1 /* Extended regular expression matching and search library,
2    version 0.12.
3    (Implements POSIX draft P1003.2/D11.2, except for some of the
4    internationalization features.)
5    Copyright (C) 1993, 94, 95, 96, 97, 98, 99 Free Software Foundation, Inc.
6 
7    The GNU C Library is free software; you can redistribute it and/or
8    modify it under the terms of the GNU Library General Public License as
9    published by the Free Software Foundation; either version 2 of the
10    License, or (at your option) any later version.
11 
12    The GNU C Library is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15    Library General Public License for more details.
16 
17    You should have received a copy of the GNU Library General Public
18    License along with the GNU C Library; see the file COPYING.LIB.  If not,
19    write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20    Boston, MA 02111-1307, USA.  */
21 
22 /* AIX requires this to be the first thing in the file. */
23 #if defined _AIX && !defined REGEX_MALLOC
24   #pragma alloca
25 #endif
26 
27 #undef	_GNU_SOURCE
28 #define _GNU_SOURCE
29 
30 #ifdef HAVE_CONFIG_H
31 # include <config.h>
32 #endif
33 #ifdef _WIN32
34 /* Windows does not provide unistd.h, which is required for abort() */
35 #include <process.h>
36 #endif /* _WIN32 */
37 
38 #ifndef PARAMS
39 # if defined __GNUC__ || (defined __STDC__ && __STDC__)
40 #  define PARAMS(args) args
41 # else
42 #  define PARAMS(args) ()
43 # endif  /* GCC.  */
44 #endif  /* Not PARAMS.  */
45 
46 #if defined STDC_HEADERS && !defined emacs
47 # include <stddef.h>
48 #else
49 /* We need this for `regex.h', and perhaps for the Emacs include files.  */
50 # include <sys/types.h>
51 #endif
52 
53 #define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
54 
55 /* For platform which support the ISO C amendement 1 functionality we
56    support user defined character classes.  */
57 #if defined _LIBC || WIDE_CHAR_SUPPORT
58 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>.  */
59 # include <wchar.h>
60 # include <wctype.h>
61 #endif
62 
63 #ifdef _LIBC
64 /* We have to keep the namespace clean.  */
65 # define regfree(preg) __regfree (preg)
66 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
67 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
68 # define regerror(errcode, preg, errbuf, errbuf_size) \
69 	__regerror(errcode, preg, errbuf, errbuf_size)
70 # define re_set_registers(bu, re, nu, st, en) \
71 	__re_set_registers (bu, re, nu, st, en)
72 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
73 	__re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
74 # define re_match(bufp, string, size, pos, regs) \
75 	__re_match (bufp, string, size, pos, regs)
76 # define re_search(bufp, string, size, startpos, range, regs) \
77 	__re_search (bufp, string, size, startpos, range, regs)
78 # define re_compile_pattern(pattern, length, bufp) \
79 	__re_compile_pattern (pattern, length, bufp)
80 # define re_set_syntax(syntax) __re_set_syntax (syntax)
81 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
82 	__re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
83 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
84 
85 #define btowc __btowc
86 #endif
87 
88 /* This is for other GNU distributions with internationalized messages.  */
89 #if HAVE_LIBINTL_H || defined _LIBC
90 # include <libintl.h>
91 #else
92 # define gettext(msgid) (msgid)
93 #endif
94 
95 #ifndef gettext_noop
96 /* This define is so xgettext can find the internationalizable
97    strings.  */
98 # define gettext_noop(String) String
99 #endif
100 
101 /* The `emacs' switch turns on certain matching commands
102    that make sense only in Emacs. */
103 #ifdef emacs
104 
105 # include "lisp.h"
106 # include "buffer.h"
107 # include "syntax.h"
108 
109 #else  /* not emacs */
110 
111 /* If we are not linking with Emacs proper,
112    we can't use the relocating allocator
113    even if config.h says that we can.  */
114 # undef REL_ALLOC
115 
116 # if defined STDC_HEADERS || defined _LIBC
117 #  include <stdlib.h>
118 # else
119 char *malloc ();
120 char *realloc ();
121 # endif
122 
123 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
124    If nothing else has been done, use the method below.  */
125 # ifdef INHIBIT_STRING_HEADER
126 #  if !(defined HAVE_BZERO && defined HAVE_BCOPY)
127 #   if !defined bzero && !defined bcopy
128 #    undef INHIBIT_STRING_HEADER
129 #   endif
130 #  endif
131 # endif
132 
133 /* This is the normal way of making sure we have a bcopy and a bzero.
134    This is used in most programs--a few other programs avoid this
135    by defining INHIBIT_STRING_HEADER.  */
136 # ifndef INHIBIT_STRING_HEADER
137 #  if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
138 #   include <string.h>
139 #   ifndef bzero
140 #    ifndef _LIBC
141 #     define bzero(s, n)	(memset (s, '\0', n), (s))
142 #    else
143 #     define bzero(s, n)	__bzero (s, n)
144 #    endif
145 #   endif
146 #  else
147 #   include <strings.h>
148 #   ifndef memcmp
149 #    define memcmp(s1, s2, n)	bcmp (s1, s2, n)
150 #   endif
151 #   ifndef memcpy
152 #    define memcpy(d, s, n)	(bcopy (s, d, n), (d))
153 #   endif
154 #  endif
155 # endif
156 
157 /* Define the syntax stuff for \<, \>, etc.  */
158 
159 /* This must be nonzero for the wordchar and notwordchar pattern
160    commands in re_match_2.  */
161 # ifndef Sword
162 #  define Sword 1
163 # endif
164 
165 # ifdef SWITCH_ENUM_BUG
166 #  define SWITCH_ENUM_CAST(x) ((int)(x))
167 # else
168 #  define SWITCH_ENUM_CAST(x) (x)
169 # endif
170 
171 /* How many characters in the character set.  */
172 # define CHAR_SET_SIZE 256
173 
174 # ifdef SYNTAX_TABLE
175 
176 extern char *re_syntax_table;
177 
178 # else /* not SYNTAX_TABLE */
179 
180 static char re_syntax_table[CHAR_SET_SIZE];
181 
182 static void
init_syntax_once()183 init_syntax_once ()
184 {
185    register int c;
186    static int done;
187 
188    if (done)
189      return;
190 
191    memset (re_syntax_table, 0, sizeof re_syntax_table);
192 
193    for (c = 'a'; c <= 'z'; c++)
194      re_syntax_table[c] = Sword;
195 
196    for (c = 'A'; c <= 'Z'; c++)
197      re_syntax_table[c] = Sword;
198 
199    for (c = '0'; c <= '9'; c++)
200      re_syntax_table[c] = Sword;
201 
202    re_syntax_table['_'] = Sword;
203 
204    done = 1;
205 }
206 
207 # endif /* not SYNTAX_TABLE */
208 
209 # define SYNTAX(c) re_syntax_table[c]
210 
211 #endif /* not emacs */
212 
213 /* Get the interface, including the syntax bits.  */
214 #include <regex-gnu.h>
215 
216 /* isalpha etc. are used for the character classes.  */
217 #include <ctype.h>
218 
219 /* Jim Meyering writes:
220 
221    "... Some ctype macros are valid only for character codes that
222    isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
223    using /bin/cc or gcc but without giving an ansi option).  So, all
224    ctype uses should be through macros like ISPRINT...  If
225    STDC_HEADERS is defined, then autoconf has verified that the ctype
226    macros don't need to be guarded with references to isascii. ...
227    Defining isascii to 1 should let any compiler worth its salt
228    eliminate the && through constant folding."
229    Solaris defines some of these symbols so we must undefine them first.  */
230 
231 #undef ISASCII
232 #if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
233 # define ISASCII(c) 1
234 #else
235 # define ISASCII(c) isascii(c)
236 #endif
237 
238 #ifdef isblank
239 # define ISBLANK(c) (ISASCII (c) && isblank (c))
240 #else
241 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
242 #endif
243 #ifdef isgraph
244 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
245 #else
246 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
247 #endif
248 
249 #undef ISPRINT
250 #define ISPRINT(c) (ISASCII (c) && isprint (c))
251 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
252 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
253 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
254 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
255 #define ISLOWER(c) (ISASCII (c) && islower (c))
256 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
257 #define ISSPACE(c) (ISASCII (c) && isspace (c))
258 #define ISUPPER(c) (ISASCII (c) && isupper (c))
259 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
260 
261 #ifdef _tolower
262 # define TOLOWER(c) _tolower(c)
263 #else
264 # define TOLOWER(c) tolower(c)
265 #endif
266 
267 #ifndef NULL
268 # define NULL (void *)0
269 #endif
270 
271 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
272    since ours (we hope) works properly with all combinations of
273    machines, compilers, `char' and `unsigned char' argument types.
274    (Per Bothner suggested the basic approach.)  */
275 #undef SIGN_EXTEND_CHAR
276 #if __STDC__
277 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
278 #else  /* not __STDC__ */
279 /* As in Harbison and Steele.  */
280 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
281 #endif
282 
283 /* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
284    use `alloca' instead of `malloc'.  This is because using malloc in
285    re_search* or re_match* could cause memory leaks when C-g is used in
286    Emacs; also, malloc is slower and causes storage fragmentation.  On
287    the other hand, malloc is more portable, and easier to debug.
288 
289    Because we sometimes use alloca, some routines have to be macros,
290    not functions -- `alloca'-allocated space disappears at the end of the
291    function it is called in.  */
292 
293 #ifdef REGEX_MALLOC
294 
295 # define REGEX_ALLOCATE malloc
296 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
297 # define REGEX_FREE free
298 
299 #else /* not REGEX_MALLOC  */
300 
301 /* Emacs already defines alloca, sometimes.  */
302 # ifndef alloca
303 
304 /* Make alloca work the best possible way.  */
305 #  ifdef __GNUC__
306 #   define alloca __builtin_alloca
307 #  else /* not __GNUC__ */
308 #   if HAVE_ALLOCA_H
309 #    include <alloca.h>
310 #   endif /* HAVE_ALLOCA_H */
311 #  endif /* not __GNUC__ */
312 
313 # endif /* not alloca */
314 
315 # define REGEX_ALLOCATE alloca
316 
317 /* Assumes a `char *destination' variable.  */
318 # define REGEX_REALLOCATE(source, osize, nsize)				\
319   (destination = (char *) alloca (nsize),				\
320    memcpy (destination, source, osize))
321 
322 /* No need to do anything to free, after alloca.  */
323 # define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */
324 
325 #endif /* not REGEX_MALLOC */
326 
327 /* Define how to allocate the failure stack.  */
328 
329 #if defined REL_ALLOC && defined REGEX_MALLOC
330 
331 # define REGEX_ALLOCATE_STACK(size)				\
332   r_alloc (&failure_stack_ptr, (size))
333 # define REGEX_REALLOCATE_STACK(source, osize, nsize)		\
334   r_re_alloc (&failure_stack_ptr, (nsize))
335 # define REGEX_FREE_STACK(ptr)					\
336   r_alloc_free (&failure_stack_ptr)
337 
338 #else /* not using relocating allocator */
339 
340 # ifdef REGEX_MALLOC
341 
342 #  define REGEX_ALLOCATE_STACK malloc
343 #  define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
344 #  define REGEX_FREE_STACK free
345 
346 # else /* not REGEX_MALLOC */
347 
348 #  define REGEX_ALLOCATE_STACK alloca
349 
350 #  define REGEX_REALLOCATE_STACK(source, osize, nsize)			\
351    REGEX_REALLOCATE (source, osize, nsize)
352 /* No need to explicitly free anything.  */
353 #  define REGEX_FREE_STACK(arg)
354 
355 # endif /* not REGEX_MALLOC */
356 #endif /* not using relocating allocator */
357 
358 
359 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
360    `string1' or just past its end.  This works if PTR is NULL, which is
361    a good thing.  */
362 #define FIRST_STRING_P(ptr) 					\
363   (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
364 
365 /* (Re)Allocate N items of type T using malloc, or fail.  */
366 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
367 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
368 #define RETALLOC_IF(addr, n, t) \
369   if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
370 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
371 
372 #define BYTEWIDTH 8 /* In bits.  */
373 
374 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
375 
376 #undef MAX
377 #undef MIN
378 #define MAX(a, b) ((a) > (b) ? (a) : (b))
379 #define MIN(a, b) ((a) < (b) ? (a) : (b))
380 
381 typedef char boolean;
382 #define false 0
383 #define true 1
384 
385 static int re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
386 					const char *string1, int size1,
387 					const char *string2, int size2,
388 					int pos,
389 					struct re_registers *regs,
390 					int stop));
391 
392 /* These are the command codes that appear in compiled regular
393    expressions.  Some opcodes are followed by argument bytes.  A
394    command code can specify any interpretation whatsoever for its
395    arguments.  Zero bytes may appear in the compiled regular expression.  */
396 
397 typedef enum
398 {
399   no_op = 0,
400 
401   /* Succeed right away--no more backtracking.  */
402   succeed,
403 
404         /* Followed by one byte giving n, then by n literal bytes.  */
405   exactn,
406 
407         /* Matches any (more or less) character.  */
408   anychar,
409 
410         /* Matches any one char belonging to specified set.  First
411            following byte is number of bitmap bytes.  Then come bytes
412            for a bitmap saying which chars are in.  Bits in each byte
413            are ordered low-bit-first.  A character is in the set if its
414            bit is 1.  A character too large to have a bit in the map is
415            automatically not in the set.  */
416   charset,
417 
418         /* Same parameters as charset, but match any character that is
419            not one of those specified.  */
420   charset_not,
421 
422         /* Start remembering the text that is matched, for storing in a
423            register.  Followed by one byte with the register number, in
424            the range 0 to one less than the pattern buffer's re_nsub
425            field.  Then followed by one byte with the number of groups
426            inner to this one.  (This last has to be part of the
427            start_memory only because we need it in the on_failure_jump
428            of re_match_2.)  */
429   start_memory,
430 
431         /* Stop remembering the text that is matched and store it in a
432            memory register.  Followed by one byte with the register
433            number, in the range 0 to one less than `re_nsub' in the
434            pattern buffer, and one byte with the number of inner groups,
435            just like `start_memory'.  (We need the number of inner
436            groups here because we don't have any easy way of finding the
437            corresponding start_memory when we're at a stop_memory.)  */
438   stop_memory,
439 
440         /* Match a duplicate of something remembered. Followed by one
441            byte containing the register number.  */
442   duplicate,
443 
444         /* Fail unless at beginning of line.  */
445   begline,
446 
447         /* Fail unless at end of line.  */
448   endline,
449 
450         /* Succeeds if at beginning of buffer (if emacs) or at beginning
451            of string to be matched (if not).  */
452   begbuf,
453 
454         /* Analogously, for end of buffer/string.  */
455   endbuf,
456 
457         /* Followed by two byte relative address to which to jump.  */
458   jump,
459 
460 	/* Same as jump, but marks the end of an alternative.  */
461   jump_past_alt,
462 
463         /* Followed by two-byte relative address of place to resume at
464            in case of failure.  */
465   on_failure_jump,
466 
467         /* Like on_failure_jump, but pushes a placeholder instead of the
468            current string position when executed.  */
469   on_failure_keep_string_jump,
470 
471         /* Throw away latest failure point and then jump to following
472            two-byte relative address.  */
473   pop_failure_jump,
474 
475         /* Change to pop_failure_jump if know won't have to backtrack to
476            match; otherwise change to jump.  This is used to jump
477            back to the beginning of a repeat.  If what follows this jump
478            clearly won't match what the repeat does, such that we can be
479            sure that there is no use backtracking out of repetitions
480            already matched, then we change it to a pop_failure_jump.
481            Followed by two-byte address.  */
482   maybe_pop_jump,
483 
484         /* Jump to following two-byte address, and push a dummy failure
485            point. This failure point will be thrown away if an attempt
486            is made to use it for a failure.  A `+' construct makes this
487            before the first repeat.  Also used as an intermediary kind
488            of jump when compiling an alternative.  */
489   dummy_failure_jump,
490 
491 	/* Push a dummy failure point and continue.  Used at the end of
492 	   alternatives.  */
493   push_dummy_failure,
494 
495         /* Followed by two-byte relative address and two-byte number n.
496            After matching N times, jump to the address upon failure.  */
497   succeed_n,
498 
499         /* Followed by two-byte relative address, and two-byte number n.
500            Jump to the address N times, then fail.  */
501   jump_n,
502 
503         /* Set the following two-byte relative address to the
504            subsequent two-byte number.  The address *includes* the two
505            bytes of number.  */
506   set_number_at,
507 
508   wordchar,	/* Matches any word-constituent character.  */
509   notwordchar,	/* Matches any char that is not a word-constituent.  */
510 
511   wordbeg,	/* Succeeds if at word beginning.  */
512   wordend,	/* Succeeds if at word end.  */
513 
514   wordbound,	/* Succeeds if at a word boundary.  */
515   notwordbound	/* Succeeds if not at a word boundary.  */
516 
517 #ifdef emacs
518   ,before_dot,	/* Succeeds if before point.  */
519   at_dot,	/* Succeeds if at point.  */
520   after_dot,	/* Succeeds if after point.  */
521 
522 	/* Matches any character whose syntax is specified.  Followed by
523            a byte which contains a syntax code, e.g., Sword.  */
524   syntaxspec,
525 
526 	/* Matches any character whose syntax is not that specified.  */
527   notsyntaxspec
528 #endif /* emacs */
529 } re_opcode_t;
530 
531 /* Common operations on the compiled pattern.  */
532 
533 /* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
534 
535 #define STORE_NUMBER(destination, number)				\
536   do {									\
537     (destination)[0] = (number) & 0377;					\
538     (destination)[1] = (number) >> 8;					\
539   } while (0)
540 
541 /* Same as STORE_NUMBER, except increment DESTINATION to
542    the byte after where the number is stored.  Therefore, DESTINATION
543    must be an lvalue.  */
544 
545 #define STORE_NUMBER_AND_INCR(destination, number)			\
546   do {									\
547     STORE_NUMBER (destination, number);					\
548     (destination) += 2;							\
549   } while (0)
550 
551 /* Put into DESTINATION a number stored in two contiguous bytes starting
552    at SOURCE.  */
553 
554 #define EXTRACT_NUMBER(destination, source)				\
555   do {									\
556     (destination) = *(source) & 0377;					\
557     (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8;		\
558   } while (0)
559 
560 #ifdef DEBUG
561 static void extract_number _RE_ARGS ((int *dest, unsigned char *source));
562 static void
extract_number(dest,source)563 extract_number (dest, source)
564     int *dest;
565     unsigned char *source;
566 {
567   int temp = SIGN_EXTEND_CHAR (*(source + 1));
568   *dest = *source & 0377;
569   *dest += temp << 8;
570 }
571 
572 # ifndef EXTRACT_MACROS /* To debug the macros.  */
573 #  undef EXTRACT_NUMBER
574 #  define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
575 # endif /* not EXTRACT_MACROS */
576 
577 #endif /* DEBUG */
578 
579 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
580    SOURCE must be an lvalue.  */
581 
582 #define EXTRACT_NUMBER_AND_INCR(destination, source)			\
583   do {									\
584     EXTRACT_NUMBER (destination, source);				\
585     (source) += 2; 							\
586   } while (0)
587 
588 #ifdef DEBUG
589 static void extract_number_and_incr _RE_ARGS ((int *destination,
590 					       unsigned char **source));
591 static void
extract_number_and_incr(destination,source)592 extract_number_and_incr (destination, source)
593     int *destination;
594     unsigned char **source;
595 {
596   extract_number (destination, *source);
597   *source += 2;
598 }
599 
600 # ifndef EXTRACT_MACROS
601 #  undef EXTRACT_NUMBER_AND_INCR
602 #  define EXTRACT_NUMBER_AND_INCR(dest, src) \
603   extract_number_and_incr (&dest, &src)
604 # endif /* not EXTRACT_MACROS */
605 
606 #endif /* DEBUG */
607 
608 /* If DEBUG is defined, Regex prints many voluminous messages about what
609    it is doing (if the variable `debug' is nonzero).  If linked with the
610    main program in `iregex.c', you can enter patterns and strings
611    interactively.  And if linked with the main program in `main.c' and
612    the other test files, you can run the already-written tests.  */
613 
614 #ifdef DEBUG
615 
616 /* We use standard I/O for debugging.  */
617 # include <stdio.h>
618 
619 /* It is useful to test things that ``must'' be true when debugging.  */
620 # include "zassert.h"
621 
622 static int debug;
623 
624 # define DEBUG_STATEMENT(e) e
625 # define DEBUG_PRINT1(x) if (debug) printf (x)
626 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
627 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
628 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
629 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) 				\
630   if (debug) print_partial_compiled_pattern (s, e)
631 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)			\
632   if (debug) print_double_string (w, s1, sz1, s2, sz2)
633 
634 
635 /* Print the fastmap in human-readable form.  */
636 
637 void
print_fastmap(fastmap)638 print_fastmap (fastmap)
639     char *fastmap;
640 {
641   unsigned was_a_range = 0;
642   unsigned i = 0;
643 
644   while (i < (1 << BYTEWIDTH))
645     {
646       if (fastmap[i++])
647 	{
648 	  was_a_range = 0;
649           putchar (i - 1);
650           while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
651             {
652               was_a_range = 1;
653               i++;
654             }
655 	  if (was_a_range)
656             {
657               printf ("-");
658               putchar (i - 1);
659             }
660         }
661     }
662   putchar ('\n');
663 }
664 
665 
666 /* Print a compiled pattern string in human-readable form, starting at
667    the START pointer into it and ending just before the pointer END.  */
668 
669 void
print_partial_compiled_pattern(start,end)670 print_partial_compiled_pattern (start, end)
671     unsigned char *start;
672     unsigned char *end;
673 {
674   int mcnt, mcnt2;
675   unsigned char *p1;
676   unsigned char *p = start;
677   unsigned char *pend = end;
678 
679   if (start == NULL)
680     {
681       printf ("(null)\n");
682       return;
683     }
684 
685   /* Loop over pattern commands.  */
686   while (p < pend)
687     {
688       printf ("%d:\t", p - start);
689 
690       switch ((re_opcode_t) *p++)
691 	{
692         case no_op:
693           printf ("/no_op");
694           break;
695 
696 	case exactn:
697 	  mcnt = *p++;
698           printf ("/exactn/%d", mcnt);
699           do
700 	    {
701               putchar ('/');
702 	      putchar (*p++);
703             }
704           while (--mcnt);
705           break;
706 
707 	case start_memory:
708           mcnt = *p++;
709           printf ("/start_memory/%d/%d", mcnt, *p++);
710           break;
711 
712 	case stop_memory:
713           mcnt = *p++;
714 	  printf ("/stop_memory/%d/%d", mcnt, *p++);
715           break;
716 
717 	case duplicate:
718 	  printf ("/duplicate/%d", *p++);
719 	  break;
720 
721 	case anychar:
722 	  printf ("/anychar");
723 	  break;
724 
725 	case charset:
726         case charset_not:
727           {
728             register int c, last = -100;
729 	    register int in_range = 0;
730 
731 	    printf ("/charset [%s",
732 	            (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
733 
734             assert (p + *p < pend);
735 
736             for (c = 0; c < 256; c++)
737 	      if (c / 8 < *p
738 		  && (p[1 + (c/8)] & (1 << (c % 8))))
739 		{
740 		  /* Are we starting a range?  */
741 		  if (last + 1 == c && ! in_range)
742 		    {
743 		      putchar ('-');
744 		      in_range = 1;
745 		    }
746 		  /* Have we broken a range?  */
747 		  else if (last + 1 != c && in_range)
748               {
749 		      putchar (last);
750 		      in_range = 0;
751 		    }
752 
753 		  if (! in_range)
754 		    putchar (c);
755 
756 		  last = c;
757               }
758 
759 	    if (in_range)
760 	      putchar (last);
761 
762 	    putchar (']');
763 
764 	    p += 1 + *p;
765 	  }
766 	  break;
767 
768 	case begline:
769 	  printf ("/begline");
770           break;
771 
772 	case endline:
773           printf ("/endline");
774           break;
775 
776 	case on_failure_jump:
777           extract_number_and_incr (&mcnt, &p);
778   	  printf ("/on_failure_jump to %d", p + mcnt - start);
779           break;
780 
781 	case on_failure_keep_string_jump:
782           extract_number_and_incr (&mcnt, &p);
783   	  printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
784           break;
785 
786 	case dummy_failure_jump:
787           extract_number_and_incr (&mcnt, &p);
788   	  printf ("/dummy_failure_jump to %d", p + mcnt - start);
789           break;
790 
791 	case push_dummy_failure:
792           printf ("/push_dummy_failure");
793           break;
794 
795         case maybe_pop_jump:
796           extract_number_and_incr (&mcnt, &p);
797   	  printf ("/maybe_pop_jump to %d", p + mcnt - start);
798 	  break;
799 
800         case pop_failure_jump:
801 	  extract_number_and_incr (&mcnt, &p);
802   	  printf ("/pop_failure_jump to %d", p + mcnt - start);
803 	  break;
804 
805         case jump_past_alt:
806 	  extract_number_and_incr (&mcnt, &p);
807   	  printf ("/jump_past_alt to %d", p + mcnt - start);
808 	  break;
809 
810         case jump:
811 	  extract_number_and_incr (&mcnt, &p);
812   	  printf ("/jump to %d", p + mcnt - start);
813 	  break;
814 
815         case succeed_n:
816           extract_number_and_incr (&mcnt, &p);
817 	  p1 = p + mcnt;
818           extract_number_and_incr (&mcnt2, &p);
819 	  printf ("/succeed_n to %d, %d times", p1 - start, mcnt2);
820           break;
821 
822         case jump_n:
823           extract_number_and_incr (&mcnt, &p);
824 	  p1 = p + mcnt;
825           extract_number_and_incr (&mcnt2, &p);
826 	  printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
827           break;
828 
829         case set_number_at:
830           extract_number_and_incr (&mcnt, &p);
831 	  p1 = p + mcnt;
832           extract_number_and_incr (&mcnt2, &p);
833 	  printf ("/set_number_at location %d to %d", p1 - start, mcnt2);
834           break;
835 
836         case wordbound:
837 	  printf ("/wordbound");
838 	  break;
839 
840 	case notwordbound:
841 	  printf ("/notwordbound");
842           break;
843 
844 	case wordbeg:
845 	  printf ("/wordbeg");
846 	  break;
847 
848 	case wordend:
849 	  printf ("/wordend");
850 
851 # ifdef emacs
852 	case before_dot:
853 	  printf ("/before_dot");
854           break;
855 
856 	case at_dot:
857 	  printf ("/at_dot");
858           break;
859 
860 	case after_dot:
861 	  printf ("/after_dot");
862           break;
863 
864 	case syntaxspec:
865           printf ("/syntaxspec");
866 	  mcnt = *p++;
867 	  printf ("/%d", mcnt);
868           break;
869 
870 	case notsyntaxspec:
871           printf ("/notsyntaxspec");
872 	  mcnt = *p++;
873 	  printf ("/%d", mcnt);
874 	  break;
875 # endif /* emacs */
876 
877 	case wordchar:
878 	  printf ("/wordchar");
879           break;
880 
881 	case notwordchar:
882 	  printf ("/notwordchar");
883           break;
884 
885 	case begbuf:
886 	  printf ("/begbuf");
887           break;
888 
889 	case endbuf:
890 	  printf ("/endbuf");
891           break;
892 
893         default:
894           printf ("?%d", *(p-1));
895 	}
896 
897       putchar ('\n');
898     }
899 
900   printf ("%d:\tend of pattern.\n", p - start);
901 }
902 
903 
904 void
print_compiled_pattern(bufp)905 print_compiled_pattern (bufp)
906     struct re_pattern_buffer *bufp;
907 {
908   unsigned char *buffer = bufp->buffer;
909 
910   print_partial_compiled_pattern (buffer, buffer + bufp->used);
911   printf ("%ld bytes used/%ld bytes allocated.\n",
912 	  bufp->used, bufp->allocated);
913 
914   if (bufp->fastmap_accurate && bufp->fastmap)
915     {
916       printf ("fastmap: ");
917       print_fastmap (bufp->fastmap);
918     }
919 
920   printf ("re_nsub: %d\t", bufp->re_nsub);
921   printf ("regs_alloc: %d\t", bufp->regs_allocated);
922   printf ("can_be_null: %d\t", bufp->can_be_null);
923   printf ("newline_anchor: %d\n", bufp->newline_anchor);
924   printf ("no_sub: %d\t", bufp->no_sub);
925   printf ("not_bol: %d\t", bufp->not_bol);
926   printf ("not_eol: %d\t", bufp->not_eol);
927   printf ("syntax: %lx\n", bufp->syntax);
928   /* Perhaps we should print the translate table?  */
929 }
930 
931 
932 void
print_double_string(where,string1,size1,string2,size2)933 print_double_string (where, string1, size1, string2, size2)
934     const char *where;
935     const char *string1;
936     const char *string2;
937     int size1;
938     int size2;
939 {
940   int this_char;
941 
942   if (where == NULL)
943     printf ("(null)");
944   else
945     {
946       if (FIRST_STRING_P (where))
947         {
948           for (this_char = where - string1; this_char < size1; this_char++)
949             putchar (string1[this_char]);
950 
951           where = string2;
952         }
953 
954       for (this_char = where - string2; this_char < size2; this_char++)
955         putchar (string2[this_char]);
956     }
957 }
958 
959 void
printchar(c)960 printchar (c)
961      int c;
962 {
963   putc (c, stderr);
964 }
965 
966 #else /* not DEBUG */
967 
968 # undef assert
969 # define assert(e)
970 
971 # define DEBUG_STATEMENT(e)
972 # define DEBUG_PRINT1(x)
973 # define DEBUG_PRINT2(x1, x2)
974 # define DEBUG_PRINT3(x1, x2, x3)
975 # define DEBUG_PRINT4(x1, x2, x3, x4)
976 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
977 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
978 
979 #endif /* not DEBUG */
980 
981 /* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
982    also be assigned to arbitrarily: each pattern buffer stores its own
983    syntax, so it can be changed between regex compilations.  */
984 /* This has no initializer because initialized variables in Emacs
985    become read-only after dumping.  */
986 reg_syntax_t re_syntax_options;
987 
988 
989 /* Specify the precise syntax of regexps for compilation.  This provides
990    for compatibility for various utilities which historically have
991    different, incompatible syntaxes.
