155
1156	if !c.isClient {
1157		return c.sendAlert(alertNoRenegotiation)
1158	}
1159
1160	switch c.config.Renegotiation {
1161	case RenegotiateNever:
1162		return c.sendAlert(alertNoRenegotiation)
1163	case RenegotiateOnceAsClient:
1164		if c.handshakes > 1 {
1165			return c.sendAlert(alertNoRenegotiation)
1166		}
1167	case RenegotiateFreelyAsClient:
1168		// Ok.
1169	default:
1170		c.sendAlert(alertInternalError)
1171		return errors.New("tls: unknown Renegotiation value")
1172	}
1173
1174	c.handshakeMutex.Lock()
1175	defer c.handshakeMutex.Unlock()
1176
1177	atomic.StoreUint32(&c.handshakeStatus, 0)
1178	if c.handshakeErr = c.clientHandshake(); c.handshakeErr == nil {
1179		c.handshakes++
1180	}
1181	return c.handshakeErr
1182}
1183
1184// handlePostHandshakeMessage processes a handshake message arrived after the
1185// handshake is complete. Up to TLS 1.2, it indicates the start of a renegotiation.
1186func (c *Conn) handlePostHandshakeMessage() error {
1187	if c.vers != VersionTLS13 {
1188		return c.handleRenegotiation()
1189	}
1190
1191	msg, err := c.readHandshake()
1192	if err != nil {
1193		return err
1194	}
1195
1196	c.retryCount++
1197	if c.retryCount > maxUselessRecords {
1198		c.sendAlert(alertUnexpectedMessage)
1199		return c.in.setErrorLocked(errors.New("tls: too many non-advancing records"))
1200	}
1201
1202	switch msg := msg.(type) {
1203	case *newSessionTicketMsgTLS13:
1204		return c.handleNewSessionTicket(msg)
1205	case *keyUpdateMsg:
1206		return c.handleKeyUpdate(msg)
1207	default:
1208		c.sendAlert(alertUnexpectedMessage)
1209		return fmt.Errorf("tls: received unexpected handshake message of type %T", msg)
1210	}
1211}
1212
1213func (c *Conn) handleKeyUpdate(keyUpdate *keyUpdateMsg) error {
1214	cipherSuite := cipherSuiteTLS13ByID(c.cipherSuite)
1215	if cipherSuite == nil {
1216		return c.in.setErrorLocked(c.sendAlert(alertInternalError))
1217	}
1218
1219	newSecret := cipherSuite.nextTrafficSecret(c.in.trafficSecret)
1220	c.in.setTrafficSecret(cipherSuite, newSecret)
1221
1222	if keyUpdate.updateRequested {
1223		c.out.Lock()
1224		defer c.out.Unlock()
1225
1226		msg := &keyUpdateMsg{}
1227		_, err := c.writeRecordLocked(recordTypeHandshake, msg.marshal())
1228		if err != nil {
1229			// Surface the error at the next write.
1230			c.out.setErrorLocked(err)
1231			return nil
1232		}
1233
1234		newSecret := cipherSuite.nextTrafficSecret(c.out.trafficSecret)
1235		c.out.setTrafficSecret(cipherSuite, newSecret)
1236	}
1237
1238	return nil
1239}
1240
1241// Read can be made to time out and return a net.Error with Timeout() == true
1242// after a fixed time limit; see SetDeadline and SetReadDeadline.
1243func (c *Conn) Read(b []byte) (int, error) {
1244	if err := c.Handshake(); err != nil {
1245		return 0, err
1246	}
1247	if len(b) == 0 {
1248		// Put this after Handshake, in case people were calling
1249		// Read(nil) for the side effect of the Handshake.
1250		return 0, nil
1251	}
1252
1253	c.in.Lock()
1254	defer c.in.Unlock()
1255
1256	for c.input.Len() == 0 {
1257		if err := c.readRecord(); err != nil {
1258			return 0, err
1259		}
1260		for c.hand.Len() > 0 {
1261			if err := c.handlePostHandshakeMessage(); err != nil {
1262				return 0, err
1263			}
1264		}
1265	}
1266
1267	n, _ := c.input.Read(b)
1268
1269	// If a close-notify alert is waiting, read it so that we can return (n,
1270	// EOF) instead of (n, nil), to signal to the HTTP response reading
1271	// goroutine that the connection is now closed. This eliminates a race
1272	// where the HTTP response reading goroutine would otherwise not observe
1273	// the EOF until its next read, by which time a client goroutine might
1274	// have already tried to reuse the HTTP connection for a new request.
1275	// See https://golang.org/cl/76400046 and https://golang.org/issue/3514
1276	if n != 0 && c.input.Len() == 0 && c.rawInput.Len() > 0 &&
1277		recordType(c.rawInput.Bytes()[0]) == recordTypeAlert {
1278		if err := c.readRecord(); err != nil {
1279			return n, err // will be io.EOF on closeNotify
1280		}
1281	}
1282
1283	return n, nil
1284}
1285
1286// Close closes the connection.
1287func (c *Conn) Close() error {
1288	// Interlock with Conn.Write above.
1289	var x int32
1290	for {
1291		x = atomic.LoadInt32(&c.activeCall)
1292		if x&1 != 0 {
1293			return errClosed
1294		}
1295		if atomic.CompareAndSwapInt32(&c.activeCall, x, x|1) {
1296			break
1297		}
1298	}
1299	if x != 0 {
1300		// io.Writer and io.Closer should not be used concurrently.
