1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #ifndef DOUBLE_CONVERSION_DOUBLE_H_
29 #define DOUBLE_CONVERSION_DOUBLE_H_
30 
31 #include "diy-fp.h"
32 
33 namespace double_conversion {
34 
35 // We assume that doubles and uint64_t have the same endianness.
double_to_uint64(double d)36 static uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); }
uint64_to_double(uint64_t d64)37 static double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); }
float_to_uint32(float f)38 static uint32_t float_to_uint32(float f) { return BitCast<uint32_t>(f); }
uint32_to_float(uint32_t d32)39 static float uint32_to_float(uint32_t d32) { return BitCast<float>(d32); }
40 
41 // Helper functions for doubles.
42 class Double {
43  public:
44   static const uint64_t kSignMask = UINT64_2PART_C(0x80000000, 00000000);
45   static const uint64_t kExponentMask = UINT64_2PART_C(0x7FF00000, 00000000);
46   static const uint64_t kSignificandMask = UINT64_2PART_C(0x000FFFFF, FFFFFFFF);
47   static const uint64_t kHiddenBit = UINT64_2PART_C(0x00100000, 00000000);
48   static const int kPhysicalSignificandSize = 52;  // Excludes the hidden bit.
49   static const int kSignificandSize = 53;
50 
Double()51   Double() : d64_(0) {}
Double(double d)52   explicit Double(double d) : d64_(double_to_uint64(d)) {}
Double(uint64_t d64)53   explicit Double(uint64_t d64) : d64_(d64) {}
Double(DiyFp diy_fp)54   explicit Double(DiyFp diy_fp)
55     : d64_(DiyFpToUint64(diy_fp)) {}
56 
57   // The value encoded by this Double must be greater or equal to +0.0.
58   // It must not be special (infinity, or NaN).
AsDiyFp()59   DiyFp AsDiyFp() const {
60     ASSERT(Sign() > 0);
61     ASSERT(!IsSpecial());
62     return DiyFp(Significand(), Exponent());
63   }
64 
65   // The value encoded by this Double must be strictly greater than 0.
AsNormalizedDiyFp()66   DiyFp AsNormalizedDiyFp() const {
67     ASSERT(value() > 0.0);
68     uint64_t f = Significand();
69     int e = Exponent();
70 
71     // The current double could be a denormal.
72     while ((f & kHiddenBit) == 0) {
73       f <<= 1;
74       e--;
75     }
76     // Do the final shifts in one go.
77     f <<= DiyFp::kSignificandSize - kSignificandSize;
78     e -= DiyFp::kSignificandSize - kSignificandSize;
79     return DiyFp(f, e);
80   }
81 
82   // Returns the double's bit as uint64.
AsUint64()83   uint64_t AsUint64() const {
84     return d64_;
85   }
86 
87   // Returns the next greater double. Returns +infinity on input +infinity.
NextDouble()88   double NextDouble() const {
89     if (d64_ == kInfinity) return Double(kInfinity).value();
90     if (Sign() < 0 && Significand() == 0) {
91       // -0.0
92       return 0.0;
93     }
94     if (Sign() < 0) {
95       return Double(d64_ - 1).value();
96     } else {
97       return Double(d64_ + 1).value();
98     }
99   }
100 
PreviousDouble()101   double PreviousDouble() const {
102     if (d64_ == (kInfinity | kSignMask)) return -Infinity();
103     if (Sign() < 0) {
104       return Double(d64_ + 1).value();
105     } else {
106       if (Significand() == 0) return -0.0;
107       return Double(d64_ - 1).value();
108     }
109   }
110 
Exponent()111   int Exponent() const {
112     if (IsDenormal()) return kDenormalExponent;
113 
114     uint64_t d64 = AsUint64();
115     int biased_e =
116         static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize);
117     return biased_e - kExponentBias;
118   }
119 
Significand()120   uint64_t Significand() const {
121     uint64_t d64 = AsUint64();
122     uint64_t significand = d64 & kSignificandMask;
123     if (!IsDenormal()) {
124       return significand + kHiddenBit;
125     } else {
126       return significand;
127     }
128   }
129 
130   // Returns true if the double is a denormal.
IsDenormal()131   bool IsDenormal() const {
132     uint64_t d64 = AsUint64();
133     return (d64 & kExponentMask) == 0;
134   }
135 
136   // We consider denormals not to be special.
137   // Hence only Infinity and NaN are special.
IsSpecial()138   bool IsSpecial() const {
139     uint64_t d64 = AsUint64();
140     return (d64 & kExponentMask) == kExponentMask;
141   }
142 
IsNan()143   bool IsNan() const {
144     uint64_t d64 = AsUint64();
145     return ((d64 & kExponentMask) == kExponentMask) &&
146         ((d64 & kSignificandMask) != 0);
147   }
148 
IsInfinite()149   bool IsInfinite() const {
150     uint64_t d64 = AsUint64();
151     return ((d64 & kExponentMask) == kExponentMask) &&
152         ((d64 & kSignificandMask) == 0);
153   }
154 
Sign()155   int Sign() const {
156     uint64_t d64 = AsUint64();
157     return (d64 & kSignMask) == 0? 1: -1;
158   }
159 
160   // Precondition: the value encoded by this Double must be greater or equal
161   // than +0.0.