992 
993    The argument SYNTAX is a bit mask comprised of the various bits
994    defined in regex.h.  We return the old syntax.  */
995 
996 reg_syntax_t
re_set_syntax(syntax)997 re_set_syntax (syntax)
998     reg_syntax_t syntax;
999 {
1000   reg_syntax_t ret = re_syntax_options;
1001 
1002   re_syntax_options = syntax;
1003 #ifdef DEBUG
1004   if (syntax & RE_DEBUG)
1005     debug = 1;
1006   else if (debug) /* was on but now is not */
1007     debug = 0;
1008 #endif /* DEBUG */
1009   return ret;
1010 }
1011 #ifdef _LIBC
1012 weak_alias (__re_set_syntax, re_set_syntax)
1013 #endif
1014 
1015 /* This table gives an error message for each of the error codes listed
1016    in regex.h.  Obviously the order here has to be same as there.
1017    POSIX doesn't require that we do anything for REG_NOERROR,
1018    but why not be nice?  */
1019 
1020 static const char re_error_msgid[] =
1021   {
1022 #define REG_NOERROR_IDX	0
1023     gettext_noop ("Success")	/* REG_NOERROR */
1024     "\0"
1025 #define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success")
1026     gettext_noop ("No match")	/* REG_NOMATCH */
1027     "\0"
1028 #define REG_BADPAT_IDX	(REG_NOMATCH_IDX + sizeof "No match")
1029     gettext_noop ("Invalid regular expression") /* REG_BADPAT */
1030     "\0"
1031 #define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression")
1032     gettext_noop ("Invalid collation character") /* REG_ECOLLATE */
1033     "\0"
1034 #define REG_ECTYPE_IDX	(REG_ECOLLATE_IDX + sizeof "Invalid collation character")
1035     gettext_noop ("Invalid character class name") /* REG_ECTYPE */
1036     "\0"
1037 #define REG_EESCAPE_IDX	(REG_ECTYPE_IDX + sizeof "Invalid character class name")
1038     gettext_noop ("Trailing backslash") /* REG_EESCAPE */
1039     "\0"
1040 #define REG_ESUBREG_IDX	(REG_EESCAPE_IDX + sizeof "Trailing backslash")
1041     gettext_noop ("Invalid back reference") /* REG_ESUBREG */
1042     "\0"
1043 #define REG_EBRACK_IDX	(REG_ESUBREG_IDX + sizeof "Invalid back reference")
1044     gettext_noop ("Unmatched [ or [^")	/* REG_EBRACK */
1045     "\0"
1046 #define REG_EPAREN_IDX	(REG_EBRACK_IDX + sizeof "Unmatched [ or [^")
1047     gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */
1048     "\0"
1049 #define REG_EBRACE_IDX	(REG_EPAREN_IDX + sizeof "Unmatched ( or \\(")
1050     gettext_noop ("Unmatched \\{") /* REG_EBRACE */
1051     "\0"
1052 #define REG_BADBR_IDX	(REG_EBRACE_IDX + sizeof "Unmatched \\{")
1053     gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */
1054     "\0"
1055 #define REG_ERANGE_IDX	(REG_BADBR_IDX + sizeof "Invalid content of \\{\\}")
1056     gettext_noop ("Invalid range end")	/* REG_ERANGE */
1057     "\0"
1058 #define REG_ESPACE_IDX	(REG_ERANGE_IDX + sizeof "Invalid range end")
1059     gettext_noop ("Memory exhausted") /* REG_ESPACE */
1060     "\0"
1061 #define REG_BADRPT_IDX	(REG_ESPACE_IDX + sizeof "Memory exhausted")
1062     gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */
1063     "\0"
1064 #define REG_EEND_IDX	(REG_BADRPT_IDX + sizeof "Invalid preceding regular expression")
1065     gettext_noop ("Premature end of regular expression") /* REG_EEND */
1066     "\0"
1067 #define REG_ESIZE_IDX	(REG_EEND_IDX + sizeof "Premature end of regular expression")
1068     gettext_noop ("Regular expression too big") /* REG_ESIZE */
1069     "\0"
1070 #define REG_ERPAREN_IDX	(REG_ESIZE_IDX + sizeof "Regular expression too big")
1071     gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1072   };
1073 
1074 static const size_t re_error_msgid_idx[] =
1075   {
1076     REG_NOERROR_IDX,
1077     REG_NOMATCH_IDX,
1078     REG_BADPAT_IDX,
1079     REG_ECOLLATE_IDX,
1080     REG_ECTYPE_IDX,
1081     REG_EESCAPE_IDX,
1082     REG_ESUBREG_IDX,
1083     REG_EBRACK_IDX,
1084     REG_EPAREN_IDX,
1085     REG_EBRACE_IDX,
1086     REG_BADBR_IDX,
1087     REG_ERANGE_IDX,
1088     REG_ESPACE_IDX,
1089     REG_BADRPT_IDX,
1090     REG_EEND_IDX,
1091     REG_ESIZE_IDX,
1092     REG_ERPAREN_IDX
1093   };
1094 
1095 /* Avoiding alloca during matching, to placate r_alloc.  */
1096 
1097 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1098    searching and matching functions should not call alloca.  On some
1099    systems, alloca is implemented in terms of malloc, and if we're
1100    using the relocating allocator routines, then malloc could cause a
1101    relocation, which might (if the strings being searched are in the
1102    ralloc heap) shift the data out from underneath the regexp
1103    routines.
1104 
1105    Here's another reason to avoid allocation: Emacs
1106    processes input from X in a signal handler; processing X input may
1107    call malloc; if input arrives while a matching routine is calling
1108    malloc, then we're scrod.  But Emacs can't just block input while
1109    calling matching routines; then we don't notice interrupts when
1110    they come in.  So, Emacs blocks input around all regexp calls
1111    except the matching calls, which it leaves unprotected, in the
1112    faith that they will not malloc.  */
1113 
1114 /* Normally, this is fine.  */
1115 #define MATCH_MAY_ALLOCATE
1116 
1117 /* When using GNU C, we are not REALLY using the C alloca, no matter
1118    what config.h may say.  So don't take precautions for it.  */
1119 #ifdef __GNUC__
1120 # undef C_ALLOCA
1121 #endif
1122 
1123 /* The match routines may not allocate if (1) they would do it with malloc
1124    and (2) it's not safe for them to use malloc.
1125    Note that if REL_ALLOC is defined, matching would not use malloc for the
1126    failure stack, but we would still use it for the register vectors;
1127    so REL_ALLOC should not affect this.  */
1128 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1129 # undef MATCH_MAY_ALLOCATE
1130 #endif
1131 
1132 
1133 /* Failure stack declarations and macros; both re_compile_fastmap and
1134    re_match_2 use a failure stack.  These have to be macros because of
1135    REGEX_ALLOCATE_STACK.  */
1136 
1137 
1138 /* Number of failure points for which to initially allocate space
1139    when matching.  If this number is exceeded, we allocate more
1140    space, so it is not a hard limit.  */
1141 #ifndef INIT_FAILURE_ALLOC
1142 # define INIT_FAILURE_ALLOC 5
1143 #endif
1144 
1145 /* Roughly the maximum number of failure points on the stack.  Would be
1146    exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1147    This is a variable only so users of regex can assign to it; we never
1148    change it ourselves.  */
1149 
1150 #ifdef INT_IS_16BIT
1151 
1152 # if defined MATCH_MAY_ALLOCATE
1153 /* 4400 was enough to cause a crash on Alpha OSF/1,
1154    whose default stack limit is 2mb.  */
1155 long int re_max_failures = 4000;
1156 # else
1157 long int re_max_failures = 2000;
1158 # endif
1159 
1160 union fail_stack_elt
1161 {
1162   unsigned char *pointer;
1163   long int integer;
1164 };
1165 
1166 typedef union fail_stack_elt fail_stack_elt_t;
1167 
1168 typedef struct
1169 {
1170   fail_stack_elt_t *stack;
1171   unsigned long int size;
1172   unsigned long int avail;		/* Offset of next open position.  */
1173 } fail_stack_type;
1174 
1175 #else /* not INT_IS_16BIT */
1176 
1177 # if defined MATCH_MAY_ALLOCATE
1178 /* 4400 was enough to cause a crash on Alpha OSF/1,
1179    whose default stack limit is 2mb.  */
1180 int re_max_failures = 20000;
1181 # else
1182 int re_max_failures = 2000;
1183 # endif
1184 
1185 union fail_stack_elt
1186 {
1187   unsigned char *pointer;
1188   int integer;
1189 };
1190 
1191 typedef union fail_stack_elt fail_stack_elt_t;
1192 
1193 typedef struct
1194 {
1195   fail_stack_elt_t *stack;
1196   unsigned size;
1197   unsigned avail;			/* Offset of next open position.  */
1198 } fail_stack_type;
1199 
1200 #endif /* INT_IS_16BIT */
1201 
1202 #define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
1203 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1204 #define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
1205 
1206 
1207 /* Define macros to initialize and free the failure stack.
1208    Do `return -2' if the alloc fails.  */
1209 
1210 #ifdef MATCH_MAY_ALLOCATE
1211 # define INIT_FAIL_STACK()						\
1212   do {									\
1213     fail_stack.stack = (fail_stack_elt_t *)				\
1214       REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1215 									\
1216     if (fail_stack.stack == NULL)					\
1217       return -2;							\
1218 									\
1219     fail_stack.size = INIT_FAILURE_ALLOC;				\
1220     fail_stack.avail = 0;						\
1221   } while (0)
1222 
1223 # define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
1224 #else
1225 # define INIT_FAIL_STACK()						\
1226   do {									\
1227     fail_stack.avail = 0;						\
1228   } while (0)
1229 
1230 # define RESET_FAIL_STACK()
1231 #endif
1232 
1233 
1234 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1235 
1236    Return 1 if succeeds, and 0 if either ran out of memory
1237    allocating space for it or it was already too large.
1238 
1239    REGEX_REALLOCATE_STACK requires `destination' be declared.   */
1240 
1241 #define DOUBLE_FAIL_STACK(fail_stack)					\
1242   ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS)	\
1243    ? 0									\
1244    : ((fail_stack).stack = (fail_stack_elt_t *)				\
1245         REGEX_REALLOCATE_STACK ((fail_stack).stack, 			\
1246           (fail_stack).size * sizeof (fail_stack_elt_t),		\
1247           ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)),	\
1248 									\
1249       (fail_stack).stack == NULL					\
1250       ? 0								\
1251       : ((fail_stack).size <<= 1, 					\
1252          1)))
1253 
1254 
1255 /* Push pointer POINTER on FAIL_STACK.
1256    Return 1 if was able to do so and 0 if ran out of memory allocating
1257    space to do so.  */
1258 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK)				\
1259   ((FAIL_STACK_FULL ()							\
1260     && !DOUBLE_FAIL_STACK (FAIL_STACK))					\
1261    ? 0									\
1262    : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER,	\
1263       1))
1264 
1265 /* Push a pointer value onto the failure stack.
1266    Assumes the variable `fail_stack'.  Probably should only
1267    be called from within `PUSH_FAILURE_POINT'.  */
1268 #define PUSH_FAILURE_POINTER(item)					\
1269   fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1270 
1271 /* This pushes an integer-valued item onto the failure stack.
1272    Assumes the variable `fail_stack'.  Probably should only
1273    be called from within `PUSH_FAILURE_POINT'.  */
1274 #define PUSH_FAILURE_INT(item)					\
1275   fail_stack.stack[fail_stack.avail++].integer = (item)
1276 
1277 /* Push a fail_stack_elt_t value onto the failure stack.
1278    Assumes the variable `fail_stack'.  Probably should only
1279    be called from within `PUSH_FAILURE_POINT'.  */
1280 #define PUSH_FAILURE_ELT(item)					\
1281   fail_stack.stack[fail_stack.avail++] =  (item)
1282 
1283 /* These three POP... operations complement the three PUSH... operations.
1284    All assume that `fail_stack' is nonempty.  */
1285 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1286 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1287 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1288 
1289 /* Used to omit pushing failure point id's when we're not debugging.  */
1290 #ifdef DEBUG
1291 # define DEBUG_PUSH PUSH_FAILURE_INT
1292 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1293 #else
1294 # define DEBUG_PUSH(item)
1295 # define DEBUG_POP(item_addr)
1296 #endif
1297 
1298 
1299 /* Push the information about the state we will need
1300    if we ever fail back to it.
1301 
1302    Requires variables fail_stack, regstart, regend, reg_info, and
1303    num_regs_pushed be declared.  DOUBLE_FAIL_STACK requires `destination'
1304    be declared.
1305 
1306    Does `return FAILURE_CODE' if runs out of memory.  */
1307 
1308 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)	\
1309   do {									\
1310     char *destination;							\
1311     /* Must be int, so when we don't save any registers, the arithmetic	\
1312        of 0 + -1 isn't done as unsigned.  */				\
1313     /* Can't be int, since there is not a shred of a guarantee that int	\
1314        is wide enough to hold a value of something to which pointer can	\
1315        be assigned */							\
1316     active_reg_t this_reg;						\
1317     									\
1318     DEBUG_STATEMENT (failure_id++);					\
1319     DEBUG_STATEMENT (nfailure_points_pushed++);				\
1320     DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);		\
1321     DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
1322     DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
1323 									\
1324     DEBUG_PRINT2 ("  slots needed: %ld\n", NUM_FAILURE_ITEMS);		\
1325     DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);	\
1326 									\
1327     /* Ensure we have enough space allocated for what we will push.  */	\
1328     while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)			\
1329       {									\
1330         if (!DOUBLE_FAIL_STACK (fail_stack))				\
1331           return failure_code;						\
1332 									\
1333         DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",		\
1334 		       (fail_stack).size);				\
1335         DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1336       }									\
1337 									\
1338     /* Push the info, starting with the registers.  */			\
1339     DEBUG_PRINT1 ("\n");						\
1340 									\
1341     if (1)								\
1342       for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1343 	   this_reg++)							\
1344 	{								\
1345 	  DEBUG_PRINT2 ("  Pushing reg: %lu\n", this_reg);		\
1346 	  DEBUG_STATEMENT (num_regs_pushed++);				\
1347 									\
1348 	  DEBUG_PRINT2 ("    start: %p\n", regstart[this_reg]);		\
1349 	  PUSH_FAILURE_POINTER (regstart[this_reg]);			\
1350 									\
1351 	  DEBUG_PRINT2 ("    end: %p\n", regend[this_reg]);		\
1352 	  PUSH_FAILURE_POINTER (regend[this_reg]);			\
1353 									\
1354 	  DEBUG_PRINT2 ("    info: %p\n      ",				\
1355 			reg_info[this_reg].word.pointer);		\
1356 	  DEBUG_PRINT2 (" match_null=%d",				\
1357 			REG_MATCH_NULL_STRING_P (reg_info[this_reg]));	\
1358 	  DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));	\
1359 	  DEBUG_PRINT2 (" matched_something=%d",			\
1360 			MATCHED_SOMETHING (reg_info[this_reg]));	\
1361 	  DEBUG_PRINT2 (" ever_matched=%d",				\
1362 			EVER_MATCHED_SOMETHING (reg_info[this_reg]));	\
1363 	  DEBUG_PRINT1 ("\n");						\
1364 	  PUSH_FAILURE_ELT (reg_info[this_reg].word);			\
1365 	}								\
1366 									\
1367     DEBUG_PRINT2 ("  Pushing  low active reg: %ld\n", lowest_active_reg);\
1368     PUSH_FAILURE_INT (lowest_active_reg);				\
1369 									\
1370     DEBUG_PRINT2 ("  Pushing high active reg: %ld\n", highest_active_reg);\
1371     PUSH_FAILURE_INT (highest_active_reg);				\
1372 									\
1373     DEBUG_PRINT2 ("  Pushing pattern %p:\n", pattern_place);		\
1374     DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);		\
1375     PUSH_FAILURE_POINTER (pattern_place);				\
1376 									\
1377     DEBUG_PRINT2 ("  Pushing string %p: `", string_place);		\
1378     DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
1379 				 size2);				\
1380     DEBUG_PRINT1 ("'\n");						\
1381     PUSH_FAILURE_POINTER (string_place);				\
1382 									\
1383     DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);		\
1384     DEBUG_PUSH (failure_id);						\
1385   } while (0)
1386 
1387 /* This is the number of items that are pushed and popped on the stack
1388    for each register.  */
1389 #define NUM_REG_ITEMS  3
1390 
1391 /* Individual items aside from the registers.  */
1392 #ifdef DEBUG
1393 # define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
1394 #else
1395 # define NUM_NONREG_ITEMS 4
1396 #endif
1397 
1398 /* We push at most this many items on the stack.  */
1399 /* We used to use (num_regs - 1), which is the number of registers
1400    this regexp will save; but that was changed to 5
1401    to avoid stack overflow for a regexp with lots of parens.  */
1402 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1403 
1404 /* We actually push this many items.  */
1405 #define NUM_FAILURE_ITEMS				\
1406   (((0							\
1407      ? 0 : highest_active_reg - lowest_active_reg + 1)	\
1408     * NUM_REG_ITEMS)					\
1409    + NUM_NONREG_ITEMS)
1410 
1411 /* How many items can still be added to the stack without overflowing it.  */
1412 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1413 
1414 
1415 /* Pops what PUSH_FAIL_STACK pushes.
1416 
1417    We restore into the parameters, all of which should be lvalues:
1418      STR -- the saved data position.
1419      PAT -- the saved pattern position.
1420      LOW_REG, HIGH_REG -- the highest and lowest active registers.
1421      REGSTART, REGEND -- arrays of string positions.
1422      REG_INFO -- array of information about each subexpression.
1423 
1424    Also assumes the variables `fail_stack' and (if debugging), `bufp',
1425    `pend', `string1', `size1', `string2', and `size2'.  */
1426 
1427 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1428 {									\
1429   DEBUG_STATEMENT (unsigned failure_id;)				\
1430   active_reg_t this_reg;						\
1431   const unsigned char *string_temp;					\
1432 									\
1433   assert (!FAIL_STACK_EMPTY ());					\
1434 									\
1435   /* Remove failure points and point to how many regs pushed.  */	\
1436   DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");				\
1437   DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);	\
1438   DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);	\
1439 									\
1440   assert (fail_stack.avail >= NUM_NONREG_ITEMS);			\
1441 									\
1442   DEBUG_POP (&failure_id);						\
1443   DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);		\
1444 									\
1445   /* If the saved string location is NULL, it came from an		\
1446      on_failure_keep_string_jump opcode, and we want to throw away the	\
1447      saved NULL, thus retaining our current position in the string.  */	\
1448   string_temp = POP_FAILURE_POINTER ();					\
1449   if (string_temp != NULL)						\
1450     str = (const char *) string_temp;					\
1451 									\
1452   DEBUG_PRINT2 ("  Popping string %p: `", str);				\
1453   DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);	\
1454   DEBUG_PRINT1 ("'\n");							\
1455 									\
1456   pat = (unsigned char *) POP_FAILURE_POINTER ();			\
1457   DEBUG_PRINT2 ("  Popping pattern %p:\n", pat);			\
1458   DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);			\
1459 									\
1460   /* Restore register info.  */						\
1461   high_reg = (active_reg_t) POP_FAILURE_INT ();				\
1462   DEBUG_PRINT2 ("  Popping high active reg: %ld\n", high_reg);		\
1463 									\
1464   low_reg = (active_reg_t) POP_FAILURE_INT ();				\
1465   DEBUG_PRINT2 ("  Popping  low active reg: %ld\n", low_reg);		\
1466 									\
1467   if (1)								\
1468     for (this_reg = high_reg; this_reg >= low_reg; this_reg--)		\
1469       {									\
1470 	DEBUG_PRINT2 ("    Popping reg: %ld\n", this_reg);		\
1471 									\
1472 	reg_info[this_reg].word = POP_FAILURE_ELT ();			\
1473 	DEBUG_PRINT2 ("      info: %p\n",				\
1474 		      reg_info[this_reg].word.pointer);			\
1475 									\
1476 	regend[this_reg] = (const char *) POP_FAILURE_POINTER ();	\
1477 	DEBUG_PRINT2 ("      end: %p\n", regend[this_reg]);		\
1478 									\
1479 	regstart[this_reg] = (const char *) POP_FAILURE_POINTER ();	\
1480 	DEBUG_PRINT2 ("      start: %p\n", regstart[this_reg]);		\
1481       }									\
1482   else									\
1483     {									\
1484       for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1485 	{								\
1486 	  reg_info[this_reg].word.integer = 0;				\
1487 	  regend[this_reg] = 0;						\
1488 	  regstart[this_reg] = 0;					\
1489 	}								\
1490       highest_active_reg = high_reg;					\
1491     }									\
1492 									\
1493   set_regs_matched_done = 0;						\
1494   DEBUG_STATEMENT (nfailure_points_popped++);				\
1495 } /* POP_FAILURE_POINT */
1496 
1497 
1498 
1499 /* Structure for per-register (a.k.a. per-group) information.
