1 /* ./src_f77/dorglq.f -- translated by f2c (version 20030320).
2    You must link the resulting object file with the libraries:
3 	-lf2c -lm   (in that order)
4 */
5 
6 #include <punc/vf2c.h>
7 
8 /* Table of constant values */
9 
10 static integer c__1 = 1;
11 static integer c_n1 = -1;
12 static integer c__3 = 3;
13 static integer c__2 = 2;
14 
dorglq_(integer * m,integer * n,integer * k,doublereal * a,integer * lda,doublereal * tau,doublereal * work,integer * lwork,integer * info)15 /* Subroutine */ int dorglq_(integer *m, integer *n, integer *k, doublereal *
16 	a, integer *lda, doublereal *tau, doublereal *work, integer *lwork,
17 	integer *info)
18 {
19     /* System generated locals */
20     integer a_dim1, a_offset, i__1, i__2, i__3;
21 
22     /* Local variables */
23     static integer i__, j, l, ib, nb, ki, kk, nx, iws, nbmin, iinfo;
24     extern /* Subroutine */ int dorgl2_(integer *, integer *, integer *,
25 	    doublereal *, integer *, doublereal *, doublereal *, integer *),
26 	    dlarfb_(char *, char *, char *, char *, integer *, integer *,
27 	    integer *, doublereal *, integer *, doublereal *, integer *,
28 	    doublereal *, integer *, doublereal *, integer *, ftnlen, ftnlen,
29 	    ftnlen, ftnlen), dlarft_(char *, char *, integer *, integer *,
30 	    doublereal *, integer *, doublereal *, doublereal *, integer *,
31 	    ftnlen, ftnlen), xerbla_(char *, integer *, ftnlen);
32     extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
33 	    integer *, integer *, ftnlen, ftnlen);
34     static integer ldwork, lwkopt;
35     static logical lquery;
36 
37 
38 /*  -- LAPACK routine (version 3.0) -- */
39 /*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
40 /*     Courant Institute, Argonne National Lab, and Rice University */
41 /*     June 30, 1999 */
42 
43 /*     .. Scalar Arguments .. */
44 /*     .. */
45 /*     .. Array Arguments .. */
46 /*     .. */
47 
48 /*  Purpose */
49 /*  ======= */
50 
51 /*  DORGLQ generates an M-by-N real matrix Q with orthonormal rows, */
52 /*  which is defined as the first M rows of a product of K elementary */
53 /*  reflectors of order N */
54 
55 /*        Q  =  H(k) . . . H(2) H(1) */
56 
57 /*  as returned by DGELQF. */
58 
59 /*  Arguments */
60 /*  ========= */
61 
62 /*  M       (input) INTEGER */
63 /*          The number of rows of the matrix Q. M >= 0. */
64 
65 /*  N       (input) INTEGER */
66 /*          The number of columns of the matrix Q. N >= M. */
67 
68 /*  K       (input) INTEGER */
69 /*          The number of elementary reflectors whose product defines the */
70 /*          matrix Q. M >= K >= 0. */
71 
72 /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
73 /*          On entry, the i-th row must contain the vector which defines */
74 /*          the elementary reflector H(i), for i = 1,2,...,k, as returned */
75 /*          by DGELQF in the first k rows of its array argument A. */
76 /*          On exit, the M-by-N matrix Q. */
77 
78 /*  LDA     (input) INTEGER */
79 /*          The first dimension of the array A. LDA >= max(1,M). */
80 
81 /*  TAU     (input) DOUBLE PRECISION array, dimension (K) */
82 /*          TAU(i) must contain the scalar factor of the elementary */
83 /*          reflector H(i), as returned by DGELQF. */
84 
85 /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK) */
86 /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
87 
88 /*  LWORK   (input) INTEGER */
89 /*          The dimension of the array WORK. LWORK >= max(1,M). */
90 /*          For optimum performance LWORK >= M*NB, where NB is */
91 /*          the optimal blocksize. */
92 
93 /*          If LWORK = -1, then a workspace query is assumed; the routine */
94 /*          only calculates the optimal size of the WORK array, returns */
95 /*          this value as the first entry of the WORK array, and no error */
96 /*          message related to LWORK is issued by XERBLA. */
97 
98 /*  INFO    (output) INTEGER */
99 /*          = 0:  successful exit */
100 /*          < 0:  if INFO = -i, the i-th argument has an illegal value */
101 
102 /*  ===================================================================== */
103 
104 /*     .. Parameters .. */
105 /*     .. */
106 /*     .. Local Scalars .. */
107 /*     .. */
108 /*     .. External Subroutines .. */
109 /*     .. */
110 /*     .. Intrinsic Functions .. */
111 /*     .. */
112 /*     .. External Functions .. */
