1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <openssl/ssl.h>
58 
59 #include <assert.h>
60 #include <limits.h>
61 
62 #include <openssl/ec.h>
63 #include <openssl/ec_key.h>
64 #include <openssl/err.h>
65 #include <openssl/evp.h>
66 #include <openssl/mem.h>
67 
68 #include "internal.h"
69 #include "../crypto/internal.h"
70 
71 
72 BSSL_NAMESPACE_BEGIN
73 
ssl_is_key_type_supported(int key_type)74 bool ssl_is_key_type_supported(int key_type) {
75   return key_type == EVP_PKEY_RSA || key_type == EVP_PKEY_EC ||
76          key_type == EVP_PKEY_ED25519;
77 }
78 
ssl_set_pkey(CERT * cert,EVP_PKEY * pkey)79 static bool ssl_set_pkey(CERT *cert, EVP_PKEY *pkey) {
80   if (!ssl_is_key_type_supported(pkey->type)) {
81     OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE);
82     return false;
83   }
84 
85   if (cert->chain != nullptr &&
86       sk_CRYPTO_BUFFER_value(cert->chain.get(), 0) != nullptr &&
87       // Sanity-check that the private key and the certificate match.
88       !ssl_cert_check_private_key(cert, pkey)) {
89     return false;
90   }
91 
92   cert->privatekey = UpRef(pkey);
93   return true;
94 }
95 
96 typedef struct {
97   uint16_t sigalg;
98   int pkey_type;
99   int curve;
100   const EVP_MD *(*digest_func)(void);
101   bool is_rsa_pss;
102 } SSL_SIGNATURE_ALGORITHM;
103 
104 static const SSL_SIGNATURE_ALGORITHM kSignatureAlgorithms[] = {
105     {SSL_SIGN_RSA_PKCS1_MD5_SHA1, EVP_PKEY_RSA, NID_undef, &EVP_md5_sha1,
106      false},
107     {SSL_SIGN_RSA_PKCS1_SHA1, EVP_PKEY_RSA, NID_undef, &EVP_sha1, false},
108     {SSL_SIGN_RSA_PKCS1_SHA256, EVP_PKEY_RSA, NID_undef, &EVP_sha256, false},
109     {SSL_SIGN_RSA_PKCS1_SHA384, EVP_PKEY_RSA, NID_undef, &EVP_sha384, false},
110     {SSL_SIGN_RSA_PKCS1_SHA512, EVP_PKEY_RSA, NID_undef, &EVP_sha512, false},
111 
112     {SSL_SIGN_RSA_PSS_RSAE_SHA256, EVP_PKEY_RSA, NID_undef, &EVP_sha256, true},
113     {SSL_SIGN_RSA_PSS_RSAE_SHA384, EVP_PKEY_RSA, NID_undef, &EVP_sha384, true},
114     {SSL_SIGN_RSA_PSS_RSAE_SHA512, EVP_PKEY_RSA, NID_undef, &EVP_sha512, true},
115 
116     {SSL_SIGN_ECDSA_SHA1, EVP_PKEY_EC, NID_undef, &EVP_sha1, false},
117     {SSL_SIGN_ECDSA_SECP256R1_SHA256, EVP_PKEY_EC, NID_X9_62_prime256v1,
118      &EVP_sha256, false},
119     {SSL_SIGN_ECDSA_SECP384R1_SHA384, EVP_PKEY_EC, NID_secp384r1, &EVP_sha384,
120      false},
121     {SSL_SIGN_ECDSA_SECP521R1_SHA512, EVP_PKEY_EC, NID_secp521r1, &EVP_sha512,
122      false},
123 
124     {SSL_SIGN_ED25519, EVP_PKEY_ED25519, NID_undef, nullptr, false},
125 };
126 
get_signature_algorithm(uint16_t sigalg)127 static const SSL_SIGNATURE_ALGORITHM *get_signature_algorithm(uint16_t sigalg) {
128   for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kSignatureAlgorithms); i++) {
129     if (kSignatureAlgorithms[i].sigalg == sigalg) {
130       return &kSignatureAlgorithms[i];
131     }
132   }
133   return NULL;
134 }
135 
ssl_has_private_key(const SSL_HANDSHAKE * hs)136 bool ssl_has_private_key(const SSL_HANDSHAKE *hs) {
137   if (hs->config->cert->privatekey != nullptr ||
138       hs->config->cert->key_method != nullptr ||
139       ssl_signing_with_dc(hs)) {
140     return true;
141   }
142 
143   return false;
144 }
145 
pkey_supports_algorithm(const SSL * ssl,EVP_PKEY * pkey,uint16_t sigalg)146 static bool pkey_supports_algorithm(const SSL *ssl, EVP_PKEY *pkey,
147                                     uint16_t sigalg) {
148   const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
149   if (alg == NULL ||
150       EVP_PKEY_id(pkey) != alg->pkey_type) {
151     return false;
152   }
153 
154   if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) {
155     // RSA keys may only be used with RSA-PSS.