1500    Other register information, such as the
1501    starting and ending positions (which are addresses), and the list of
1502    inner groups (which is a bits list) are maintained in separate
1503    variables.
1504 
1505    We are making a (strictly speaking) nonportable assumption here: that
1506    the compiler will pack our bit fields into something that fits into
1507    the type of `word', i.e., is something that fits into one item on the
1508    failure stack.  */
1509 
1510 
1511 /* Declarations and macros for re_match_2.  */
1512 
1513 typedef union
1514 {
1515   fail_stack_elt_t word;
1516   struct
1517   {
1518       /* This field is one if this group can match the empty string,
1519          zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
1520 #define MATCH_NULL_UNSET_VALUE 3
1521     unsigned match_null_string_p : 2;
1522     unsigned is_active : 1;
1523     unsigned matched_something : 1;
1524     unsigned ever_matched_something : 1;
1525   } bits;
1526 } register_info_type;
1527 
1528 #define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
1529 #define IS_ACTIVE(R)  ((R).bits.is_active)
1530 #define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
1531 #define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
1532 
1533 
1534 /* Call this when have matched a real character; it sets `matched' flags
1535    for the subexpressions which we are currently inside.  Also records
1536    that those subexprs have matched.  */
1537 #define SET_REGS_MATCHED()						\
1538   do									\
1539     {									\
1540       if (!set_regs_matched_done)					\
1541 	{								\
1542 	  active_reg_t r;						\
1543 	  set_regs_matched_done = 1;					\
1544 	  for (r = lowest_active_reg; r <= highest_active_reg; r++)	\
1545 	    {								\
1546 	      MATCHED_SOMETHING (reg_info[r])				\
1547 		= EVER_MATCHED_SOMETHING (reg_info[r])			\
1548 		= 1;							\
1549 	    }								\
1550 	}								\
1551     }									\
1552   while (0)
1553 
1554 /* Registers are set to a sentinel when they haven't yet matched.  */
1555 static char reg_unset_dummy;
1556 #define REG_UNSET_VALUE (&reg_unset_dummy)
1557 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1558 
1559 /* Subroutine declarations and macros for regex_compile.  */
1560 
1561 static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size,
1562 					      reg_syntax_t syntax,
1563 					      struct re_pattern_buffer *bufp));
1564 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1565 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1566 				 int arg1, int arg2));
1567 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1568 				  int arg, unsigned char *end));
1569 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1570 				  int arg1, int arg2, unsigned char *end));
1571 static boolean at_begline_loc_p _RE_ARGS ((const char *pattern, const char *p,
1572 					   reg_syntax_t syntax));
1573 static boolean at_endline_loc_p _RE_ARGS ((const char *p, const char *pend,
1574 					   reg_syntax_t syntax));
1575 static reg_errcode_t compile_range _RE_ARGS ((const char **p_ptr,
1576 					      const char *pend,
1577 					      char *translate,
1578 					      reg_syntax_t syntax,
1579 					      unsigned char *b));
1580 
1581 /* Fetch the next character in the uncompiled pattern---translating it
1582    if necessary.  Also cast from a signed character in the constant
1583    string passed to us by the user to an unsigned char that we can use
1584    as an array index (in, e.g., `translate').  */
1585 #ifndef PATFETCH
1586 # define PATFETCH(c)							\
1587   do {if (p == pend) return REG_EEND;					\
1588     c = (unsigned char) *p++;						\
1589     if (translate) c = (unsigned char) translate[c];			\
1590   } while (0)
1591 #endif
1592 
1593 /* Fetch the next character in the uncompiled pattern, with no
1594    translation.  */
1595 #define PATFETCH_RAW(c)							\
1596   do {if (p == pend) return REG_EEND;					\
1597     c = (unsigned char) *p++; 						\
1598   } while (0)
1599 
1600 /* Go backwards one character in the pattern.  */
1601 #define PATUNFETCH p--
1602 
1603 
1604 /* If `translate' is non-null, return translate[D], else just D.  We
1605    cast the subscript to translate because some data is declared as
1606    `char *', to avoid warnings when a string constant is passed.  But
1607    when we use a character as a subscript we must make it unsigned.  */
1608 #ifndef TRANSLATE
1609 # define TRANSLATE(d) \
1610   (translate ? (char) translate[(unsigned char) (d)] : (d))
1611 #endif
1612 
1613 
1614 /* Macros for outputting the compiled pattern into `buffer'.  */
1615 
1616 /* If the buffer isn't allocated when it comes in, use this.  */
1617 #define INIT_BUF_SIZE  32
1618 
1619 /* Make sure we have at least N more bytes of space in buffer.  */
1620 #define GET_BUFFER_SPACE(n)						\
1621     while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated)	\
1622       EXTEND_BUFFER ()
1623 
1624 /* Make sure we have one more byte of buffer space and then add C to it.  */
1625 #define BUF_PUSH(c)							\
1626   do {									\
1627     GET_BUFFER_SPACE (1);						\
1628     *b++ = (unsigned char) (c);						\
1629   } while (0)
1630 
1631 
1632 /* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
1633 #define BUF_PUSH_2(c1, c2)						\
1634   do {									\
1635     GET_BUFFER_SPACE (2);						\
1636     *b++ = (unsigned char) (c1);					\
1637     *b++ = (unsigned char) (c2);					\
1638   } while (0)
1639 
1640 
1641 /* As with BUF_PUSH_2, except for three bytes.  */
1642 #define BUF_PUSH_3(c1, c2, c3)						\
1643   do {									\
1644     GET_BUFFER_SPACE (3);						\
1645     *b++ = (unsigned char) (c1);					\
1646     *b++ = (unsigned char) (c2);					\
1647     *b++ = (unsigned char) (c3);					\
1648   } while (0)
1649 
1650 
1651 /* Store a jump with opcode OP at LOC to location TO.  We store a
1652    relative address offset by the three bytes the jump itself occupies.  */
1653 #define STORE_JUMP(op, loc, to) \
1654   store_op1 (op, loc, (int) ((to) - (loc) - 3))
1655 
1656 /* Likewise, for a two-argument jump.  */
1657 #define STORE_JUMP2(op, loc, to, arg) \
1658   store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1659 
1660 /* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
1661 #define INSERT_JUMP(op, loc, to) \
1662   insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1663 
1664 /* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
1665 #define INSERT_JUMP2(op, loc, to, arg) \
1666   insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1667 
1668 
1669 /* This is not an arbitrary limit: the arguments which represent offsets
1670    into the pattern are two bytes long.  So if 2^16 bytes turns out to
1671    be too small, many things would have to change.  */
1672 /* Any other compiler which, like MSC, has allocation limit below 2^16
1673    bytes will have to use approach similar to what was done below for
1674    MSC and drop MAX_BUF_SIZE a bit.  Otherwise you may end up
1675    reallocating to 0 bytes.  Such thing is not going to work too well.
1676    You have been warned!!  */
1677 #if defined _MSC_VER  && !defined _WIN32
1678 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1679    The REALLOC define eliminates a flurry of conversion warnings,
1680    but is not required. */
1681 # define MAX_BUF_SIZE  65500L
1682 # define REALLOC(p,s) realloc ((p), (size_t) (s))
1683 #else
1684 # define MAX_BUF_SIZE (1L << 16)
1685 # define REALLOC(p,s) realloc ((p), (s))
1686 #endif
1687 
1688 /* Extend the buffer by twice its current size via realloc and
1689    reset the pointers that pointed into the old block to point to the
1690    correct places in the new one.  If extending the buffer results in it
1691    being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
1692 #define EXTEND_BUFFER()							\
1693   do { 									\
1694     unsigned char *old_buffer = bufp->buffer;				\
1695     if (bufp->allocated == MAX_BUF_SIZE) 				\
1696       return REG_ESIZE;							\
1697     bufp->allocated <<= 1;						\
1698     if (bufp->allocated > MAX_BUF_SIZE)					\
1699       bufp->allocated = MAX_BUF_SIZE; 					\
1700     bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1701     if (bufp->buffer == NULL)						\
1702       return REG_ESPACE;						\
1703     /* If the buffer moved, move all the pointers into it.  */		\
1704     if (old_buffer != bufp->buffer)					\
1705       {									\
1706         b = (b - old_buffer) + bufp->buffer;				\
1707         begalt = (begalt - old_buffer) + bufp->buffer;			\
1708         if (fixup_alt_jump)						\
1709           fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1710         if (laststart)							\
1711           laststart = (laststart - old_buffer) + bufp->buffer;		\
1712         if (pending_exact)						\
1713           pending_exact = (pending_exact - old_buffer) + bufp->buffer;	\
1714       }									\
1715   } while (0)
1716 
1717 
1718 /* Since we have one byte reserved for the register number argument to
1719    {start,stop}_memory, the maximum number of groups we can report
1720    things about is what fits in that byte.  */
1721 #define MAX_REGNUM 255
1722 
1723 /* But patterns can have more than `MAX_REGNUM' registers.  We just
1724    ignore the excess.  */
1725 typedef unsigned regnum_t;
1726 
1727 
1728 /* Macros for the compile stack.  */
1729 
1730 /* Since offsets can go either forwards or backwards, this type needs to
1731    be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
1732 /* int may be not enough when sizeof(int) == 2.  */
1733 typedef long pattern_offset_t;
1734 
1735 typedef struct
1736 {
1737   pattern_offset_t begalt_offset;
1738   pattern_offset_t fixup_alt_jump;
1739   pattern_offset_t inner_group_offset;
1740   pattern_offset_t laststart_offset;
1741   regnum_t regnum;
1742 } compile_stack_elt_t;
1743 
1744 
1745 typedef struct
1746 {
1747   compile_stack_elt_t *stack;
1748   unsigned size;
1749   unsigned avail;			/* Offset of next open position.  */
1750 } compile_stack_type;
1751 
1752 
1753 #define INIT_COMPILE_STACK_SIZE 32
1754 
1755 #define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
1756 #define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
1757 
1758 /* The next available element.  */
1759 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1760 
1761 
1762 /* Set the bit for character C in a list.  */
1763 #define SET_LIST_BIT(c)                               \
1764   (b[((unsigned char) (c)) / BYTEWIDTH]               \
1765    |= 1 << (((unsigned char) c) % BYTEWIDTH))
1766 
1767 
1768 /* Get the next unsigned number in the uncompiled pattern.  */
1769 #define GET_UNSIGNED_NUMBER(num) 					\
1770   { if (p != pend)							\
1771      {									\
1772        PATFETCH (c); 							\
1773        while (ISDIGIT (c)) 						\
1774          { 								\
1775            if (num < 0)							\
1776               num = 0;							\
1777            num = num * 10 + c - '0'; 					\
1778            if (p == pend) 						\
1779               break; 							\
1780            PATFETCH (c);						\
1781          } 								\
1782        } 								\
1783     }
1784 
1785 #if defined _LIBC || WIDE_CHAR_SUPPORT
1786 /* The GNU C library provides support for user-defined character classes
1787    and the functions from ISO C amendement 1.  */
1788 # ifdef CHARCLASS_NAME_MAX
1789 #  define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1790 # else
1791 /* This shouldn't happen but some implementation might still have this
1792    problem.  Use a reasonable default value.  */
1793 #  define CHAR_CLASS_MAX_LENGTH 256
1794 # endif
1795 
1796 # ifdef _LIBC
1797 #  define IS_CHAR_CLASS(string) __wctype (string)
1798 # else
1799 #  define IS_CHAR_CLASS(string) wctype (string)
1800 # endif
1801 #else
1802 # define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
1803 
1804 # define IS_CHAR_CLASS(string)						\
1805    (STREQ (string, "alpha") || STREQ (string, "upper")			\
1806     || STREQ (string, "lower") || STREQ (string, "digit")		\
1807     || STREQ (string, "alnum") || STREQ (string, "xdigit")		\
1808     || STREQ (string, "space") || STREQ (string, "print")		\
1809     || STREQ (string, "punct") || STREQ (string, "graph")		\
1810     || STREQ (string, "cntrl") || STREQ (string, "blank"))
1811 #endif
1812 
1813 #ifndef MATCH_MAY_ALLOCATE
1814 
1815 /* If we cannot allocate large objects within re_match_2_internal,
1816    we make the fail stack and register vectors global.
1817    The fail stack, we grow to the maximum size when a regexp
1818    is compiled.
1819    The register vectors, we adjust in size each time we
1820    compile a regexp, according to the number of registers it needs.  */
1821 
1822 static fail_stack_type fail_stack;
1823 
1824 /* Size with which the following vectors are currently allocated.
1825    That is so we can make them bigger as needed,
1826    but never make them smaller.  */
1827 static int regs_allocated_size;
1828 
1829 static const char **     regstart, **     regend;
1830 static const char ** old_regstart, ** old_regend;
1831 static const char **best_regstart, **best_regend;
1832 static register_info_type *reg_info;
1833 static const char **reg_dummy;
1834 static register_info_type *reg_info_dummy;
1835 
1836 /* Make the register vectors big enough for NUM_REGS registers,
1837    but don't make them smaller.  */
1838 
1839 static
regex_grow_registers(num_regs)1840 regex_grow_registers (num_regs)
1841      int num_regs;
1842 {
1843   if (num_regs > regs_allocated_size)
1844     {
1845       RETALLOC_IF (regstart,	 num_regs, const char *);
1846       RETALLOC_IF (regend,	 num_regs, const char *);
1847       RETALLOC_IF (old_regstart, num_regs, const char *);
1848       RETALLOC_IF (old_regend,	 num_regs, const char *);
1849       RETALLOC_IF (best_regstart, num_regs, const char *);
1850       RETALLOC_IF (best_regend,	 num_regs, const char *);
1851       RETALLOC_IF (reg_info,	 num_regs, register_info_type);
1852       RETALLOC_IF (reg_dummy,	 num_regs, const char *);
1853       RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1854 
1855       regs_allocated_size = num_regs;
1856     }
1857 }
1858 
1859 #endif /* not MATCH_MAY_ALLOCATE */
1860 
1861 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
1862 						 compile_stack,
1863 						 regnum_t regnum));
1864 
1865 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1866    Returns one of error codes defined in `regex.h', or zero for success.
1867 
1868    Assumes the `allocated' (and perhaps `buffer') and `translate'
1869    fields are set in BUFP on entry.
1870 
1871    If it succeeds, results are put in BUFP (if it returns an error, the
1872    contents of BUFP are undefined):
1873      `buffer' is the compiled pattern;
1874      `syntax' is set to SYNTAX;
1875      `used' is set to the length of the compiled pattern;
1876      `fastmap_accurate' is zero;
1877      `re_nsub' is the number of subexpressions in PATTERN;
1878      `not_bol' and `not_eol' are zero;
1879 
1880    The `fastmap' and `newline_anchor' fields are neither
1881    examined nor set.  */
1882 
1883 /* Return, freeing storage we allocated.  */
1884 #define FREE_STACK_RETURN(value)		\
1885   return (free (compile_stack.stack), value)
1886 
1887 static reg_errcode_t
regex_compile(pattern,size,syntax,bufp)1888 regex_compile (pattern, size, syntax, bufp)
1889      const char *pattern;
1890      size_t size;
1891      reg_syntax_t syntax;
1892      struct re_pattern_buffer *bufp;
1893 {
1894   /* We fetch characters from PATTERN here.  Even though PATTERN is
1895      `char *' (i.e., signed), we declare these variables as unsigned, so
1896      they can be reliably used as array indices.  */
1897   register unsigned char c, c1;
1898 
1899   /* A random temporary spot in PATTERN.  */
1900   const char *p1;
1901 
1902   /* Points to the end of the buffer, where we should append.  */
1903   register unsigned char *b;
1904 
1905   /* Keeps track of unclosed groups.  */
1906   compile_stack_type compile_stack;
1907 
1908   /* Points to the current (ending) position in the pattern.  */
1909   const char *p = pattern;
1910   const char *pend = pattern + size;
1911 
1912   /* How to translate the characters in the pattern.  */
1913   RE_TRANSLATE_TYPE translate = bufp->translate;
1914 
1915   /* Address of the count-byte of the most recently inserted `exactn'
1916      command.  This makes it possible to tell if a new exact-match
1917      character can be added to that command or if the character requires
1918      a new `exactn' command.  */
1919   unsigned char *pending_exact = 0;
1920 
1921   /* Address of start of the most recently finished expression.
1922      This tells, e.g., postfix * where to find the start of its
1923      operand.  Reset at the beginning of groups and alternatives.  */
1924   unsigned char *laststart = 0;
1925 
1926   /* Address of beginning of regexp, or inside of last group.  */
1927   unsigned char *begalt;
1928 
1929   /* Place in the uncompiled pattern (i.e., the {) to
1930      which to go back if the interval is invalid.  */
1931   const char *beg_interval;
1932 
1933   /* Address of the place where a forward jump should go to the end of
1934      the containing expression.  Each alternative of an `or' -- except the
1935      last -- ends with a forward jump of this sort.  */
1936   unsigned char *fixup_alt_jump = 0;
1937 
1938   /* Counts open-groups as they are encountered.  Remembered for the
1939      matching close-group on the compile stack, so the same register
1940      number is put in the stop_memory as the start_memory.  */
1941   regnum_t regnum = 0;
1942 
1943 #ifdef DEBUG
1944   DEBUG_PRINT1 ("\nCompiling pattern: ");
1945   if (debug)
1946     {
1947       unsigned debug_count;
1948 
1949       for (debug_count = 0; debug_count < size; debug_count++)
1950         putchar (pattern[debug_count]);
1951       putchar ('\n');
1952     }
1953 #endif /* DEBUG */
1954 
1955   /* Initialize the compile stack.  */
1956   compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1957   if (compile_stack.stack == NULL)
1958     return REG_ESPACE;
1959 
1960   compile_stack.size = INIT_COMPILE_STACK_SIZE;
1961   compile_stack.avail = 0;
1962 
1963   /* Initialize the pattern buffer.  */
1964   bufp->syntax = syntax;
1965   bufp->fastmap_accurate = 0;
1966   bufp->not_bol = bufp->not_eol = 0;
1967 
1968   /* Set `used' to zero, so that if we return an error, the pattern
1969      printer (for debugging) will think there's no pattern.  We reset it
1970      at the end.  */
1971   bufp->used = 0;
1972 
1973   /* Always count groups, whether or not bufp->no_sub is set.  */
1974   bufp->re_nsub = 0;
1975 
1976 #if !defined emacs && !defined SYNTAX_TABLE
1977   /* Initialize the syntax table.  */
1978    init_syntax_once ();
1979 #endif
1980 
1981   if (bufp->allocated == 0)
1982     {
1983       if (bufp->buffer)
1984 	{ /* If zero allocated, but buffer is non-null, try to realloc
1985              enough space.  This loses if buffer's address is bogus, but
1986              that is the user's responsibility.  */
1987           RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1988         }
1989       else
1990         { /* Caller did not allocate a buffer.  Do it for them.  */
1991           bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1992         }
1993       if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1994 
1995       bufp->allocated = INIT_BUF_SIZE;
1996     }
1997 
1998   begalt = b = bufp->buffer;
1999 
2000   /* Loop through the uncompiled pattern until we're at the end.  */
2001   while (p != pend)
2002     {
2003       PATFETCH (c);
2004 
2005       switch (c)
2006         {
2007         case '^':
2008           {
2009             if (   /* If at start of pattern, it's an operator.  */
2010                    p == pattern + 1
2011                    /* If context independent, it's an operator.  */
2012                 || syntax & RE_CONTEXT_INDEP_ANCHORS
2013                    /* Otherwise, depends on what's come before.  */
2014                 || at_begline_loc_p (pattern, p, syntax))
2015               BUF_PUSH (begline);
2016             else
2017               goto normal_char;
2018           }
2019           break;
2020 
2021 
2022         case '$':
2023           {
2024             if (   /* If at end of pattern, it's an operator.  */
2025                    p == pend
2026                    /* If context independent, it's an operator.  */
2027                 || syntax & RE_CONTEXT_INDEP_ANCHORS
2028                    /* Otherwise, depends on what's next.  */
2029                 || at_endline_loc_p (p, pend, syntax))
2030                BUF_PUSH (endline);
2031              else
2032                goto normal_char;
2033            }
2034            break;
2035 
2036 
2037 	case '+':
2038         case '?':
2039           if ((syntax & RE_BK_PLUS_QM)
2040               || (syntax & RE_LIMITED_OPS))
2041             goto normal_char;
2042         handle_plus:
2043         case '*':
2044           /* If there is no previous pattern... */
2045           if (!laststart)
2046             {
2047               if (syntax & RE_CONTEXT_INVALID_OPS)
2048                 FREE_STACK_RETURN (REG_BADRPT);
2049               else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2050                 goto normal_char;
2051             }
2052 
2053           {
2054             /* Are we optimizing this jump?  */
2055             boolean keep_string_p = false;
2056 
2057             /* 1 means zero (many) matches is allowed.  */
2058             char zero_times_ok = 0, many_times_ok = 0;
2059 
2060             /* If there is a sequence of repetition chars, collapse it
2061                down to just one (the right one).  We can't combine
2062                interval operators with these because of, e.g., `a{2}*',
2063                which should only match an even number of `a's.  */
2064 
2065             for (;;)
2066               {
2067                 zero_times_ok |= c != '+';
2068                 many_times_ok |= c != '?';
2069 
2070                 if (p == pend)
2071                   break;
2072 
2073                 PATFETCH (c);
2074 
2075                 if (c == '*'
2076                     || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2077                   ;
2078 
2079                 else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
2080                   {
2081                     if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2082 
2083                     PATFETCH (c1);
2084                     if (!(c1 == '+' || c1 == '?'))
2085                       {
2086                         PATUNFETCH;
2087                         PATUNFETCH;
2088                         break;
2089                       }
2090 
2091                     c = c1;
2092                   }
2093                 else
2094                   {
2095                     PATUNFETCH;
2096                     break;
2097                   }
2098 
2099                 /* If we get here, we found another repeat character.  */
2100                }
2101 
2102             /* Star, etc. applied to an empty pattern is equivalent
2103                to an empty pattern.  */
2104             if (!laststart)
2105               break;
2106 
2107             /* Now we know whether or not zero matches is allowed
2108                and also whether or not two or more matches is allowed.  */
2109             if (many_times_ok)
2110               { /* More than one repetition is allowed, so put in at the
2111                    end a backward relative jump from `b' to before the next
2112                    jump we're going to put in below (which jumps from
2113                    laststart to after this jump).
