1 /*
2  * SVG Elliptical Path Support Class
3  *
4  * Copyright 2008  Marco Cecchetti <mrcekets at gmail.com>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it either under the terms of the GNU Lesser General Public
8  * License version 2.1 as published by the Free Software Foundation
9  * (the "LGPL") or, at your option, under the terms of the Mozilla
10  * Public License Version 1.1 (the "MPL"). If you do not alter this
11  * notice, a recipient may use your version of this file under either
12  * the MPL or the LGPL.
13  *
14  * You should have received a copy of the LGPL along with this library
15  * in the file COPYING-LGPL-2.1; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
17  * You should have received a copy of the MPL along with this library
18  * in the file COPYING-MPL-1.1
19  *
20  * The contents of this file are subject to the Mozilla Public License
21  * Version 1.1 (the "License"); you may not use this file except in
22  * compliance with the License. You may obtain a copy of the License at
23  * http://www.mozilla.org/MPL/
24  *
25  * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
26  * OF ANY KIND, either express or implied. See the LGPL or the MPL for
27  * the specific language governing rights and limitations.
28  */
29 
30 
31 #ifndef _SVG_ELLIPTICAL_ARC_H_
32 #define _SVG_ELLIPTICAL_ARC_H_
33 
34 
35 #include "angle.h"
36 #include "matrix.h"
37 #include "sbasis.h"
38 #include "d2.h"
39 
40 
41 namespace Geom
42 {
43 
44 class EllipticalArc
45 {
46   public:
47     EllipticalArc( Point _initial_point, Point _final_point,
48                    double _rx,         double _ry,
49                    bool _large_arc,    bool _sweep,
50                    double _rot_angle = 0.0
51                  )
m_initial_point(_initial_point)52         : m_initial_point(_initial_point), m_final_point(_final_point),
53           m_rx(_rx), m_ry(_ry), m_rot_angle(_rot_angle),
54           m_large_arc(_large_arc), m_sweep(_sweep)
55     {
56         assert( (ray(X) >= 0) && (ray(Y) >= 0) );
57         if ( are_near(initialPoint(), finalPoint()) )
58         {
59             m_start_angle = m_end_angle = 0;
60             m_center = initialPoint();
61         }
62         else
63         {
64             calculate_center_and_extreme_angles();
65         }
66 
67         std::cerr << "start_angle: " << decimal_round(rad_to_deg(m_start_angle),2) << " ( " << m_start_angle << " )" << std::endl
68                   << "end_angle: " << decimal_round(rad_to_deg(m_end_angle),2) << " ( " << m_end_angle << " )" << std::endl
69                   << "center: " << m_center << std::endl;
70     }
71 
72   public:
center(Geom::Dim2 i)73     double center(Geom::Dim2 i) const
74     {
75         return m_center[i];
76     }
77 
center()78     Point center() const
79     {
80         return m_center;
81     }
82 
initialPoint()83     Point initialPoint() const
84     {
85         return m_initial_point;
86     }
87 
finalPoint()88     Point finalPoint() const
89     {
90         return m_final_point;
91     }
92 
start_angle()93     double start_angle() const
94     {
95         return m_start_angle;
96     }
97 
end_angle()98     double end_angle() const
99     {
100         return m_end_angle;
101     }
102 
ray(Geom::Dim2 i)103     double ray(Geom::Dim2 i) const