156     if (alg->pkey_type == EVP_PKEY_RSA && !alg->is_rsa_pss) {
157       return false;
158     }
159 
160     // EC keys have a curve requirement.
161     if (alg->pkey_type == EVP_PKEY_EC &&
162         (alg->curve == NID_undef ||
163          EC_GROUP_get_curve_name(
164              EC_KEY_get0_group(EVP_PKEY_get0_EC_KEY(pkey))) != alg->curve)) {
165       return false;
166     }
167   }
168 
169   return true;
170 }
171 
setup_ctx(SSL * ssl,EVP_MD_CTX * ctx,EVP_PKEY * pkey,uint16_t sigalg,bool is_verify)172 static bool setup_ctx(SSL *ssl, EVP_MD_CTX *ctx, EVP_PKEY *pkey,
173                       uint16_t sigalg, bool is_verify) {
174   if (!pkey_supports_algorithm(ssl, pkey, sigalg)) {
175     OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE);
176     return false;
177   }
178 
179   const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
180   const EVP_MD *digest = alg->digest_func != NULL ? alg->digest_func() : NULL;
181   EVP_PKEY_CTX *pctx;
182   if (is_verify) {
183     if (!EVP_DigestVerifyInit(ctx, &pctx, digest, NULL, pkey)) {
184       return false;
185     }
186   } else if (!EVP_DigestSignInit(ctx, &pctx, digest, NULL, pkey)) {
187     return false;
188   }
189 
190   if (alg->is_rsa_pss) {
191     if (!EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) ||
192         !EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, -1 /* salt len = hash len */)) {
193       return false;
194     }
195   }
196 
197   return true;
198 }
199 
ssl_private_key_sign(SSL_HANDSHAKE * hs,uint8_t * out,size_t * out_len,size_t max_out,uint16_t sigalg,Span<const uint8_t> in)200 enum ssl_private_key_result_t ssl_private_key_sign(
201     SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out,
202     uint16_t sigalg, Span<const uint8_t> in) {
203   SSL *const ssl = hs->ssl;
204   const SSL_PRIVATE_KEY_METHOD *key_method = hs->config->cert->key_method;
205   EVP_PKEY *privatekey = hs->config->cert->privatekey.get();
206   if (ssl_signing_with_dc(hs)) {
207     key_method = hs->config->cert->dc_key_method;
208     privatekey = hs->config->cert->dc_privatekey.get();
209   }
210 
211   if (key_method != NULL) {
212     enum ssl_private_key_result_t ret;
213     if (hs->pending_private_key_op) {
214       ret = key_method->complete(ssl, out, out_len, max_out);
215     } else {
216       ret = key_method->sign(ssl, out, out_len, max_out,
217                              sigalg, in.data(), in.size());
218     }
219     if (ret == ssl_private_key_failure) {
220       OPENSSL_PUT_ERROR(SSL, SSL_R_PRIVATE_KEY_OPERATION_FAILED);
221     }
222     hs->pending_private_key_op = ret == ssl_private_key_retry;
223     return ret;
224   }
225 
226   *out_len = max_out;
227   ScopedEVP_MD_CTX ctx;
228   if (!setup_ctx(ssl, ctx.get(), privatekey, sigalg, false /* sign */) ||
229       !EVP_DigestSign(ctx.get(), out, out_len, in.data(), in.size())) {
230     return ssl_private_key_failure;
231   }
232   return ssl_private_key_success;
233 }
234 
ssl_public_key_verify(SSL * ssl,Span<const uint8_t> signature,uint16_t sigalg,EVP_PKEY * pkey,Span<const uint8_t> in)235 bool ssl_public_key_verify(SSL *ssl, Span<const uint8_t> signature,