2114 
2115                    But if we are at the `*' in the exact sequence `.*\n',
2116                    insert an unconditional jump backwards to the .,
2117                    instead of the beginning of the loop.  This way we only
2118                    push a failure point once, instead of every time
2119                    through the loop.  */
2120                 assert (p - 1 > pattern);
2121 
2122                 /* Allocate the space for the jump.  */
2123                 GET_BUFFER_SPACE (3);
2124 
2125                 /* We know we are not at the first character of the pattern,
2126                    because laststart was nonzero.  And we've already
2127                    incremented `p', by the way, to be the character after
2128                    the `*'.  Do we have to do something analogous here
2129                    for null bytes, because of RE_DOT_NOT_NULL?  */
2130                 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2131 		    && zero_times_ok
2132                     && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2133                     && !(syntax & RE_DOT_NEWLINE))
2134                   { /* We have .*\n.  */
2135                     STORE_JUMP (jump, b, laststart);
2136                     keep_string_p = true;
2137                   }
2138                 else
2139                   /* Anything else.  */
2140                   STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2141 
2142                 /* We've added more stuff to the buffer.  */
2143                 b += 3;
2144               }
2145 
2146             /* On failure, jump from laststart to b + 3, which will be the
2147                end of the buffer after this jump is inserted.  */
2148             GET_BUFFER_SPACE (3);
2149             INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2150                                        : on_failure_jump,
2151                          laststart, b + 3);
2152             pending_exact = 0;
2153             b += 3;
2154 
2155             if (!zero_times_ok)
2156               {
2157                 /* At least one repetition is required, so insert a
2158                    `dummy_failure_jump' before the initial
2159                    `on_failure_jump' instruction of the loop. This
2160                    effects a skip over that instruction the first time
2161                    we hit that loop.  */
2162                 GET_BUFFER_SPACE (3);
2163                 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2164                 b += 3;
2165               }
2166             }
2167 	  break;
2168 
2169 
2170 	case '.':
2171           laststart = b;
2172           BUF_PUSH (anychar);
2173           break;
2174 
2175 
2176         case '[':
2177           {
2178             boolean had_char_class = false;
2179 
2180             if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2181 
2182             /* Ensure that we have enough space to push a charset: the
2183                opcode, the length count, and the bitset; 34 bytes in all.  */
2184 	    GET_BUFFER_SPACE (34);
2185 
2186             laststart = b;
2187 
2188             /* We test `*p == '^' twice, instead of using an if
2189                statement, so we only need one BUF_PUSH.  */
2190             BUF_PUSH (*p == '^' ? charset_not : charset);
2191             if (*p == '^')
2192               p++;
2193 
2194             /* Remember the first position in the bracket expression.  */
2195             p1 = p;
2196 
2197             /* Push the number of bytes in the bitmap.  */
2198             BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2199 
2200             /* Clear the whole map.  */
2201             memset (b, 0, (1 << BYTEWIDTH) / BYTEWIDTH);
2202 
2203             /* charset_not matches newline according to a syntax bit.  */
2204             if ((re_opcode_t) b[-2] == charset_not
2205                 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2206               SET_LIST_BIT ('\n');
2207 
2208             /* Read in characters and ranges, setting map bits.  */
2209             for (;;)
2210               {
2211                 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2212 
2213                 PATFETCH (c);
2214 
2215                 /* \ might escape characters inside [...] and [^...].  */
2216                 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2217                   {
2218                     if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2219 
2220                     PATFETCH (c1);
2221                     SET_LIST_BIT (c1);
2222                     continue;
2223                   }
2224 
2225                 /* Could be the end of the bracket expression.  If it's
2226                    not (i.e., when the bracket expression is `[]' so
2227                    far), the ']' character bit gets set way below.  */
2228                 if (c == ']' && p != p1 + 1)
2229                   break;
2230 
2231                 /* Look ahead to see if it's a range when the last thing
2232                    was a character class.  */
2233                 if (had_char_class && c == '-' && *p != ']')
2234                   FREE_STACK_RETURN (REG_ERANGE);
2235 
2236                 /* Look ahead to see if it's a range when the last thing
2237                    was a character: if this is a hyphen not at the
2238                    beginning or the end of a list, then it's the range
2239                    operator.  */
2240                 if (c == '-'
2241                     && !(p - 2 >= pattern && p[-2] == '[')
2242                     && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2243                     && *p != ']')
2244                   {
2245                     reg_errcode_t ret
2246                       = compile_range (&p, pend, translate, syntax, b);
2247                     if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2248                   }
2249 
2250                 else if (p[0] == '-' && p[1] != ']')
2251                   { /* This handles ranges made up of characters only.  */
2252                     reg_errcode_t ret;
2253 
2254 		    /* Move past the `-'.  */
2255                     PATFETCH (c1);
2256 
2257                     ret = compile_range (&p, pend, translate, syntax, b);
2258                     if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2259                   }
2260 
2261                 /* See if we're at the beginning of a possible character
2262                    class.  */
2263 
2264                 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2265                   { /* Leave room for the null.  */
2266                     char str[CHAR_CLASS_MAX_LENGTH + 1];
2267 
2268                     PATFETCH (c);
2269                     c1 = 0;
2270 
2271                     /* If pattern is `[[:'.  */
2272                     if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2273 
2274                     for (;;)
2275                       {
2276                         PATFETCH (c);
2277                         if ((c == ':' && *p == ']') || p == pend)
2278                           break;
2279 			if (c1 < CHAR_CLASS_MAX_LENGTH)
2280 			  str[c1++] = c;
2281 			else
2282 			  /* This is in any case an invalid class name.  */
2283 			  str[0] = '\0';
2284                       }
2285                     str[c1] = '\0';
2286 
2287                     /* If isn't a word bracketed by `[:' and `:]':
2288                        undo the ending character, the letters, and leave
2289                        the leading `:' and `[' (but set bits for them).  */
2290                     if (c == ':' && *p == ']')
2291                       {
2292 #if defined _LIBC || WIDE_CHAR_SUPPORT
2293                         boolean is_lower = STREQ (str, "lower");
2294                         boolean is_upper = STREQ (str, "upper");
2295 			wctype_t wt;
2296                         int ch;
2297 
2298 			wt = IS_CHAR_CLASS (str);
2299 			if (wt == 0)
2300 			  FREE_STACK_RETURN (REG_ECTYPE);
2301 
2302                         /* Throw away the ] at the end of the character
2303                            class.  */
2304                         PATFETCH (c);
2305 
2306                         if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2307 
2308                         for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2309 			  {
2310 # ifdef _LIBC
2311 			    if (__iswctype (__btowc (ch), wt))
2312 			      SET_LIST_BIT (ch);
2313 # else
2314 			    if (iswctype (btowc (ch), wt))
2315 			      SET_LIST_BIT (ch);
2316 # endif
2317 
2318 			    if (translate && (is_upper || is_lower)
2319 				&& (ISUPPER (ch) || ISLOWER (ch)))
2320 			      SET_LIST_BIT (ch);
2321 			  }
2322 
2323                         had_char_class = true;
2324 #else
2325                         int ch;
2326                         boolean is_alnum = STREQ (str, "alnum");
2327                         boolean is_alpha = STREQ (str, "alpha");
2328                         boolean is_blank = STREQ (str, "blank");
2329                         boolean is_cntrl = STREQ (str, "cntrl");
2330                         boolean is_digit = STREQ (str, "digit");
2331                         boolean is_graph = STREQ (str, "graph");
2332                         boolean is_lower = STREQ (str, "lower");
2333                         boolean is_print = STREQ (str, "print");
2334                         boolean is_punct = STREQ (str, "punct");
2335                         boolean is_space = STREQ (str, "space");
2336                         boolean is_upper = STREQ (str, "upper");
2337                         boolean is_xdigit = STREQ (str, "xdigit");
2338 
2339                         if (!IS_CHAR_CLASS (str))
2340 			  FREE_STACK_RETURN (REG_ECTYPE);
2341 
2342                         /* Throw away the ] at the end of the character
2343                            class.  */
2344                         PATFETCH (c);
2345 
2346                         if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2347 
2348                         for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2349                           {
2350 			    /* This was split into 3 if's to
2351 			       avoid an arbitrary limit in some compiler.  */
2352                             if (   (is_alnum  && ISALNUM (ch))
2353                                 || (is_alpha  && ISALPHA (ch))
2354                                 || (is_blank  && ISBLANK (ch))
2355                                 || (is_cntrl  && ISCNTRL (ch)))
2356 			      SET_LIST_BIT (ch);
2357 			    if (   (is_digit  && ISDIGIT (ch))
2358                                 || (is_graph  && ISGRAPH (ch))
2359                                 || (is_lower  && ISLOWER (ch))
2360                                 || (is_print  && ISPRINT (ch)))
2361 			      SET_LIST_BIT (ch);
2362 			    if (   (is_punct  && ISPUNCT (ch))
2363                                 || (is_space  && ISSPACE (ch))
2364                                 || (is_upper  && ISUPPER (ch))
2365                                 || (is_xdigit && ISXDIGIT (ch)))
2366 			      SET_LIST_BIT (ch);
2367 			    if (   translate && (is_upper || is_lower)
2368 				&& (ISUPPER (ch) || ISLOWER (ch)))
2369 			      SET_LIST_BIT (ch);
2370                           }
2371                         had_char_class = true;
2372 #endif	/* libc || wctype.h */
2373                       }
2374                     else
2375                       {
2376                         c1++;
2377                         while (c1--)
2378                           PATUNFETCH;
2379                         SET_LIST_BIT ('[');
2380                         SET_LIST_BIT (':');
2381                         had_char_class = false;
2382                       }
2383                   }
2384                 else
2385                   {
2386                     had_char_class = false;
2387                     SET_LIST_BIT (c);
2388                   }
2389               }
2390 
2391             /* Discard any (non)matching list bytes that are all 0 at the
2392                end of the map.  Decrease the map-length byte too.  */
2393             while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2394               b[-1]--;
2395             b += b[-1];
2396           }
2397           break;
2398 
2399 
2400 	case '(':
2401           if (syntax & RE_NO_BK_PARENS)
2402             goto handle_open;
2403           else
2404             goto normal_char;
2405 
2406 
2407         case ')':
2408           if (syntax & RE_NO_BK_PARENS)
2409             goto handle_close;
2410           else
2411             goto normal_char;
2412 
2413 
2414         case '\n':
2415           if (syntax & RE_NEWLINE_ALT)
2416             goto handle_alt;
2417           else
2418             goto normal_char;
2419 
2420 
2421 	case '|':
2422           if (syntax & RE_NO_BK_VBAR)
2423             goto handle_alt;
2424           else
2425             goto normal_char;
2426 
2427 
2428         case '{':
2429            if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2430              goto handle_interval;
2431            else
2432              goto normal_char;
2433 
2434 
2435         case '\\':
2436           if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2437 
2438           /* Do not translate the character after the \, so that we can
2439              distinguish, e.g., \B from \b, even if we normally would
2440              translate, e.g., B to b.  */
2441           PATFETCH_RAW (c);
2442 
2443           switch (c)
2444             {
2445             case '(':
2446               if (syntax & RE_NO_BK_PARENS)
2447                 goto normal_backslash;
2448 
2449             handle_open:
2450               bufp->re_nsub++;
2451               regnum++;
2452 
2453               if (COMPILE_STACK_FULL)
2454                 {
2455                   RETALLOC (compile_stack.stack, compile_stack.size << 1,
2456                             compile_stack_elt_t);
2457                   if (compile_stack.stack == NULL) return REG_ESPACE;
2458 
2459                   compile_stack.size <<= 1;
2460                 }
2461 
2462               /* These are the values to restore when we hit end of this
2463                  group.  They are all relative offsets, so that if the
2464                  whole pattern moves because of realloc, they will still
2465                  be valid.  */
2466               COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2467               COMPILE_STACK_TOP.fixup_alt_jump
2468                 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2469               COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2470               COMPILE_STACK_TOP.regnum = regnum;
2471 
2472               /* We will eventually replace the 0 with the number of
2473                  groups inner to this one.  But do not push a
2474                  start_memory for groups beyond the last one we can
2475                  represent in the compiled pattern.  */
2476               if (regnum <= MAX_REGNUM)
2477                 {
2478                   COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2479                   BUF_PUSH_3 (start_memory, regnum, 0);
2480                 }
2481 
2482               compile_stack.avail++;
2483 
2484               fixup_alt_jump = 0;
2485               laststart = 0;
2486               begalt = b;
2487 	      /* If we've reached MAX_REGNUM groups, then this open
2488 		 won't actually generate any code, so we'll have to
2489 		 clear pending_exact explicitly.  */
2490 	      pending_exact = 0;
2491               break;
2492 
2493 
2494             case ')':
2495               if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2496 
2497               if (COMPILE_STACK_EMPTY)
2498 		{
2499 		  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2500 		    goto normal_backslash;
2501 		  else
2502 		    FREE_STACK_RETURN (REG_ERPAREN);
2503 		}
2504 
2505             handle_close:
2506               if (fixup_alt_jump)
2507                 { /* Push a dummy failure point at the end of the
2508                      alternative for a possible future
2509                      `pop_failure_jump' to pop.  See comments at
2510                      `push_dummy_failure' in `re_match_2'.  */
2511                   BUF_PUSH (push_dummy_failure);
2512 
2513                   /* We allocated space for this jump when we assigned
2514                      to `fixup_alt_jump', in the `handle_alt' case below.  */
2515                   STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2516                 }
2517 
2518               /* See similar code for backslashed left paren above.  */
2519               if (COMPILE_STACK_EMPTY)
2520 		{
2521 		  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2522 		    goto normal_char;
2523 		  else
2524 		    FREE_STACK_RETURN (REG_ERPAREN);
2525 		}
2526 
2527               /* Since we just checked for an empty stack above, this
2528                  ``can't happen''.  */
2529               assert (compile_stack.avail != 0);
2530               {
2531                 /* We don't just want to restore into `regnum', because
2532                    later groups should continue to be numbered higher,
2533                    as in `(ab)c(de)' -- the second group is #2.  */
2534                 regnum_t this_group_regnum;
2535 
2536                 compile_stack.avail--;
2537                 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2538                 fixup_alt_jump
2539                   = COMPILE_STACK_TOP.fixup_alt_jump
2540                     ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2541                     : 0;
2542                 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2543                 this_group_regnum = COMPILE_STACK_TOP.regnum;
2544 		/* If we've reached MAX_REGNUM groups, then this open
2545 		   won't actually generate any code, so we'll have to
2546 		   clear pending_exact explicitly.  */
2547 		pending_exact = 0;
2548 
2549                 /* We're at the end of the group, so now we know how many
2550                    groups were inside this one.  */
2551                 if (this_group_regnum <= MAX_REGNUM)
2552                   {
2553                     unsigned char *inner_group_loc
2554                       = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2555 
2556                     *inner_group_loc = regnum - this_group_regnum;
2557                     BUF_PUSH_3 (stop_memory, this_group_regnum,
2558                                 regnum - this_group_regnum);
2559                   }
2560               }
2561               break;
2562 
2563 
2564             case '|':					/* `\|'.  */
2565               if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2566                 goto normal_backslash;
2567             handle_alt:
2568               if (syntax & RE_LIMITED_OPS)
2569                 goto normal_char;
2570 
2571               /* Insert before the previous alternative a jump which
2572                  jumps to this alternative if the former fails.  */
2573               GET_BUFFER_SPACE (3);
2574               INSERT_JUMP (on_failure_jump, begalt, b + 6);
2575               pending_exact = 0;
2576               b += 3;
2577 
2578               /* The alternative before this one has a jump after it
2579                  which gets executed if it gets matched.  Adjust that
2580                  jump so it will jump to this alternative's analogous
2581                  jump (put in below, which in turn will jump to the next
2582                  (if any) alternative's such jump, etc.).  The last such
2583                  jump jumps to the correct final destination.  A picture:
2584                           _____ _____
2585                           |   | |   |
2586                           |   v |   v
2587                          a | b   | c
2588 
2589                  If we are at `b', then fixup_alt_jump right now points to a
2590                  three-byte space after `a'.  We'll put in the jump, set
2591                  fixup_alt_jump to right after `b', and leave behind three
2592                  bytes which we'll fill in when we get to after `c'.  */
2593 
2594               if (fixup_alt_jump)
2595                 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2596 
2597               /* Mark and leave space for a jump after this alternative,
2598                  to be filled in later either by next alternative or
2599                  when know we're at the end of a series of alternatives.  */
2600               fixup_alt_jump = b;
2601               GET_BUFFER_SPACE (3);
2602               b += 3;
2603 
2604               laststart = 0;
2605               begalt = b;
2606               break;
2607 
2608 
2609             case '{':
2610               /* If \{ is a literal.  */
2611               if (!(syntax & RE_INTERVALS)
2612                      /* If we're at `\{' and it's not the open-interval
2613                         operator.  */
2614                   || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2615                   || (p - 2 == pattern  &&  p == pend))
2616                 goto normal_backslash;
2617 
2618             handle_interval:
2619               {
2620                 /* If got here, then the syntax allows intervals.  */
2621 
2622                 /* At least (most) this many matches must be made.  */
2623                 int lower_bound = -1, upper_bound = -1;
2624 
2625                 beg_interval = p - 1;
2626 
2627                 if (p == pend)
2628                   {
2629                     if (syntax & RE_NO_BK_BRACES)
2630                       goto unfetch_interval;
2631                     else
2632                       FREE_STACK_RETURN (REG_EBRACE);
2633                   }
2634 
2635                 GET_UNSIGNED_NUMBER (lower_bound);
2636 
2637                 if (c == ',')
2638                   {
2639                     GET_UNSIGNED_NUMBER (upper_bound);
2640                     if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2641                   }
2642                 else
2643                   /* Interval such as `{1}' => match exactly once. */
2644                   upper_bound = lower_bound;
2645 
2646                 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2647                     || lower_bound > upper_bound)
2648                   {
2649                     if (syntax & RE_NO_BK_BRACES)
2650                       goto unfetch_interval;
2651                     else
2652                       FREE_STACK_RETURN (REG_BADBR);
2653                   }
2654 
2655                 if (!(syntax & RE_NO_BK_BRACES))
2656                   {
2657                     if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2658 
2659                     PATFETCH (c);
2660                   }
2661 
2662                 if (c != '}')
2663                   {
2664                     if (syntax & RE_NO_BK_BRACES)
2665                       goto unfetch_interval;
2666                     else
2667                       FREE_STACK_RETURN (REG_BADBR);
2668                   }
2669 
2670                 /* We just parsed a valid interval.  */
2671 
2672                 /* If it's invalid to have no preceding re.  */
2673                 if (!laststart)
2674                   {
2675                     if (syntax & RE_CONTEXT_INVALID_OPS)
2676                       FREE_STACK_RETURN (REG_BADRPT);
2677                     else if (syntax & RE_CONTEXT_INDEP_OPS)
2678                       laststart = b;
2679                     else
2680                       goto unfetch_interval;
2681                   }
2682 
2683                 /* If the upper bound is zero, don't want to succeed at
2684                    all; jump from `laststart' to `b + 3', which will be
2685                    the end of the buffer after we insert the jump.  */
2686                  if (upper_bound == 0)
2687                    {
2688                      GET_BUFFER_SPACE (3);
2689                      INSERT_JUMP (jump, laststart, b + 3);
2690                      b += 3;
2691                    }
2692 
2693                  /* Otherwise, we have a nontrivial interval.  When
2694                     we're all done, the pattern will look like:
2695                       set_number_at <jump count> <upper bound>
2696                       set_number_at <succeed_n count> <lower bound>
2697                       succeed_n <after jump addr> <succeed_n count>
2698                       <body of loop>
2699                       jump_n <succeed_n addr> <jump count>
2700                     (The upper bound and `jump_n' are omitted if
2701                     `upper_bound' is 1, though.)  */
2702                  else
2703                    { /* If the upper bound is > 1, we need to insert
2704                         more at the end of the loop.  */
2705                      unsigned nbytes = 10 + (upper_bound > 1) * 10;
2706 
2707                      GET_BUFFER_SPACE (nbytes);
2708 
2709                      /* Initialize lower bound of the `succeed_n', even
2710                         though it will be set during matching by its
2711                         attendant `set_number_at' (inserted next),
2712                         because `re_compile_fastmap' needs to know.
2713                         Jump to the `jump_n' we might insert below.  */
2714                      INSERT_JUMP2 (succeed_n, laststart,
2715                                    b + 5 + (upper_bound > 1) * 5,
2716                                    lower_bound);
2717                      b += 5;
2718 
2719                      /* Code to initialize the lower bound.  Insert
2720                         before the `succeed_n'.  The `5' is the last two
2721                         bytes of this `set_number_at', plus 3 bytes of
2722                         the following `succeed_n'.  */
2723                      insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2724                      b += 5;
2725 
2726                      if (upper_bound > 1)
2727                        { /* More than one repetition is allowed, so
2728                             append a backward jump to the `succeed_n'
2729                             that starts this interval.
2730 
2731                             When we've reached this during matching,
2732                             we'll have matched the interval once, so
2733                             jump back only `upper_bound - 1' times.  */
2734                          STORE_JUMP2 (jump_n, b, laststart + 5,
2735                                       upper_bound - 1);
2736                          b += 5;
2737 
2738                          /* The location we want to set is the second
2739                             parameter of the `jump_n'; that is `b-2' as
2740                             an absolute address.  `laststart' will be
2741                             the `set_number_at' we're about to insert;
2742                             `laststart+3' the number to set, the source
2743                             for the relative address.  But we are
2744                             inserting into the middle of the pattern --
2745                             so everything is getting moved up by 5.
2746                             Conclusion: (b - 2) - (laststart + 3) + 5,
2747                             i.e., b - laststart.
2748 
2749                             We insert this at the beginning of the loop
2750                             so that if we fail during matching, we'll
2751                             reinitialize the bounds.  */
2752                          insert_op2 (set_number_at, laststart, b - laststart,
2753                                      upper_bound - 1, b);
2754                          b += 5;
2755                        }
2756                    }
2757                 pending_exact = 0;
2758                 beg_interval = NULL;
2759               }
2760               break;
2761 
2762             unfetch_interval:
2763               /* If an invalid interval, match the characters as literals.  */
2764                assert (beg_interval);
2765                p = beg_interval;
2766                beg_interval = NULL;
2767 
2768                /* normal_char and normal_backslash need `c'.  */
2769                PATFETCH (c);
2770 
2771                if (!(syntax & RE_NO_BK_BRACES))
2772                  {
2773                    if (p > pattern  &&  p[-1] == '\\')
2774                      goto normal_backslash;
2775                  }
2776                goto normal_char;
2777 
2778 #ifdef emacs
2779             /* There is no way to specify the before_dot and after_dot
2780                operators.  rms says this is ok.  --karl  */
2781             case '=':
2782               BUF_PUSH (at_dot);
2783               break;
2784 
2785             case 's':
2786               laststart = b;
2787               PATFETCH (c);
2788               BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2789               break;
2790 
2791             case 'S':
2792               laststart = b;
2793               PATFETCH (c);
2794               BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2795               break;
2796 #endif /* emacs */
2797 
2798 
2799             case 'w':
2800 	      if (syntax & RE_NO_GNU_OPS)
2801 		goto normal_char;
2802               laststart = b;
2803               BUF_PUSH (wordchar);
2804               break;
2805 
2806 
2807             case 'W':
2808 	      if (syntax & RE_NO_GNU_OPS)
2809 		goto normal_char;
2810               laststart = b;
2811               BUF_PUSH (notwordchar);
2812               break;
2813 
2814 
2815             case '<':
2816 	      if (syntax & RE_NO_GNU_OPS)
2817 		goto normal_char;
2818               BUF_PUSH (wordbeg);
2819               break;
2820 
2821             case '>':
2822 	      if (syntax & RE_NO_GNU_OPS)
2823 		goto normal_char;
2824               BUF_PUSH (wordend);
2825               break;
2826 
2827             case 'b':
2828 	      if (syntax & RE_NO_GNU_OPS)
2829 		goto normal_char;
2830               BUF_PUSH (wordbound);
2831               break;
2832 
2833             case 'B':
2834 	      if (syntax & RE_NO_GNU_OPS)
2835 		goto normal_char;
2836               BUF_PUSH (notwordbound);
2837               break;
2838 
2839             case '`':
2840 	      if (syntax & RE_NO_GNU_OPS)
2841 		goto normal_char;
2842               BUF_PUSH (begbuf);
2843               break;
2844 
2845             case '\'':
2846 	      if (syntax & RE_NO_GNU_OPS)
2847 		goto normal_char;
2848               BUF_PUSH (endbuf);
2849               break;
2850 
2851             case '1': case '2': case '3': case '4': case '5':
2852             case '6': case '7': case '8': case '9':
2853               if (syntax & RE_NO_BK_REFS)
2854                 goto normal_char;
2855 
2856               c1 = c - '0';
2857 
2858               if (c1 > regnum)
2859                 FREE_STACK_RETURN (REG_ESUBREG);
2860 
2861               /* Can't back reference to a subexpression if inside of it.  */
2862               if (group_in_compile_stack (compile_stack, (regnum_t) c1))
2863                 goto normal_char;
2864 
2865               laststart = b;
2866               BUF_PUSH_2 (duplicate, c1);
2867               break;
2868 
2869 
2870             case '+':
2871             case '?':
2872               if (syntax & RE_BK_PLUS_QM)
2873                 goto handle_plus;
2874               else
2875                 goto normal_backslash;
2876 
2877             default:
2878             normal_backslash:
2879               /* You might think it would be useful for \ to mean
2880                  not to translate; but if we don't translate it
2881                  it will never match anything.  */
2882               c = TRANSLATE (c);
2883               goto normal_char;
2884             }
2885           break;
2886 
2887 
2888 	default:
2889         /* Expects the character in `c'.  */
2890 	normal_char:
2891 	      /* If no exactn currently being built.  */
2892           if (!pending_exact
2893 
2894               /* If last exactn not at current position.  */
2895               || pending_exact + *pending_exact + 1 != b
2896 
2897               /* We have only one byte following the exactn for the count.  */
2898 	      || *pending_exact == (1 << BYTEWIDTH) - 1
2899 
2900               /* If followed by a repetition operator.  */
2901               || *p == '*' || *p == '^'
2902 	      || ((syntax & RE_BK_PLUS_QM)
2903 		  ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2904 		  : (*p == '+' || *p == '?'))