104     {
105         return (i == 0) ? m_rx : m_ry;
106     }
107 
large_arc_flag()108     bool large_arc_flag() const
109     {
110         return m_large_arc;
111     }
112 
113 //    void large_arc_flag(bool v)
114 //    {
115 //        m_large_arc = v;
116 //    }
117 
sweep_flag()118     bool sweep_flag() const
119     {
120         return m_sweep;
121     }
122 
123 //    void sweep_flag(bool v)
124 //    {
125 //        m_sweep = v;
126 //    }
127 
rotation_angle()128     double rotation_angle() const
129     {
130         return m_rot_angle;
131     }
132 
setInitial(const Point _point)133     void setInitial( const Point _point)
134     {
135         m_initial_point = _point;
136         calculate_center_and_extreme_angles();
137     }
138 
setFinal(const Point _point)139     void setFinal( const Point _point)
140     {
141         m_final_point = _point;
142         calculate_center_and_extreme_angles();
143     }
144 
setExtremes(const Point & _initial_point,const Point & _final_point)145     void setExtremes( const Point& _initial_point, const Point& _final_point )
146     {
147         m_initial_point = _initial_point;
148         m_final_point = _final_point;
149         calculate_center_and_extreme_angles();
150     }
151 
isDegenerate()152     bool isDegenerate() const
153     {
154         return are_near(initialPoint(), finalPoint());
155     }
156 
valueAt(Coord t,Dim2 d)157     double valueAt(Coord t, Dim2 d) const
158     {
159         Coord tt = from_01_to_02PI(t);
160         double sin_rot_angle = std::sin(rotation_angle());
161         double cos_rot_angle = std::cos(rotation_angle());
162         if ( d == X )
163         {
164             return    ray(X) * cos_rot_angle * std::cos(tt)
165                     - ray(Y) * sin_rot_angle * std::sin(tt)
166                     + center(X);
167         }
168         else
169         {
170             return    ray(X) * sin_rot_angle * std::cos(tt)
171                     + ray(Y) * cos_rot_angle * std::sin(tt)
172                     + center(X);
173         }
174     }
175 
pointAt(Coord t)176     Point pointAt(Coord t) const
177     {
178         Coord tt = from_01_to_02PI(t);
179         double sin_rot_angle = std::sin(rotation_angle());
180         double cos_rot_angle = std::cos(rotation_angle());
181         Matrix m( ray(X) * cos_rot_angle, ray(X) * sin_rot_angle,
182                  -ray(Y) * sin_rot_angle, ray(Y) * cos_rot_angle,
183                   center(X),              center(Y) );
184         Point p( std::cos(tt), std::sin(tt) );
185         return p * m;
186     }
187 
toSBasis()188     D2<SBasis> toSBasis() const
189     {
190         // the interval of parametrization has to be [0,1]
191         Coord et = start_angle() + ( sweep_flag() ? sweep_angle() : -sweep_angle() );
192         Linear param(start_angle(), et);
193         // std::cerr << "param : " << param << std::endl;
194         Coord cos_rot_angle = std::cos(rotation_angle());
195         Coord sin_rot_angle = std::sin(rotation_angle());
196         // order = 4 seems to be enough to get perfect looking elliptical arc
197         // should it be choosen in function of the arc length anyway ?
198         // a user settable parameter: toSBasis(unsigned int order) ?