236                            uint16_t sigalg, EVP_PKEY *pkey,
237                            Span<const uint8_t> in) {
238   ScopedEVP_MD_CTX ctx;
239   if (!setup_ctx(ssl, ctx.get(), pkey, sigalg, true /* verify */)) {
240     return false;
241   }
242   bool ok = EVP_DigestVerify(ctx.get(), signature.data(), signature.size(),
243                              in.data(), in.size());
244 #if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
245   ok = true;
246   ERR_clear_error();
247 #endif
248   return ok;
249 }
250 
ssl_private_key_decrypt(SSL_HANDSHAKE * hs,uint8_t * out,size_t * out_len,size_t max_out,Span<const uint8_t> in)251 enum ssl_private_key_result_t ssl_private_key_decrypt(SSL_HANDSHAKE *hs,
252                                                       uint8_t *out,
253                                                       size_t *out_len,
254                                                       size_t max_out,
255                                                       Span<const uint8_t> in) {
256   SSL *const ssl = hs->ssl;
257   if (hs->config->cert->key_method != NULL) {
258     enum ssl_private_key_result_t ret;
259     if (hs->pending_private_key_op) {
260       ret = hs->config->cert->key_method->complete(ssl, out, out_len, max_out);
261     } else {
262       ret = hs->config->cert->key_method->decrypt(ssl, out, out_len, max_out,
263                                                   in.data(), in.size());
264     }
265     if (ret == ssl_private_key_failure) {
266       OPENSSL_PUT_ERROR(SSL, SSL_R_PRIVATE_KEY_OPERATION_FAILED);
267     }
268     hs->pending_private_key_op = ret == ssl_private_key_retry;
269     return ret;
270   }
271 
272   RSA *rsa = EVP_PKEY_get0_RSA(hs->config->cert->privatekey.get());
273   if (rsa == NULL) {
274     // Decrypt operations are only supported for RSA keys.
275     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
276     return ssl_private_key_failure;
277   }
278 
279   // Decrypt with no padding. PKCS#1 padding will be removed as part of the
280   // timing-sensitive code by the caller.
281   if (!RSA_decrypt(rsa, out_len, out, max_out, in.data(), in.size(),
282                    RSA_NO_PADDING)) {
283     return ssl_private_key_failure;
284   }
285   return ssl_private_key_success;
286 }
287 
ssl_private_key_supports_signature_algorithm(SSL_HANDSHAKE * hs,uint16_t sigalg)288 bool ssl_private_key_supports_signature_algorithm(SSL_HANDSHAKE *hs,
289                                                   uint16_t sigalg) {
290   SSL *const ssl = hs->ssl;
291   if (!pkey_supports_algorithm(ssl, hs->local_pubkey.get(), sigalg)) {
292     return false;
293   }
294 
295   // Ensure the RSA key is large enough for the hash. RSASSA-PSS requires that
296   // emLen be at least hLen + sLen + 2. Both hLen and sLen are the size of the
297   // hash in TLS. Reasonable RSA key sizes are large enough for the largest
298   // defined RSASSA-PSS algorithm, but 1024-bit RSA is slightly too small for
299   // SHA-512. 1024-bit RSA is sometimes used for test credentials, so check the
300   // size so that we can fall back to another algorithm in that case.