2905 	      || ((syntax & RE_INTERVALS)
2906                   && ((syntax & RE_NO_BK_BRACES)
2907 		      ? *p == '{'
2908                       : (p[0] == '\\' && p[1] == '{'))))
2909 	    {
2910 	      /* Start building a new exactn.  */
2911 
2912               laststart = b;
2913 
2914 	      BUF_PUSH_2 (exactn, 0);
2915 	      pending_exact = b - 1;
2916             }
2917 
2918 	  BUF_PUSH (c);
2919           (*pending_exact)++;
2920 	  break;
2921         } /* switch (c) */
2922     } /* while p != pend */
2923 
2924 
2925   /* Through the pattern now.  */
2926 
2927   if (fixup_alt_jump)
2928     STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2929 
2930   if (!COMPILE_STACK_EMPTY)
2931     FREE_STACK_RETURN (REG_EPAREN);
2932 
2933   /* If we don't want backtracking, force success
2934      the first time we reach the end of the compiled pattern.  */
2935   if (syntax & RE_NO_POSIX_BACKTRACKING)
2936     BUF_PUSH (succeed);
2937 
2938   free (compile_stack.stack);
2939 
2940   /* We have succeeded; set the length of the buffer.  */
2941   bufp->used = b - bufp->buffer;
2942 
2943 #ifdef DEBUG
2944   if (debug)
2945     {
2946       DEBUG_PRINT1 ("\nCompiled pattern: \n");
2947       print_compiled_pattern (bufp);
2948     }
2949 #endif /* DEBUG */
2950 
2951 #ifndef MATCH_MAY_ALLOCATE
2952   /* Initialize the failure stack to the largest possible stack.  This
2953      isn't necessary unless we're trying to avoid calling alloca in
2954      the search and match routines.  */
2955   {
2956     int num_regs = bufp->re_nsub + 1;
2957 
2958     /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2959        is strictly greater than re_max_failures, the largest possible stack
2960        is 2 * re_max_failures failure points.  */
2961     if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2962       {
2963 	fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2964 
2965 # ifdef emacs
2966 	if (! fail_stack.stack)
2967 	  fail_stack.stack
2968 	    = (fail_stack_elt_t *) xmalloc (fail_stack.size
2969 					    * sizeof (fail_stack_elt_t));
2970 	else
2971 	  fail_stack.stack
2972 	    = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2973 					     (fail_stack.size
2974 					      * sizeof (fail_stack_elt_t)));
2975 # else /* not emacs */
2976 	if (! fail_stack.stack)
2977 	  fail_stack.stack
2978 	    = (fail_stack_elt_t *) malloc (fail_stack.size
2979 					   * sizeof (fail_stack_elt_t));
2980 	else
2981 	  fail_stack.stack
2982 	    = (fail_stack_elt_t *) realloc (fail_stack.stack,
2983 					    (fail_stack.size
2984 					     * sizeof (fail_stack_elt_t)));
2985 # endif /* not emacs */
2986       }
2987 
2988     regex_grow_registers (num_regs);
2989   }
2990 #endif /* not MATCH_MAY_ALLOCATE */
2991 
2992   return REG_NOERROR;
2993 } /* regex_compile */
2994 
2995 /* Subroutines for `regex_compile'.  */
2996 
2997 /* Store OP at LOC followed by two-byte integer parameter ARG.  */
2998 
2999 static void
store_op1(op,loc,arg)3000 store_op1 (op, loc, arg)
3001     re_opcode_t op;
3002     unsigned char *loc;
3003     int arg;
3004 {
3005   *loc = (unsigned char) op;
3006   STORE_NUMBER (loc + 1, arg);
3007 }
3008 
3009 
3010 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
3011 
3012 static void
store_op2(op,loc,arg1,arg2)3013 store_op2 (op, loc, arg1, arg2)
3014     re_opcode_t op;
3015     unsigned char *loc;
3016     int arg1, arg2;
3017 {
3018   *loc = (unsigned char) op;
3019   STORE_NUMBER (loc + 1, arg1);
3020   STORE_NUMBER (loc + 3, arg2);
3021 }
3022 
3023 
3024 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3025    for OP followed by two-byte integer parameter ARG.  */
3026 
3027 static void
insert_op1(op,loc,arg,end)3028 insert_op1 (op, loc, arg, end)
3029     re_opcode_t op;
3030     unsigned char *loc;
3031     int arg;
3032     unsigned char *end;
3033 {
3034   register unsigned char *pfrom = end;
3035   register unsigned char *pto = end + 3;
3036 
3037   while (pfrom != loc)
3038     *--pto = *--pfrom;
3039 
3040   store_op1 (op, loc, arg);
3041 }
3042 
3043 
3044 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
3045 
3046 static void
insert_op2(op,loc,arg1,arg2,end)3047 insert_op2 (op, loc, arg1, arg2, end)
3048     re_opcode_t op;
3049     unsigned char *loc;
3050     int arg1, arg2;
3051     unsigned char *end;
3052 {
3053   register unsigned char *pfrom = end;
3054   register unsigned char *pto = end + 5;
3055 
3056   while (pfrom != loc)
3057     *--pto = *--pfrom;
3058 
3059   store_op2 (op, loc, arg1, arg2);
3060 }
3061 
3062 
3063 /* P points to just after a ^ in PATTERN.  Return true if that ^ comes
3064    after an alternative or a begin-subexpression.  We assume there is at
3065    least one character before the ^.  */
3066 
3067 static boolean
at_begline_loc_p(pattern,p,syntax)3068 at_begline_loc_p (pattern, p, syntax)
3069     const char *pattern, *p;
3070     reg_syntax_t syntax;
3071 {
3072   const char *prev = p - 2;
3073   boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
3074 
3075   return
3076        /* After a subexpression?  */
3077        (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3078        /* After an alternative?  */
3079     || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
3080 }
3081 
3082 
3083 /* The dual of at_begline_loc_p.  This one is for $.  We assume there is
3084    at least one character after the $, i.e., `P < PEND'.  */
3085 
3086 static boolean
at_endline_loc_p(p,pend,syntax)3087 at_endline_loc_p (p, pend, syntax)
3088     const char *p, *pend;
3089     reg_syntax_t syntax;
3090 {
3091   const char *next = p;
3092   boolean next_backslash = *next == '\\';
3093   const char *next_next = p + 1 < pend ? p + 1 : 0;
3094 
3095   return
3096        /* Before a subexpression?  */
3097        (syntax & RE_NO_BK_PARENS ? *next == ')'
3098         : next_backslash && next_next && *next_next == ')')
3099        /* Before an alternative?  */
3100     || (syntax & RE_NO_BK_VBAR ? *next == '|'
3101         : next_backslash && next_next && *next_next == '|');
3102 }
3103 
3104 
3105 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3106    false if it's not.  */
3107 
3108 static boolean
group_in_compile_stack(compile_stack,regnum)3109 group_in_compile_stack (compile_stack, regnum)
3110     compile_stack_type compile_stack;
3111     regnum_t regnum;
3112 {
3113   int this_element;
3114 
3115   for (this_element = compile_stack.avail - 1;
3116        this_element >= 0;
3117        this_element--)
3118     if (compile_stack.stack[this_element].regnum == regnum)
3119       return true;
3120 
3121   return false;
3122 }
3123 
3124 
3125 /* Read the ending character of a range (in a bracket expression) from the
3126    uncompiled pattern *P_PTR (which ends at PEND).  We assume the
3127    starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
3128    Then we set the translation of all bits between the starting and
3129    ending characters (inclusive) in the compiled pattern B.
3130 
3131    Return an error code.
3132 
3133    We use these short variable names so we can use the same macros as
3134    `regex_compile' itself.  */
3135 
3136 static reg_errcode_t
compile_range(p_ptr,pend,translate,syntax,b)3137 compile_range (p_ptr, pend, translate, syntax, b)
3138     const char **p_ptr, *pend;
3139     RE_TRANSLATE_TYPE translate;
3140     reg_syntax_t syntax;
3141     unsigned char *b;
3142 {
3143   unsigned this_char;
3144 
3145   const char *p = *p_ptr;
3146   unsigned int range_start, range_end;
3147 
3148   if (p == pend)
3149     return REG_ERANGE;
3150 
3151   /* Even though the pattern is a signed `char *', we need to fetch
3152      with unsigned char *'s; if the high bit of the pattern character
3153      is set, the range endpoints will be negative if we fetch using a
3154      signed char *.
3155 
3156      We also want to fetch the endpoints without translating them; the
3157      appropriate translation is done in the bit-setting loop below.  */
3158   /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *.  */
3159   range_start = ((const unsigned char *) p)[-2];
3160   range_end   = ((const unsigned char *) p)[0];
3161 
3162   /* Have to increment the pointer into the pattern string, so the
3163      caller isn't still at the ending character.  */
3164   (*p_ptr)++;
3165 
3166   /* If the start is after the end, the range is empty.  */
3167   if (range_start > range_end)
3168     return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
3169 
3170   /* Here we see why `this_char' has to be larger than an `unsigned
3171      char' -- the range is inclusive, so if `range_end' == 0xff
3172      (assuming 8-bit characters), we would otherwise go into an infinite
3173      loop, since all characters <= 0xff.  */
3174   for (this_char = range_start; this_char <= range_end; this_char++)
3175     {
3176       SET_LIST_BIT (TRANSLATE (this_char));
3177     }
3178 
3179   return REG_NOERROR;
3180 }
3181 
3182 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3183    BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
3184    characters can start a string that matches the pattern.  This fastmap
3185    is used by re_search to skip quickly over impossible starting points.
3186 
3187    The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3188    area as BUFP->fastmap.
3189 
3190    We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3191    the pattern buffer.
3192 
3193    Returns 0 if we succeed, -2 if an internal error.   */
3194 
3195 int
re_compile_fastmap(bufp)3196 re_compile_fastmap (bufp)
3197      struct re_pattern_buffer *bufp;
3198 {
3199   int j, k;
3200 #ifdef MATCH_MAY_ALLOCATE
3201   fail_stack_type fail_stack;
3202 #endif
3203 #ifndef REGEX_MALLOC
3204   char *destination;
3205 #endif
3206 
3207   register char *fastmap = bufp->fastmap;
3208   unsigned char *pattern = bufp->buffer;
3209   unsigned char *p = pattern;
3210   register unsigned char *pend = pattern + bufp->used;
3211 
3212 #ifdef REL_ALLOC
3213   /* This holds the pointer to the failure stack, when
3214      it is allocated relocatably.  */
3215   fail_stack_elt_t *failure_stack_ptr;
3216 #endif
3217 
3218   /* Assume that each path through the pattern can be null until
3219      proven otherwise.  We set this false at the bottom of switch
3220      statement, to which we get only if a particular path doesn't
3221      match the empty string.  */
3222   boolean path_can_be_null = true;
3223 
3224   /* We aren't doing a `succeed_n' to begin with.  */
3225   boolean succeed_n_p = false;
3226 
3227   assert (fastmap != NULL && p != NULL);
3228 
3229   INIT_FAIL_STACK ();
3230   memset (fastmap, 0, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
3231   bufp->fastmap_accurate = 1;	    /* It will be when we're done.  */
3232   bufp->can_be_null = 0;
3233 
3234   while (1)
3235     {
3236       if (p == pend || *p == succeed)
3237 	{
3238 	  /* We have reached the (effective) end of pattern.  */
3239 	  if (!FAIL_STACK_EMPTY ())
3240 	    {
3241 	      bufp->can_be_null |= path_can_be_null;
3242 
3243 	      /* Reset for next path.  */
3244 	      path_can_be_null = true;
3245 
3246 	      p = fail_stack.stack[--fail_stack.avail].pointer;
3247 
3248 	      continue;
3249 	    }
3250 	  else
3251 	    break;
3252 	}
3253 
3254       /* We should never be about to go beyond the end of the pattern.  */
3255       assert (p < pend);
3256 
3257       switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3258 	{
3259 
3260         /* I guess the idea here is to simply not bother with a fastmap
3261            if a backreference is used, since it's too hard to figure out
3262            the fastmap for the corresponding group.  Setting
3263            `can_be_null' stops `re_search_2' from using the fastmap, so
3264            that is all we do.  */
3265 	case duplicate:
3266 	  bufp->can_be_null = 1;
3267           goto done;
3268 
3269 
3270       /* Following are the cases which match a character.  These end
3271          with `break'.  */
3272 
3273 	case exactn:
3274           fastmap[p[1]] = 1;
3275 	  break;
3276 
3277 
3278         case charset:
3279           for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3280 	    if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3281               fastmap[j] = 1;
3282 	  break;
3283 
3284 
3285 	case charset_not:
3286 	  /* Chars beyond end of map must be allowed.  */
3287 	  for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3288             fastmap[j] = 1;
3289 
3290 	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3291 	    if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3292               fastmap[j] = 1;
3293           break;
3294 
3295 
3296 	case wordchar:
3297 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
3298 	    if (SYNTAX (j) == Sword)
3299 	      fastmap[j] = 1;
3300 	  break;
3301 
3302 
3303 	case notwordchar:
3304 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
3305 	    if (SYNTAX (j) != Sword)
3306 	      fastmap[j] = 1;
3307 	  break;
3308 
3309 
3310         case anychar:
3311 	  {
3312 	    int fastmap_newline = fastmap['\n'];
3313 
3314 	    /* `.' matches anything ...  */
3315 	    for (j = 0; j < (1 << BYTEWIDTH); j++)
3316 	      fastmap[j] = 1;
3317 
3318 	    /* ... except perhaps newline.  */
3319 	    if (!(bufp->syntax & RE_DOT_NEWLINE))
3320 	      fastmap['\n'] = fastmap_newline;
3321 
3322 	    /* Return if we have already set `can_be_null'; if we have,
3323 	       then the fastmap is irrelevant.  Something's wrong here.  */
3324 	    else if (bufp->can_be_null)
3325 	      goto done;
3326 
3327 	    /* Otherwise, have to check alternative paths.  */
3328 	    break;
3329 	  }
3330 
3331 #ifdef emacs
3332         case syntaxspec:
3333 	  k = *p++;
3334 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
3335 	    if (SYNTAX (j) == (enum syntaxcode) k)
3336 	      fastmap[j] = 1;
3337 	  break;
3338 
3339 
3340 	case notsyntaxspec:
3341 	  k = *p++;
3342 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
3343 	    if (SYNTAX (j) != (enum syntaxcode) k)
3344 	      fastmap[j] = 1;
3345 	  break;
3346 
3347 
3348       /* All cases after this match the empty string.  These end with
3349          `continue'.  */
3350 
3351 
3352 	case before_dot:
3353 	case at_dot:
3354 	case after_dot:
3355           continue;
3356 #endif /* emacs */
3357 
3358 
3359         case no_op:
3360         case begline:
3361         case endline:
3362 	case begbuf:
3363 	case endbuf:
3364 	case wordbound:
3365 	case notwordbound:
3366 	case wordbeg:
3367 	case wordend:
3368         case push_dummy_failure:
3369           continue;
3370 
3371 
3372 	case jump_n:
3373         case pop_failure_jump:
3374 	case maybe_pop_jump:
3375 	case jump:
3376         case jump_past_alt:
3377 	case dummy_failure_jump:
3378           EXTRACT_NUMBER_AND_INCR (j, p);
3379 	  p += j;
3380 	  if (j > 0)
3381 	    continue;
3382 
3383           /* Jump backward implies we just went through the body of a
3384              loop and matched nothing.  Opcode jumped to should be
3385              `on_failure_jump' or `succeed_n'.  Just treat it like an
3386              ordinary jump.  For a * loop, it has pushed its failure
3387              point already; if so, discard that as redundant.  */
3388           if ((re_opcode_t) *p != on_failure_jump
3389 	      && (re_opcode_t) *p != succeed_n)
3390 	    continue;
3391 
3392           p++;
3393           EXTRACT_NUMBER_AND_INCR (j, p);
3394           p += j;
3395 
3396           /* If what's on the stack is where we are now, pop it.  */
3397           if (!FAIL_STACK_EMPTY ()
3398 	      && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3399             fail_stack.avail--;
3400 
3401           continue;
3402 
3403 
3404         case on_failure_jump:
3405         case on_failure_keep_string_jump:
3406 	handle_on_failure_jump:
3407           EXTRACT_NUMBER_AND_INCR (j, p);
3408 
3409           /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3410              end of the pattern.  We don't want to push such a point,
3411              since when we restore it above, entering the switch will
3412              increment `p' past the end of the pattern.  We don't need
3413              to push such a point since we obviously won't find any more
3414              fastmap entries beyond `pend'.  Such a pattern can match
3415              the null string, though.  */
3416           if (p + j < pend)
3417             {
3418               if (!PUSH_PATTERN_OP (p + j, fail_stack))
3419 		{
3420 		  RESET_FAIL_STACK ();
3421 		  return -2;
3422 		}
3423             }
3424           else
3425             bufp->can_be_null = 1;
3426 
3427           if (succeed_n_p)
3428             {
3429               EXTRACT_NUMBER_AND_INCR (k, p);	/* Skip the n.  */
3430               succeed_n_p = false;
3431 	    }
3432 
3433           continue;
3434 
3435 
3436 	case succeed_n:
3437           /* Get to the number of times to succeed.  */
3438           p += 2;
3439 
3440           /* Increment p past the n for when k != 0.  */
3441           EXTRACT_NUMBER_AND_INCR (k, p);
3442           if (k == 0)
3443 	    {
3444               p -= 4;
3445   	      succeed_n_p = true;  /* Spaghetti code alert.  */
3446               goto handle_on_failure_jump;
3447             }
3448           continue;
3449 
3450 
3451 	case set_number_at:
3452           p += 4;
3453           continue;
3454 
3455 
3456 	case start_memory:
3457         case stop_memory:
3458 	  p += 2;
3459 	  continue;
3460 
3461 
3462 	default:
3463           abort (); /* We have listed all the cases.  */
3464         } /* switch *p++ */
3465 
3466       /* Getting here means we have found the possible starting
3467          characters for one path of the pattern -- and that the empty
3468          string does not match.  We need not follow this path further.
3469          Instead, look at the next alternative (remembered on the
3470          stack), or quit if no more.  The test at the top of the loop
3471          does these things.  */
3472       path_can_be_null = false;
3473       p = pend;
3474     } /* while p */
3475 
3476   /* Set `can_be_null' for the last path (also the first path, if the
3477      pattern is empty).  */
3478   bufp->can_be_null |= path_can_be_null;
3479 
3480  done:
3481   RESET_FAIL_STACK ();
3482   return 0;
3483 } /* re_compile_fastmap */
3484 #ifdef _LIBC
3485 weak_alias (__re_compile_fastmap, re_compile_fastmap)
3486 #endif
3487 
3488 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3489    ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
3490    this memory for recording register information.  STARTS and ENDS
3491    must be allocated using the malloc library routine, and must each
3492    be at least NUM_REGS * sizeof (regoff_t) bytes long.
3493 
3494    If NUM_REGS == 0, then subsequent matches should allocate their own
3495    register data.
3496 
3497    Unless this function is called, the first search or match using
3498    PATTERN_BUFFER will allocate its own register data, without
3499    freeing the old data.  */
3500 
3501 void
3502 re_set_registers (bufp, regs, num_regs, starts, ends)
3503     struct re_pattern_buffer *bufp;
3504     struct re_registers *regs;
3505     unsigned num_regs;
3506     regoff_t *starts, *ends;
3507 {
3508   if (num_regs)
3509     {
3510       bufp->regs_allocated = REGS_REALLOCATE;
3511       regs->num_regs = num_regs;
3512       regs->start = starts;
3513       regs->end = ends;
3514     }
3515   else
3516     {
3517       bufp->regs_allocated = REGS_UNALLOCATED;
3518       regs->num_regs = 0;
3519       regs->start = regs->end = (regoff_t *) 0;
3520     }
3521 }
3522 #ifdef _LIBC
3523 weak_alias (__re_set_registers, re_set_registers)
3524 #endif
3525 
3526 /* Searching routines.  */
3527 
3528 /* Like re_search_2, below, but only one string is specified, and
3529    doesn't let you say where to stop matching. */
3530 
3531 int
3532 re_search (bufp, string, size, startpos, range, regs)
3533      struct re_pattern_buffer *bufp;
3534      const char *string;
3535      int size, startpos, range;
3536      struct re_registers *regs;
3537 {
3538   return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3539 		      regs, size);
3540 }
3541 #ifdef _LIBC
3542 weak_alias (__re_search, re_search)
3543 #endif
3544 
3545 
3546 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3547    virtual concatenation of STRING1 and STRING2, starting first at index
3548    STARTPOS, then at STARTPOS + 1, and so on.
3549 
3550    STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3551 
3552    RANGE is how far to scan while trying to match.  RANGE = 0 means try
3553    only at STARTPOS; in general, the last start tried is STARTPOS +
3554    RANGE.
3555 
3556    In REGS, return the indices of the virtual concatenation of STRING1
3557    and STRING2 that matched the entire BUFP->buffer and its contained
3558    subexpressions.
3559 
3560    Do not consider matching one past the index STOP in the virtual
3561    concatenation of STRING1 and STRING2.
3562 
3563    We return either the position in the strings at which the match was
3564    found, -1 if no match, or -2 if error (such as failure
3565    stack overflow).  */
3566 
3567 int
3568 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3569      struct re_pattern_buffer *bufp;
3570      const char *string1, *string2;
3571      int size1, size2;
3572      int startpos;
3573      int range;
3574      struct re_registers *regs;
3575      int stop;
3576 {
3577   int val;
3578   register char *fastmap = bufp->fastmap;
3579   register RE_TRANSLATE_TYPE translate = bufp->translate;
3580   int total_size = size1 + size2;
3581   int endpos = startpos + range;
3582 
3583   /* Check for out-of-range STARTPOS.  */
3584   if (startpos < 0 || startpos > total_size)
3585     return -1;
3586 
3587   /* Fix up RANGE if it might eventually take us outside
3588      the virtual concatenation of STRING1 and STRING2.
3589      Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
3590   if (endpos < 0)
3591     range = 0 - startpos;
3592   else if (endpos > total_size)
3593     range = total_size - startpos;
3594 
3595   /* If the search isn't to be a backwards one, don't waste time in a
3596      search for a pattern that must be anchored.  */
3597   if (bufp->used > 0 && range > 0
3598       && ((re_opcode_t) bufp->buffer[0] == begbuf
3599 	  /* `begline' is like `begbuf' if it cannot match at newlines.  */
3600 	  || ((re_opcode_t) bufp->buffer[0] == begline
3601 	      && !bufp->newline_anchor)))
3602     {
3603       if (startpos > 0)
3604 	return -1;
3605       else
3606 	range = 1;
3607     }
3608 
3609 #ifdef emacs
3610   /* In a forward search for something that starts with \=.