UpperBoundary()162   DiyFp UpperBoundary() const {
163     ASSERT(Sign() > 0);
164     return DiyFp(Significand() * 2 + 1, Exponent() - 1);
165   }
166 
167   // Computes the two boundaries of this.
168   // The bigger boundary (m_plus) is normalized. The lower boundary has the same
169   // exponent as m_plus.
170   // Precondition: the value encoded by this Double must be greater than 0.
NormalizedBoundaries(DiyFp * out_m_minus,DiyFp * out_m_plus)171   void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
172     ASSERT(value() > 0.0);
173     DiyFp v = this->AsDiyFp();
174     DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
175     DiyFp m_minus;
176     if (LowerBoundaryIsCloser()) {
177       m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
178     } else {
179       m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
180     }
181     m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
182     m_minus.set_e(m_plus.e());
183     *out_m_plus = m_plus;
184     *out_m_minus = m_minus;
185   }
186 
LowerBoundaryIsCloser()187   bool LowerBoundaryIsCloser() const {
188     // The boundary is closer if the significand is of the form f == 2^p-1 then
189     // the lower boundary is closer.
190     // Think of v = 1000e10 and v- = 9999e9.
191     // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
192     // at a distance of 1e8.
193     // The only exception is for the smallest normal: the largest denormal is
194     // at the same distance as its successor.
195     // Note: denormals have the same exponent as the smallest normals.
196     bool physical_significand_is_zero = ((AsUint64() & kSignificandMask) == 0);
197     return physical_significand_is_zero && (Exponent() != kDenormalExponent);
198   }
199 
value()200   double value() const { return uint64_to_double(d64_); }
201 
202   // Returns the significand size for a given order of magnitude.
203   // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude.
204   // This function returns the number of significant binary digits v will have
205   // once it's encoded into a double. In almost all cases this is equal to
206   // kSignificandSize. The only exceptions are denormals. They start with
207   // leading zeroes and their effective significand-size is hence smaller.
SignificandSizeForOrderOfMagnitude(int order)208   static int SignificandSizeForOrderOfMagnitude(int order) {
209     if (order >= (kDenormalExponent + kSignificandSize)) {
210       return kSignificandSize;
211     }
212     if (order <= kDenormalExponent) return 0;
213     return order - kDenormalExponent;
214   }
215 
Infinity()216   static double Infinity() {
217     return Double(kInfinity).value();
218   }
219 
NaN()220   static double NaN() {
221     return Double(kNaN).value();
222   }
223 
224  private:
225   static const int kExponentBias = 0x3FF + kPhysicalSignificandSize;
226   static const int kDenormalExponent = -kExponentBias + 1;
227   static const int kMaxExponent = 0x7FF - kExponentBias;
228   static const uint64_t kInfinity = UINT64_2PART_C(0x7FF00000, 00000000);
229   static const uint64_t kNaN = UINT64_2PART_C(0x7FF80000, 00000000);
230 
231   const uint64_t d64_;
232 
DiyFpToUint64(DiyFp diy_fp)233   static uint64_t DiyFpToUint64(DiyFp diy_fp) {
234     uint64_t significand = diy_fp.f();
235     int exponent = diy_fp.e();
236     while (significand > kHiddenBit + kSignificandMask) {
237       significand >>= 1;
238       exponent++;
239     }
240     if (exponent >= kMaxExponent) {
241       return kInfinity;
242     }
243     if (exponent < kDenormalExponent) {
244       return 0;
245     }
246     while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) {
247       significand <<= 1;
248       exponent--;
249     }
250     uint64_t biased_exponent;
251     if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) {
252       biased_exponent = 0;
253     } else {
254       biased_exponent = static_cast<uint64_t>(exponent + kExponentBias);
255     }
256     return (significand & kSignificandMask) |
257         (biased_exponent << kPhysicalSignificandSize);
258   }
259 
260   DISALLOW_COPY_AND_ASSIGN(Double);
261 };
262 
263 class Single {
264  public:
265   static const uint32_t kSignMask = 0x80000000;
266   static const uint32_t kExponentMask = 0x7F800000;
267   static const uint32_t kSignificandMask = 0x007FFFFF;
268   static const uint32_t kHiddenBit = 0x00800000;
269   static const int kPhysicalSignificandSize = 23;  // Excludes the hidden bit.