1301		// If Close is called while a Write is currently in-flight,
1302		// interpret that as a sign that this Close is really just
1303		// being used to break the Write and/or clean up resources and
1304		// avoid sending the alertCloseNotify, which may block
1305		// waiting on handshakeMutex or the c.out mutex.
1306		return c.conn.Close()
1307	}
1308
1309	var alertErr error
1310
1311	if c.handshakeComplete() {
1312		alertErr = c.closeNotify()
1313	}
1314
1315	if err := c.conn.Close(); err != nil {
1316		return err
1317	}
1318	return alertErr
1319}
1320
1321var errEarlyCloseWrite = errors.New("tls: CloseWrite called before handshake complete")
1322
1323// CloseWrite shuts down the writing side of the connection. It should only be
1324// called once the handshake has completed and does not call CloseWrite on the
1325// underlying connection. Most callers should just use Close.
1326func (c *Conn) CloseWrite() error {
1327	if !c.handshakeComplete() {
1328		return errEarlyCloseWrite
1329	}
1330
1331	return c.closeNotify()
1332}
1333
1334func (c *Conn) closeNotify() error {
1335	c.out.Lock()
1336	defer c.out.Unlock()
1337
1338	if !c.closeNotifySent {
1339		c.closeNotifyErr = c.sendAlertLocked(alertCloseNotify)
1340		c.closeNotifySent = true
1341	}
1342	return c.closeNotifyErr
1343}
1344
1345// Handshake runs the client or server handshake
1346// protocol if it has not yet been run.
1347// Most uses of this package need not call Handshake
1348// explicitly: the first Read or Write will call it automatically.
1349func (c *Conn) Handshake() error {
1350	c.handshakeMutex.Lock()
1351	defer c.handshakeMutex.Unlock()
1352
1353	if err := c.handshakeErr; err != nil {
1354		return err
1355	}
1356	if c.handshakeComplete() {
1357		return nil
1358	}
1359
1360	c.in.Lock()
1361	defer c.in.Unlock()
1362
1363	if c.isClient {
1364		c.handshakeErr = c.clientHandshake()
1365	} else {
1366		c.handshakeErr = c.serverHandshake()
1367	}
1368	if c.handshakeErr == nil {
1369		c.handshakes++
1370	} else {
1371		// If an error occurred during the hadshake try to flush the
1372		// alert that might be left in the buffer.
1373		c.flush()
1374	}
1375
1376	if c.handshakeErr == nil && !c.handshakeComplete() {
1377		c.handshakeErr = errors.New("tls: internal error: handshake should have had a result")
1378	}
1379
1380	return c.handshakeErr
1381}
1382
1383// ConnectionState returns basic TLS details about the connection.
1384func (c *Conn) ConnectionState() ConnectionState {
1385	c.handshakeMutex.Lock()
1386	defer c.handshakeMutex.Unlock()
1387
1388	var state ConnectionState
1389	state.HandshakeComplete = c.handshakeComplete()
1390	state.ServerName = c.serverName
1391
1392	if state.HandshakeComplete {
1393		state.Version = c.vers
1394		state.NegotiatedProtocol = c.clientProtocol
1395		state.DidResume = c.didResume
1396		state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback
1397		state.CipherSuite = c.cipherSuite
1398		state.PeerCertificates = c.peerCertificates
1399		state.VerifiedChains = c.verifiedChains
1400		state.SignedCertificateTimestamps = c.scts
1401		state.OCSPResponse = c.ocspResponse
1402		if !c.didResume && c.vers != VersionTLS13 {
1403			if c.clientFinishedIsFirst {
1404				state.TLSUnique = c.clientFinished[:]
1405			} else {
1406				state.TLSUnique = c.serverFinished[:]
1407			}
1408		}
1409		if c.config.Renegotiation != RenegotiateNever {
1410			state.ekm = noExportedKeyingMaterial
1411		} else {
1412			state.ekm = c.ekm
1413		}
1414	}
1415
1416	return state
1417}
1418
1419// OCSPResponse returns the stapled OCSP response from the TLS server, if
1420// any. (Only valid for client connections.)
1421func (c *Conn) OCSPResponse() []byte {
1422	c.handshakeMutex.Lock()
1423	defer c.handshakeMutex.Unlock()
1424
1425	return c.ocspResponse
1426}
1427
1428// VerifyHostname checks that the peer certificate chain is valid for
1429// connecting to host. If so, it returns nil; if not, it returns an error
1430// describing the problem.
1431func (c *Conn) VerifyHostname(host string) error {
1432	c.handshakeMutex.Lock()
1433	defer c.handshakeMutex.Unlock()
1434	if !c.isClient {
1435		return errors.New("tls: VerifyHostname called on TLS server connection")
1436	}
1437	if !c.handshakeComplete() {
1438		return errors.New("tls: handshake has not yet been performed")
1439	}
1440	if len(c.verifiedChains) == 0 {
1441		return errors.New("tls: handshake did not verify certificate chain")
1442	}
1443	return c.peerCertificates[0].VerifyHostname(host)
1444}
1445
1446func (c *Conn) handshakeComplete() bool {
1447	return atomic.LoadUint32(&c.handshakeStatus) == 1
1448}
1449