3611      don't keep searching past point.  */
3612   if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3613     {
3614       range = PT - startpos;
3615       if (range <= 0)
3616 	return -1;
3617     }
3618 #endif /* emacs */
3619 
3620   /* Update the fastmap now if not correct already.  */
3621   if (fastmap && !bufp->fastmap_accurate)
3622     if (re_compile_fastmap (bufp) == -2)
3623       return -2;
3624 
3625   /* Loop through the string, looking for a place to start matching.  */
3626   for (;;)
3627     {
3628       /* If a fastmap is supplied, skip quickly over characters that
3629          cannot be the start of a match.  If the pattern can match the
3630          null string, however, we don't need to skip characters; we want
3631          the first null string.  */
3632       if (fastmap && startpos < total_size && !bufp->can_be_null)
3633 	{
3634 	  if (range > 0)	/* Searching forwards.  */
3635 	    {
3636 	      register const char *d;
3637 	      register int lim = 0;
3638 	      int irange = range;
3639 
3640               if (startpos < size1 && startpos + range >= size1)
3641                 lim = range - (size1 - startpos);
3642 
3643 	      d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3644 
3645               /* Written out as an if-else to avoid testing `translate'
3646                  inside the loop.  */
3647 	      if (translate)
3648                 while (range > lim
3649                        && !fastmap[(unsigned char)
3650 				   translate[(unsigned char) *d++]])
3651                   range--;
3652 	      else
3653                 while (range > lim && !fastmap[(unsigned char) *d++])
3654                   range--;
3655 
3656 	      startpos += irange - range;
3657 	    }
3658 	  else				/* Searching backwards.  */
3659 	    {
3660 	      register char c = (size1 == 0 || startpos >= size1
3661                                  ? string2[startpos - size1]
3662                                  : string1[startpos]);
3663 
3664 	      if (!fastmap[(unsigned char) TRANSLATE (c)])
3665 		goto advance;
3666 	    }
3667 	}
3668 
3669       /* If can't match the null string, and that's all we have left, fail.  */
3670       if (range >= 0 && startpos == total_size && fastmap
3671           && !bufp->can_be_null)
3672 	return -1;
3673 
3674       val = re_match_2_internal (bufp, string1, size1, string2, size2,
3675 				 startpos, regs, stop);
3676 #ifndef REGEX_MALLOC
3677 # ifdef C_ALLOCA
3678       alloca (0);
3679 # endif
3680 #endif
3681 
3682       if (val >= 0)
3683 	return startpos;
3684 
3685       if (val == -2)
3686 	return -2;
3687 
3688     advance:
3689       if (!range)
3690         break;
3691       else if (range > 0)
3692         {
3693           range--;
3694           startpos++;
3695         }
3696       else
3697         {
3698           range++;
3699           startpos--;
3700         }
3701     }
3702   return -1;
3703 } /* re_search_2 */
3704 #ifdef _LIBC
3705 weak_alias (__re_search_2, re_search_2)
3706 #endif
3707 
3708 /* This converts PTR, a pointer into one of the search strings `string1'
3709    and `string2' into an offset from the beginning of that string.  */
3710 #define POINTER_TO_OFFSET(ptr)			\
3711   (FIRST_STRING_P (ptr)				\
3712    ? ((regoff_t) ((ptr) - string1))		\
3713    : ((regoff_t) ((ptr) - string2 + size1)))
3714 
3715 /* Macros for dealing with the split strings in re_match_2.  */
3716 
3717 #define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
3718 
3719 /* Call before fetching a character with *d.  This switches over to
3720    string2 if necessary.  */
3721 #define PREFETCH()							\
3722   while (d == dend)						    	\
3723     {									\
3724       /* End of string2 => fail.  */					\
3725       if (dend == end_match_2) 						\
3726         goto fail;							\
3727       /* End of string1 => advance to string2.  */ 			\
3728       d = string2;						        \
3729       dend = end_match_2;						\
3730     }
3731 
3732 
3733 /* Test if at very beginning or at very end of the virtual concatenation
3734    of `string1' and `string2'.  If only one string, it's `string2'.  */
3735 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3736 #define AT_STRINGS_END(d) ((d) == end2)
3737 
3738 
3739 /* Test if D points to a character which is word-constituent.  We have
3740    two special cases to check for: if past the end of string1, look at
3741    the first character in string2; and if before the beginning of
3742    string2, look at the last character in string1.  */
3743 #define WORDCHAR_P(d)							\
3744   (SYNTAX ((d) == end1 ? *string2					\
3745            : (d) == string2 - 1 ? *(end1 - 1) : *(d))			\
3746    == Sword)
3747 
3748 /* Disabled due to a compiler bug -- see comment at case wordbound */
3749 #if 0
3750 /* Test if the character before D and the one at D differ with respect
3751    to being word-constituent.  */
3752 #define AT_WORD_BOUNDARY(d)						\
3753   (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)				\
3754    || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3755 #endif
3756 
3757 /* Free everything we malloc.  */
3758 #ifdef MATCH_MAY_ALLOCATE
3759 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3760 # define FREE_VARIABLES()						\
3761   do {									\
3762     REGEX_FREE_STACK (fail_stack.stack);				\
3763     FREE_VAR (regstart);						\
3764     FREE_VAR (regend);							\
3765     FREE_VAR (old_regstart);						\
3766     FREE_VAR (old_regend);						\
3767     FREE_VAR (best_regstart);						\
3768     FREE_VAR (best_regend);						\
3769     FREE_VAR (reg_info);						\
3770     FREE_VAR (reg_dummy);						\
3771     FREE_VAR (reg_info_dummy);						\
3772   } while (0)
3773 #else
3774 # define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning. */
3775 #endif /* not MATCH_MAY_ALLOCATE */
3776 
3777 /* These values must meet several constraints.  They must not be valid
3778    register values; since we have a limit of 255 registers (because
3779    we use only one byte in the pattern for the register number), we can
3780    use numbers larger than 255.  They must differ by 1, because of
3781    NUM_FAILURE_ITEMS above.  And the value for the lowest register must
3782    be larger than the value for the highest register, so we do not try
3783    to actually save any registers when none are active.  */
3784 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3785 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3786 
3787 /* Matching routines.  */
3788 
3789 #ifndef emacs   /* Emacs never uses this.  */
3790 /* re_match is like re_match_2 except it takes only a single string.  */
3791 
3792 int
3793 re_match (bufp, string, size, pos, regs)
3794      struct re_pattern_buffer *bufp;
3795      const char *string;
3796      int size, pos;
3797      struct re_registers *regs;
3798 {
3799   int result = re_match_2_internal (bufp, NULL, 0, string, size,
3800 				    pos, regs, size);
3801 # ifndef REGEX_MALLOC
3802 #  ifdef C_ALLOCA
3803   alloca (0);
3804 #  endif
3805 # endif
3806   return result;
3807 }
3808 # ifdef _LIBC
3809 weak_alias (__re_match, re_match)
3810 # endif
3811 #endif /* not emacs */
3812 
3813 static boolean group_match_null_string_p _RE_ARGS ((unsigned char **p,
3814 						    unsigned char *end,
3815 						register_info_type *reg_info));
3816 static boolean alt_match_null_string_p _RE_ARGS ((unsigned char *p,
3817 						  unsigned char *end,
3818 						register_info_type *reg_info));
3819 static boolean common_op_match_null_string_p _RE_ARGS ((unsigned char **p,
3820 							unsigned char *end,
3821 						register_info_type *reg_info));
3822 static int bcmp_translate _RE_ARGS ((const char *s1, const char *s2,
3823 				     int len, char *translate));
3824 
3825 /* re_match_2 matches the compiled pattern in BUFP against the
3826    the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3827    and SIZE2, respectively).  We start matching at POS, and stop
3828    matching at STOP.
3829 
3830    If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3831    store offsets for the substring each group matched in REGS.  See the
3832    documentation for exactly how many groups we fill.
3833 
3834    We return -1 if no match, -2 if an internal error (such as the
3835    failure stack overflowing).  Otherwise, we return the length of the
3836    matched substring.  */
3837 
3838 int
re_match_2(bufp,string1,size1,string2,size2,pos,regs,stop)3839 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3840      struct re_pattern_buffer *bufp;
3841      const char *string1, *string2;
3842      int size1, size2;
3843      int pos;
3844      struct re_registers *regs;
3845      int stop;
3846 {
3847   int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3848 				    pos, regs, stop);
3849 #ifndef REGEX_MALLOC
3850 # ifdef C_ALLOCA
3851   alloca (0);
3852 # endif
3853 #endif
3854   return result;
3855 }
3856 #ifdef _LIBC
3857 weak_alias (__re_match_2, re_match_2)
3858 #endif
3859 
3860 /* This is a separate function so that we can force an alloca cleanup
3861    afterwards.  */
3862 static int
3863 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3864      struct re_pattern_buffer *bufp;
3865      const char *string1, *string2;
3866      int size1, size2;
3867      int pos;
3868      struct re_registers *regs;
3869      int stop;
3870 {
3871   /* General temporaries.  */
3872   int mcnt;
3873   unsigned char *p1;
3874 
3875   /* Just past the end of the corresponding string.  */
3876   const char *end1, *end2;
3877 
3878   /* Pointers into string1 and string2, just past the last characters in
3879      each to consider matching.  */
3880   const char *end_match_1, *end_match_2;
3881 
3882   /* Where we are in the data, and the end of the current string.  */
3883   const char *d, *dend;
3884 
3885   /* Where we are in the pattern, and the end of the pattern.  */
3886   unsigned char *p = bufp->buffer;
3887   register unsigned char *pend = p + bufp->used;
3888 
3889   /* Mark the opcode just after a start_memory, so we can test for an
3890      empty subpattern when we get to the stop_memory.  */
3891   unsigned char *just_past_start_mem = 0;
3892 
3893   /* We use this to map every character in the string.  */
3894   RE_TRANSLATE_TYPE translate = bufp->translate;
3895 
3896   /* Failure point stack.  Each place that can handle a failure further
3897      down the line pushes a failure point on this stack.  It consists of
3898      restart, regend, and reg_info for all registers corresponding to
3899      the subexpressions we're currently inside, plus the number of such
3900      registers, and, finally, two char *'s.  The first char * is where
3901      to resume scanning the pattern; the second one is where to resume
3902      scanning the strings.  If the latter is zero, the failure point is
3903      a ``dummy''; if a failure happens and the failure point is a dummy,
3904      it gets discarded and the next next one is tried.  */
3905 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
3906   fail_stack_type fail_stack;
3907 #endif
3908 #ifdef DEBUG
3909   static unsigned failure_id;
3910   unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3911 #endif
3912 
3913 #ifdef REL_ALLOC
3914   /* This holds the pointer to the failure stack, when
3915      it is allocated relocatably.  */
3916   fail_stack_elt_t *failure_stack_ptr;
3917 #endif
3918 
3919   /* We fill all the registers internally, independent of what we
3920      return, for use in backreferences.  The number here includes
3921      an element for register zero.  */
3922   size_t num_regs = bufp->re_nsub + 1;
3923 
3924   /* The currently active registers.  */
3925   active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3926   active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3927 
3928   /* Information on the contents of registers. These are pointers into
3929      the input strings; they record just what was matched (on this
3930      attempt) by a subexpression part of the pattern, that is, the
3931      regnum-th regstart pointer points to where in the pattern we began
3932      matching and the regnum-th regend points to right after where we
3933      stopped matching the regnum-th subexpression.  (The zeroth register
3934      keeps track of what the whole pattern matches.)  */
3935 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
3936   const char **regstart, **regend;
3937 #endif
3938 
3939   /* If a group that's operated upon by a repetition operator fails to
3940      match anything, then the register for its start will need to be
3941      restored because it will have been set to wherever in the string we
3942      are when we last see its open-group operator.  Similarly for a
3943      register's end.  */
3944 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
3945   const char **old_regstart, **old_regend;
3946 #endif
3947 
3948   /* The is_active field of reg_info helps us keep track of which (possibly
3949      nested) subexpressions we are currently in. The matched_something
3950      field of reg_info[reg_num] helps us tell whether or not we have
3951      matched any of the pattern so far this time through the reg_num-th
3952      subexpression.  These two fields get reset each time through any
3953      loop their register is in.  */
3954 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
3955   register_info_type *reg_info;
3956 #endif
3957 
3958   /* The following record the register info as found in the above
3959      variables when we find a match better than any we've seen before.
3960      This happens as we backtrack through the failure points, which in
3961      turn happens only if we have not yet matched the entire string. */
3962   unsigned best_regs_set = false;
3963 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
3964   const char **best_regstart, **best_regend;
3965 #endif
3966 
3967   /* Logically, this is `best_regend[0]'.  But we don't want to have to
3968      allocate space for that if we're not allocating space for anything
3969      else (see below).  Also, we never need info about register 0 for
3970      any of the other register vectors, and it seems rather a kludge to
3971      treat `best_regend' differently than the rest.  So we keep track of
3972      the end of the best match so far in a separate variable.  We
3973      initialize this to NULL so that when we backtrack the first time
3974      and need to test it, it's not garbage.  */
3975   const char *match_end = NULL;
3976 
3977   /* This helps SET_REGS_MATCHED avoid doing redundant work.  */
3978   int set_regs_matched_done = 0;
3979 
3980   /* Used when we pop values we don't care about.  */
3981 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
3982   const char **reg_dummy;
3983   register_info_type *reg_info_dummy;
3984 #endif
3985 
3986 #ifdef DEBUG
3987   /* Counts the total number of registers pushed.  */
3988   unsigned num_regs_pushed = 0;
3989 #endif
3990 
3991   DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3992 
3993   INIT_FAIL_STACK ();
3994 
3995 #ifdef MATCH_MAY_ALLOCATE
3996   /* Do not bother to initialize all the register variables if there are
3997      no groups in the pattern, as it takes a fair amount of time.  If
3998      there are groups, we include space for register 0 (the whole
3999      pattern), even though we never use it, since it simplifies the
4000      array indexing.  We should fix this.  */
4001   if (bufp->re_nsub)
4002     {
4003       regstart = REGEX_TALLOC (num_regs, const char *);
4004       regend = REGEX_TALLOC (num_regs, const char *);
4005       old_regstart = REGEX_TALLOC (num_regs, const char *);
4006       old_regend = REGEX_TALLOC (num_regs, const char *);
4007       best_regstart = REGEX_TALLOC (num_regs, const char *);
4008       best_regend = REGEX_TALLOC (num_regs, const char *);
4009       reg_info = REGEX_TALLOC (num_regs, register_info_type);
4010       reg_dummy = REGEX_TALLOC (num_regs, const char *);
4011       reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
4012 
4013       if (!(regstart && regend && old_regstart && old_regend && reg_info
4014             && best_regstart && best_regend && reg_dummy && reg_info_dummy))
4015         {
4016           FREE_VARIABLES ();
4017           return -2;
4018         }
4019     }
4020   else
4021     {
4022       /* We must initialize all our variables to NULL, so that
4023          `FREE_VARIABLES' doesn't try to free them.  */
4024       regstart = regend = old_regstart = old_regend = best_regstart
4025         = best_regend = reg_dummy = NULL;
4026       reg_info = reg_info_dummy = (register_info_type *) NULL;
4027     }
4028 #endif /* MATCH_MAY_ALLOCATE */
4029 
4030   /* The starting position is bogus.  */
4031   if (pos < 0 || pos > size1 + size2)
4032     {
4033       FREE_VARIABLES ();
4034       return -1;
4035     }
4036 
4037   /* Initialize subexpression text positions to -1 to mark ones that no
4038      start_memory/stop_memory has been seen for. Also initialize the
4039      register information struct.  */
4040   for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4041     {
4042       regstart[mcnt] = regend[mcnt]
4043         = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
4044 
4045       REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
4046       IS_ACTIVE (reg_info[mcnt]) = 0;
4047       MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4048       EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4049     }
4050 
4051   /* We move `string1' into `string2' if the latter's empty -- but not if
4052      `string1' is null.  */
4053   if (size2 == 0 && string1 != NULL)
4054     {
4055       string2 = string1;
4056       size2 = size1;
4057       string1 = 0;
4058       size1 = 0;
4059     }
4060   end1 = string1 + size1;
4061   end2 = string2 + size2;
4062 
4063   /* Compute where to stop matching, within the two strings.  */
4064   if (stop <= size1)
4065     {
4066       end_match_1 = string1 + stop;
4067       end_match_2 = string2;
4068     }
4069   else
4070     {
4071       end_match_1 = end1;
4072       end_match_2 = string2 + stop - size1;
4073     }
4074 
4075   /* `p' scans through the pattern as `d' scans through the data.
4076      `dend' is the end of the input string that `d' points within.  `d'
4077      is advanced into the following input string whenever necessary, but
4078      this happens before fetching; therefore, at the beginning of the
4079      loop, `d' can be pointing at the end of a string, but it cannot
4080      equal `string2'.  */
4081   if (size1 > 0 && pos <= size1)
4082     {
4083       d = string1 + pos;
4084       dend = end_match_1;
4085     }
4086   else
4087     {
4088       d = string2 + pos - size1;
4089       dend = end_match_2;
4090     }
4091 
4092   DEBUG_PRINT1 ("The compiled pattern is:\n");
4093   DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4094   DEBUG_PRINT1 ("The string to match is: `");
4095   DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4096   DEBUG_PRINT1 ("'\n");
4097 
4098   /* This loops over pattern commands.  It exits by returning from the
4099      function if the match is complete, or it drops through if the match
4100      fails at this starting point in the input data.  */
4101   for (;;)
4102     {
4103 #ifdef _LIBC
4104       DEBUG_PRINT2 ("\n%p: ", p);
4105 #else
4106       DEBUG_PRINT2 ("\n0x%x: ", p);
4107 #endif
4108 
4109       if (p == pend)
4110 	{ /* End of pattern means we might have succeeded.  */
4111           DEBUG_PRINT1 ("end of pattern ... ");
4112 
4113 	  /* If we haven't matched the entire string, and we want the
4114              longest match, try backtracking.  */
4115           if (d != end_match_2)
4116 	    {
4117 	      /* 1 if this match ends in the same string (string1 or string2)
4118 		 as the best previous match.  */
4119 	      boolean same_str_p = (FIRST_STRING_P (match_end)
4120 				    == MATCHING_IN_FIRST_STRING);
4121 	      /* 1 if this match is the best seen so far.  */
4122 	      boolean best_match_p;
4123 
4124 	      /* AIX compiler got confused when this was combined
4125 		 with the previous declaration.  */
4126 	      if (same_str_p)
4127 		best_match_p = d > match_end;
4128 	      else
4129 		best_match_p = !MATCHING_IN_FIRST_STRING;
4130 
4131               DEBUG_PRINT1 ("backtracking.\n");
4132 
4133               if (!FAIL_STACK_EMPTY ())
4134                 { /* More failure points to try.  */
4135 
4136                   /* If exceeds best match so far, save it.  */
4137                   if (!best_regs_set || best_match_p)
4138                     {
4139                       best_regs_set = true;
4140                       match_end = d;
4141 
4142                       DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4143 
4144                       for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4145                         {
4146                           best_regstart[mcnt] = regstart[mcnt];
4147                           best_regend[mcnt] = regend[mcnt];
4148                         }
4149                     }
4150                   goto fail;
4151                 }
4152 
4153               /* If no failure points, don't restore garbage.  And if
4154                  last match is real best match, don't restore second
4155                  best one. */
4156               else if (best_regs_set && !best_match_p)
4157                 {
4158   	        restore_best_regs:
4159                   /* Restore best match.  It may happen that `dend ==
4160                      end_match_1' while the restored d is in string2.
4161                      For example, the pattern `x.*y.*z' against the
4162                      strings `x-' and `y-z-', if the two strings are
4163                      not consecutive in memory.  */
4164                   DEBUG_PRINT1 ("Restoring best registers.\n");
4165 
4166                   d = match_end;
4167                   dend = ((d >= string1 && d <= end1)
4168 		           ? end_match_1 : end_match_2);
4169 
4170 		  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4171 		    {
4172 		      regstart[mcnt] = best_regstart[mcnt];
4173 		      regend[mcnt] = best_regend[mcnt];
4174 		    }
4175                 }
4176             } /* d != end_match_2 */
4177 
4178 	succeed_label:
4179           DEBUG_PRINT1 ("Accepting match.\n");
4180 
4181           /* If caller wants register contents data back, do it.  */
4182           if (regs && !bufp->no_sub)
4183 	    {
4184               /* Have the register data arrays been allocated?  */
4185               if (bufp->regs_allocated == REGS_UNALLOCATED)
4186                 { /* No.  So allocate them with malloc.  We need one
4187                      extra element beyond `num_regs' for the `-1' marker
4188                      GNU code uses.  */
4189                   regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4190                   regs->start = TALLOC (regs->num_regs, regoff_t);
4191                   regs->end = TALLOC (regs->num_regs, regoff_t);
4192                   if (regs->start == NULL || regs->end == NULL)
4193 		    {
4194 		      FREE_VARIABLES ();
4195 		      return -2;
4196 		    }
4197                   bufp->regs_allocated = REGS_REALLOCATE;
4198                 }
4199               else if (bufp->regs_allocated == REGS_REALLOCATE)
4200                 { /* Yes.  If we need more elements than were already
4201                      allocated, reallocate them.  If we need fewer, just
4202                      leave it alone.  */
4203                   if (regs->num_regs < num_regs + 1)
4204                     {
4205                       regs->num_regs = num_regs + 1;
4206                       RETALLOC (regs->start, regs->num_regs, regoff_t);
4207                       RETALLOC (regs->end, regs->num_regs, regoff_t);
4208                       if (regs->start == NULL || regs->end == NULL)
4209 			{
4210 			  FREE_VARIABLES ();
4211 			  return -2;
4212 			}
4213                     }
4214                 }
4215               else
4216 		{
4217 		  /* These braces fend off a "empty body in an else-statement"
4218 		     warning under GCC when assert expands to nothing.  */
4219 		  assert (bufp->regs_allocated == REGS_FIXED);
4220 		}
4221 
4222               /* Convert the pointer data in `regstart' and `regend' to
4223                  indices.  Register zero has to be set differently,
4224                  since we haven't kept track of any info for it.  */
4225               if (regs->num_regs > 0)
4226                 {
4227                   regs->start[0] = pos;
4228                   regs->end[0] = (MATCHING_IN_FIRST_STRING
4229 				  ? ((regoff_t) (d - string1))
4230 			          : ((regoff_t) (d - string2 + size1)));
4231                 }
4232 
4233               /* Go through the first `min (num_regs, regs->num_regs)'
4234                  registers, since that is all we initialized.  */
4235 	      for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
4236 		   mcnt++)
4237 		{
4238                   if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4239                     regs->start[mcnt] = regs->end[mcnt] = -1;
4240                   else
4241                     {
4242 		      regs->start[mcnt]
4243 			= (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
4244                       regs->end[mcnt]
4245 			= (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
4246                     }
4247 		}
4248 
4249               /* If the regs structure we return has more elements than
4250                  were in the pattern, set the extra elements to -1.  If
4251                  we (re)allocated the registers, this is the case,
4252                  because we always allocate enough to have at least one
4253                  -1 at the end.  */
4254               for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
4255                 regs->start[mcnt] = regs->end[mcnt] = -1;
4256 	    } /* regs && !bufp->no_sub */
4257 
4258           DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4259                         nfailure_points_pushed, nfailure_points_popped,
4260                         nfailure_points_pushed - nfailure_points_popped);
4261           DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4262 
4263           mcnt = d - pos - (MATCHING_IN_FIRST_STRING
4264 			    ? string1
4265 			    : string2 - size1);
4266 
4267           DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4268 
4269           FREE_VARIABLES ();
4270           return mcnt;
4271         }
4272 
4273       /* Otherwise match next pattern command.  */
4274       switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4275 	{
4276         /* Ignore these.  Used to ignore the n of succeed_n's which
4277            currently have n == 0.  */
4278         case no_op:
4279           DEBUG_PRINT1 ("EXECUTING no_op.\n");
4280           break;
4281 
4282 	case succeed:
4283           DEBUG_PRINT1 ("EXECUTING succeed.\n");
4284 	  goto succeed_label;
4285 
4286         /* Match the next n pattern characters exactly.  The following
4287            byte in the pattern defines n, and the n bytes after that
4288            are the characters to match.  */
4289 	case exactn:
4290 	  mcnt = *p++;
4291           DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4292 
4293           /* This is written out as an if-else so we don't waste time
4294              testing `translate' inside the loop.  */
4295           if (translate)
4296 	    {
4297 	      do
4298 		{
4299 		  PREFETCH ();
4300 		  if ((unsigned char) translate[(unsigned char) *d++]
4301 		      != (unsigned char) *p++)
4302                     goto fail;
4303 		}
4304 	      while (--mcnt);
4305 	    }
4306 	  else
4307 	    {
4308 	      do
4309 		{
4310 		  PREFETCH ();
4311 		  if (*d++ != (char) *p++) goto fail;
4312 		}
4313 	      while (--mcnt);
4314 	    }
4315 	  SET_REGS_MATCHED ();
4316           break;
4317 
4318 
4319         /* Match any character except possibly a newline or a null.  */
4320 	case anychar:
4321           DEBUG_PRINT1 ("EXECUTING anychar.\n");
4322 
4323           PREFETCH ();
4324 
4325           if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4326               || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4327 	    goto fail;
4328 
4329           SET_REGS_MATCHED ();
4330           DEBUG_PRINT2 ("  Matched `%d'.\n", *d);
4331           d++;
4332 	  break;
4333 
4334 
4335 	case charset:
4336 	case charset_not:
4337 	  {
4338 	    register unsigned char c;
4339 	    boolean not = (re_opcode_t) *(p - 1) == charset_not;
4340 
4341             DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4342 
4343 	    PREFETCH ();
4344 	    c = TRANSLATE (*d); /* The character to match.  */
4345 
4346             /* Cast to `unsigned' instead of `unsigned char' in case the
4347                bit list is a full 32 bytes long.  */
4348 	    if (c < (unsigned) (*p * BYTEWIDTH)
4349 		&& p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4350 	      not = !not;
4351 
4352 	    p += 1 + *p;
4353 
4354 	    if (!not) goto fail;
4355 
4356 	    SET_REGS_MATCHED ();
4357             d++;
4358 	    break;
4359 	  }
4360 
4361 
4362         /* The beginning of a group is represented by start_memory.