301   const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
302   if (alg->is_rsa_pss && (size_t)EVP_PKEY_size(hs->local_pubkey.get()) <
303                              2 * EVP_MD_size(alg->digest_func()) + 2) {
304     return false;
305   }
306 
307   return true;
308 }
309 
310 BSSL_NAMESPACE_END
311 
312 using namespace bssl;
313 
SSL_use_RSAPrivateKey(SSL * ssl,RSA * rsa)314 int SSL_use_RSAPrivateKey(SSL *ssl, RSA *rsa) {
315   if (rsa == NULL || ssl->config == NULL) {
316     OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
317     return 0;
318   }
319 
320   UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
321   if (!pkey ||
322       !EVP_PKEY_set1_RSA(pkey.get(), rsa)) {
323     OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB);
324     return 0;
325   }
326 
327   return ssl_set_pkey(ssl->config->cert.get(), pkey.get());
328 }
329 
SSL_use_RSAPrivateKey_ASN1(SSL * ssl,const uint8_t * der,size_t der_len)330 int SSL_use_RSAPrivateKey_ASN1(SSL *ssl, const uint8_t *der, size_t der_len) {
331   UniquePtr<RSA> rsa(RSA_private_key_from_bytes(der, der_len));
332   if (!rsa) {
333     OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
334     return 0;
335   }
336 
337   return SSL_use_RSAPrivateKey(ssl, rsa.get());
338 }
339 
SSL_use_PrivateKey(SSL * ssl,EVP_PKEY * pkey)340 int SSL_use_PrivateKey(SSL *ssl, EVP_PKEY *pkey) {
341   if (pkey == NULL || ssl->config == NULL) {
342     OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
343     return 0;
344   }
345 
346   return ssl_set_pkey(ssl->config->cert.get(), pkey);
347 }
348 
SSL_use_PrivateKey_ASN1(int type,SSL * ssl,const uint8_t * der,size_t der_len)349 int SSL_use_PrivateKey_ASN1(int type, SSL *ssl, const uint8_t *der,
350                             size_t der_len) {
351   if (der_len > LONG_MAX) {
352     OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
353     return 0;
354   }
355 
356   const uint8_t *p = der;
357   UniquePtr<EVP_PKEY> pkey(d2i_PrivateKey(type, NULL, &p, (long)der_len));
358   if (!pkey || p != der + der_len) {
359     OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
360     return 0;
361   }
362 
363   return SSL_use_PrivateKey(ssl, pkey.get());
364 }
365 
SSL_CTX_use_RSAPrivateKey(SSL_CTX * ctx,RSA * rsa)366 int SSL_CTX_use_RSAPrivateKey(SSL_CTX *ctx, RSA *rsa) {
367   if (rsa == NULL) {
368     OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
369     return 0;
370   }
371 
372   UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
373   if (!pkey ||
374       !EVP_PKEY_set1_RSA(pkey.get(), rsa)) {
375     OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB);
376     return 0;
377   }
378 
379   return ssl_set_pkey(ctx->cert.get(), pkey.get());
380 }
381 
SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX * ctx,const uint8_t * der,size_t der_len)382 int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX *ctx, const uint8_t *der,
383                                    size_t der_len) {
384   UniquePtr<RSA> rsa(RSA_private_key_from_bytes(der, der_len));
385   if (!rsa) {
386     OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
387     return 0;
388   }
389 
390   return SSL_CTX_use_RSAPrivateKey(ctx, rsa.get());
391 }
392 
SSL_CTX_use_PrivateKey(SSL_CTX * ctx,EVP_PKEY * pkey)393 int SSL_CTX_use_PrivateKey(SSL_CTX *ctx, EVP_PKEY *pkey) {
394   if (pkey == NULL) {
395     OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
396     return 0;
397   }
398 
399   return ssl_set_pkey(ctx->cert.get(), pkey);
400 }
401 
SSL_CTX_use_PrivateKey_ASN1(int type,SSL_CTX * ctx,const uint8_t * der,size_t der_len)402 int SSL_CTX_use_PrivateKey_ASN1(int type, SSL_CTX *ctx, const uint8_t *der,
403                                 size_t der_len) {
404   if (der_len > LONG_MAX) {
405     OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
406     return 0;
407   }
408 
409   const uint8_t *p = der;
410   UniquePtr<EVP_PKEY> pkey(d2i_PrivateKey(type, NULL, &p, (long)der_len));
411   if (!pkey || p != der + der_len) {
412     OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
413     return 0;
414   }
415 
416   return SSL_CTX_use_PrivateKey(ctx, pkey.get());
417 }
418 
SSL_set_private_key_method(SSL * ssl,const SSL_PRIVATE_KEY_METHOD * key_method)419 void SSL_set_private_key_method(SSL *ssl,
420                                 const SSL_PRIVATE_KEY_METHOD *key_method) {
421   if (!ssl->config) {
422     return;
423   }
424   ssl->config->cert->key_method = key_method;
425 }
426 
SSL_CTX_set_private_key_method(SSL_CTX * ctx,const SSL_PRIVATE_KEY_METHOD * key_method)427 void SSL_CTX_set_private_key_method(SSL_CTX *ctx,
428                                     const SSL_PRIVATE_KEY_METHOD *key_method) {
429   ctx->cert->key_method = key_method;
430 }
431 
432 static constexpr size_t kMaxSignatureAlgorithmNameLen = 23;
433 
434 // This was "constexpr" rather than "const", but that triggered a bug in MSVC
435 // where it didn't pad the strings to the correct length.