113 /*     .. */
114 /*     .. Executable Statements .. */
115 
116 /*     Test the input arguments */
117 
118     /* Parameter adjustments */
119     a_dim1 = *lda;
120     a_offset = 1 + a_dim1;
121     a -= a_offset;
122     --tau;
123     --work;
124 
125     /* Function Body */
126     *info = 0;
127     nb = ilaenv_(&c__1, "DORGLQ", " ", m, n, k, &c_n1, (ftnlen)6, (ftnlen)1);
128     lwkopt = max(1,*m) * nb;
129     work[1] = (doublereal) lwkopt;
130     lquery = *lwork == -1;
131     if (*m < 0) {
132 	*info = -1;
133     } else if (*n < *m) {
134 	*info = -2;
135     } else if (*k < 0 || *k > *m) {
136 	*info = -3;
137     } else if (*lda < max(1,*m)) {
138 	*info = -5;
139     } else if (*lwork < max(1,*m) && ! lquery) {
140 	*info = -8;
141     }
142     if (*info != 0) {
143 	i__1 = -(*info);
144 	xerbla_("DORGLQ", &i__1, (ftnlen)6);
145 	return 0;
146     } else if (lquery) {
147 	return 0;
148     }
149 
150 /*     Quick return if possible */
151 
152     if (*m <= 0) {
153 	work[1] = 1.;
154 	return 0;
155     }
156 
157     nbmin = 2;
158     nx = 0;
159     iws = *m;
160     if (nb > 1 && nb < *k) {
161 
162 /*        Determine when to cross over from blocked to unblocked code. */
163 
164 /* Computing MAX */
165 	i__1 = 0, i__2 = ilaenv_(&c__3, "DORGLQ", " ", m, n, k, &c_n1, (
166 		ftnlen)6, (ftnlen)1);
167 	nx = max(i__1,i__2);
168 	if (nx < *k) {
169 
170 /*           Determine if workspace is large enough for blocked code. */
171 
172 	    ldwork = *m;
173 	    iws = ldwork * nb;
174 	    if (*lwork < iws) {
175 
176 /*              Not enough workspace to use optimal NB:  reduce NB and */
177 /*              determine the minimum value of NB. */
178 
179 		nb = *lwork / ldwork;
180 /* Computing MAX */
181 		i__1 = 2, i__2 = ilaenv_(&c__2, "DORGLQ", " ", m, n, k, &c_n1,
182 			 (ftnlen)6, (ftnlen)1);
183 		nbmin = max(i__1,i__2);
184 	    }
185 	}
186     }
187 
188     if (nb >= nbmin && nb < *k && nx < *k) {
189 
190 /*        Use blocked code after the last block. */
191 /*        The first kk rows are handled by the block method. */
192 
193 	ki = (*k - nx - 1) / nb * nb;
194 /* Computing MIN */
195 	i__1 = *k, i__2 = ki + nb;
196 	kk = min(i__1,i__2);
197 
198 /*        Set A(kk+1:m,1:kk) to zero. */
199 
200 	i__1 = kk;
201 	for (j = 1; j <= i__1; ++j) {
202 	    i__2 = *m;
203 	    for (i__ = kk + 1; i__ <= i__2; ++i__) {
204 		a[i__ + j * a_dim1] = 0.;
205 /* L10: */
206 	    }
207 /* L20: */
208 	}
209     } else {
210 	kk = 0;
211     }
212 
213 /*     Use unblocked code for the last or only block. */
214 
215     if (kk < *m) {
216 	i__1 = *m - kk;
217 	i__2 = *n - kk;
218 	i__3 = *k - kk;
219 	dorgl2_(&i__1, &i__2, &i__3, &a[kk + 1 + (kk + 1) * a_dim1], lda, &
220 		tau[kk + 1], &work[1], &iinfo);
221     }
222 
223     if (kk > 0) {
224 
225 /*        Use blocked code */
226 
227 	i__1 = -nb;
228 	for (i__ = ki + 1; i__1 < 0 ? i__ >= 1 : i__ <= 1; i__ += i__1) {
229 /* Computing MIN */
230 	    i__2 = nb, i__3 = *k - i__ + 1;
231 	    ib = min(i__2,i__3);
232 	    if (i__ + ib <= *m) {
233 
234 /*              Form the triangular factor of the block reflector */
235 /*              H = H(i) H(i+1) . . . H(i+ib-1) */
236 
237 		i__2 = *n - i__ + 1;
238 		dlarft_("Forward", "Rowwise", &i__2, &ib, &a[i__ + i__ *
239 			a_dim1], lda, &tau[i__], &work[1], &ldwork, (ftnlen)7,
240 			 (ftnlen)7);
241 
242 /*              Apply H' to A(i+ib:m,i:n) from the right */
243 
244 		i__2 = *m - i__ - ib + 1;
245 		i__3 = *n - i__ + 1;
246 		dlarfb_("Right", "Transpose", "Forward", "Rowwise", &i__2, &
247 			i__3, &ib, &a[i__ + i__ * a_dim1], lda, &work[1], &
248 			ldwork, &a[i__ + ib + i__ * a_dim1], lda, &work[ib +
249 			1], &ldwork, (ftnlen)5, (ftnlen)9, (ftnlen)7, (ftnlen)
250 			7);
251 	    }
252 
253 /*           Apply H' to columns i:n of current block */
254 
255 	    i__2 = *n - i__ + 1;
256 	    dorgl2_(&ib, &i__2, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &
257 		    work[1], &iinfo);
258 
259 /*           Set columns 1:i-1 of current block to zero */
260 
261 	    i__2 = i__ - 1;
262 	    for (j = 1; j <= i__2; ++j) {
263 		i__3 = i__ + ib - 1;
264 		for (l = i__; l <= i__3; ++l) {
265 		    a[l + j * a_dim1] = 0.;
266 /* L30: */
267 		}
268 /* L40: */
269 	    }
270 /* L50: */
271 	}
272     }
273 
274     work[1] = (doublereal) iws;
275     return 0;
276 
277 /*     End of DORGLQ */
278 
279 } /* dorglq_ */
280 
281