4363            The arguments are the register number in the next byte, and the
4364            number of groups inner to this one in the next.  The text
4365            matched within the group is recorded (in the internal
4366            registers data structure) under the register number.  */
4367         case start_memory:
4368 	  DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4369 
4370           /* Find out if this group can match the empty string.  */
4371 	  p1 = p;		/* To send to group_match_null_string_p.  */
4372 
4373           if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4374             REG_MATCH_NULL_STRING_P (reg_info[*p])
4375               = group_match_null_string_p (&p1, pend, reg_info);
4376 
4377           /* Save the position in the string where we were the last time
4378              we were at this open-group operator in case the group is
4379              operated upon by a repetition operator, e.g., with `(a*)*b'
4380              against `ab'; then we want to ignore where we are now in
4381              the string in case this attempt to match fails.  */
4382           old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4383                              ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4384                              : regstart[*p];
4385 	  DEBUG_PRINT2 ("  old_regstart: %d\n",
4386 			 POINTER_TO_OFFSET (old_regstart[*p]));
4387 
4388           regstart[*p] = d;
4389 	  DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4390 
4391           IS_ACTIVE (reg_info[*p]) = 1;
4392           MATCHED_SOMETHING (reg_info[*p]) = 0;
4393 
4394 	  /* Clear this whenever we change the register activity status.  */
4395 	  set_regs_matched_done = 0;
4396 
4397           /* This is the new highest active register.  */
4398           highest_active_reg = *p;
4399 
4400           /* If nothing was active before, this is the new lowest active
4401              register.  */
4402           if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4403             lowest_active_reg = *p;
4404 
4405           /* Move past the register number and inner group count.  */
4406           p += 2;
4407 	  just_past_start_mem = p;
4408 
4409           break;
4410 
4411 
4412         /* The stop_memory opcode represents the end of a group.  Its
4413            arguments are the same as start_memory's: the register
4414            number, and the number of inner groups.  */
4415 	case stop_memory:
4416 	  DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4417 
4418           /* We need to save the string position the last time we were at
4419              this close-group operator in case the group is operated
4420              upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4421              against `aba'; then we want to ignore where we are now in
4422              the string in case this attempt to match fails.  */
4423           old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4424                            ? REG_UNSET (regend[*p]) ? d : regend[*p]
4425 			   : regend[*p];
4426 	  DEBUG_PRINT2 ("      old_regend: %d\n",
4427 			 POINTER_TO_OFFSET (old_regend[*p]));
4428 
4429           regend[*p] = d;
4430 	  DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4431 
4432           /* This register isn't active anymore.  */
4433           IS_ACTIVE (reg_info[*p]) = 0;
4434 
4435 	  /* Clear this whenever we change the register activity status.  */
4436 	  set_regs_matched_done = 0;
4437 
4438           /* If this was the only register active, nothing is active
4439              anymore.  */
4440           if (lowest_active_reg == highest_active_reg)
4441             {
4442               lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4443               highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4444             }
4445           else
4446             { /* We must scan for the new highest active register, since
4447                  it isn't necessarily one less than now: consider
4448                  (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
4449                  new highest active register is 1.  */
4450               unsigned char r = *p - 1;
4451               while (r > 0 && !IS_ACTIVE (reg_info[r]))
4452                 r--;
4453 
4454               /* If we end up at register zero, that means that we saved
4455                  the registers as the result of an `on_failure_jump', not
4456                  a `start_memory', and we jumped to past the innermost
4457                  `stop_memory'.  For example, in ((.)*) we save
4458                  registers 1 and 2 as a result of the *, but when we pop
4459                  back to the second ), we are at the stop_memory 1.
4460                  Thus, nothing is active.  */
4461 	      if (r == 0)
4462                 {
4463                   lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4464                   highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4465                 }
4466               else
4467                 highest_active_reg = r;
4468             }
4469 
4470           /* If just failed to match something this time around with a
4471              group that's operated on by a repetition operator, try to
4472              force exit from the ``loop'', and restore the register
4473              information for this group that we had before trying this
4474              last match.  */
4475           if ((!MATCHED_SOMETHING (reg_info[*p])
4476                || just_past_start_mem == p - 1)
4477 	      && (p + 2) < pend)
4478             {
4479               boolean is_a_jump_n = false;
4480 
4481               p1 = p + 2;
4482               mcnt = 0;
4483               switch ((re_opcode_t) *p1++)
4484                 {
4485                   case jump_n:
4486 		    is_a_jump_n = true;
4487                   case pop_failure_jump:
4488 		  case maybe_pop_jump:
4489 		  case jump:
4490 		  case dummy_failure_jump:
4491                     EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4492 		    if (is_a_jump_n)
4493 		      p1 += 2;
4494                     break;
4495 
4496                   default:
4497                     /* do nothing */ ;
4498                 }
4499 	      p1 += mcnt;
4500 
4501               /* If the next operation is a jump backwards in the pattern
4502 	         to an on_failure_jump right before the start_memory
4503                  corresponding to this stop_memory, exit from the loop
4504                  by forcing a failure after pushing on the stack the
4505                  on_failure_jump's jump in the pattern, and d.  */
4506               if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4507                   && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4508 		{
4509                   /* If this group ever matched anything, then restore
4510                      what its registers were before trying this last
4511                      failed match, e.g., with `(a*)*b' against `ab' for
4512                      regstart[1], and, e.g., with `((a*)*(b*)*)*'
4513                      against `aba' for regend[3].
4514 
4515                      Also restore the registers for inner groups for,
4516                      e.g., `((a*)(b*))*' against `aba' (register 3 would
4517                      otherwise get trashed).  */
4518 
4519                   if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4520 		    {
4521 		      unsigned r;
4522 
4523                       EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4524 
4525 		      /* Restore this and inner groups' (if any) registers.  */
4526                       for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
4527 			   r++)
4528                         {
4529                           regstart[r] = old_regstart[r];
4530 
4531                           /* xx why this test?  */
4532                           if (old_regend[r] >= regstart[r])
4533                             regend[r] = old_regend[r];
4534                         }
4535                     }
4536 		  p1++;
4537                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4538                   PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4539 
4540                   goto fail;
4541                 }
4542             }
4543 
4544           /* Move past the register number and the inner group count.  */
4545           p += 2;
4546           break;
4547 
4548 
4549 	/* \<digit> has been turned into a `duplicate' command which is
4550            followed by the numeric value of <digit> as the register number.  */
4551         case duplicate:
4552 	  {
4553 	    register const char *d2, *dend2;
4554 	    int regno = *p++;   /* Get which register to match against.  */
4555 	    DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4556 
4557 	    /* Can't back reference a group which we've never matched.  */
4558             if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4559               goto fail;
4560 
4561             /* Where in input to try to start matching.  */
4562             d2 = regstart[regno];
4563 
4564             /* Where to stop matching; if both the place to start and
4565                the place to stop matching are in the same string, then
4566                set to the place to stop, otherwise, for now have to use
4567                the end of the first string.  */
4568 
4569             dend2 = ((FIRST_STRING_P (regstart[regno])
4570 		      == FIRST_STRING_P (regend[regno]))
4571 		     ? regend[regno] : end_match_1);
4572 	    for (;;)
4573 	      {
4574 		/* If necessary, advance to next segment in register
4575                    contents.  */
4576 		while (d2 == dend2)
4577 		  {
4578 		    if (dend2 == end_match_2) break;
4579 		    if (dend2 == regend[regno]) break;
4580 
4581                     /* End of string1 => advance to string2. */
4582                     d2 = string2;
4583                     dend2 = regend[regno];
4584 		  }
4585 		/* At end of register contents => success */
4586 		if (d2 == dend2) break;
4587 
4588 		/* If necessary, advance to next segment in data.  */
4589 		PREFETCH ();
4590 
4591 		/* How many characters left in this segment to match.  */
4592 		mcnt = dend - d;
4593 
4594 		/* Want how many consecutive characters we can match in
4595                    one shot, so, if necessary, adjust the count.  */
4596                 if (mcnt > dend2 - d2)
4597 		  mcnt = dend2 - d2;
4598 
4599 		/* Compare that many; failure if mismatch, else move
4600                    past them.  */
4601 		if (translate
4602                     ? bcmp_translate (d, d2, mcnt, translate)
4603                     : memcmp (d, d2, mcnt))
4604 		  goto fail;
4605 		d += mcnt, d2 += mcnt;
4606 
4607 		/* Do this because we've match some characters.  */
4608 		SET_REGS_MATCHED ();
4609 	      }
4610 	  }
4611 	  break;
4612 
4613 
4614         /* begline matches the empty string at the beginning of the string
4615            (unless `not_bol' is set in `bufp'), and, if
4616            `newline_anchor' is set, after newlines.  */
4617 	case begline:
4618           DEBUG_PRINT1 ("EXECUTING begline.\n");
4619 
4620           if (AT_STRINGS_BEG (d))
4621             {
4622               if (!bufp->not_bol) break;
4623             }
4624           else if (d[-1] == '\n' && bufp->newline_anchor)
4625             {
4626               break;
4627             }
4628           /* In all other cases, we fail.  */
4629           goto fail;
4630 
4631 
4632         /* endline is the dual of begline.  */
4633 	case endline:
4634           DEBUG_PRINT1 ("EXECUTING endline.\n");
4635 
4636           if (AT_STRINGS_END (d))
4637             {
4638               if (!bufp->not_eol) break;
4639             }
4640 
4641           /* We have to ``prefetch'' the next character.  */
4642           else if ((d == end1 ? *string2 : *d) == '\n'
4643                    && bufp->newline_anchor)
4644             {
4645               break;
4646             }
4647           goto fail;
4648 
4649 
4650 	/* Match at the very beginning of the data.  */
4651         case begbuf:
4652           DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4653           if (AT_STRINGS_BEG (d))
4654             break;
4655           goto fail;
4656 
4657 
4658 	/* Match at the very end of the data.  */
4659         case endbuf:
4660           DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4661 	  if (AT_STRINGS_END (d))
4662 	    break;
4663           goto fail;
4664 
4665 
4666         /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
4667            pushes NULL as the value for the string on the stack.  Then
4668            `pop_failure_point' will keep the current value for the
4669            string, instead of restoring it.  To see why, consider
4670            matching `foo\nbar' against `.*\n'.  The .* matches the foo;
4671            then the . fails against the \n.  But the next thing we want
4672            to do is match the \n against the \n; if we restored the
4673            string value, we would be back at the foo.
4674 
4675            Because this is used only in specific cases, we don't need to
4676            check all the things that `on_failure_jump' does, to make
4677            sure the right things get saved on the stack.  Hence we don't
4678            share its code.  The only reason to push anything on the
4679            stack at all is that otherwise we would have to change
4680            `anychar's code to do something besides goto fail in this
4681            case; that seems worse than this.  */
4682         case on_failure_keep_string_jump:
4683           DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4684 
4685           EXTRACT_NUMBER_AND_INCR (mcnt, p);
4686 #ifdef _LIBC
4687           DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
4688 #else
4689           DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4690 #endif
4691 
4692           PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4693           break;
4694 
4695 
4696 	/* Uses of on_failure_jump:
4697 
4698            Each alternative starts with an on_failure_jump that points
4699            to the beginning of the next alternative.  Each alternative
4700            except the last ends with a jump that in effect jumps past
4701            the rest of the alternatives.  (They really jump to the
4702            ending jump of the following alternative, because tensioning
4703            these jumps is a hassle.)
4704 
4705            Repeats start with an on_failure_jump that points past both
4706            the repetition text and either the following jump or
4707            pop_failure_jump back to this on_failure_jump.  */
4708 	case on_failure_jump:
4709         on_failure:
4710           DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4711 
4712           EXTRACT_NUMBER_AND_INCR (mcnt, p);
4713 #ifdef _LIBC
4714           DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
4715 #else
4716           DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4717 #endif
4718 
4719           /* If this on_failure_jump comes right before a group (i.e.,
4720              the original * applied to a group), save the information
4721              for that group and all inner ones, so that if we fail back
4722              to this point, the group's information will be correct.
4723              For example, in \(a*\)*\1, we need the preceding group,
4724              and in \(zz\(a*\)b*\)\2, we need the inner group.  */
4725 
4726           /* We can't use `p' to check ahead because we push
4727              a failure point to `p + mcnt' after we do this.  */
4728           p1 = p;
4729 
4730           /* We need to skip no_op's before we look for the
4731              start_memory in case this on_failure_jump is happening as
4732              the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4733              against aba.  */
4734           while (p1 < pend && (re_opcode_t) *p1 == no_op)
4735             p1++;
4736 
4737           if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4738             {
4739               /* We have a new highest active register now.  This will
4740                  get reset at the start_memory we are about to get to,
4741                  but we will have saved all the registers relevant to
4742                  this repetition op, as described above.  */
4743               highest_active_reg = *(p1 + 1) + *(p1 + 2);
4744               if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4745                 lowest_active_reg = *(p1 + 1);
4746             }
4747 
4748           DEBUG_PRINT1 (":\n");
4749           PUSH_FAILURE_POINT (p + mcnt, d, -2);
4750           break;
4751 
4752 
4753         /* A smart repeat ends with `maybe_pop_jump'.
4754 	   We change it to either `pop_failure_jump' or `jump'.  */
4755         case maybe_pop_jump:
4756           EXTRACT_NUMBER_AND_INCR (mcnt, p);
4757           DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4758           {
4759 	    register unsigned char *p2 = p;
4760 
4761             /* Compare the beginning of the repeat with what in the
4762                pattern follows its end. If we can establish that there
4763                is nothing that they would both match, i.e., that we
4764                would have to backtrack because of (as in, e.g., `a*a')
4765                then we can change to pop_failure_jump, because we'll
4766                never have to backtrack.
4767 
4768                This is not true in the case of alternatives: in
4769                `(a|ab)*' we do need to backtrack to the `ab' alternative
4770                (e.g., if the string was `ab').  But instead of trying to
4771                detect that here, the alternative has put on a dummy
4772                failure point which is what we will end up popping.  */
4773 
4774 	    /* Skip over open/close-group commands.
4775 	       If what follows this loop is a ...+ construct,
4776 	       look at what begins its body, since we will have to
4777 	       match at least one of that.  */
4778 	    while (1)
4779 	      {
4780 		if (p2 + 2 < pend
4781 		    && ((re_opcode_t) *p2 == stop_memory
4782 			|| (re_opcode_t) *p2 == start_memory))
4783 		  p2 += 3;
4784 		else if (p2 + 6 < pend
4785 			 && (re_opcode_t) *p2 == dummy_failure_jump)
4786 		  p2 += 6;
4787 		else
4788 		  break;
4789 	      }
4790 
4791 	    p1 = p + mcnt;
4792 	    /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4793 	       to the `maybe_finalize_jump' of this case.  Examine what
4794 	       follows.  */
4795 
4796             /* If we're at the end of the pattern, we can change.  */
4797             if (p2 == pend)
4798 	      {
4799 		/* Consider what happens when matching ":\(.*\)"
4800 		   against ":/".  I don't really understand this code
4801 		   yet.  */
4802   	        p[-3] = (unsigned char) pop_failure_jump;
4803                 DEBUG_PRINT1
4804                   ("  End of pattern: change to `pop_failure_jump'.\n");
4805               }
4806 
4807             else if ((re_opcode_t) *p2 == exactn
4808 		     || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4809 	      {
4810 		register unsigned char c
4811                   = *p2 == (unsigned char) endline ? '\n' : p2[2];
4812 
4813                 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4814                   {
4815   		    p[-3] = (unsigned char) pop_failure_jump;
4816                     DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
4817                                   c, p1[5]);
4818                   }
4819 
4820 		else if ((re_opcode_t) p1[3] == charset
4821 			 || (re_opcode_t) p1[3] == charset_not)
4822 		  {
4823 		    int not = (re_opcode_t) p1[3] == charset_not;
4824 
4825 		    if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4826 			&& p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4827 		      not = !not;
4828 
4829                     /* `not' is equal to 1 if c would match, which means
4830                         that we can't change to pop_failure_jump.  */
4831 		    if (!not)
4832                       {
4833   		        p[-3] = (unsigned char) pop_failure_jump;
4834                         DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
4835                       }
4836 		  }
4837 	      }
4838             else if ((re_opcode_t) *p2 == charset)
4839 	      {
4840 #ifdef DEBUG
4841 		register unsigned char c
4842                   = *p2 == (unsigned char) endline ? '\n' : p2[2];
4843 #endif
4844 
4845 #if 0
4846                 if ((re_opcode_t) p1[3] == exactn
4847 		    && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
4848 			  && (p2[2 + p1[5] / BYTEWIDTH]
4849 			      & (1 << (p1[5] % BYTEWIDTH)))))
4850 #else
4851                 if ((re_opcode_t) p1[3] == exactn
4852 		    && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4]
4853 			  && (p2[2 + p1[4] / BYTEWIDTH]
4854 			      & (1 << (p1[4] % BYTEWIDTH)))))
4855 #endif
4856                   {
4857   		    p[-3] = (unsigned char) pop_failure_jump;
4858                     DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
4859                                   c, p1[5]);
4860                   }
4861 
4862 		else if ((re_opcode_t) p1[3] == charset_not)
4863 		  {
4864 		    int idx;
4865 		    /* We win if the charset_not inside the loop
4866 		       lists every character listed in the charset after.  */
4867 		    for (idx = 0; idx < (int) p2[1]; idx++)
4868 		      if (! (p2[2 + idx] == 0
4869 			     || (idx < (int) p1[4]
4870 				 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4871 			break;
4872 
4873 		    if (idx == p2[1])
4874                       {
4875   		        p[-3] = (unsigned char) pop_failure_jump;
4876                         DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
4877                       }
4878 		  }
4879 		else if ((re_opcode_t) p1[3] == charset)
4880 		  {
4881 		    int idx;
4882 		    /* We win if the charset inside the loop
4883 		       has no overlap with the one after the loop.  */
4884 		    for (idx = 0;
4885 			 idx < (int) p2[1] && idx < (int) p1[4];
4886 			 idx++)
4887 		      if ((p2[2 + idx] & p1[5 + idx]) != 0)
4888 			break;
4889 
4890 		    if (idx == p2[1] || idx == p1[4])
4891                       {
4892   		        p[-3] = (unsigned char) pop_failure_jump;
4893                         DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
4894                       }
4895 		  }
4896 	      }
4897 	  }
4898 	  p -= 2;		/* Point at relative address again.  */
4899 	  if ((re_opcode_t) p[-1] != pop_failure_jump)
4900 	    {
4901 	      p[-1] = (unsigned char) jump;
4902               DEBUG_PRINT1 ("  Match => jump.\n");
4903 	      goto unconditional_jump;
4904 	    }
4905         /* Note fall through.  */
4906 
4907 
4908 	/* The end of a simple repeat has a pop_failure_jump back to
4909            its matching on_failure_jump, where the latter will push a
4910            failure point.  The pop_failure_jump takes off failure
4911            points put on by this pop_failure_jump's matching
4912            on_failure_jump; we got through the pattern to here from the
4913            matching on_failure_jump, so didn't fail.  */
4914         case pop_failure_jump:
4915           {
4916             /* We need to pass separate storage for the lowest and
4917                highest registers, even though we don't care about the
4918                actual values.  Otherwise, we will restore only one
4919                register from the stack, since lowest will == highest in
4920                `pop_failure_point'.  */
4921             active_reg_t dummy_low_reg, dummy_high_reg;
4922             unsigned char *pdummy;
4923             const char *sdummy;
4924 
4925             DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4926             POP_FAILURE_POINT (sdummy, pdummy,
4927                                dummy_low_reg, dummy_high_reg,
4928                                reg_dummy, reg_dummy, reg_info_dummy);
4929           }
4930 	  /* Note fall through.  */
4931 
4932 	unconditional_jump:
4933 #ifdef _LIBC
4934 	  DEBUG_PRINT2 ("\n%p: ", p);
4935 #else
4936 	  DEBUG_PRINT2 ("\n0x%x: ", p);
4937 #endif
4938           /* Note fall through.  */
4939 
4940         /* Unconditionally jump (without popping any failure points).  */
4941         case jump:
4942 	  EXTRACT_NUMBER_AND_INCR (mcnt, p);	/* Get the amount to jump.  */
4943           DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4944 	  p += mcnt;				/* Do the jump.  */
4945 #ifdef _LIBC
4946           DEBUG_PRINT2 ("(to %p).\n", p);
4947 #else
4948           DEBUG_PRINT2 ("(to 0x%x).\n", p);
4949 #endif
4950 	  break;
4951 
4952 
4953         /* We need this opcode so we can detect where alternatives end
4954            in `group_match_null_string_p' et al.  */
4955         case jump_past_alt:
4956           DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4957           goto unconditional_jump;
4958 
4959 
4960         /* Normally, the on_failure_jump pushes a failure point, which
4961            then gets popped at pop_failure_jump.  We will end up at
4962            pop_failure_jump, also, and with a pattern of, say, `a+', we
4963            are skipping over the on_failure_jump, so we have to push
4964            something meaningless for pop_failure_jump to pop.  */
4965         case dummy_failure_jump:
4966           DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4967           /* It doesn't matter what we push for the string here.  What
4968              the code at `fail' tests is the value for the pattern.  */
4969           PUSH_FAILURE_POINT (NULL, NULL, -2);
4970           goto unconditional_jump;
4971 
4972 
4973         /* At the end of an alternative, we need to push a dummy failure
4974            point in case we are followed by a `pop_failure_jump', because
4975            we don't want the failure point for the alternative to be
4976            popped.  For example, matching `(a|ab)*' against `aab'
4977            requires that we match the `ab' alternative.  */
4978         case push_dummy_failure:
4979           DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4980           /* See comments just above at `dummy_failure_jump' about the
4981              two zeroes.  */
4982           PUSH_FAILURE_POINT (NULL, NULL, -2);
4983           break;
4984 
4985         /* Have to succeed matching what follows at least n times.