436 static const struct {
437   uint16_t signature_algorithm;
438   const char name[kMaxSignatureAlgorithmNameLen];
439 } kSignatureAlgorithmNames[] = {
440     {SSL_SIGN_RSA_PKCS1_MD5_SHA1, "rsa_pkcs1_md5_sha1"},
441     {SSL_SIGN_RSA_PKCS1_SHA1, "rsa_pkcs1_sha1"},
442     {SSL_SIGN_RSA_PKCS1_SHA256, "rsa_pkcs1_sha256"},
443     {SSL_SIGN_RSA_PKCS1_SHA384, "rsa_pkcs1_sha384"},
444     {SSL_SIGN_RSA_PKCS1_SHA512, "rsa_pkcs1_sha512"},
445     {SSL_SIGN_ECDSA_SHA1, "ecdsa_sha1"},
446     {SSL_SIGN_ECDSA_SECP256R1_SHA256, "ecdsa_secp256r1_sha256"},
447     {SSL_SIGN_ECDSA_SECP384R1_SHA384, "ecdsa_secp384r1_sha384"},
448     {SSL_SIGN_ECDSA_SECP521R1_SHA512, "ecdsa_secp521r1_sha512"},
449     {SSL_SIGN_RSA_PSS_RSAE_SHA256, "rsa_pss_rsae_sha256"},
450     {SSL_SIGN_RSA_PSS_RSAE_SHA384, "rsa_pss_rsae_sha384"},
451     {SSL_SIGN_RSA_PSS_RSAE_SHA512, "rsa_pss_rsae_sha512"},
452     {SSL_SIGN_ED25519, "ed25519"},
453 };
454 
SSL_get_signature_algorithm_name(uint16_t sigalg,int include_curve)455 const char *SSL_get_signature_algorithm_name(uint16_t sigalg,
456                                              int include_curve) {
457   if (!include_curve) {
458     switch (sigalg) {
459       case SSL_SIGN_ECDSA_SECP256R1_SHA256:
460         return "ecdsa_sha256";
461       case SSL_SIGN_ECDSA_SECP384R1_SHA384:
462         return "ecdsa_sha384";
463       case SSL_SIGN_ECDSA_SECP521R1_SHA512:
464         return "ecdsa_sha512";
465     }
466   }
467 
468   for (const auto &candidate : kSignatureAlgorithmNames) {
469     if (candidate.signature_algorithm == sigalg) {
470       return candidate.name;
471     }
472   }
473 
474   return NULL;
475 }
476 
SSL_get_signature_algorithm_key_type(uint16_t sigalg)477 int SSL_get_signature_algorithm_key_type(uint16_t sigalg) {
478   const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
479   return alg != nullptr ? alg->pkey_type : EVP_PKEY_NONE;
480 }
481 
SSL_get_signature_algorithm_digest(uint16_t sigalg)482 const EVP_MD *SSL_get_signature_algorithm_digest(uint16_t sigalg) {
483   const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
484   if (alg == nullptr || alg->digest_func == nullptr) {
485     return nullptr;
486   }
487   return alg->digest_func();
488 }
489 
SSL_is_signature_algorithm_rsa_pss(uint16_t sigalg)490 int SSL_is_signature_algorithm_rsa_pss(uint16_t sigalg) {
491   const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
492   return alg != nullptr && alg->is_rsa_pss;
493 }
494 
SSL_CTX_set_signing_algorithm_prefs(SSL_CTX * ctx,const uint16_t * prefs,size_t num_prefs)495 int SSL_CTX_set_signing_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs,
496                                         size_t num_prefs) {
497   return ctx->cert->sigalgs.CopyFrom(MakeConstSpan(prefs, num_prefs));
498 }
499 
SSL_set_signing_algorithm_prefs(SSL * ssl,const uint16_t * prefs,size_t num_prefs)500 int SSL_set_signing_algorithm_prefs(SSL *ssl, const uint16_t *prefs,
501                                     size_t num_prefs) {
502   if (!ssl->config) {
503     return 0;
504   }
505   return ssl->config->cert->sigalgs.CopyFrom(MakeConstSpan(prefs, num_prefs));
506 }
507 
508 static constexpr struct {
509   int pkey_type;
510   int hash_nid;
511   uint16_t signature_algorithm;
512 } kSignatureAlgorithmsMapping[] = {