199         SBasis arc_x = ray(X) * cos(param,4);
200         SBasis arc_y = ray(Y) * sin(param,4);
201         D2<SBasis> arc;
202         arc[0] = arc_x * cos_rot_angle - arc_y * sin_rot_angle + Linear(center(X),center(X));
203         arc[1] = arc_x * sin_rot_angle + arc_y * cos_rot_angle + Linear(center(Y),center(Y));
204         return arc;
205     }
206 
207     std::pair<EllipticalArc, EllipticalArc>
subdivide(Coord t)208     subdivide(Coord t) const
209     {
210         EllipticalArc* arc1 = portion(0, t);
211         EllipticalArc* arc2 = portion(t, 1);
212         assert( arc1 != NULL && arc2 != NULL);
213         std::pair<EllipticalArc, EllipticalArc> arc_pair(*arc1, *arc2);
214         delete arc1;
215         delete arc2;
216         return arc_pair;
217     }
218 
portion(double f,double t)219     EllipticalArc* portion(double f, double t) const
220     {
221         static const double M_2PI = 2*M_PI;
222         EllipticalArc* arc = new EllipticalArc( *this );
223         arc->m_initial_point = pointAt(f);
224         arc->m_final_point = pointAt(t);
225         //std::cerr << "initial point: " << arc->m_initial_point << std::endl;
226         //std::cerr << "final point: " << arc->m_final_point << std::endl;
227         double sa = sweep_angle();
228         //std::cerr << "sa: " << sa << std::endl;
229         arc->m_start_angle = m_start_angle + sa * f;
230         if ( arc->m_start_angle > M_2PI || are_near(arc->m_start_angle, M_2PI) )
231             arc->m_start_angle -= M_2PI;
232         arc->m_end_angle = m_start_angle + sa * t;
233         if ( arc->m_end_angle > M_2PI || are_near(arc->m_end_angle, M_2PI) )
234             arc->m_end_angle -= M_2PI;
235         //std::cerr << "start angle: " << arc->m_start_angle << std::endl;
236         //std::cerr << "end angle: " << arc->m_end_angle << std::endl;
237         //std::cerr << "sweep angle: " << arc->sweep_angle() << std::endl;
238         if (f > t) arc->m_sweep = !m_sweep;
239         if ( m_large_arc && (arc->sweep_angle() < M_PI) )
240             arc->m_large_arc = false;
241         return arc;
242     }
243 
244     // the arc is the same but traversed in the opposite direction
reverse()245     EllipticalArc* reverse() const
246     {
247         EllipticalArc* rarc = new EllipticalArc( *this );
248         rarc->m_sweep = !m_sweep;
249         rarc->m_initial_point = m_final_point;
250         rarc->m_final_point = m_initial_point;
251         rarc->m_start_angle = m_end_angle;
252         rarc->m_end_angle = m_start_angle;
253         return rarc;
254     }
255 
256   private:
257 
sweep_angle()258     double sweep_angle() const
259     {
260         Coord d = end_angle() - start_angle();
261         if ( !sweep_flag() ) d = -d;
262         if ( d < 0 || are_near(d, 0) )
263             d += 2*M_PI;
264         return d;
265     }
266 
from_01_to_02PI(Coord t)267     Coord from_01_to_02PI(Coord t) const
268     {
269         if ( sweep_flag() )
270         {
271             Coord angle = start_angle() + sweep_angle() * t;
272             if ( (angle > 2*M_PI) || are_near(angle, 2*M_PI) )
273                 angle -= 2*M_PI;
274             return angle;
275         }
276         else
277         {
278             Coord angle = start_angle() - sweep_angle() * t;
279             if ( angle < 0 ) angle += 2*M_PI;
280             return angle;
281         }
282     }
283 
284     // NOTE: doesn't work with 360 deg arcs
calculate_center_and_extreme_angles()285     void calculate_center_and_extreme_angles()
286     {
287         const double M_HALF_PI = M_PI/2;
288         const double M_2PI = 2*M_PI;
289 
290         double sin_rot_angle = std::sin(rotation_angle());
291         double cos_rot_angle = std::cos(rotation_angle());
292 
293         Point sp = sweep_flag() ? initialPoint() : finalPoint();
294         Point ep = sweep_flag() ? finalPoint() : initialPoint();
295 
296         Matrix m( ray(X) * cos_rot_angle, ray(X) * sin_rot_angle,
297                  -ray(Y) * sin_rot_angle, ray(Y) * cos_rot_angle,