270   static const int kSignificandSize = 24;
271 
Single()272   Single() : d32_(0) {}
Single(float f)273   explicit Single(float f) : d32_(float_to_uint32(f)) {}
Single(uint32_t d32)274   explicit Single(uint32_t d32) : d32_(d32) {}
275 
276   // The value encoded by this Single must be greater or equal to +0.0.
277   // It must not be special (infinity, or NaN).
AsDiyFp()278   DiyFp AsDiyFp() const {
279     ASSERT(Sign() > 0);
280     ASSERT(!IsSpecial());
281     return DiyFp(Significand(), Exponent());
282   }
283 
284   // Returns the single's bit as uint64.
AsUint32()285   uint32_t AsUint32() const {
286     return d32_;
287   }
288 
Exponent()289   int Exponent() const {
290     if (IsDenormal()) return kDenormalExponent;
291 
292     uint32_t d32 = AsUint32();
293     int biased_e =
294         static_cast<int>((d32 & kExponentMask) >> kPhysicalSignificandSize);
295     return biased_e - kExponentBias;
296   }
297 
Significand()298   uint32_t Significand() const {
299     uint32_t d32 = AsUint32();
300     uint32_t significand = d32 & kSignificandMask;
301     if (!IsDenormal()) {
302       return significand + kHiddenBit;
303     } else {
304       return significand;
305     }
306   }
307 
308   // Returns true if the single is a denormal.
IsDenormal()309   bool IsDenormal() const {
310     uint32_t d32 = AsUint32();
311     return (d32 & kExponentMask) == 0;
312   }
313 
314   // We consider denormals not to be special.
315   // Hence only Infinity and NaN are special.
IsSpecial()316   bool IsSpecial() const {
317     uint32_t d32 = AsUint32();
318     return (d32 & kExponentMask) == kExponentMask;
319   }
320 
IsNan()321   bool IsNan() const {
322     uint32_t d32 = AsUint32();
323     return ((d32 & kExponentMask) == kExponentMask) &&
324         ((d32 & kSignificandMask) != 0);
325   }
326 
IsInfinite()327   bool IsInfinite() const {
328     uint32_t d32 = AsUint32();
329     return ((d32 & kExponentMask) == kExponentMask) &&
330         ((d32 & kSignificandMask) == 0);
331   }
332 
Sign()333   int Sign() const {
334     uint32_t d32 = AsUint32();
335     return (d32 & kSignMask) == 0? 1: -1;
336   }
337 
338   // Computes the two boundaries of this.
339   // The bigger boundary (m_plus) is normalized. The lower boundary has the same
340   // exponent as m_plus.
341   // Precondition: the value encoded by this Single must be greater than 0.
NormalizedBoundaries(DiyFp * out_m_minus,DiyFp * out_m_plus)342   void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
343     ASSERT(value() > 0.0);
344     DiyFp v = this->AsDiyFp();
345     DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
346     DiyFp m_minus;
347     if (LowerBoundaryIsCloser()) {
348       m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
349     } else {
350       m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
351     }
352     m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
353     m_minus.set_e(m_plus.e());
354     *out_m_plus = m_plus;
355     *out_m_minus = m_minus;
356   }
357 
358   // Precondition: the value encoded by this Single must be greater or equal
359   // than +0.0.
UpperBoundary()360   DiyFp UpperBoundary() const {
361     ASSERT(Sign() > 0);
362     return DiyFp(Significand() * 2 + 1, Exponent() - 1);
363   }
364 
LowerBoundaryIsCloser()365   bool LowerBoundaryIsCloser() const {
366     // The boundary is closer if the significand is of the form f == 2^p-1 then
367     // the lower boundary is closer.
368     // Think of v = 1000e10 and v- = 9999e9.
369     // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
370     // at a distance of 1e8.
371     // The only exception is for the smallest normal: the largest denormal is
372     // at the same distance as its successor.
373     // Note: denormals have the same exponent as the smallest normals.
374     bool physical_significand_is_zero = ((AsUint32() & kSignificandMask) == 0);
375     return physical_significand_is_zero && (Exponent() != kDenormalExponent);
376   }
377 
value()378   float value() const { return uint32_to_float(d32_); }
379 
Infinity()380   static float Infinity() {
381     return Single(kInfinity).value();
382   }
383 
NaN()384   static float NaN() {
385     return Single(kNaN).value();
386   }
387 
388  private:
389   static const int kExponentBias = 0x7F + kPhysicalSignificandSize;
390   static const int kDenormalExponent = -kExponentBias + 1;
391   static const int kMaxExponent = 0xFF - kExponentBias;
392   static const uint32_t kInfinity = 0x7F800000;
393   static const uint32_t kNaN = 0x7FC00000;
394 
395   const uint32_t d32_;
396 
397   DISALLOW_COPY_AND_ASSIGN(Single);
398 };
399 
400 }  // namespace double_conversion
401 
402 #endif  // DOUBLE_CONVERSION_DOUBLE_H_
403