513     {EVP_PKEY_RSA, NID_sha1, SSL_SIGN_RSA_PKCS1_SHA1},
514     {EVP_PKEY_RSA, NID_sha256, SSL_SIGN_RSA_PKCS1_SHA256},
515     {EVP_PKEY_RSA, NID_sha384, SSL_SIGN_RSA_PKCS1_SHA384},
516     {EVP_PKEY_RSA, NID_sha512, SSL_SIGN_RSA_PKCS1_SHA512},
517     {EVP_PKEY_RSA_PSS, NID_sha256, SSL_SIGN_RSA_PSS_RSAE_SHA256},
518     {EVP_PKEY_RSA_PSS, NID_sha384, SSL_SIGN_RSA_PSS_RSAE_SHA384},
519     {EVP_PKEY_RSA_PSS, NID_sha512, SSL_SIGN_RSA_PSS_RSAE_SHA512},
520     {EVP_PKEY_EC, NID_sha1, SSL_SIGN_ECDSA_SHA1},
521     {EVP_PKEY_EC, NID_sha256, SSL_SIGN_ECDSA_SECP256R1_SHA256},
522     {EVP_PKEY_EC, NID_sha384, SSL_SIGN_ECDSA_SECP384R1_SHA384},
523     {EVP_PKEY_EC, NID_sha512, SSL_SIGN_ECDSA_SECP521R1_SHA512},
524     {EVP_PKEY_ED25519, NID_undef, SSL_SIGN_ED25519},
525 };
526 
parse_sigalg_pairs(Array<uint16_t> * out,const int * values,size_t num_values)527 static bool parse_sigalg_pairs(Array<uint16_t> *out, const int *values,
528                                size_t num_values) {
529   if ((num_values & 1) == 1) {
530     return false;
531   }
532 
533   const size_t num_pairs = num_values / 2;
534   if (!out->Init(num_pairs)) {
535     return false;
536   }
537 
538   for (size_t i = 0; i < num_values; i += 2) {
539     const int hash_nid = values[i];
540     const int pkey_type = values[i+1];
541 
542     bool found = false;
543     for (const auto &candidate : kSignatureAlgorithmsMapping) {
544       if (candidate.pkey_type == pkey_type && candidate.hash_nid == hash_nid) {
545         (*out)[i / 2] = candidate.signature_algorithm;
546         found = true;
547         break;
548       }
549     }
550 
551     if (!found) {
552       OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
553       ERR_add_error_dataf("unknown hash:%d pkey:%d", hash_nid, pkey_type);
554       return false;
555     }
556   }
557 
558   return true;
559 }
560 
compare_uint16_t(const void * p1,const void * p2)561 static int compare_uint16_t(const void *p1, const void *p2) {
562   uint16_t u1 = *((const uint16_t *)p1);
563   uint16_t u2 = *((const uint16_t *)p2);
564   if (u1 < u2) {
565     return -1;
566   } else if (u1 > u2) {
567     return 1;
568   } else {
569     return 0;
570   }
571 }
572 
sigalgs_unique(Span<const uint16_t> in_sigalgs)573 static bool sigalgs_unique(Span<const uint16_t> in_sigalgs) {
574   if (in_sigalgs.size() < 2) {
575     return true;
576   }
577 
578   Array<uint16_t> sigalgs;
579   if (!sigalgs.CopyFrom(in_sigalgs)) {
580     return false;
581   }
582 
583   qsort(sigalgs.data(), sigalgs.size(), sizeof(uint16_t), compare_uint16_t);
584 
585   for (size_t i = 1; i < sigalgs.size(); i++) {
586     if (sigalgs[i - 1] == sigalgs[i]) {
587       OPENSSL_PUT_ERROR(SSL, SSL_R_DUPLICATE_SIGNATURE_ALGORITHM);
588       return false;
589     }
590   }
591 
592   return true;
593 }
594 
SSL_CTX_set1_sigalgs(SSL_CTX * ctx,const int * values,size_t num_values)595 int SSL_CTX_set1_sigalgs(SSL_CTX *ctx, const int *values, size_t num_values) {
596   Array<uint16_t> sigalgs;
597   if (!parse_sigalg_pairs(&sigalgs, values, num_values) ||
598       !sigalgs_unique(sigalgs)) {
599     return 0;
600   }
601 
602   if (!SSL_CTX_set_signing_algorithm_prefs(ctx, sigalgs.data(),
603                                            sigalgs.size()) ||
604       !ctx->verify_sigalgs.CopyFrom(sigalgs)) {
605     return 0;