4986            After that, handle like `on_failure_jump'.  */
4987         case succeed_n:
4988           EXTRACT_NUMBER (mcnt, p + 2);
4989           DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4990 
4991           assert (mcnt >= 0);
4992           /* Originally, this is how many times we HAVE to succeed.  */
4993           if (mcnt > 0)
4994             {
4995                mcnt--;
4996 	       p += 2;
4997                STORE_NUMBER_AND_INCR (p, mcnt);
4998 #ifdef _LIBC
4999                DEBUG_PRINT3 ("  Setting %p to %d.\n", p - 2, mcnt);
5000 #else
5001                DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p - 2, mcnt);
5002 #endif
5003             }
5004 	  else if (mcnt == 0)
5005             {
5006 #ifdef _LIBC
5007               DEBUG_PRINT2 ("  Setting two bytes from %p to no_op.\n", p+2);
5008 #else
5009               DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n", p+2);
5010 #endif
5011 	      p[2] = (unsigned char) no_op;
5012               p[3] = (unsigned char) no_op;
5013               goto on_failure;
5014             }
5015           break;
5016 
5017         case jump_n:
5018           EXTRACT_NUMBER (mcnt, p + 2);
5019           DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5020 
5021           /* Originally, this is how many times we CAN jump.  */
5022           if (mcnt)
5023             {
5024                mcnt--;
5025                STORE_NUMBER (p + 2, mcnt);
5026 #ifdef _LIBC
5027                DEBUG_PRINT3 ("  Setting %p to %d.\n", p + 2, mcnt);
5028 #else
5029                DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p + 2, mcnt);
5030 #endif
5031 	       goto unconditional_jump;
5032             }
5033           /* If don't have to jump any more, skip over the rest of command.  */
5034 	  else
5035 	    p += 4;
5036           break;
5037 
5038 	case set_number_at:
5039 	  {
5040             DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5041 
5042             EXTRACT_NUMBER_AND_INCR (mcnt, p);
5043             p1 = p + mcnt;
5044             EXTRACT_NUMBER_AND_INCR (mcnt, p);
5045 #ifdef _LIBC
5046             DEBUG_PRINT3 ("  Setting %p to %d.\n", p1, mcnt);
5047 #else
5048             DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
5049 #endif
5050 	    STORE_NUMBER (p1, mcnt);
5051             break;
5052           }
5053 
5054 #if 0
5055 	/* The DEC Alpha C compiler 3.x generates incorrect code for the
5056 	   test  WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
5057 	   AT_WORD_BOUNDARY, so this code is disabled.  Expanding the
5058 	   macro and introducing temporary variables works around the bug.  */
5059 
5060 	case wordbound:
5061 	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
5062 	  if (AT_WORD_BOUNDARY (d))
5063 	    break;
5064 	  goto fail;
5065 
5066 	case notwordbound:
5067 	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5068 	  if (AT_WORD_BOUNDARY (d))
5069 	    goto fail;
5070 	  break;
5071 #else
5072 	case wordbound:
5073 	{
5074 	  boolean prevchar, thischar;
5075 
5076 	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
5077 	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5078 	    break;
5079 
5080 	  prevchar = WORDCHAR_P (d - 1);
5081 	  thischar = WORDCHAR_P (d);
5082 	  if (prevchar != thischar)
5083 	    break;
5084 	  goto fail;
5085 	}
5086 
5087       case notwordbound:
5088 	{
5089 	  boolean prevchar, thischar;
5090 
5091 	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5092 	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5093 	    goto fail;
5094 
5095 	  prevchar = WORDCHAR_P (d - 1);
5096 	  thischar = WORDCHAR_P (d);
5097 	  if (prevchar != thischar)
5098 	    goto fail;
5099 	  break;
5100 	}
5101 #endif
5102 
5103 	case wordbeg:
5104           DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5105 	  if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
5106 	    break;
5107           goto fail;
5108 
5109 	case wordend:
5110           DEBUG_PRINT1 ("EXECUTING wordend.\n");
5111 	  if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
5112               && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
5113 	    break;
5114           goto fail;
5115 
5116 #ifdef emacs
5117   	case before_dot:
5118           DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5119  	  if (PTR_CHAR_POS ((unsigned char *) d) >= point)
5120   	    goto fail;
5121   	  break;
5122 
5123   	case at_dot:
5124           DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5125  	  if (PTR_CHAR_POS ((unsigned char *) d) != point)
5126   	    goto fail;
5127   	  break;
5128 
5129   	case after_dot:
5130           DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5131           if (PTR_CHAR_POS ((unsigned char *) d) <= point)
5132   	    goto fail;
5133   	  break;
5134 
5135 	case syntaxspec:
5136           DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
5137 	  mcnt = *p++;
5138 	  goto matchsyntax;
5139 
5140         case wordchar:
5141           DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5142 	  mcnt = (int) Sword;
5143         matchsyntax:
5144 	  PREFETCH ();
5145 	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
5146 	  d++;
5147 	  if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
5148 	    goto fail;
5149           SET_REGS_MATCHED ();
5150 	  break;
5151 
5152 	case notsyntaxspec:
5153           DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
5154 	  mcnt = *p++;
5155 	  goto matchnotsyntax;
5156 
5157         case notwordchar:
5158           DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5159 	  mcnt = (int) Sword;
5160         matchnotsyntax:
5161 	  PREFETCH ();
5162 	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
5163 	  d++;
5164 	  if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
5165 	    goto fail;
5166 	  SET_REGS_MATCHED ();
5167           break;
5168 
5169 #else /* not emacs */
5170 	case wordchar:
5171           DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5172 	  PREFETCH ();
5173           if (!WORDCHAR_P (d))
5174             goto fail;
5175 	  SET_REGS_MATCHED ();
5176           d++;
5177 	  break;
5178 
5179 	case notwordchar:
5180           DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5181 	  PREFETCH ();
5182 	  if (WORDCHAR_P (d))
5183             goto fail;
5184           SET_REGS_MATCHED ();
5185           d++;
5186 	  break;
5187 #endif /* not emacs */
5188 
5189         default:
5190           abort ();
5191 	}
5192       continue;  /* Successfully executed one pattern command; keep going.  */
5193 
5194 
5195     /* We goto here if a matching operation fails. */
5196     fail:
5197       if (!FAIL_STACK_EMPTY ())
5198 	{ /* A restart point is known.  Restore to that state.  */
5199           DEBUG_PRINT1 ("\nFAIL:\n");
5200           POP_FAILURE_POINT (d, p,
5201                              lowest_active_reg, highest_active_reg,
5202                              regstart, regend, reg_info);
5203 
5204           /* If this failure point is a dummy, try the next one.  */
5205           if (!p)
5206 	    goto fail;
5207 
5208           /* If we failed to the end of the pattern, don't examine *p.  */
5209 	  assert (p <= pend);
5210           if (p < pend)
5211             {
5212               boolean is_a_jump_n = false;
5213 
5214               /* If failed to a backwards jump that's part of a repetition
5215                  loop, need to pop this failure point and use the next one.  */
5216               switch ((re_opcode_t) *p)
5217                 {
5218                 case jump_n:
5219                   is_a_jump_n = true;
5220                 case maybe_pop_jump:
5221                 case pop_failure_jump:
5222                 case jump:
5223                   p1 = p + 1;
5224                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5225                   p1 += mcnt;
5226 
5227                   if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5228                       || (!is_a_jump_n
5229                           && (re_opcode_t) *p1 == on_failure_jump))
5230                     goto fail;
5231                   break;
5232                 default:
5233                   /* do nothing */ ;
5234                 }
5235             }
5236 
5237           if (d >= string1 && d <= end1)
5238 	    dend = end_match_1;
5239         }
5240       else
5241         break;   /* Matching at this starting point really fails.  */
5242     } /* for (;;) */
5243 
5244   if (best_regs_set)
5245     goto restore_best_regs;
5246 
5247   FREE_VARIABLES ();
5248 
5249   return -1;         			/* Failure to match.  */
5250 } /* re_match_2 */
5251 
5252 /* Subroutine definitions for re_match_2.  */
5253 
5254 
5255 /* We are passed P pointing to a register number after a start_memory.
5256 
5257    Return true if the pattern up to the corresponding stop_memory can
5258    match the empty string, and false otherwise.
5259 
5260    If we find the matching stop_memory, sets P to point to one past its number.
5261    Otherwise, sets P to an undefined byte less than or equal to END.
5262 
5263    We don't handle duplicates properly (yet).  */
5264 
5265 static boolean
group_match_null_string_p(p,end,reg_info)5266 group_match_null_string_p (p, end, reg_info)
5267     unsigned char **p, *end;
5268     register_info_type *reg_info;
5269 {
5270   int mcnt;
5271   /* Point to after the args to the start_memory.  */
5272   unsigned char *p1 = *p + 2;
5273 
5274   while (p1 < end)
5275     {
5276       /* Skip over opcodes that can match nothing, and return true or
5277 	 false, as appropriate, when we get to one that can't, or to the
5278          matching stop_memory.  */
5279 
5280       switch ((re_opcode_t) *p1)
5281         {
5282         /* Could be either a loop or a series of alternatives.  */
5283         case on_failure_jump:
5284           p1++;
5285           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5286 
5287           /* If the next operation is not a jump backwards in the
5288 	     pattern.  */
5289 
5290 	  if (mcnt >= 0)
5291 	    {
5292               /* Go through the on_failure_jumps of the alternatives,
5293                  seeing if any of the alternatives cannot match nothing.
5294                  The last alternative starts with only a jump,
5295                  whereas the rest start with on_failure_jump and end
5296                  with a jump, e.g., here is the pattern for `a|b|c':
5297 
5298                  /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5299                  /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5300                  /exactn/1/c
5301 
5302                  So, we have to first go through the first (n-1)
5303                  alternatives and then deal with the last one separately.  */
5304 
5305 
5306               /* Deal with the first (n-1) alternatives, which start
5307                  with an on_failure_jump (see above) that jumps to right
5308                  past a jump_past_alt.  */
5309 
5310               while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5311                 {
5312                   /* `mcnt' holds how many bytes long the alternative
5313                      is, including the ending `jump_past_alt' and
5314                      its number.  */
5315 
5316                   if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5317 				                      reg_info))
5318                     return false;
5319 
5320                   /* Move to right after this alternative, including the
5321 		     jump_past_alt.  */
5322                   p1 += mcnt;
5323 
5324                   /* Break if it's the beginning of an n-th alternative
5325                      that doesn't begin with an on_failure_jump.  */
5326                   if ((re_opcode_t) *p1 != on_failure_jump)
5327                     break;
5328 
5329 		  /* Still have to check that it's not an n-th
5330 		     alternative that starts with an on_failure_jump.  */
5331 		  p1++;
5332                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5333                   if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5334                     {
5335 		      /* Get to the beginning of the n-th alternative.  */
5336                       p1 -= 3;
5337                       break;
5338                     }
5339                 }
5340 
5341               /* Deal with the last alternative: go back and get number
5342                  of the `jump_past_alt' just before it.  `mcnt' contains
5343                  the length of the alternative.  */
5344               EXTRACT_NUMBER (mcnt, p1 - 2);
5345 
5346               if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5347                 return false;
5348 
5349               p1 += mcnt;	/* Get past the n-th alternative.  */
5350             } /* if mcnt > 0 */
5351           break;
5352 
5353 
5354         case stop_memory:
5355 	  assert (p1[1] == **p);
5356           *p = p1 + 2;
5357           return true;
5358 
5359 
5360         default:
5361           if (!common_op_match_null_string_p (&p1, end, reg_info))
5362             return false;
5363         }
5364     } /* while p1 < end */
5365 
5366   return false;
5367 } /* group_match_null_string_p */
5368 
5369 
5370 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5371    It expects P to be the first byte of a single alternative and END one
5372    byte past the last. The alternative can contain groups.  */
5373 
5374 static boolean
alt_match_null_string_p(p,end,reg_info)5375 alt_match_null_string_p (p, end, reg_info)
5376     unsigned char *p, *end;
5377     register_info_type *reg_info;
5378 {
5379   int mcnt;
5380   unsigned char *p1 = p;
5381 
5382   while (p1 < end)
5383     {
5384       /* Skip over opcodes that can match nothing, and break when we get
5385          to one that can't.  */
5386 
5387       switch ((re_opcode_t) *p1)
5388         {
5389 	/* It's a loop.  */
5390         case on_failure_jump:
5391           p1++;
5392           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5393           p1 += mcnt;
5394           break;
5395 
5396 	default:
5397           if (!common_op_match_null_string_p (&p1, end, reg_info))
5398             return false;
5399         }
5400     }  /* while p1 < end */
5401 
5402   return true;
5403 } /* alt_match_null_string_p */
5404 
5405 
5406 /* Deals with the ops common to group_match_null_string_p and
5407    alt_match_null_string_p.
5408 
5409    Sets P to one after the op and its arguments, if any.  */
5410 
5411 static boolean
common_op_match_null_string_p(p,end,reg_info)5412 common_op_match_null_string_p (p, end, reg_info)
5413     unsigned char **p, *end;
5414     register_info_type *reg_info;
5415 {
5416   int mcnt;
5417   boolean ret;
5418   int reg_no;
5419   unsigned char *p1 = *p;
5420 
5421   switch ((re_opcode_t) *p1++)
5422     {
5423     case no_op:
5424     case begline:
5425     case endline:
5426     case begbuf:
5427     case endbuf:
5428     case wordbeg:
5429     case wordend:
5430     case wordbound:
5431     case notwordbound:
5432 #ifdef emacs
5433     case before_dot:
5434     case at_dot:
5435     case after_dot:
5436 #endif
5437       break;
5438 
5439     case start_memory:
5440       reg_no = *p1;
5441       assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5442       ret = group_match_null_string_p (&p1, end, reg_info);
5443 
5444       /* Have to set this here in case we're checking a group which
5445          contains a group and a back reference to it.  */
5446 
5447       if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5448         REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5449 
5450       if (!ret)
5451         return false;
5452       break;
5453 
5454     /* If this is an optimized succeed_n for zero times, make the jump.  */
5455     case jump:
5456       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5457       if (mcnt >= 0)
5458         p1 += mcnt;
5459       else
5460         return false;
5461       break;
5462 
5463     case succeed_n:
5464       /* Get to the number of times to succeed.  */
5465       p1 += 2;
5466       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5467 
5468       if (mcnt == 0)
5469         {
5470           p1 -= 4;
5471           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5472           p1 += mcnt;
5473         }
5474       else
5475         return false;
5476       break;
5477 
5478     case duplicate:
5479       if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5480         return false;
5481       break;
5482 
5483     case set_number_at:
5484       p1 += 4;
5485 
5486     default:
5487       /* All other opcodes mean we cannot match the empty string.  */
5488       return false;
5489   }
5490 
5491   *p = p1;
5492   return true;
5493 } /* common_op_match_null_string_p */
5494 
5495 
5496 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5497    bytes; nonzero otherwise.  */
5498 
5499 static int
bcmp_translate(s1,s2,len,translate)5500 bcmp_translate (s1, s2, len, translate)
5501      const char *s1, *s2;
5502      register int len;
5503      RE_TRANSLATE_TYPE translate;
5504 {
5505   register const unsigned char *p1 = (const unsigned char *) s1;
5506   register const unsigned char *p2 = (const unsigned char *) s2;
5507   while (len)
5508     {
5509       if (translate[*p1++] != translate[*p2++]) return 1;
5510       len--;
5511     }
5512   return 0;
5513 }
5514 
5515 /* Entry points for GNU code.  */
5516 
5517 /* re_compile_pattern is the GNU regular expression compiler: it
5518    compiles PATTERN (of length SIZE) and puts the result in BUFP.
5519    Returns 0 if the pattern was valid, otherwise an error string.
5520 
5521    Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5522    are set in BUFP on entry.
5523 
5524    We call regex_compile to do the actual compilation.  */
5525 
5526 const char *
re_compile_pattern(pattern,length,bufp)5527 re_compile_pattern (pattern, length, bufp)
5528      const char *pattern;
5529      size_t length;
5530      struct re_pattern_buffer *bufp;
5531 {
5532   reg_errcode_t ret;
5533 
5534   /* GNU code is written to assume at least RE_NREGS registers will be set
5535      (and at least one extra will be -1).  */
5536   bufp->regs_allocated = REGS_UNALLOCATED;
5537 
5538   /* And GNU code determines whether or not to get register information
5539      by passing null for the REGS argument to re_match, etc., not by
5540      setting no_sub.  */
5541   bufp->no_sub = 0;
5542 
5543   /* Match anchors at newline.  */
5544   bufp->newline_anchor = 1;
5545 
5546   ret = regex_compile (pattern, length, re_syntax_options, bufp);
5547 
5548   if (!ret)
5549     return NULL;
5550   return gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
5551 }
5552 #ifdef _LIBC
5553 weak_alias (__re_compile_pattern, re_compile_pattern)
5554 #endif
5555 
5556 /* Entry points compatible with 4.2 BSD regex library.  We don't define
5557    them unless specifically requested.  */
5558 
5559 #if defined _REGEX_RE_COMP || defined _LIBC
5560 
5561 /* BSD has one and only one pattern buffer.  */
5562 static struct re_pattern_buffer re_comp_buf;
5563 
5564 char *
5565 #ifdef _LIBC
5566 /* Make these definitions weak in libc, so POSIX programs can redefine
5567    these names if they don't use our functions, and still use
5568    regcomp/regexec below without link errors.  */
5569 weak_function
5570 #endif
re_comp(s)5571 re_comp (s)
5572     const char *s;
5573 {
5574   reg_errcode_t ret;
5575 
5576   if (!s)
5577     {
5578       if (!re_comp_buf.buffer)
5579 	return gettext ("No previous regular expression");
5580       return 0;
5581     }
5582 
5583   if (!re_comp_buf.buffer)
5584     {
5585       re_comp_buf.buffer = (unsigned char *) malloc (200);
5586       if (re_comp_buf.buffer == NULL)
5587         return (char *) gettext (re_error_msgid
5588 				 + re_error_msgid_idx[(int) REG_ESPACE]);
5589       re_comp_buf.allocated = 200;
5590 
5591       re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5592       if (re_comp_buf.fastmap == NULL)
5593 	return (char *) gettext (re_error_msgid
5594 				 + re_error_msgid_idx[(int) REG_ESPACE]);
5595     }
5596 
5597   /* Since `re_exec' always passes NULL for the `regs' argument, we
5598      don't need to initialize the pattern buffer fields which affect it.  */
5599 
5600   /* Match anchors at newlines.  */
5601   re_comp_buf.newline_anchor = 1;
5602 
5603   ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5604 
5605   if (!ret)
5606     return NULL;
5607 
5608   /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
5609   return (char *) gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
5610 }
5611 
5612 
5613 int
5614 #ifdef _LIBC
5615 weak_function
5616 #endif
re_exec(s)5617 re_exec (s)
5618     const char *s;
5619 {
5620   const int len = strlen (s);
5621   return
5622     0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5623 }
5624 
5625 #endif /* _REGEX_RE_COMP */
5626 
5627 /* POSIX.2 functions.  Don't define these for Emacs.  */
5628 
5629 #ifndef emacs
5630 
5631 /* regcomp takes a regular expression as a string and compiles it.
5632 
5633    PREG is a regex_t *.  We do not expect any fields to be initialized,
5634    since POSIX says we shouldn't.  Thus, we set
5635 
5636      `buffer' to the compiled pattern;
5637      `used' to the length of the compiled pattern;
5638      `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5639        REG_EXTENDED bit in CFLAGS is set; otherwise, to
5640        RE_SYNTAX_POSIX_BASIC;
5641      `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5642      `fastmap' to an allocated space for the fastmap;
5643      `fastmap_accurate' to zero;
5644      `re_nsub' to the number of subexpressions in PATTERN.
5645 
5646    PATTERN is the address of the pattern string.
5647 
5648    CFLAGS is a series of bits which affect compilation.
5649 
5650      If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5651      use POSIX basic syntax.
5652 
5653      If REG_NEWLINE is set, then . and [^...] don't match newline.
5654      Also, regexec will try a match beginning after every newline.
5655 
5656      If REG_ICASE is set, then we considers upper- and lowercase
5657      versions of letters to be equivalent when matching.
5658 
5659      If REG_NOSUB is set, then when PREG is passed to regexec, that
5660      routine will report only success or failure, and nothing about the
5661      registers.
5662 
5663    It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
5664    the return codes and their meanings.)  */
5665 
5666 int
regcomp(preg,pattern,cflags)5667 regcomp (preg, pattern, cflags)
5668     regex_t *preg;
5669     const char *pattern;
5670     int cflags;
5671 {
5672   reg_errcode_t ret;
5673   reg_syntax_t syntax
5674     = (cflags & REG_EXTENDED) ?
5675       RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5676 
5677   /* regex_compile will allocate the space for the compiled pattern.  */
5678   preg->buffer = 0;
5679   preg->allocated = 0;
5680   preg->used = 0;
5681 
5682   /* Try to allocate space for the fastmap.  */
5683   preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
5684 
5685   if (cflags & REG_ICASE)
5686     {
5687       unsigned i;
5688 
5689       preg->translate
5690 	= (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5691 				      * sizeof (*(RE_TRANSLATE_TYPE)0));
5692       if (preg->translate == NULL)
5693         return (int) REG_ESPACE;
5694 
5695       /* Map uppercase characters to corresponding lowercase ones.  */
5696       for (i = 0; i < CHAR_SET_SIZE; i++)
5697         preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
5698     }
5699   else
5700     preg->translate = NULL;
5701 
5702   /* If REG_NEWLINE is set, newlines are treated differently.  */
5703   if (cflags & REG_NEWLINE)
5704     { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
5705       syntax &= ~RE_DOT_NEWLINE;
5706       syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5707       /* It also changes the matching behavior.  */
5708       preg->newline_anchor = 1;
5709     }
5710   else
5711     preg->newline_anchor = 0;
5712 
5713   preg->no_sub = !!(cflags & REG_NOSUB);
5714 
5715   /* POSIX says a null character in the pattern terminates it, so we
5716      can use strlen here in compiling the pattern.  */
5717   ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5718 
5719   /* POSIX doesn't distinguish between an unmatched open-group and an
5720      unmatched close-group: both are REG_EPAREN.  */
5721   if (ret == REG_ERPAREN) ret = REG_EPAREN;
5722 
5723   if (ret == REG_NOERROR && preg->fastmap)
5724     {
5725       /* Compute the fastmap now, since regexec cannot modify the pattern
5726 	 buffer.  */
5727       if (re_compile_fastmap (preg) == -2)
5728 	{
5729 	  /* Some error occurred while computing the fastmap, just forget
5730 	     about it.  */
5731 	  free (preg->fastmap);
5732 	  preg->fastmap = NULL;
5733 	}
5734     }
5735 
5736   return (int) ret;
5737 }
5738 #ifdef _LIBC
5739 weak_alias (__regcomp, regcomp)
5740 #endif
5741 
5742 
5743 /* regexec searches for a given pattern, specified by PREG, in the
5744    string STRING.
5745 
5746    If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5747    `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
5748    least NMATCH elements, and we set them to the offsets of the
5749    corresponding matched substrings.
5750 
5751    EFLAGS specifies `execution flags' which affect matching: if
5752    REG_NOTBOL is set, then ^ does not match at the beginning of the
5753    string; if REG_NOTEOL is set, then $ does not match at the end.
5754 
5755    We return 0 if we find a match and REG_NOMATCH if not.  */
5756 
5757 int
5758 regexec (preg, string, nmatch, pmatch, eflags)
5759     const regex_t *preg;
5760     const char *string;
5761     size_t nmatch;
5762     regmatch_t pmatch[];
5763     int eflags;
5764 {
5765   int ret;
5766   struct re_registers regs;
5767   regex_t private_preg;
5768   int len = strlen (string);
5769   boolean want_reg_info = !preg->no_sub && nmatch > 0;
5770 
5771   private_preg = *preg;
5772 
5773   private_preg.not_bol = !!(eflags & REG_NOTBOL);
5774   private_preg.not_eol = !!(eflags & REG_NOTEOL);
5775 
5776   /* The user has told us exactly how many registers to return
5777      information about, via `nmatch'.  We have to pass that on to the
5778      matching routines.  */
5779   private_preg.regs_allocated = REGS_FIXED;
5780 
5781   if (want_reg_info)
5782     {
5783       regs.num_regs = nmatch;
5784       regs.start = TALLOC (nmatch * 2, regoff_t);
5785       if (regs.start == NULL)
5786         return (int) REG_NOMATCH;
5787       regs.end = regs.start + nmatch;
5788     }
5789 
5790   /* Perform the searching operation.  */
5791   ret = re_search (&private_preg, string, len,
5792                    /* start: */ 0, /* range: */ len,
5793                    want_reg_info ? &regs : (struct re_registers *) 0);
5794 
5795   /* Copy the register information to the POSIX structure.  */
5796   if (want_reg_info)
5797     {
5798       if (ret >= 0)
5799         {
5800           unsigned r;
5801 
5802           for (r = 0; r < nmatch; r++)
5803             {
5804               pmatch[r].rm_so = regs.start[r];
5805               pmatch[r].rm_eo = regs.end[r];
5806             }
5807         }
5808 
5809       /* If we needed the temporary register info, free the space now.  */
5810       free (regs.start);
5811     }
5812 
5813   /* We want zero return to mean success, unlike `re_search'.  */
5814   return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5815 }
5816 #ifdef _LIBC
5817 weak_alias (__regexec, regexec)
5818 #endif
5819 
5820 
5821 /* Returns a message corresponding to an error code, ERRCODE, returned
5822    from either regcomp or regexec.   We don't use PREG here.  */
5823 
5824 size_t
5825 regerror (err, preg, errbuf, errbuf_size)
5826     int err;
5827     const regex_t *preg;
5828     char *errbuf;
5829     size_t errbuf_size;
5830 {
5831   const char *msg;
5832   size_t msg_size;
5833 
5834   if (err < 0
5835       || err >= (int) (sizeof (re_error_msgid_idx)
5836 			   / sizeof (re_error_msgid_idx[0])))
5837     /* Only error codes returned by the rest of the code should be passed
5838        to this routine.  If we are given anything else, or if other regex
5839        code generates an invalid error code, then the program has a bug.
5840        Dump core so we can fix it.  */
5841     abort ();
5842 
5843   msg = gettext (re_error_msgid + re_error_msgid_idx[err]);
5844 
5845   msg_size = strlen (msg) + 1; /* Includes the null.  */
5846 
5847   if (errbuf_size != 0)
5848     {
5849       if (msg_size > errbuf_size)
5850         {
5851 #if defined HAVE_MEMPCPY || defined _LIBC
5852 	  *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
5853 #else
5854           memcpy (errbuf, msg, errbuf_size - 1);
5855           errbuf[errbuf_size - 1] = 0;
5856 #endif
5857         }
5858       else
5859         memcpy (errbuf, msg, msg_size);
5860     }
5861 
5862   return msg_size;
5863 }
5864 #ifdef _LIBC
5865 weak_alias (__regerror, regerror)
5866 #endif
5867 
5868 
5869 /* Free dynamically allocated space used by PREG.  */
5870 
5871 void
5872 regfree (preg)
5873     regex_t *preg;
5874 {
5875   if (preg->buffer != NULL)
5876     free (preg->buffer);
5877   preg->buffer = NULL;
5878 
5879   preg->allocated = 0;
5880   preg->used = 0;
5881 
5882   if (preg->fastmap != NULL)
5883     free (preg->fastmap);
5884   preg->fastmap = NULL;
5885   preg->fastmap_accurate = 0;
5886 
5887   if (preg->translate != NULL)
5888     free (preg->translate);
5889   preg->translate = NULL;
5890 }
5891 #ifdef _LIBC
5892 weak_alias (__regfree, regfree)
5893 #endif
5894 
5895 #endif /* not emacs  */
5896