298                   0,                      0 );
299         Matrix im = m.inverse();
300         Point sol = (ep - sp) * im;
301         std::cerr << "sol : " << sol << std::endl;
302         double half_sum_angle = std::atan2(-sol[X], sol[Y]);
303         double half_diff_angle;
304         if ( are_near(std::fabs(half_sum_angle), M_HALF_PI) )
305         {
306             double anti_sgn_hsa = (half_sum_angle > 0) ? -1 : 1;
307             double arg = anti_sgn_hsa * sol[X] / 2;
308             // if |arg| is a little bit > 1 acos returns nan
309             if ( are_near(arg, 1) )
310                 half_diff_angle = 0;
311             else if ( are_near(arg, -1) )
312                 half_diff_angle = M_PI;
313             else
314             {
315                 assert( -1 < arg && arg < 1 );
316                 //  if it fails => there is no ellipse that satisfies the given constraints
317                 half_diff_angle = std::acos( arg );
318             }
319 
320             half_diff_angle = M_HALF_PI - half_diff_angle;
321         }
322         else
323         {
324             double  arg = sol[Y] / ( 2 * std::cos(half_sum_angle) );
325             // if |arg| is a little bit > 1 asin returns nan
326             if ( are_near(arg, 1) )
327                 half_diff_angle = M_HALF_PI;
328             else if ( are_near(arg, -1) )
329                 half_diff_angle = -M_HALF_PI;
330             else
331             {
332                 assert( -1 < arg && arg < 1 );
333                 // if it fails => there is no ellipse that satisfies the given constraints
334                 half_diff_angle = std::asin( arg );
335             }
336         }
337         std::cerr << "half_sum_angle : " << decimal_round(rad_to_deg(half_sum_angle),2) << " ( " << half_sum_angle << " )" << std::endl;
338         std::cerr << "half_diff_angle : " << decimal_round(rad_to_deg(half_diff_angle),2) << " ( " << half_diff_angle << " )" << std::endl;
339         //std::cerr << "cos(half_sum_angle) : " << std::cos(half_sum_angle) << std::endl;
340         //std::cerr << "sol[Y] / ( 2 * std::cos(half_sum_angle) ) : " << sol[Y] / ( 2 * std::cos(half_sum_angle) ) << std::endl;
341 
342         if (   ( m_large_arc && half_diff_angle > 0 )
343             || (!m_large_arc && half_diff_angle < 0 ) )
344         {
345             half_diff_angle = -half_diff_angle;
346         }
347         if ( half_sum_angle < 0 ) half_sum_angle += M_2PI;
348         if ( half_diff_angle < 0 ) half_diff_angle += M_PI;
349         std::cerr << "half_sum_angle : " << decimal_round(rad_to_deg(half_sum_angle),2) << " ( " << half_sum_angle << " )" << std::endl;
350         std::cerr << "half_diff_angle : " << decimal_round(rad_to_deg(half_diff_angle),2) << " ( " << half_diff_angle << " )" << std::endl;
351 
352         m_start_angle = half_sum_angle - half_diff_angle;
353         m_end_angle =  half_sum_angle + half_diff_angle;
354         // 0 <= m_start_angle, m_end_angle < 2PI
355         if ( m_start_angle < 0 ) m_start_angle += M_2PI;
356         if ( m_end_angle > M_2PI || are_near(m_end_angle, M_2PI) ) m_end_angle -= M_2PI;
357         sol[0] = std::cos(m_start_angle);
358         sol[1] = std::sin(m_start_angle);
359         m_center = sp - sol * m;
360         if ( !sweep_flag() )
361         {
362             double angle = m_start_angle;
363             m_start_angle = m_end_angle;
364             m_end_angle = angle;
365         }
366     }
367 
368   private:
369     Point m_initial_point, m_final_point;
370     double m_rx, m_ry, m_rot_angle;
371     bool m_large_arc, m_sweep;
372 
373     double m_start_angle, m_end_angle;
374     Point m_center;
375 };
376 
377 
378 }
379 
380 
381 #endif /*_SVG_ELLIPTICAL_ARC_H_*/
382 
383 
384 /*
385   Local Variables:
386   mode:c++
387   c-file-style:"stroustrup"
388   c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
389   indent-tabs-mode:nil
390   fill-column:99
391   End:
392 */
393 // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=99 :
394