606   }
607 
608   return 1;
609 }
610 
SSL_set1_sigalgs(SSL * ssl,const int * values,size_t num_values)611 int SSL_set1_sigalgs(SSL *ssl, const int *values, size_t num_values) {
612   if (!ssl->config) {
613     OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
614     return 0;
615   }
616 
617   Array<uint16_t> sigalgs;
618   if (!parse_sigalg_pairs(&sigalgs, values, num_values) ||
619       !sigalgs_unique(sigalgs)) {
620     return 0;
621   }
622 
623   if (!SSL_set_signing_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size()) ||
624       !ssl->config->verify_sigalgs.CopyFrom(sigalgs)) {
625     return 0;
626   }
627 
628   return 1;
629 }
630 
parse_sigalgs_list(Array<uint16_t> * out,const char * str)631 static bool parse_sigalgs_list(Array<uint16_t> *out, const char *str) {
632   // str looks like "RSA+SHA1:ECDSA+SHA256:ecdsa_secp256r1_sha256".
633 
634   // Count colons to give the number of output elements from any successful
635   // parse.
636   size_t num_elements = 1;
637   size_t len = 0;
638   for (const char *p = str; *p; p++) {
639     len++;
640     if (*p == ':') {
641       num_elements++;
642     }
643   }
644 
645   if (!out->Init(num_elements)) {
646     return false;
647   }
648   size_t out_i = 0;
649 
650   enum {
651     pkey_or_name,
652     hash_name,
653   } state = pkey_or_name;
654 
655   char buf[kMaxSignatureAlgorithmNameLen];
656   // buf_used is always < sizeof(buf). I.e. it's always safe to write
657   // buf[buf_used] = 0.
658   size_t buf_used = 0;
659 
660   int pkey_type = 0, hash_nid = 0;
661 
662   // Note that the loop runs to len+1, i.e. it'll process the terminating NUL.
663   for (size_t offset = 0; offset < len+1; offset++) {
664     const char c = str[offset];
665 
666     switch (c) {
667       case '+':
668         if (state == hash_name) {
669           OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
670           ERR_add_error_dataf("+ found in hash name at offset %zu", offset);
671           return false;
672         }
673         if (buf_used == 0) {
674           OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
675           ERR_add_error_dataf("empty public key type at offset %zu", offset);
676           return false;
677         }
678         buf[buf_used] = 0;
679 
680         if (strcmp(buf, "RSA") == 0) {
681           pkey_type = EVP_PKEY_RSA;
682         } else if (strcmp(buf, "RSA-PSS") == 0 ||
683                    strcmp(buf, "PSS") == 0) {
684           pkey_type = EVP_PKEY_RSA_PSS;
685         } else if (strcmp(buf, "ECDSA") == 0) {
686           pkey_type = EVP_PKEY_EC;
687         } else {
688           OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
689           ERR_add_error_dataf("unknown public key type '%s'", buf);
690           return false;
691         }
692 
693         state = hash_name;
694         buf_used = 0;
695         break;
696 
697       case ':':
698         OPENSSL_FALLTHROUGH;
699       case 0:
700         if (buf_used == 0) {
701           OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
702           ERR_add_error_dataf("empty element at offset %zu", offset);
703           return false;
704         }
705 
706         buf[buf_used] = 0;
707 
708         if (state == pkey_or_name) {
709           // No '+' was seen thus this is a TLS 1.3-style name.
710           bool found = false;
711           for (const auto &candidate : kSignatureAlgorithmNames) {
712             if (strcmp(candidate.name, buf) == 0) {
713               assert(out_i < num_elements);
714               (*out)[out_i++] = candidate.signature_algorithm;
715               found = true;
716               break;
717             }
718           }
719 
720           if (!found) {
721             OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
722             ERR_add_error_dataf("unknown signature algorithm '%s'", buf);
723             return false;
724           }
725         } else {
726           if (strcmp(buf, "SHA1") == 0) {
727             hash_nid = NID_sha1;
728           } else if (strcmp(buf, "SHA256") == 0) {
729             hash_nid = NID_sha256;
730           } else if (strcmp(buf, "SHA384") == 0) {
731             hash_nid = NID_sha384;
732           } else if (strcmp(buf, "SHA512") == 0) {
733             hash_nid = NID_sha512;
734           } else {
735             OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
736             ERR_add_error_dataf("unknown hash function '%s'", buf);
737             return false;
738           }
739 
740           bool found = false;
741           for (const auto &candidate : kSignatureAlgorithmsMapping) {
742             if (candidate.pkey_type == pkey_type &&
743                 candidate.hash_nid == hash_nid) {
744               assert(out_i < num_elements);
745               (*out)[out_i++] = candidate.signature_algorithm;
746               found = true;
747               break;
748             }
749           }
750 
751           if (!found) {
752             OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
753             ERR_add_error_dataf("unknown pkey:%d hash:%s", pkey_type, buf);
754             return false;
755           }
756         }
757 
758         state = pkey_or_name;
759         buf_used = 0;
760         break;
761 
762       default:
763         if (buf_used == sizeof(buf) - 1) {
764           OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
765           ERR_add_error_dataf("substring too long at offset %zu", offset);
766           return false;
767         }
768 
769         if ((c >= '0' && c <= '9') || (c >= 'a' && c <= 'z') ||
770             (c >= 'A' && c <= 'Z') || c == '-' || c == '_') {
771           buf[buf_used++] = c;
772         } else {
773           OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
774           ERR_add_error_dataf("invalid character 0x%02x at offest %zu", c,
775                               offset);
776           return false;
777         }
778     }
779   }
780 
781   assert(out_i == out->size());
782   return true;
783 }
784 
SSL_CTX_set1_sigalgs_list(SSL_CTX * ctx,const char * str)785 int SSL_CTX_set1_sigalgs_list(SSL_CTX *ctx, const char *str) {
786   Array<uint16_t> sigalgs;
787   if (!parse_sigalgs_list(&sigalgs, str) ||
788       !sigalgs_unique(sigalgs)) {
789     return 0;
790   }
791 
792   if (!SSL_CTX_set_signing_algorithm_prefs(ctx, sigalgs.data(),
793                                            sigalgs.size()) ||
794       !SSL_CTX_set_verify_algorithm_prefs(ctx, sigalgs.data(),
795                                           sigalgs.size())) {
796     return 0;
797   }
798 
799   return 1;
800 }
801 
SSL_set1_sigalgs_list(SSL * ssl,const char * str)802 int SSL_set1_sigalgs_list(SSL *ssl, const char *str) {
803   if (!ssl->config) {
804     OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
805     return 0;
806   }
807 
808   Array<uint16_t> sigalgs;
809   if (!parse_sigalgs_list(&sigalgs, str) ||
810       !sigalgs_unique(sigalgs)) {
811     return 0;
812   }
813 
814   if (!SSL_set_signing_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size()) ||
815       !SSL_set_verify_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size())) {
816     return 0;
817   }
818 
819   return 1;
820 }
821 
SSL_CTX_set_verify_algorithm_prefs(SSL_CTX * ctx,const uint16_t * prefs,size_t num_prefs)822 int SSL_CTX_set_verify_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs,
823                                        size_t num_prefs) {
824   return ctx->verify_sigalgs.CopyFrom(MakeConstSpan(prefs, num_prefs));
825 }
826 
SSL_set_verify_algorithm_prefs(SSL * ssl,const uint16_t * prefs,size_t num_prefs)827 int SSL_set_verify_algorithm_prefs(SSL *ssl, const uint16_t *prefs,
828                                    size_t num_prefs) {
829   if (!ssl->config) {
830     OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
831     return 0;
832   }
833 
834   return ssl->config->verify_sigalgs.CopyFrom(MakeConstSpan(prefs, num_prefs));
835 }
836